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Abstract. We consider the problem of reasoning with linear temporal
logic on truncated paths. A truncated path is a path which is finite, but
not necessarily maximal. Truncated paths arise naturally in several areas,
among which are incomplete verification methods (such as simulation or
bounded model checking) and hardware resets. We present a formalism
for reasoning about truncated paths, and analyze its characteristics.

1 Introduction

Traditional ltl semantics over finite paths [13] are defined for maximal paths in
the model. That is, if we evaluate a formula over a finite path under traditional
ltl finite semantics, it is because the last state of the path has no successor in
the model. One of the consequences of extending ltl [15] to finite paths is that
the next operator has to be split into a strong and a weak version [13]. The strong
version, which we denote by X!ϕ, does not hold at the last state of a finite path,
while the weak version, which we denote by Xϕ, does.

In this paper, we consider not only finite maximal paths, but finite trun-

cated paths. A truncated path is a finite path that is not necessarily maximal.
Truncated paths arise naturally in incomplete verification methods such as sim-
ulation or bounded model checking. There is also a connection to the problem
of describing the behavior of hardware resets in temporal logic, since intuitively
we tend to think of a reset as somehow cutting the path into two disjoint parts -
a finite, truncated part up until the reset, and a possibly infinite, maximal part
after the reset.

Methods of reasoning about finite maximal paths are insufficient for reasoning
about truncated paths. When considering a truncated path, the user might want
to reason about properties of the truncation as well as properties of the model.
For instance, the user might want to specify that a simulation test goes on long
enough to discharge all outstanding obligations, or, on the other hand, that an
obligation need not be met if it “is the fault of the test” (that is, if the test is
too short). The former approach is useful for a test designed (either manually or
by other means) to continue until correct output can be confirmed. The latter
approach is useful for a test which has no “opinion” on the correct length of a
test - for instance, a monitor running concurrently with the main test to check
for bus protocol errors.
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At first glance, it seems that the strong operators (X! and U) can be used in
the case that all outstanding obligations must be met, and the weak operators
(X and W) in the case that they need not. However, we would like a specification
to be independent of the verification method used. Thus, for instance, for a
specification [p U q], we do not want the user to have to modify the formula to
[p W q] just because she is running a simulation.

In such a situation, we need to define the semantics over a truncated path. In
other words, at the end of the truncated path, the truth value must be decided.
If the path was truncated after the evaluation of the formula completed the truth
value is already determined. The problem is to decide the truth value if the path
was truncated before the evaluation of the formula completed, i.e. where there is
doubt regarding what would have been the truth value if the path had not been
truncated. For instance, consider the formula Fp on a truncated path such that
p does not hold for any state. Another example is the formula Gq on a truncated
path such that q holds for every state. In both cases we cannot be sure whether
or not the formula holds on the original untruncated path.

We term a decision to return true when there is doubt the weak view and a
decision to return false when there is doubt the strong view. Thus in the weak
view the formula Fp holds for any finite path, while Gq holds only if q holds at
every state on the path. And in the strong view the formula Fp holds only if
p holds at some state on the path, while the formula Gq does not hold for any
finite path. Alternatively, one can take the position that one should demand the
maximum that can be reasonably expected from a finite path. For formulas of
the form Fp, a prefix on which p holds for some state on the path is sufficient to
show that the formula holds on the entire path, thus it is reasonable to demand
that such a prefix exist. In the case of formulas of the form Gq, no finite prefix
can serve as evidence that the formula holds on the entire path, thus requiring
such evidence is not reasonable. Under this approach, then, the formula Fp holds
only if p holds at some state on the path, while the formula Gq holds only if q
holds at every state on the path. This is exactly the traditional ltl semantics
over finite paths [13], which we term the neutral view.

In this paper, we present a semantics for ltl over truncated paths based
on the weak, neutral, and strong views. We study properties of the truncated

semantics for the resulting logic ltltrunc, as well as its relation to the informative

prefixes of [10]. We examine the relation between truncated paths and hardware
resets, and show that our truncated semantics are mathematically equivalent to
the reset semantics of [3].

The remainder of this paper is structured as follows. Section 2 presents our
truncated semantics. Section 3 studies properties of our logic as well as its relation
to the informative prefixes of [10]. Section 4 shows the relation to hardware resets.
Section 5 discusses related work. Section 6 concludes.

2 The truncated semantics

Recall that ltl is the logic with the following syntax:
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Definition 1 (ltl formulas).

– Every atomic proposition is an ltl formula.

– If ϕ and ψ are ltl formulas then the following are ltl formulas:

• ¬ϕ • ϕ ∧ ψ • X! ϕ • [ϕ U ψ]

Additional operators are defined as syntactic sugaring of the above operators:
• ϕ ∨ ψ

def= ¬(¬ϕ ∧ ¬ψ) • ϕ → ψ
def= ¬ϕ ∨ ψ • X ϕ

def= ¬(X! ¬ϕ)
• F ϕ

def= [true U ϕ] • G ϕ
def= ¬F ¬ϕ • [ϕ W ψ] def= [ϕ U ψ] ∨ Gϕ

According to our motivation presented above, the formula ϕ holds on a trun-
cated path in the weak view if up to the point where the path ends, “nothing
has yet gone wrong” with ϕ. It holds on a truncated path in the neutral view
according to the standard ltl semantics for finite paths. In the strong view, ϕ
holds on a truncated path if everything that needs to happen to convince us that
ϕ holds on the original untruncated path has already occurred. Intuitively then,
our truncated semantics are related to those of standard ltl on finite paths as
follows: the weak view weakens all operators (e.g. U acts like W, X! like X), the
neutral view leaves them unchanged, and the strong view strengthens them (e.g.
W acts like U, X like X!).

We define the truncated semantics of ltl formulas over words1 from the
alphabet 2P . A letter is a subset of the set of atomic propositions P such that
true belongs to the subset and false does not. We will denote a letter from 2P by �
and an empty, finite, or infinite word from 2P by w. We denote the length of word
w as |w|. An empty word w = � has length 0, a finite word w = (�0�1�2 · · · �n)
has length n + 1, and an infinite word has length ∞. We denote the ith letter of
w by wi−1 (since counting of letters starts at zero). We denote by wi.. the suffix
of w starting at wi. That is, wi.. = (wiwi+1 · · ·wn) or wi.. = (wiwi+1 · · ·). We
denote by wi..j the finite sequence of letters starting from wi and ending in wj .
That is, wi..j = (wiwi+1 · · ·wj).

We make use of an “overflow” and “underflow” for the indices of w. That is,
wj.. and wj..k are defined for j ≥ |w| or k < j as follows: wj.. = wj..k = �. For
example, in the semantics of [ϕ U ψ] under weak context, when we say “∃k”, k
is not required to be less than |w|.

The truncated semantics of an ltl formula are defined with respect to finite
or infinite words and a context indicating the strength, which can be either
weak, neutral or strong. Under the neutral context only non-empty words are
evaluated; under weak/strong contexts, empty words are evaluated as well. We
use w |=S

ϕ to denote that ϕ is satisfied under the model (w,S), where S is “−”
if the context is weak, null if it is neutral, and “+” if it is strong. We use w to
denote an empty, finite, or infinite word, ϕ and ψ to denote ltl formulas, p to
denote an atomic proposition, and j and k to denote natural numbers.

holds weakly: For w such that |w| ≥ 0,
1 Relating the semantics over words to semantics over models is done in the standard

way. Due to lack of space, we omit the details.
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1. w |=−p ⇐⇒ |w| = 0 or p ∈ w0

2. w |=−¬ϕ ⇐⇒ w |=+
/ ϕ

3. w |=−ϕ ∧ ψ ⇐⇒ w |=−ϕ and w |=−ψ

4. w |=−X! ϕ ⇐⇒ w1.. |=−ϕ

5. w |=−[ϕUψ] ⇐⇒ ∃k such that wk.. |=−ψ, and for every j < k, wj.. |=−ϕ

holds neutrally: For w such that |w| > 0,

1. w |= p ⇐⇒ p ∈ w0

2. w |=¬ϕ ⇐⇒ w |=/ ϕ

3. w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ

4. w |= X! ϕ ⇐⇒ |w| > 1 and w1.. |= ϕ

5. w |= [ϕUψ] ⇐⇒ ∃k < |w| such that wk.. |= ψ, and for every j < k, wj.. |= ϕ

holds strongly: For w such that |w| ≥ 0,

1. w |=+
p ⇐⇒ |w| > 0 and p ∈ w0

2. w |=+¬ϕ ⇐⇒ w |=−/ ϕ

3. w |=+
ϕ ∧ ψ ⇐⇒ w |=+

ϕ and w |=+
ψ

4. w |=+
X! ϕ ⇐⇒ w1.. |=+

ϕ

5. w |=+ [ϕUψ] ⇐⇒ ∃k such that wk.. |=+
ψ, and for every j < k, wj.. |=+

ϕ

Our goal was to give a semantics to ltl formulas for truncated paths, but we
have actually ended up with two parallel semantics: the neutral semantics, and
the weak/strong semantics. The weak/strong semantics form a coupled dual pair
because the negation operator switches between them. Before analyzing these
semantics, we first unify them by augmenting ltl with truncate operators that
connect the neutral semantics to the weak/strong semantics. Intuitively, trunc w
truncates a path using the weak view, while trunc s truncates using the strong
view. Formally, ltltrunc is the following logic, where we use the term boolean

expression to refer to any application of the standard boolean operators to atomic
propositions, and we associate satisfaction of a boolean expression over a letter
wi with satisfaction of the boolean expression over the word wi..i.

Definition 2 (ltltrunc
formulas).

– Every atomic proposition is an ltltrunc formula.

– If ϕ and ψ are ltltrunc formulas and b is a boolean expression, then the

following are ltltrunc formulas:

• ¬ϕ • ϕ ∧ ψ • X! ϕ • [ϕ U ψ] • ϕ trunc w b

We also add the dual of the trunc w operator as syntactic sugar as follows:

ϕ trunc s b
def= ¬(¬ϕ trunc w b)



5

The semantics of the standard ltl operators are as presented above. The se-
mantics of the truncate operator are as follows:

– w |=−ϕ trunc w b ⇐⇒ w |=−ϕ or ∃k < |w| s.t. wk |= b and w0..k−1 |=−ϕ

– w |= ϕ trunc w b ⇐⇒ w |= ϕ or ∃k < |w| s.t. wk |= b and w0..k−1 |=−ϕ

– w |=+
ϕ trunc w b ⇐⇒ w |=+

ϕ or ∃k < |w| s.t. wk |= b and w0..k−1 |=−ϕ

Thus, trunc w performs a truncation and takes us to the weak view, and, as
we show below, trunc s performs a truncation and takes us to the strong view.
There is no way to get from the weak/strong views back to the neutral view.
This corresponds with our intuition that once a path has been truncated, there
is no way to “untruncate” it.

3 Characteristics of the truncated semantics

In this section, we study properties of the truncated semantics as well as its
relation to the informative prefixes of [10]. We first examine relations between
the views. The first theorem assures that the strong context is indeed stronger
than the neutral, while the neutral is stronger than the weak.

Theorem 3 (Strength relation theorem). Let w be a non-empty word.

1. w |=+
ϕ =⇒ w |= ϕ

2. w |= ϕ =⇒ w |=−ϕ

The proof, obtained by induction on the structure of the formula, is given in the
appendix. It relies on the following lemma.

Lemma 4 Let ϕ be a formula in ltltrunc. Then both � |=−ϕ and � |=+
/ ϕ.

The following corollary to Theorem 3 states that for infinite paths, the
weak/neutral/strong views are the same. Recall that the neutral view with-
out the trunc w operator is that of standard ltl over finite and infinite paths.
Thus, for ltltrunc formulas with no truncation operators (that is, for ltl for-
mulas), Corollary 5 implies that all three views are equivalent over infinite paths
to standard ltl semantics.

Corollary 5 If w is infinite, then w |=−ϕ iff w |= ϕ iff w |=+
ϕ.

The proof is by induction on the structure of ϕ and appears in the appendix.
Intuitively, a truncated path w satisfies ϕ in the weak view if w “carries

no evidence against” ϕ. It should then follow that any prefix of w “carries no
evidence against” ϕ. Similarly, w satisfies ϕ in the strong view if it “supplies
all the evidence needed” to conclude that ϕ holds on the original untruncated
path. Hence any extension of w should also “supply all evidence needed” for this
conclusion. The following theorem confirms these intuitive expectations. We first
formalize the notions of prefix and extension.
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Definition 6 (Prefix, extension).

u is a prefix of v, denoted u � v, if there exists a word u� such that uu� = v.
w is an extension of v, denoted w � v, if there exists a word v� such that vv� = w.

Theorem 7 (Prefix/extension theorem).

1. v |=−ϕ ⇐⇒ ∀u � v, u |=−ϕ

2. v |=+
ϕ ⇐⇒ ∀w � v, w |=+

ϕ

The proof of the theorem is by induction on the structure of the formula, and is
given in the appendix.

We now examine our intuitions regarding some derived operators. Since the
trunc w operator takes us to the weak view, we expect the trunc s operator to
take us to the strong view. The following observation confirms our intuition by
capturing directly the semantics of the trunc s operator.

Observation 8

– w |=−ϕ trunc s b ⇐⇒ w |=−ϕ and ∀k < |w| if wk |= b then w0..k−1 |=+
ϕ

– w |= ϕ trunc s b ⇐⇒ w |= ϕ and ∀k < |w| if wk |= b then w0..k−1 |=+
ϕ

– w |=+
ϕ trunc s b ⇐⇒ w |=+

ϕ and ∀k < |w| if wk |= b then w0..k−1 |=+
ϕ

The following observation shows that our intuitions regarding F and G on
truncated paths hold. In particular, that Fϕ holds for any formula ϕ in weak
context on a truncated path, and that Gϕ does not hold for any formula ϕ in
strong context on a truncated path.

Observation 9

• w |=−Fϕ ⇐⇒ ∃k s.t. wk.. |=−ϕ • w |=−Gϕ ⇐⇒ ∀k, wk.. |=−ϕ

• w |= Fϕ ⇐⇒ ∃k < |w| s.t. wk.. |= ϕ • w |= Gϕ ⇐⇒ ∀k < |w|, wk.. |= ϕ

• w |=+
Fϕ ⇐⇒ ∃k s.t. wk.. |=+

ϕ • w |=+
Gϕ ⇐⇒ ∀k, wk.. |=+

ϕ

Note that for k ≥ |w|, wk.. = � and by Lemma 4, � |=−ϕ and � |=+
/ ϕ for every ϕ.

Thus Observation 9 shows that for every formula ϕ and for every finite word w,
w |=−Fϕ and w |=+

/ Gϕ.
We have already seen that for infinite words, the semantics of the

weak/neutral/strong contexts are equivalent and, in the absence of truncation
operators, are the same as those of standard ltl. The following observations
show that for finite words, the strength of an operator matters only in the neu-
tral context since in a weak context every operator is weak (U acts like W and
X! acts like X) and in a strong context every operator is strong (W acts like U
and X acts like X!).

Observation 10 Let w be a finite word.

• w |= Xϕ ⇐⇒ w |=¬(X! ¬ϕ) • w |= [ϕUψ] ⇐⇒ w |=¬[¬ψW(¬ϕ ∧ ¬ψ)]
• w |=+

Xϕ ⇐⇒ w |=+
X! ϕ • w |=+ [ϕUψ] ⇐⇒ w |=+ [ϕWψ]

• w |=−Xϕ ⇐⇒ w |=−X! ϕ • w |=−[ϕUψ] ⇐⇒ w |=−[ϕWψ]
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A consequence of this is that under weak context it might be the case that both ϕ
and ¬ϕ hold, while under strong context it might be the case that neither ϕ nor
¬ϕ holds. It follows immediately that ϕ∧¬ϕ may hold in the weak context, while
ϕ∨¬ϕ does not necessarily hold in the strong context. For example, let ϕ = XXp.
Then on a path w of length 1, w |=−ϕ ∧ ¬ϕ, and w |=+

/ ϕ ∨ ¬ϕ. This property of
the truncated semantics is reminiscent of a similar property in intuitionistic logic
[6], in which ϕ ∨ ¬ϕ does not necessarily hold.

We now argue that the truncated semantics formalizes the intuition behind
the weak, neutral and strong views. Recall that one of the motivating intuitions
for the truncated semantics is that if a path is truncated before evaluation of ϕ
“completes”, then the truncated path satisfies ϕ weakly but does not satisfy ϕ
strongly. If the evaluation of ϕ “completes” before the path is truncated, then the
truth value on the truncated path is the result of the evaluation. Thus, in order
to claim that we capture the intuition we need to define when the evaluation of
a formula completes. In other words, given a word w and a formula ϕ we would
like to detect the shortest prefix of w which suffices to conclude that ϕ holds or
does not hold on w. We call such a prefix the definitive prefix of ϕ with respect
to w.

Definition 11 (Definitive prefix). Let w be a non-empty path and ϕ a for-

mula. The definitive prefix of w with respect to ϕ, denoted dp(w, ϕ), is the short-

est finite prefix u � w such that

u |=−ϕ ⇐⇒ u |= ϕ ⇐⇒ u |=+
ϕ

if such u exists and � otherwise.

Intuitively, if w is finite and dp(w, ϕ) = �, then even after examination of all
of w, our decision procedure leaves doubt about the dispositions of both ϕ and
¬ϕ on w. Therefore, both are satisfied weakly on w, neither is satisfied strongly
on w, and all of w is needed to determine which one is satisfied neutrally on w.
If dp(w,ϕ) �= �, then for finite or infinite w, examination of dp(w, ϕ) is exactly
enough for our decision procedure to resolve without doubt the truth value of
ϕ over any prefix v of w such that v � dp(w, ϕ). Therefore, any proper prefix
of dp(w, ϕ) satisfies weakly both ϕ and ¬ϕ, while dp(w, ϕ) satisfies strongly
exactly one of ϕ or ¬ϕ, as do all of its extensions. The following theorem states
this formally:

Theorem 12 (Definitive prefix theorem). Let v be a non-empty word and

ϕ an ltltrunc formula.

– If dp(v, ϕ) �= � then

• u ≺ dp(v, ϕ) =⇒ u |=−ϕ and u |=−¬ϕ

• u � dp(v, ϕ) =⇒ u |=+
ϕ or u |=+¬ϕ

– Otherwise

• for every finite u � v, (u |=−ϕ and u |=−¬ϕ) and (u |=+
/ ϕ and u |=+

/ ¬ϕ)
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The proof appears in the appendix.
Plainly, dp(w, ϕ) = dp(w,¬ϕ). If u is the definitive prefix of w with respect

to ϕ, then it is its own definitive prefix with respect to ϕ. That is:

Proposition 13 Let w be a non-empty word and ϕ an ltltrunc formula. Then

dp(w,ϕ) �= � =⇒ dp(w,ϕ) = dp(dp(w,ϕ),ϕ)

The proof appears in the appendix.
The definitive prefix of the truncated semantics is closely related to the con-

cept of informative prefix [10]. That work examines the problem of model check-
ing safety formulas for standard ltl over maximal paths. Let a safety formula

be a formula ϕ such that any path w violating ϕ contains a prefix w0..k all of
whose infinite extensions violate ϕ [14]. Such a prefix is termed a bad prefix by
[10]. Our intuitive notion of a bad prefix says that it should be enough to fully
explain the failure of a safety formula. However, [10] showed that for ltl over
maximal paths, there are safety formulas for which this does not hold. For in-
stance, consider the formula ϕ = (G(q∨FGp)∧G(r∨FG¬p))∨Gq∨Gr. In standard
ltl semantics, ϕ is equivalent to Gq ∨ Gr, and the bad prefixes are exactly the
finite words satisfying ¬(Gq ∨Gr). However, we somehow feel that such a prefix
is too short to “tell the whole story” of formula ϕ on path w, because it does
not explain that (FGp) ∧ (FG¬p) is unsatisfiable.

The concept of a prefix which tells the whole story regarding the failure of
formula ϕ on path w is formalized by [10] as an informative prefix. The precise
definition in [10] is inductive over the finite path and the structure of ¬ϕ, which
is assumed to be in positive normal form (i.e., where negations occur only in
front of atomic propositions). The definition accomplishes an accounting of the
discharge of the various sub-formulas of ¬ϕ and is omitted due to lack of space.
From the intuitive description, if u is an informative prefix for ϕ, then we should
have that u |=+¬ϕ, or equivalently, u |=−/ ϕ. The following theorem confirms this
expectation and its converse.
Theorem 14 (Informative prefix theorem). Let w be a non-empty finite

word and ϕ an ltl formula.

w |=−/ ϕ ⇐⇒ w is informative for ϕ

The formal definition of informative prefix and the proof of Theorem 14 appear
in the appendix.

Notice that Theorem 14 shows that the notion of informative prefix for ϕ, de-
fined in terms of syntactic structure, is captured semantically by the weak/strong
truncated semantics. Furthermore, the definitive prefix does not require formulas
to be in positive normal form, as does the informative prefix, and is symmetric
in ϕ and ¬ϕ, as opposed to the informative prefix, which is defined only for for-
mulas that do not hold. The precise relation of definitive prefixes to informative
prefixes is given by the following corollary.

Corollary 15 Let w be a non-empty path and let ϕ be an ltl formula.

If dp(w,ϕ) = �, then w has no informative prefix for either ϕ or ¬ϕ.

Otherwise, dp(w, ϕ) is the shortest informative prefix of w for either ϕ or ¬ϕ.
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4 Relation to hardware resets

There is an intimate relation between the problem of hardware resets and that
of truncated vs. maximal paths. In particular, a hardware reset can be viewed as
truncating the path and canceling future obligations, and thus it corresponds to
the weak view of truncated paths. In this section we consider the relation between
the semantics given to the hardware reset operators of ForSpec [3] (termed the
reset semantics by [2]) and of Sugar2.0 [7] (termed the abort semantics by [2]) and
the truncated semantics we have presented above. We show that the truncated
semantics are equivalent to the reset semantics, and thus by [2], different from
the abort semantics.

Reset semantics The reset semantics are defined as follows, where [3] uses
accept on as the name of the trunc w operator. Let a and r be mutually exclusive
boolean expressions, where a is the condition for truncating a path and accepting
the formula, and r is the condition for rejection. Let w be a non-empty word2.
As before, we use ϕ and ψ to denote ltltrunc formulas, p to denote an atomic
proposition, and j and k to denote natural numbers. The reset semantics are
defined in terms of a four-way relation between words, contexts a and r, and
formulas, denoted |=R. The definition of the reset semantics makes use of a two-
way relation between letters and boolean expressions which is defined in the
obvious manner.

1. �w, a, r� |=Rp ⇐⇒ w0 |=Ra ∨ (p ∧ ¬r)

2. �w, a, r� |=R¬ϕ ⇐⇒ �w, r, a� |=R/ ϕ

3. �w, a, r� |=Rϕ ∧ ψ ⇐⇒ �w, a, r� |=Rϕ and �w, a, r� |=Rψ

4. �w, a, r� |=RX! ϕ ⇐⇒ w0 |=Ra or ( w0 |=R/ r and |w| > 1 and �w1.., a, r� |=Rϕ )

5. �w, a, r� |=R[ϕ U ψ] ⇐⇒ there exists k < |w| such that �wk.., a, r� |=Rψ, and
for every j < k, �wj.., a, r� |=Rϕ

6. �w, a, r� |=Rϕ trunc w b ⇐⇒ �w, a ∨ (b ∧ ¬r), r� |=Rϕ

Abort semantics The abort semantics are defined in [7] as the traditional
ltl semantics over finite and infinite (non-empty) paths, with the addition of a
truncate operator (termed there abort), as follows, where we use |=A to denote
satisfaction under these semantics:

w |=Aϕ trunc w b ⇐⇒ either w |=Aϕ or there exist j < |w| and word w� such
that wj |=Ab and w0..j−1w� |=Aϕ

2 In [3], the reset semantics are defined over infinite words. We present a straight-
forward extension of the reset semantics to (non-empty) finite as well as infinite
words.
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Intuitively, the reset and abort semantics are very similar. They both specify
that the path up to the point of reset must be “well behaved”, without regard to
the future behavior of the path. The difference is in the way future obligations
are treated, and is illustrated by the following formulas:

(G(p → F(ϕ ∧ ¬ϕ))) trunc w b (1)
(G¬p) trunc w b (2)

Formulas 1 and 2 are equivalent in the abort semantics, because the future
obligation ϕ∧¬ϕ is not satisfiable. They are not equivalent in the reset semantics,
because the reset semantics “do not care” that ϕ ∧ ¬ϕ is not satisfiable. Thus
there exist values of w, a, and r such that Formula 1 holds under the reset
semantics, while Formula 2 does not. For example, consider a word w such that
p holds on w5 and for no other letter and b holds on w6 and on no other letter.
If a = r = false, then Formula 1 holds on word w in the reset semantics under
contexts a and r, while Formula 2 does not.

The relation between the abort semantics and bad prefixes is similar to that
between the truncated semantics and informative prefixes. Define weak satisfac-

tion under the abort semantics, denoted |=−A, as follows:

w |=−Aϕ ⇐⇒ there exists word w� such that ww� |=Aϕ

Then:

Theorem 16 (Bad prefix theorem). Let w be a non-empty finite word and

ϕ an ltl formula.

w |=/
−

Aϕ ⇐⇒ w is a bad prefix for ϕ

As shown in [2], the difference between the reset and the abort semantics
causes a difference in complexity. While the complexity of model checking the re-
set semantics is EXPSPACE-complete, the abort semantics have non-elementary
complexity.

Unlike the abort semantics, the truncated and reset semantics make no exis-
tential requirements of a path after truncation. The truncated semantics discard
the remainder of the path after truncation, while the reset semantics accumulate
the truncate conditions for later use. Theorem 17 below states that they are the
same.

Theorem 17 (Equivalence theorem). Let ϕ be a formula of ltltrunc, a and

r mutually exclusive boolean expressions, and w a non-empty word. Then,

�w, a, r� |=Rϕ ⇐⇒ w |= (ϕ trunc w a) trunc s r

The proof appears in the appendix.
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5 Related work

Semantics for ltl over finite paths was first considered by Lichtenstein, Pnueli
and Zuck [12], who introduced the strong next operator (see also [11, 13]). They
provide semantics for finite paths which are assumed to be maximal, but the
issue of truncated paths is not considered.

The issue of using temporal logic specifications in simulation is addressed
by [1]. They consider only a special class of safety formulas [4] which can be
translated into formulas of the form Gp, and do not distinguish between maximal
and truncated paths.

The idea that an obligation need not be met in the weak view if it “is the
fault of the test” is directly related to the idea of weak clocks in [7], in which
obligations need not be met if it “is the fault of the clock”. The weak/strong
clocked semantics of [7] were the starting point for investigations that have led
to [8], which proposes a clocked semantics in which the clock is strengthless, and
to the current work, which preserves much of the intuition of the weak/strong
clocked semantics in a simpler, unclocked setting.

The work described in this paper is the result of discussions in the LRM sub-
committee of the Accellera Formal Verification Technical Committee (FVTC).
Three of the languages (Sugar2.0 [7], ForSpec [3], CBV [9]) examined by the
committee enhance temporal logic with operators intended to support hard-
ware resets. We have discussed the reset and abort semantics of ForSpec and
Sugar2.0 in detail. The operator of CBV, while termed abort, has semantics
similar to those of ForSpec’s accept on/reject on operators. As we have shown,
our truncated semantics are mathematically equivalent to the reset semantics
of ForSpec. However, the reset semantics take the operational view in that they
tell us in a fairly direct manner how to construct an alternating automaton for
a formula. Our approach takes the denotational view and thus tells us more di-
rectly the effect of truncation on the formula. This makes it easy to reason about
the semantics in a way that is intuitively clear, because we can reason explicitly
about three constant contexts (weak/neutral/strong) which are implicit in the
operational view.

Bounded model checking [5] considers the problem of searching for counter-
examples of finite length to a given ltl formula. Their method is to solve the
existential model checking problem for ψ = ¬ϕ, where ϕ is an ltl formula to be
checked. That is, they look for a path π of model M that shows that M |= Eψ.
They call such a path a witness for g. In particular, their bounded semantics

without a loop is the strong semantics for ltl formulas in positive normal form,
and they note that these semantics break the duality between strong and weak
operators. The truncated semantics provide the dual weak semantics missing
from [5] and therefore render unnecessary the restriction of [5] to positive normal
form. Furthermore, the truncated semantics shed new light on the method of [5]
as follows: The bounded model checking algorithm searches for a witness to the
negation of the formula being checked under the strong semantics. If found, the
witness is a counter-example to the original formula in the weak semantics, hence
also in the neutral and strong semantics.
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6 Conclusion and future work

We have considered the problem of reasoning in temporal logic over truncated
as well as maximal paths, and have presented an elegant semantics for ltl
augmented with a truncate operator over truncated and maximal paths. The
semantics are defined relative to three different views regarding what the truth
value of a formula should be when the truncation occurs before the evaluation
of the formula completed. These three views are consistent with a preference for
either false positives or false negatives (the weak and strong views), or alterna-
tively, the desire to see as much evidence as can reasonably be expected from a
finite path (the neutral view).

We have studied properties of the truncated semantics for the resulting logic
ltltrunc, as well as its relation to the informative prefixes of [10]. We have
examined the relation between truncated paths and hardware resets, and have
shown that our truncated semantics are mathematically equivalent to the reset

semantics of [3].
Future work is to investigate how the weak/neutral/strong paradigm can be

generalized: in particular, whether there are useful correspondences between al-
ternative weak/neutral/strong semantics and other decision procedures for ltl,
analogous to that between the truncated semantics and the classical tableau
construction. Having a generalized framework, we might be able to find a logic
that has the acceptable complexity of the truncated semantics, while allowing
rewrite rules such as (ϕ ∧ ¬ϕ

def= false), which are prohibited in the truncated
semantics.

In addition, we would like to combine the truncated semantics with those
of ltl@ [8], to provide an integrated logic which supports both hardware clocks
and hardware resets for both complete and incomplete verification methods.
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A Proofs

A.1 Proof of Theorem 3 (Strength relation theorem)

Proof. By induction on the structure of the formula.

1. f = b

(a) w |=+
b ⇐⇒ |w| > 0 and w0 |= b ⇐⇒ w |= b

(b) w |= b ⇐⇒ w0 |= b =⇒ |w| = 0 or w0 |= b ⇐⇒ w |=−b.
2. f = ¬g

(a) w |=+¬g ⇐⇒ w |=−/ g =⇒ [induction] w |=/ g ⇐⇒ w |=¬g

(b) w |=¬g ⇐⇒ w |=/ g =⇒ [induction] w |=+
/ g ⇐⇒ w |=−¬g

3. f = g ∧ h

(a) w |=+
g∧h ⇐⇒ w |=+

g and w |=+
h =⇒ [induction] w |= g and w |= h ⇐⇒

w |= g ∧ h

(b) w |= g∧h ⇐⇒ w |= g and w |= h =⇒ [induction] w |=−g and w |=−h ⇐⇒
w |=−g ∧ h

4. f = X!g

(a) w |=+
X!g ⇐⇒ w1.. |=+

g =⇒ [induction, w1.. �= � =⇒ |w| > 1] |w| >
1 and
w1.. |= g ⇐⇒ w |= X!g

(b) w |= X!g ⇐⇒ |w| > 1 and w1.. |= g =⇒ [induction] w1.. |=−g ⇐⇒
w |=−X!g

5. f = [g U h]
(a) w |=+

gUh
⇐⇒ [semantics]
∃k s.t. wk.. |=+

h and ∀j < k, wj.. |=+
g

⇐⇒ [if k ≥ |w|, then wk is empty, hence by Lemma 4 wk.. |=+
/ h]

∃k < |w| s.t. wk.. |=+
h and ∀j < k, wj.. |=+

g
=⇒ [induction]
∃k < |w| s.t. wk.. |= h and ∀j < k, wj.. |= g ⇐⇒ [semantics]
w |= gUh

(b) w |= gUh
⇐⇒ [semantics]
∃k < |w| s.t. wk.. |= h and ∀j < k, wj.. |= g

=⇒ [induction]
∃k < |w| s.t. wk.. |=−h and ∀j < k, wj.. |=−g

=⇒
∃k s.t. wk.. |=−h and ∀j < k, wj.. |=−g

⇐⇒ [semantics]
w |=−gUh
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6. f = g trunc w b

(a) w |=+
g trunc w b

⇐⇒ [semantics]
either w |=+

g or ∃k < |w| s.t. wk |= b and w0..k−1 |=−g
=⇒ [induction]

either w |= g or ∃k < |w| s.t. wk |= b and w0..k−1 |=−g
⇐⇒ [semanticss]

w |= g trunc w b

(b) w |= g trunc w b
⇐⇒ [semantics]

either w |= g or ∃k < |w| s.t. wk |= b and w0..k−1 |=−g
=⇒ [induction]

either w |=−g or ∃k < |w| s.t. wk |= b and w0..k−1 |=−g
⇐⇒ [semantics]

w |=−g trunc w b
��

A.2 Proof of Lemma 4

The proof of Lemma 4 is by induction on the structure of the formula. Most
cases are easy to see, we show here the case where f is a formula of the form
g trunc w b in the strong view.

Proof. � |=+
/ g trunc w b ⇐⇒ not(either � |=+

g or there exists (a natural number)
k < 0 such that �k |= b and �0..k−1 |=−g) ⇐⇒ � |=+

/ g ⇐⇒ [induction] TRUE ��

A.3 Proof of Corollary 5

Proof. By induction on f . By Theorem 3, it suffices to prove that w |=−f implies
w |=+

f .

case f = b: w |=−b =⇒ [|w| > 0] w0 |= b =⇒ [|w| > 0] w |=+
b

case f = ¬g: w |=−¬g ⇐⇒ w |=+
/ g =⇒ [induction] w |=−/ g ⇐⇒ w |=+¬g

case f = g ∧ h: w |=−g ∧ h ⇐⇒ w |=−g and w |=−h =⇒ [induction] w |=+
g and

w |=+
h ⇐⇒ w |=+

g ∧ h

case f = X!g: w |=−X!g =⇒ w1.. |=−g =⇒ [w1.. is infinite; induction] w1.. |=+
g =⇒

w |=+
X!g

case f = g U h: w |=−[g U h] =⇒ [w is infinite] there exists k such that wk.. |=−h

and for every j < k, wj.. |=−g =⇒ [wk.., wj.. are infinite; induction] there
exists k such that wk.. |=+

h and for every j < k, wj.. |=+
g ⇐⇒ w |=+ [g U h]
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case f = g trunc w b: w |=−g trunc w b ⇐⇒ either w |=−g or there exists k < |w|
such that wk |= b and w0..k−1 |=−g =⇒ [induction] either w |=+

g or there exists
k < |w| such that wk |= b and w0..k−1 |=−g ⇐⇒ w |=+

g trunc w b
��

A.4 Proof of Theorem 7 (Prefix/extension theorem)

Proof. The proof is by induction on the structure of the formula f . Clearly the
⇐= direction holds in both cases. Thus we show only the =⇒ direction.

1. f = b

(a) v |=+
b

⇐⇒ [definition]
|v| > 0 and v0 |= b

=⇒ [w � v implies |w| ≥ |v| > 0 and w0 = v0]
forall w � v : if |w| > 0 then w0 |= b

⇐⇒ [definition]
forall w � v : w |=+

b

(b) v |=−b
⇐⇒ [definition]

|v| = 0 or v0 |= b
=⇒ [u � v implies |u| ≤ |v| and, if |u| > 0 then u0 = v0]

forall u � v : |u| = 0 or u0 |= b
⇐⇒ [definition]
∀u � v : u |=−b

2. f = ¬g

(a) not(forall w � v : w |=+¬g)
⇐⇒

exists w � v : not(w |=+¬g)
⇐⇒ [definition]

exists w � v : w |=−g
⇐⇒ [induction]

exists w � v : forall u � w : u |=−g
=⇒

v |=−g
⇐⇒ [definition]

not(v |=+¬g)
(b) not(forall u � v : u |=−¬g)

⇐⇒
exists u � v : not(u |=−¬g)

⇐⇒ [definition]
exists u � v : u |=+

g
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⇐⇒ [induction]
exists u � v : forall w � u : w |=+

g
=⇒

v |=+
g

⇐⇒ [definition]
not(v |=−¬g)

3. f = g ∧ h

(a) v |=+
g ∧ h

⇐⇒ [definition]
v |=+

g and v |=+
h

⇐⇒ [induction]
forall w � v : w |=+

g and forall w � v : w |=+
h

⇐⇒
forall w � v : w |=+

g and w |=+
h

⇐⇒ [definition]
forall w � v : w |=+

g ∧ h
(b) Similar.

4. f = X!g

(a) v |=+
X!g

⇐⇒ [definition]
v1.. |=+

g
⇐⇒ [induction]

forall w� � v1.. : w� |=+
g

=⇒ [w� = w1..]
forall w � v : w1.. |=+

g
⇐⇒ [definition]

forall w � v : w |=+
X!g

(b) v |=−X!g
⇐⇒ [definition]

v1.. |=−g
⇐⇒ [induction]

forall u� � v1.. : u� |=−g
=⇒ [u� = u1.. ]

forall u � v : u1.. |=−g
⇐⇒ [definition]

forall u � v : u |=−X!g
5. f = [gUh]

(a) v |=+ [gUh]
⇐⇒ [definition]

there exists k such that vk.. |=+
h and for all j < k, vj.. |=+

g
⇐⇒ [induction]



18

there exists k s.t. forall w� � vk.. : w� |=+
h and forall j < k forall

w�� � vj.. : w�� |=+
g

=⇒ [w� = wk.., w�� = wj..]
there exists k such that forall w � v both wk.. |=+

h and forall j < k:
wj.. |=+

g
=⇒

forall w � v : there exists k such that wk.. |=+
h and forall j < k:

wj.. |=+
g

⇐⇒ [definition]
forall w � v : w |=+ [gUh]

(b) v |=−[gUh]
⇐⇒ [definition]

there exists k such that vk.. |=−h and for all j < k vj.. |=−g
⇐⇒ [induction]

there exists k s.t. forall u� � vk.. : u� |=−h and forall j < k forall
u�� � vj.. : u�� |=−g
=⇒ [u� = uk.., u�� = uj..]

there exists k s.t. forall u � v both uk.. |=−h and forall j < k: uj.. |=−g
=⇒

forall u � v : there exists k s.t. uk.. |=−h and forall j < k uj.. |=−g
⇐⇒ [definition]

forall u � v : u |=−[gUh]
6. f = g trunc w b

(a) v |=+
g trunc w b

⇐⇒ [definition]
either v |=+

g or there exists k s.t. vk |= b and v0..k−1 |=−g
⇐⇒ [induction]

either forall w � v : w |=+
g or there exists k < |w| s.t. vk |= b and

v0..k−1 |=−g
=⇒ [w � v implies wj = vj for j < k and w0..k−1 = v0..k−1]

either forall w � v : w |=+
g or forall w � v : there exists k < |w| s.t.

wk |= b and w0..k−1 |=−g
=⇒

forall w � v : either w |=+
g or there exists k < |w| s.t. wk |= b and

w0..k−1 |=−g
⇐⇒ [definition]

forall w � v : w |=+
g trunc w b

(b) v |=−g trunc w b
⇐⇒ [definition]

either v |=−g or there exists k < |w| such that vk |= b and v0..k−1 |=−g
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⇐⇒ [induction]
A: either
i. forall u � v : u |=−g or
ii. there exists k < |w| such that vk |= b and forall u � v0..k−1 : u |=−g

Let u � v. If A.i. holds then we get u |=−g, hence u |=−g trunc w b. Suppose
now that A.ii. holds. If u � v0..k−1, then [by the last part of A.ii.] we
get u |=−g, hence again u |=−g trunc w b. Otherwise, v0..k � u. Then
uj = vj for all j ≤ k, and thus there exists k such that uk |= b and
u0..k−1 |=−g. From this we again get u |=−g trunc w b. Therefore, A =⇒
forall u � v : u |=−g trunc w b

��

A.5 Proof of Theorem 12 (Definitive prefix theorem)

Proof.

Case I dp(w, ϕ) �= �.

– u ≺ dp(v, ϕ). Thus by definition of dp it is not the case that u |=−ϕ ⇐⇒
u |= ϕ ⇐⇒ u |=+

ϕ. Assume without loss of generality that u |= ϕ. Then
by the strength relation theorem u |=−ϕ. Thus it must be that u |=+

/ ϕ.
From the semantics we get u |=−¬ϕ as well.

– u � dp(v, ϕ). Let u� = dp(v,ϕ). Then by definition of dp, u� |=−ϕ ⇐⇒
u� |= ϕ ⇐⇒ u� |=+

ϕ. Assume without loss of generality that u� |= ϕ. Then
also u� |=+

ϕ. By the prefix/extension theorem, since u � u�, u |=+
ϕ.

Case II dp(v, ϕ) = �.

– Let u � v be finite. By definition of dp it is not the case that u |=−ϕ ⇐⇒
u |= ϕ ⇐⇒ u |=+

ϕ. By the same reasoning as above we get that both
u |=−ϕ and u |=−¬ϕ. From the semantics, therefore, we have that both
u |=+

/ ϕ and u |=+
/ ¬ϕ.

��

A.6 Proof of Claim 13

Proof. Assume dp(w,ϕ) �= �. By definition dp(w, ϕ) � w. Thus dp(dp(w, ϕ), ϕ) �
dp(w, ϕ). Assume, by way of contradiction that dp(dp(w,ϕ),ϕ) is a proper prefix
of dp(w, ϕ). That is if dp(w, ϕ) = u0 and dp(dp(w,ϕ),ϕ) = dp(u0, ϕ) = u1 then
u1 ≺ u0. By definition u1 is the smallest prefix of u0 on which the weak, neutral
and strong semantics agree. Since u1 ≺ u0 � w, u1 is the smallest prefix of w on
which the weak, neutral and strong semantics agree. Thus by definition of dp,
dp(w, ϕ) = u1, contradiction. ��
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A.7 Proof of Theorem 14 (Informative prefix theorem)

Let w be a finite word of positive length n, and let ϕ be an ltl formula in
positive normal form, written in terms of the X, U and V operators. When we
write ¬ϕ, we mean the positive normal form of the negation of ϕ.

Definition 18 Informative prefix [10]. w is informative for ϕ if there is a

sequence of n + 1 sets of ltl formulas, L(0), . . . , L(n) such that:

i. ¬ϕ is in L(0)
ii. L(n) is empty

iii. For each i, 0 ≤ i < n, if ϕ is in L(i), then:

• if ϕ = p, then p ∈ wi

• if ϕ = ¬p, then p /∈ wi

• if ϕ = ψ ∧ ϑ, then ψ ∈ L(i) and ϑ ∈ L(i)
• if ϕ = ψ ∨ ϑ, then ψ ∈ L(i) or ϑ ∈ L(i)
• if ϕ = Xψ, then ψ ∈ L(i + 1)
• if ϕ = ψUϑ, then ϑ ∈ L(i) or (ψ ∈ L(i) and (ψUϑ) ∈ L(i + 1))
• if ϕ = ψVϑ, then ϑ ∈ L(i) or (ψ ∈ L(i) and (ψVϑ) ∈ L(i + 1))

We say that a sequence L(0), . . . , L(n) is full if it satisfies (iii).

Proof. (of the theorem) The proof is by induction on the structure of ϕ (in
positive normal form). Sufficient to illustrate with case ϕ = ψUϑ. Suppose that
w |=−/ ψUϑ. Then w |=−/ ϑ and

(*) either w |=−/ ψ or |w| > 1 and w1.. |=−/ ψUϑ

Suppose the first: i.e. w |=−/ ψ and w |=−/ ϑ. By inductive hypothesis, there are
sequences J(0), . . . , J(n) and K(0), . . . , K(n) such that ¬ψ ∈ J(0), ¬ϑ ∈ K(0),
J(n) and K(n) are empty. The sequences J(0), . . . , J(n) and K(0), . . . ,K(n) are
full.

Let L(i) = J(i)∪K(i) for 1 ≤ i ≤ n, and let L(0) = {¬ψV¬ϑ}∪J(0)∪K(0).
Then:

i. ¬(ψUϑ) is in L(0), because ¬(ψUϑ) = ¬ψV¬ϑ.
ii. L(n) is empty, because J(n) and K(n) are empty.
iii. L(0), . . . , L(n) is full. Since J(0), . . . , J(n) and K(0), . . . ,K(n) are full, and

L(i) is the union of J(i) and K(i) for i > 0, we only need to check for L(0).
For ¬ψV¬ϑ, we require ¬ϑ ∈ L(0) and (¬ψ ∈ L(0) or (¬ψV¬ϑ) ∈ L(1)).
But ¬ϑ is in L(0) because it is in K(0), and ¬ψ is in L(0) because it is in
J(0), so the requirement is met. The other formulae in L(0) are in either
J(0) or K(0), and the requirements are met because J(0), . . . , J(n) and
K(0), . . . , K(n) are full.

Therefore w is informative for ϕ in this case.
Suppose now that we have the second of the alternatives at (*) above, i.e.

w |=−/ ϑ and |w| > 1 and w1.. |=−/ ψUϑ. By the inductive hypothesis, there are
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sequences K(0), . . . , K(n), M(1), . . . ,M(n) such that ¬ϑ is in K(0), ¬(ψUϑ) is
in M(1), K(n) and M(n) are empty, K(0), . . . , K(n) and M(1), . . . , M(n) are
full. Let L(0) = {¬ψV¬ϑ} ∪ K(0), and let L(i) = K(i) ∪M(i) for 1 ≤ i ≤ n.
An argument similar to that above shows that L(0), . . . , L(n) is full, and w is
informative for ϕ.

For the converse, suppose that w |=−ψUϑ. Then either (a) w |=−ϑ or (b)

w |=−ψ and |w| = 1 or (c) w |=−ψ and |w| > 1 and w1.. |=−ψUϑ.

Case a w |=−ψ.
By inductive hypothesis, w is not informative for ϑ. Therefore, if K(0), . . . ,
K(n) is any full sequence such that ¬ϑ is in K(0), K(n) is not empty.
Suppose that L(0), . . . , L(n) is a full sequence such that ¬ϕ is in L(0). Since
ϕ = ψUϑ, ¬ψV¬ϑ is in L(0). Since L(0), . . . , L(n) is full, ¬ϑ is in L(0).
Taking K(i) = L(i) for all 0 ≤ i ≤ n, we infer that K(n) is not empty, that
is, L(n) is not empty. Therefore w is not informative for ϕ in this case.

Case b |w| = 1 and w |=−ψ.
By the inductive hypothesis, w is not informative for ψ. Therefore, for any
full sequence J(0), J(1), if ¬ψ is in J(0) then J(1) is not empty. Suppose that
w is informative for ϕ = ψUϑ. Then there is a full sequence L(0), L(1) such
that ¬ϕ is in L(0) and L(1) is empty. Now ¬ϕ = ¬ψV¬ϑ. Since L(0), L(1) is
full, ¬ψ is in L(0). Taking J(0) = L(0) and J(1) = L(1), we conclude that
J(1) is not empty. But this contradicts the assumption that L(1) is empty.
Therefore w cannot be informative for ϕ in this case.

Case c w |=−ψ and |w| > 1 and w1.. |=−ψUϑ.
By the inductive hypothesis, w is not informative for ψ, and w1.. is not
informative for ψUϑ. Suppose that w is informative for ϕ = ψUϑ. Then
there is a full sequence L(0), . . . , L(n) such that ¬ψV¬ϑ is in L(0), and L(n)
is empty. Since ¬ψV¬ϑ is in L(0), ¬ϑ is in L(0), and either ¬ψ is in L(0)
or ¬ψV¬ϑ is in L(1). In particular, either ¬ψ is in L(0) or ¬ψV¬ϑ is in
L(1). In the first case, when ¬ψ is in L(0): since w is not informative for
ψ, L(n) is not empty. This is a contradiction. Similarly, in the second case,
when ¬ψV¬ϑ: since w1.. is not informative for ψUϑ, L(n) is not empty. This
contradiction implies that w cannot be informative for ϕ.

A.8 Proof of Theorem 17 (Equivalence theorem)

Theorem 17 follows directly from Claim 25 below.
Notation: We write |=∗ to represent one of |=−, |= , or |=+ . Then |=∗

�
de-

notes the complementary satisfaction, which leaves neutral unchanged and swaps
strong with weak.

Claim 19 w |=∗ f trunc s b iff w |=∗ f and ∀k < |w|, if wk |= b then w0..k−1 |=+
f

Proof. w |=∗ f trunc s b
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⇐⇒ w |=∗ ¬(¬f trunc w b)
⇐⇒ w |=∗

�

/ ¬f trunc w b

⇐⇒ not(either w |=∗
�
¬f or there exists k < |w| such that wk |= b and w0..k−1 |=−¬f)

⇐⇒ w |=∗
�

/ ¬f and ∀k < |w| not(wk |= b and w0..k−1 |=−¬f)
⇐⇒ w |=∗ f and ∀k < |w|, if wk |= b then w0..k−1 |=+

f
��

Lemma 20 Let a and r be mutually exclusive boolean expressions.

1. w |=∗ (f trunc w a) trunc s r iff w |=∗ (f trunc s r) trunc w a

2. Let J = min({|w|} ∪ {i < |w| : wi |= a ∨ r}).
(a) If J = |w|, then w |=∗ (f trunc w a) trunc s r iff w |=∗ f .

(b) If J < |w| and wJ |= a, then w |=∗ (f trunc w a) trunc s r iff w0..J−1 |=−f .

(c) If J < |w| and wJ |= r, then w |=∗ (f trunc w a) trunc s r iff w0..J−1 |=+
f .

Proof. 1 and 2 are proved together using the cases of 2.

Case 2a J = |w|, so ∀i < |w|, wi |=¬(a ∨ r).
w |=∗ (f trunc w a) trunc s r

⇐⇒ w |=∗ f trunc w a and ∀k < |w|, if FALSE then w0..k−1 |=+
f trunc w a

⇐⇒ w |=∗ f trunc w a

⇐⇒ w |=∗ f or there exists k < |w| such that FALSE and w0..k−1 |=−f

⇐⇒ w |=∗ f

w |=∗ (f trunc s r) trunc w a

⇐⇒ w |=∗ f trunc s r or there exists k < |w| such that FALSE and w0..k−1 |=−f trunc s r

⇐⇒ w |=∗ f trunc s r

⇐⇒ w |=∗ f and ∀k < |w|, if FALSE then w0..k−1 |=+
f

⇐⇒ w |=∗ f

Case 2b J < |w| and wJ |= a.
w |=∗ (f trunc w a) trunc s r

⇐⇒ w |=∗ f trunc w a and ∀k < |w|, if wk |= r then w0..k−1 |=+
f trunc w a

⇐⇒ (w |=∗ f or there exists k < |w| such that wk |= a and w0..k−1 |=−f) and
(∀k < |w|, if wk |= r then (w0..k−1 |=+

f or there exists k� < k such that
wk� |= a and w0..k�−1 |=−f))

⇐⇒ w0..J−1 |=−f



23

w |=∗ (f trunc s r) trunc w a

⇐⇒ w |=∗ f trunc s r or there exists k < |w| such that wk |= a and w0..k−1 |=−f trunc s r

⇐⇒ (w |=∗ f and ∀k < |w|, if wk |= r then w0..k−1 |=+
f) or (there exists k <

|w| such that (wk |= a and w0..k−1 |=−f and ∀k� < k, if wk� |= r then
w0..k�−1 |=+

f))
⇐⇒ w0..J−1 |=−f

Case 2c J < |w| and wJ |= r.
w |=∗ (f trunc w a) trunc s r

⇐⇒ w |=∗ f trunc w a and ∀k < |w|, if wk |= r then w0..k−1 |=+
f trunc w a

⇐⇒ (w |=∗ f or there exists k < |w| such that wk |= a and w0..k−1 |=−f) and
(∀k < |w|, if wk |= r then (w0..k−1 |=+

f or there exists k� < k such that
wk� |= a and w0..k�−1 |=−f))

⇐⇒ w0..J−1 |=+
f

w |=∗ (f trunc s r) trunc w a

⇐⇒ w |=∗ f trunc s r or there exists k < |w| such that wk |= a and w0..k−1 |=−f trunc s r

⇐⇒ (w |=∗ f and ∀k < |w|, if wk |= r then w0..k−1 |=+
f) or (there exists k <

|w| such that (wk |= a and w0..k−1 |=−f and ∀k� < k, if wk� |= r then
w0..k�−1 |=+

f))
⇐⇒ w0..J−1 |=+

f
��

Definition 21 (critical index). Let a and r be mutually exclusive boolean

expressions. Let w be a word. The critical index of w relative to (a,r) is defined

to be J = min({|w|} ∪ {i < |w| : wi |= a ∨ r}). If J < |w|, then we say that

the critical strength of w relative to (a,r) is weak or strong according as wJ |= a

or wJ |= r. Otherwise, we say that the critical strength of w relative to (a,r) is

neutral.

Definition 22 (f reset(a, r)). Let a and r be mutually exclusive boolean ex-

pressions.

f reset(a, r) def= (f trunc w a) trunc s r

Let a and r be mutually exclusive boolean expressions, let w be a word, let
J be the critical index of w relative to (a,r) and let S be the critical strength of
w relative to (a,r). Then Lemma 20 says that

w |= f reset(a, r) iff w0..J−1 |=S
f

Here we understand that w0..J−1 = w if J = ∞.
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Corollary 23 Let a and r be mutually exclusive boolean expressions, let |w| > 0.

1. If w0 |= a, then w |= f reset(a, r).
2. If w0 |= r, then w |=/ f reset(a, r).

Proof. Let J be the critical index of w relative to (a,r) and let S be the critical
strength of w relative to (a,r).

1. Suppose w0 |= a. Then J = 0 and S is weak. Therefore, w0..J−1 is empty
and hence weakly satisfies f . Therefore w |= f reset(a, r).

2. Suppose w0 |= r. Then J = 0 and S is strong. Therefore, w0..J−1 is empty
and hence does not strongly satisfy f . Therefore, w |=/ f reset(a, r).

Lemma 24 Let a and r be mutually exclusive boolean expressions and let w
be a non-empty word. For i a natural number and b a boolean expression, it is

understood that wi |= b implies i < |w|.

1. w |= b reset(a, r) iff w0 |= a ∨ (b ∧ ¬r)
2. w |= (¬f) reset(a, r) iff w |=¬(f reset(r, a))
3. w |= (X!f) reset(a, r) iff w0 |= a or (w0 |=¬(a∨r) and |w| > 1 and w1.. |= f reset(a, r))
4. w |= (f ∧ g) reset(a, r) iff w |= (f reset(a, r)) ∧ (g reset(a, r))
5. w |= [f U g] reset(a, r) iff w |= [(f reset(a, r)) U (g reset(a, r))]
6. w |= (f trunc w b) reset(a, r) iff w |= f reset(a ∨ (b ∧ ¬r), r)

Proof. Let J be the critical index of w relative to (a,r) and let S be the critical
strength of w relative to (a,r).

1. w |= b reset(a, r)

⇐⇒ w0..J−1 |=S
b

⇐⇒ [(J = 0 and S is weak) or (J > 0 and w |= b)]
w0 |= a ∨ (b ∧ ¬r)

2. w |=¬(f reset(r, a))
⇐⇒ [Lemma 20]

w |=¬((f trunc s a) trunc w r)
⇐⇒ w |= (¬(f trunc s a) trunc s r)
⇐⇒ w |= ((¬f) trunc w a) trunc s r

⇐⇒ w |= (¬f) reset(a, r)
3. w |= (X!f) reset(a, r)

⇐⇒ w0..J−1 |=S
X!f

⇐⇒ (J ≤ 1 and S is weak) or (J > 1 and (w0..J−1)1.. |=S
f)

⇐⇒ (w0 |= a) or (w0 |=¬(a ∨ r) and w1 |= a) or (J > 1 and w1..J−1 |=S
f)
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⇐⇒ [J > 1 implies that the critical index of w1.. is J − 1 and the critical strength of w1.. is S]
(w0 |= a) or (w0 |=¬(a∨r) and w1 |= a) or (w0 |=¬(a∨r) and w1 |=¬(a∨
r) and w1.. |= f reset(a, r))

⇐⇒ [if w1 |= a, then w1.. |= f reset(a, r); if w1.. |= f reset(a, r), then w1 |=¬r]
(w0 |= a) or (w0 |=¬(a ∨ r) and |w| > 1 and w1.. |= f reset(a, r))

4. w |= (f ∧ g) reset(a, r)

⇐⇒ w0..J−1 |=S
f ∧ g

⇐⇒ w0..J−1 |=S
f and w0..J−1 |=S

g

⇐⇒ w |= f reset(a, r) and w |= g reset(a, r)
⇐⇒ w |= (f reset(a, r)) ∧ (g reset(a, r))

5. w |= [f U g] reset(a, r) iff w0..J−1 |=S [f U g].

Case 2a J = |w|, S is neutral, w0..J−1 = w.
w |= [f U g]
⇐⇒ there exists k < |w| such that wk.. |= g and for all j < k, wj.. |= f

⇐⇒ there exists k < |w| such that wk.. |= (g reset(a, r)) and for all j < k,
wj.. |= (f reset(a, r))

⇐⇒ w |= [(f reset(a, r)) U (g reset(a, r))]

Case 2b J < |w|, wJ |= a, S is weak.
w0..J−1 |=−[f U g]

⇐⇒ there exists k such that (w0..J−1)k.. |=−g and for all j < k, (w0..J−1)j.. |=−f
⇐⇒ [if k ≥ J , then (w0..J−1)k.. is empty and weakly satisfies g]

either there exists k < J such that wk..J−1 |=−g and for all j < k,
wj..J−1 |=−f or for all j < J , wj..J−1 |=−f

⇐⇒ [i < J means the critical index of wi.. is J − i and (wi..)0..J−i−1 = wi..J−1]
either there exists k < J such that wk.. |= (g reset(a, r)) and for all
j < k, wj.. |= (f reset(a, r)) or for all j < J , wj.. |= (f reset(a, r))

⇐⇒ [since wJ |= a, wJ.. |= (g reset(a, r))]
there exists k < |w| such that wk.. |= (g reset(a, r)) and for all j < k,
wj.. |= (f reset(a, r))

⇐⇒ w |= [(f reset(a, r)) U (g reset(a, r))]

Case 2c J < |w|, wJ |= r, S is strong.
w0..J−1 |=+ [f U g]

⇐⇒ there exists k such that (w0..J−1)k.. |=+
g and for all j < k, (w0..J−1)j.. |=+

f
⇐⇒ [empty word does not satisfy under strong semantics]

there exists k < J such that wk..J−1 |=+
g and for all j < k, wj..J−1 |=+

f
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⇐⇒ [i < J means the critical index of wi.. is J − i and (wi..)0..J−i−1 = wi..J−1]
there exists k < J such that wk.. |= (g reset(a, r)) and for all j < k,
wj.. |= (f reset(a, r))

⇐⇒ [since wJ |= r, wJ.. |=/ (f reset(a, r))]
there exists k < |w| such that wk.. |= (g reset(a, r)) and for all j < k,
wj.. |= (f reset(a, r))

⇐⇒ w |= [(f reset(a, r)) U (g reset(a, r))]
6. Let J � be the critical index of w relative to (a ∨ (b ∧ ¬r), r), and let S�

be the critical strength of w relative to (a ∨ (b ∧ ¬r), r). Plainly, J � ≤ J .
w |= (f trunc w b) reset(a, r)
⇐⇒ w0..J−1 |=S

f trunc w b

⇐⇒ w0..J−1 |=S
f or there exists k < J such that wk |= b and w0..k−1 |=−f

Case I J � < J . Then wJ � |= b and S� is weak. Then w0..J−1 |=S
f or there

exists k < J such that wk |= b and w0..k−1 |=−f

⇐⇒ w0..J �−1 |=−f

⇐⇒ w |= f reset(a ∨ (b ∧ ¬r), r)

Case II J � = J . If S is weak, then wJ |= a and so S� is weak as well. If S

is strong, then wJ |= r and so S� is strong as well. If S is neutral, then
|w| = J = J � and so S� is neutral as well. Therefore, S = S�. Then
w0..J−1 |=S

f or there exists k < J such that wk |= b and w0..k−1 |=−f

⇐⇒ w0..J−1 |=S
f

⇐⇒ w0..J �−1 |=S�
f

⇐⇒ w |= f reset(a ∨ (b ∧ ¬r), r)

Claim 25 Let a and r be mutually exclusive boolean expressions and let |w| > 0.
Then �w, a, r� |= f iff w |= f reset(a, r).

Proof. By induction on f .

1. f = b.
�w, a, r, � |= b

⇐⇒ w0 |= a ∨ (b ∧ ¬r)
⇐⇒ [Lemma 24]

w |= b reset(a, r)
2. f = ¬g.
�w, a, r, � |= ¬g

⇐⇒ �w, r, a� |=/ g
⇐⇒ [induction]

w |=/ g reset(r, a)
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⇐⇒ w |=¬(g reset(r, a))
⇐⇒ [Lemma 24]

w |= ((¬g) reset(a, r))
3. f = g ∧ h.
�w, a, r, � |= g ∧ h
⇐⇒ �w, a, r, � |= g and �w, a, r, � |= h
⇐⇒ [induction]

w |= g reset(a, r) and w |= h reset(a, r)
⇐⇒ w |= (g reset(a, r)) ∧ (h reset(a, r))
⇐⇒ [Lemma 24]

w |= (g ∧ h) reset(a, r)
4. f = X!g.
�w, a, r, � |= X!g

⇐⇒ (w0 |= a) or (w0 |=¬r and |w| > 1 and �w1.., a, r� |= g)
⇐⇒ (w0 |= a) or (w0 |=¬(a ∨ r) and |w| > 1 and �w1.., a, r� |= g)
⇐⇒ [induction]

(w0 |= a) or (w0 |=¬(a ∨ r) and |w| > 1 and w1.. |= g reset(a, r))
⇐⇒ [Lemma 24]

w |= (X!g) reset(a, r)
5. f = [g U h].
�w, a, r, � |= [g U h]
⇐⇒ there exists k < |w| such that �wk.., a, r� |= h and for every j < k,

�wj.., a, r� |= g
⇐⇒ [induction]

there exists k < |w| such that wk.. |= h reset(a, r) and for every j < k,
wj.. |= g reset(a, r)

⇐⇒ w |= [(g reset(a, r)) U (h reset(a, r))]
⇐⇒ [Lemma 24]

w |= [g U h] reset(a, r)
6. f = g trunc w b.
�w, a, r, � |= g trunc w b
⇐⇒ �w, a ∨ (b ∧ ¬r), r� |= g
⇐⇒ [induction]

w |= g reset(a ∨ (b ∧ ¬r), r)
⇐⇒ [Lemma 24]

w |= (g trunc w b) reset(a, r)


