
Reasoning with Uncertainty
by Nmatrix–Metric Semantics

Ofer Arieli1 and Anna Zamansky2?

1 Department of Computer Science, The Academic College of Tel-Aviv, Israel.
oarieli@mta.ac.il

2 Department of Computer Science, Tel-Aviv University, Israel.
annaz@post.tau.ac.il

Abstract. Non-deterministic matrices, a natural generalization of many-
valued matrices, are semantic structures in which the value assigned to
a complex formula may be chosen non-deterministically from a given
set of options. We show that by combining Nmatrices and preferential
metrics-based considerations, one obtains a family of logics that are use-
ful for reasoning with uncertainty. We investigate the basic properties
of these logics and demonstrate their usefulness in handling incomplete
and inconsistent information.

1 Introduction

One of the main challenges of commonsense reasoning is dealing with phenom-
ena that are inherently non-deterministic. The causes of non-determinism may
vary: partially unknown information, faulty behavior of devices and ambiguity
of natural languages are just a few cases in point. It is clear that truth-functional
semantics, in which the truth-value of a complex formula is completely deter-
mined by the truth-values of its subformulas, cannot capture non-deterministic
behaviour, the very essence of which is, in some sense, contradictory to the prin-
ciple of truth-functionality. One possible solution is to borrow the idea of non-
deterministic computations from automata and computability theory and apply
it to evaluations of formulas. This idea led to introducing non-deterministic
matrices (Nmatrices) in [8]. These structures are a natural generalization of
standard multi-valued matrices [13, 25], in which the truth-value of a complex
formula can be chosen non-deterministically out of some non-empty set of op-
tions. The use of Nmatrices preserves many attractive properties of logics with
ordinary finite-valued logics, such as decidability and compactness. Moreover, as
in many-valued logics, the consequence relations induced by Nmatrices are mono-
tonic (i.e., the set of conclusions monotonically grow in the size of the premises),
and are trivialized in the presence of inconsistency (i.e., any inconsistent set of
premises entails every formula). In real life, however, both of these properties are
not always desirable as, e.g., it is often the case that new information requires a
retraction of old assertions. To cope with this, Shoham [22] introduced the notion
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of preferential semantics (see also [20]), according to which an order relation,
reflecting some condition or preference criteria, is defined on a set of valuations,
and only the valuations that are minimal with respect to this order are relevant
for making inferences from a given theory. Following this idea, we use metric-like
considerations as our primary preference criteria. Such a distance minimization
consideration is a cornerstone behind many paradigms of handling incomplete
or inconsistent information, such as belief revision [9, 14, 18, 23] database inte-
gration systems [1, 5, 10, 19], and formalisms for commonsense reasoning in the
context of social choice theory [16, 21]. In [2, 3, 7] this approach is described in
terms of entailment relations, based on a standard truth-functional semantics.
As argued above, this cannot capture non-deterministic behavior, so instead, in
this paper, we use logics based on Nmatrices as the underlying formalism for a
preferential metrics-based approach. We also consider some of the properties of
the entailment relations that are obtained, demonstrate their applicability for
reasoning under uncertainty by some case studies, and show the relation between
reasoning in these cases and some well-known SAT problems.

2 Distance-Based Non-Deterministic Semantics

2.1 Non-Deterministic Matrices

In what follows, L denotes a propositional language with a set Atoms of atomic
formulas. A theory Γ is a finite multiset of L-formulas, for which Atoms(Γ ) and
SF(Γ ) denote, respectively, the atomic formulas of Γ and the subformulas of Γ .
Below, we shortly reproduce the main definitions from [8].

Definition 1. A non-deterministic matrix (henceforth, Nmatrix ) for L is a tu-
ple M = 〈V,D,O〉, where V is a non-empty set of truth values, D is a non-empty
proper subset of V, and for every n-ary connective � of L, O includes an n-ary
function �̃ from Vn to 2V − {∅}.

Definition 2. An M-valuation is a function ν : L → V that satisfies the fol-
lowing condition for every n-ary connective � of L and every ψ1 . . . ψn ∈ L:

ν(�(ψ1 . . . ψn)) ∈ �̃(ν(ψ1) . . . ν(ψn)).

We denote by ΛM the space of all the M-valuations.

It is important to stress that in Nmatrices the truth-values assigned to
ψ1, . . . , ψn do not uniquely determine the truth-value assigned to �(ψ1, . . . , ψn),
as ν makes a non-deterministic choice out of the set of options �̃(ν(ψ1), . . . , ν(ψn)).
Thus, the non-deterministic semantics is non-truth-functional, as opposed to
standard many-valued logics.

Example 1. Let M = 〈{t, f}, {t},O〉, where O contains the following operators:

¬
t {f}
f {t}

→ t f
t {t} {f}
f {t} {t}

↔ t f
t {t} {f}
f {f} {t}

∨ t f
t {t} {t}
f {t} {f}

f t f
t {t, f} {f}
f {f} {f}



Let p, q ∈ Atoms and ν1, ν2 ∈ ΛM, such that ν1(p) = ν2(p) = ν1(q) = ν2(q) = t,
ν1(pf q) = t and ν2(pf q) = f . While ν1 and ν2 coincide on, e.g., p∨ q, and on
the proper subformulas of p f q, they make different non-deterministic choices
for pf q.

Definition 3. A valuation ν∈ΛM is a model of (or satisfies) a formula ψ in M
if ν(ψ) ∈ D. ν is a model in M of a set Γ of formulas if it satisfies every formula
in Γ . A formula ψ is M-satisfiable if it is satisfied by a valuation in ΛM. ψ is
an M-tautology if it is satisfied by every valuation in ΛM.

Definition 4. For an Nmatrix M, a formula ψ, and a theory Γ in L, denote:
modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D} and modM(Γ ) = ∩ψ∈Γ modM(ψ).

Definition 5. The consequence relation that is induced by an Nmatrix M is
defined by: Γ |=Mψ if modM(Γ ) ⊆ modM(ψ).

In this paper we concentrate on two-valued Nmatrices with V = {t, f} and
D = {t}, and denote by M such an Nmatrix.

2.2 Preferential Distance-Based Entailments

Next, we augment non-deterministic semantics with preferential considerations.
The idea is simple: given a distance function d on a space of valuations, reasoning
with a set of premises Γ is based on those valuations that are ‘d-closest’ to Γ
(called the most plausible valuations of Γ ). For instance, under the standard
interpretation of negation, it is intuitively clear that valuations in which q is
true should be closer to Γ = {p,¬p, q} than valuations in which q is false, and
so q should follow from Γ while ¬q should not follow from Γ , although Γ is
not consistent. The formal details are given in [2, 3] and are adapted to the
non-deterministic case in what follows.

Definition 6. A pseudo-distance on a set U is a total function d : U×U → R+,
satisfying the following conditions:

– symmetry: for all ν, µ ∈ U d(ν, µ) = d(µ, ν),
– identity preservation: for all ν, µ ∈ U d(ν, µ) = 0 iff ν = µ.

A pseudo-distance d is a distance (metric) on U if it has the following property:

– triangular inequality: for all ν, µ, σ ∈ U d(ν, σ) ≤ d(ν, µ) + d(µ, σ).

Example 2. For every M, the following two functions are distances on ΛM.

– The drastic distance: dU (ν, µ) = 0 if ν = µ and dU (ν, µ) = 1 otherwise.
– The Hamming distance: dH(ν, µ) = |{p ∈ Atoms | ν(p) 6= µ(p)} |. 3 4

3 Here, the set Atoms of the atomic formulas in the language is assumed to be finite.
4 The drastic distance is also known as the discrete metric, and Hamming distance is

sometimes called Dalal distance [11], or the symmetric difference. For other repre-
sentations of distances between propositional valuations see, e.g., [16].



The non-deterministic character of our framework induces some further re-
strictions on the distances that we shall use. This is so, since two valuations for
an Nmatrix can agree on all the atoms of a formula, but still assign two different
values to that formula, thus for computing distances between valuations it is
not enough to consider only atomic formulas.5 It follows that even under the
assumption that the set of atoms is finite, there are infinitely many complex
formulas to consider. To handle this, the distance computations in the sequel
are context dependent , that is: restricted to a certain set of relevant formulas.

Definition 7. A context C is a finite set of L-formulas closed under subformulas.
The restriction to C of a valuation ν ∈ ΛM is a valuation ν↓C on C, such that
ν↓C(ψ) = ν(ψ) for every ψ in C. The restriction to C of ΛM is the set Λ↓CM =
{ν↓C | ν ∈ ΛM}, that is, Λ↓CM consists of all the M-valuations on C.

Example 3. Consider the following functions on Λ↓SF(Γ )
M × Λ

↓SF(Γ )
M :

– d
↓SF(Γ )
U (ν, µ) =

{
0 if ν(ψ) = µ(ψ) for every ψ ∈ SF(Γ ),
1 otherwise.

– d
↓SF(Γ )
H (ν, µ) = |{ψ ∈ SF(Γ ) | ν(ψ) 6= µ(ψ)}|.

Proposition 1. d↓SF(Γ )
U and d↓SF(Γ )

H are distance functions on Λ
↓SF(Γ )
M . 6

Definition 8. Let d be a function on ∪M =
⋃
{C=SF(Γ )|Γ∈2L} Λ

↓C
M × Λ↓CM

– The restriction of d to a context C is a function d↓C on Λ↓CM× Λ↓CM, defined
for every ν, µ ∈ Λ↓CM by d↓C(ν, µ) = d(ν, µ).

– d is a generic (pseudo) distance on ΛM, if for every context C, d↓C is a
(pseudo) distance on Λ↓CM.

Example 4. Given an Nmatrix M for L, define the functions dU and dH on ∪M
as follows: for every context C and every ν, ν ∈ Λ↓CM,

– dU (ν, µ) =
{

0 if ν = µ,
1 otherwise.

– dH(ν, µ) = |{ψ ∈ C | ν(ψ) 6= µ(ψ)}|.

The restrictions of the two functions to a context C = SF(Γ ) are given in Ex-
ample 3. By Proposition 1, then, both of these functions are generic distances
on ΛM for every Nmatrix M.

5 Thus, e.g., the Hamming distance defined in the last example should be adjusted to
the non-deterministic case, so that differences in the truth assignment of complex
formulas will be taken into consideration as well.

6 This proposition is easily verifiable. Proofs of some other propositions in this paper
appear in the appendix.



Note 1. Denote byMc the Nmatrix for the language {¬,∧,∨,→} with the classi-
cal interpretations of the connectives (i.e.,Mc is similar to the classical determin-
istic matrix, except that its valuation functions return singletons of truth-values
instead of truth-values). Under the assumption that the set of atoms is finite, the
distance functions in Example 2 can be represented in the non-deterministic case
as metrics on Λ↓Atoms

Mc
; In the notations of Example 4, they are generic distances

on ΛMc
, denoted by d↓Atoms

U and d↓Atoms
H .

Definition 9. A numeric aggregation function is total function f whose argu-
ment is a multiset of real numbers and whose values are real numbers, such that:
(i) f is non-decreasing in the value of its argument,7 (ii) f({x1, . . . , xn}) = 0 iff
x1 = x2 = . . . xn = 0, and (iii) f({x}) = x for every x ∈ R.

Definition 10. A (distance-based, nondeterministic) setting for a language L,
is a triple S = 〈M, d, f〉, where M is a non-deterministic matrix for L, d is a
generic distance on ΛM, and f is an aggregation function.

Definition 11. Given a setting S = 〈M, d, f〉 for a language L, a valuation
ν ∈ ΛM, and a set Γ = {ψ1, . . . , ψn} of formulas in L, define:

– d↓SF(Γ )(ν, ψi) ={
min{d↓SF(Γ )(ν↓SF(Γ ), µ↓SF(Γ )) | µ ∈ modM(ψi)} if modM(ψi) 6= ∅,
1 + max{d↓SF(Γ )(µ↓SF(Γ )

1 , µ
↓SF(Γ )
2 ) | µ1, µ2 ∈ ΛM} otherwise.

– δ
↓SF(Γ )
d,f (ν, Γ ) = f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn)}).

Note 2. In every setting S = 〈M, d, f〉, the following properties hold:

1. In the two extreme degenerate cases, when ψ is either a tautology or a con-
tradiction w.r.t. M, all the valuations are equally distant from ψ. Otherwise,
the valuations that are closest to ψ are its models and their distance to ψ is
zero. This also implies that δ↓SF(Γ )

d,f (ν, Γ ) = 0 iff ν ∈ modM(Γ ) (see also [3]).
2. A natural property of distances between valuations and formulas is that they

are not affected (biased) by irrelevant formulas (those that are not part of
the relevant context):

Proposition 2 (unbiasedness). For every ν1, ν2 ∈ΛM, C = SF(Γ ), and
ψ ∈ Γ , if ν↓C1 =ν↓C2 then d↓C(ν1, ψ)=d↓C(ν2, ψ) and δ↓Cd,f (ν1, Γ )=δ↓Cd,f (ν2, Γ ).

Now we define entailment relations based on distance minimization.

Definition 12. Given a setting S = 〈M, d, f〉, the most plausible valuations of
a theory Γ are defined as follows:

∆S(Γ ) =

{{
ν ∈ ΛM | ∀µ ∈ ΛM δ

↓SF(Γ )
d,f (ν, Γ ) ≤ δ

↓SF(Γ )
d,f (µ, Γ )

}
if Γ 6= ∅,

ΛM otherwise.

Definition 13. Let S = 〈M, d, f〉. Define: Γ |=S ψ if ∆S(Γ ) ⊆ modM(ψ).
7 That is, the function value is non-decreasing when an element in the multiset is

replaced by a larger element.



2.3 Examples of Reasoning with |=S

Notation. Given a theory Γ with SF(Γ ) = {ψ1, ψ2, . . . , ψn}, a valuation ν ∈
Λ
↓SF(Γ )
M is represented by {ψ1 :ν(ψ1), ψ2 :ν(ψ2), . . . , ψn :ν(ψn)}.

Example 5. Let S = 〈M, dU , Σ〉, where M is the Nmatrix considered in Exam-
ple 1. Let Γ = {p,¬p, q,¬(pf q)}. Then:

∆S(Γ ) =

{
{p : t, ¬p :f, q : t, pf q :f, ¬(pf q) : t},
{p :f, ¬p : t, q : t, pf q :f, ¬(pf q) : t}

}
.

Thus, Γ |=S q and Γ |=S ¬(pf q), while Γ 6|=S p and Γ 6|=S ¬p.

Example 6. A reasoner wants to learn as much as possible about a (black-box)
circuit, the structure of which is assumed to be the following:

-

-

-

-
-

G1

G2in3

in2

in1

out

Fig. 1.

Here, G1 and G2 are two AND gates that are faulty or behave unpredictably
when both of their input lines are ‘on’.8 After experimenting with the circuit,
the reasoner concludes that if one of the input lines is ’on’ then so is the output
line. This situation may be represented by Nmatrix M of Example 1 as follows:

Γ =
{

(in1 ∨ in2 ∨ in3) → out
}
,

where out denotes the formula ((in1 f in2)f in3). Here, Λ↓SF(Γ )
M has 11 elements

(see the appendix), two of them are models of Γ . Thus, by Lemma 1 below, for
every setting S,

∆S(Γ ) = modM(Γ ) =

{{
in1 : t, in2 : t, in3 : t, in1fin2 : t, out : t

}
,{

in1 :f, in2 :f, in3 :f, in1fin2 :f, out :f
}}

,

so the reasoner may conclude that when all the input lines have the same value,
the output line of the circuit preserves this value.

Suppose now that the reasoner learns that the value of the output line is
always different than the value of G1. The new situation can be represented by

Γ ′ = Γ ∪
{
(in1 f in2) ↔ ¬out

}
.

8 This may happen due to noises on or off chip, variations in the manufacturing pro-
cess, adversary operations, etc.



It is easy to verify that Γ ′ is not M-satisfiable anymore, i.e. the new information
is inconsistent with the reasoner’s previous knowledge. In such cases the usual
|=M entailment is trivialized: everything can be inferred from Γ ′. This, however,
is not the case for |=S . For instance, when S = 〈M, dU , Σ〉, we have that

∆S(Γ ′) =


{
in1 : t, in2 : t, in3 : t, in1fin2 : t, out : t

}
,{

in1 : t, in2 : t, in3 : t, in1fin2 : t, out :f
}
,{

in1 : t, in2 : t, in3 :f, in1fin2 : t, out :f
}
,{

in1 :f, in2 :f, in3 :f, in1fin2 :f, out :f
}

 .

Using |=S , the reasoner may still conclude from Γ ′ that if the value of all the
input lines is ’off’, this is also the value of the output line. This shows that |=S is
inconsistency-tolerant (see Proposition 4 below). On the other hand, a stronger
assertion, that when the values of all input lines coincide the value of the output
line is the same, is no longer a valid consequence of Γ ′. This shows that |=S is
non-monotonic (see Proposition 6 below).

3 General Properties of |=S

In this section, we consider some basic properties of the entailments that are
induced by a setting S = 〈M, d, f〉. First, we consider the relation between
basic and distance-based entailments.

Proposition 3. [6] For every setting S = 〈M, d, f〉, if Γ |=S ψ then Γ |=M ψ.
Moreover, if Γ is M-satisfiable, then Γ |=S ψ iff Γ |=M ψ.

Proposition 3 follows from the fact that if Γ is not M-satisfiable then Γ |=M ψ
for every ψ, and from the following lemma:

Lemma 1. [6] Γ is M-satisfiable iff ∆S(Γ ) = modM(Γ ).

Thus, |=S coincides with |=M w.r.t. M-consistent premises. In contrast to |=M,
however, |=S tolerates inconsistent information in a non-trivial way, thus, as
Proposition 4 shows, |=S is paraconsistent.

Definition 14. Γ1 and Γ2 are called independent if Atoms(Γ1)∩Atoms(Γ2) = ∅.

The next proposition is an improvement of a similar proposition in [6].

Proposition 4 (paraconsistency). For every Γ and every ψ such that Γ and
{ψ} are independent, Γ |=S ψ iff ψ is an M-tautology.

Corollary 1 (weak paraconsistency). For every Γ there is a ψ s.t. Γ 6|=S ψ.

A related property is that |=S preserves the consistency of its conclusions:

Definition 15. An Nmartix M = 〈{t, f}, {t},O〉 is with negation, if there is
a unary function ¬̃ in O such that ¬̃(t) = {f} and ¬̃(f) = {t}. A setting
S = 〈M, d, f〉 is with negation if its Nmatrix M is with negation.



Proposition 5. [6] Let S be a setting with negation. Then for every Γ and every
ψ, if Γ |=S ψ then Γ 6|=S ¬ψ.

We now consider to what extent the entailment relations of our framework
are non-monotonic (i.e., whether conclusions may be revised in light of new
information).

Proposition 6 (non-monotonicity). Let S = 〈M, d, f〉 be a setting with
negation. Then |=S is non-monotonic.

In spite of Proposition 6, even for settings with negation, one may specify
conditions under which the entailment relations have some monotonic charac-
teristics.

Definition 16. An aggregation function f is hereditary , if f({x1, . . . , xn}) <
f({y1, . . . , yn}) entails f({x1, . . . , xn, z1, . . . , zm}) < f({y1, . . . , yn, z1, . . . , zm}).

Example 7. The aggregation function Σ is hereditary, while max is not.

The following proposition shows that in light of new information that is
unrelated to the premises, previously drawn conclusions should not be retracted.9

Proposition 7 (rational monotonicity). Let S = 〈M, d, f〉 be a setting in
which f is hereditary. If Γ |=S ψ, then Γ, φ |=S ψ for every formula φ such that
Γ ∪ {ψ} and {φ} are independent.

The discussion above, on the non-monotonicity of |=S , brings us to the ques-
tion to what extent these entailments can be considered as consequence relations.

Definition 17. A Tarskian consequence relation [24] for a language L is a bi-
nary relation ` between sets of formulas of L and formulas of L that satisfies
the following conditions:

Reflexivity : if ψ ∈ Γ , then Γ ` ψ.
Monotonicity : if Γ ` ψ and Γ ⊆ Γ ′, then Γ ′ ` ψ.
Transitivity : if Γ ` ψ and Γ ′, ψ ` ϕ, then Γ, Γ ′ ` ϕ.

As follows from Example 5 and Proposition 6, entailments of the form |=S
are, in general, neither reflexive nor monotonic. It is also not difficult to verify
that in general |=S is not transitive either. In the context of non-monotonic
reasoning, however, it is usual to consider the following weaker conditions that
guarantee a ‘proper behaviour’ of nonmonotonic entailments in the presence of
inconsistency (see, e.g., [4, 15, 17, 20]):

Definition 18. A cautious consequence relation for L is a relation |∼ between
sets of L-formulas and L-formulas, that satisfies the following conditions:

Cautious Reflexivity : if Γ is M-satisfiable and ψ ∈ Γ , then Γ |∼ ψ.
Cautious Monotonicity [12]: if Γ |∼ ψ and Γ |∼ φ, then Γ, ψ |∼ φ.
Cautious Transitivity [15]: if Γ |∼ ψ and Γ, ψ |∼ φ, then Γ |∼ φ.

9 This type of monotonicity is a kind of rational monotonicity , considered in [17].



The next result is another improvement of a similar proposition in [6].

Proposition 8. Let S = 〈M, d, f〉 be a setting where f is hereditary. Then |=S
is a cautious consequence relation.

Regarding the computability of our entailments, we show that in most prac-
tical cases entailment checking is decidable.

Definition 19. A setting S = 〈M, d, f〉 is computable, if f is computable, and
there is an algorithm that computes d(µ, ν) for every context C and µ, ν ∈ Λ↓CM.

Note 3. Clearly, all the distance and aggregation functions considered in this
paper are computable. Yet, as the following example shows, this is not always
the case. Let L = {∧} be a propositional language and L a first-order language
with a constant c, a unary function g and a binary relation R. Consider the
following one-to-one mapping Θ from L-formulas to L-formulas: every symbol
s in L is associated with an atomic formula ps in L, and every L-formula ψ is
mapped to the L-formula Θ(ψ), obtained by taking the conjunction of all the
atomic formulas to which the symbols of ψ are mapped. For instance, the formula
∀x1∀x2R(x1, x2) is mapped to p∀∧px1 ∧p∀∧px2 ∧pR ∧p( ∧px1 ∧p, ∧px2 ∧p). A
formula ψ in L is called proper if there is an L-formula ψ′ s.t. ψ = Θ(ψ′). Now,
consider the following pseudo distance:

d(ν, µ) =


0 if ν = µ,
1 if ν 6= µ and there is a proper ψ s.t. ν, µ ∈ Λ↓SF(ψ)

M ,
and Θ−1(ψ) is satisfiable,

2 otherwise.

Since SF(ψ) 6= SF(φ) whenever ψ 6= φ, the pseudo distance above is well de-
fined. Now, as the satisfiability problem for L-formulas is undecidable, d is not
computable.

Proposition 9. For every computable setting S, the question whether Γ |=S ψ
is decidable.

4 Some Particular Cases of Reasoning with |=S

In this section we focus on drastic settings, i.e., settings with a drastic distance
(see Examples 2 and 4). In this context we investigate the following aggregation
functions:

Definition 20. An aggregation function f is range restricted if f({x1, . . . , xn}) ∈
{x1, . . . , xn}; f is called additive if for any non-empty set S it can be represented
as f(S) = g(|S|) ·Σx∈S x, for some function g : N+ → R+.

Example 8. The maximum function is a range-restricted but not additive, while
the summation (respectively, the average) is additive where g is uniformly 1
(respectively, g(n) = 1

n ), but it is not range-restricted.



The next proposition should be compared with Proposition 4.

Proposition 10. Let S = 〈M, dU , f〉 be a drastic setting in which f is range
restricted. Let Γ be a set of formulas that is not M-satisfiable. Then Γ |=S ψ iff
ψ is an M-tautology.

Corollary 2. Let S be a drastic setting with a range-restricted aggregation func-
tion. If Γ |=S ψ then either Γ |=M ψ or ψ is an M-tautology.

The last corollary shows that reasoning with drastic distances and range-
restricted functions has a somewhat ‘crude nature’: either the set of premises is
M-consistent, in which case the set of conclusions coincide with that of the basic
entailment, or, in case of contradictory premises, only tautologies are entailed.

The behavior of drastic settings with additive functions is completely differ-
ent: entailments in this case are closely related to the maximum satisfiability
problem:

Definition 21. Let SATM(Γ ) be the set of all the M-satisfiable subsets of Γ .
The set mSATM(Γ ) of the maximally M-satisfiable subsets of Γ consistent of
all the elements Υ ∈ SATM(Γ ) such that |Υ ′| ≤ |Υ | for every Υ ′ ∈ SATM(Γ ).

Note 4. Clearly, mSATM(Γ ) is nonempty whenever Γ contains an M-satisfiable
element.

Proposition 11. Let S = 〈M, dU , f〉 be a drastic setting with additive f and
let Γ be a finite set of formulas. Then:

∆S(Γ ) =

{
{ν ∈ modM(Υ ) | Υ ∈ mSATM(Γ )} if mSATM(Γ ) 6= ∅,
ΛM otherwise.

Corollary 3. Let S be a drastic setting with additive f . If mSATM(Γ ) 6= ∅ and
Γ ′ |=M ψ for every Γ ′∈mSATM(Γ ), then Γ |=S ψ.

Example 9. By taking S = 〈Mc, dU , Σ〉 in the last corollary, we get that rea-
soning with summation of drastic distances is equivalent to checking classical
entailments from the maximally consistent subsets of the premises.

Note 5. It is easy to verify that all the results in this section still hold for settings
S = 〈M, d, f〉, where for every context C = SF(Γ ) there is some constant kC > 0,
such that for all ψ ∈ Γ and ν ∈ ΛM,

d↓C(ν, ψ) =
{

0 if ν ∈ modM(ψ),
kC otherwise.

Note that the drastic setting S = 〈M, dU , f〉 is a particular instance of this
definition in which kC = 1 for every context C.
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A Supplementary Material

Elaboration on Example 6: Below, we use the following abbreviations:

G1 = (in1 f in2), ψ1 = (in1 ∨ in2 ∨ in3) → out,
out = ((in1 f in2) f in3), ψ2 = (in1 f in2) ↔ ¬out.

In these notations, Γ = {ψ1} and Γ ′ = {ψ1, ψ2}. Distances to elements of Λ↓SF(Γ )
M

are given below, where δ(·) abbreviates δdU,Σ(ν, ·) for the relevant valuation ν.

in1 in2 in3 G1 out δ(ψ1) δ(ψ2) δ(Γ ) δ(Γ ′)
ν1 t t t t t 0 1 0 1
ν2 t t t t f 1 0 1 1
ν3 t t t f f 1 1 1 2
ν4 t t f t f 1 0 1 1
ν5 t t f f f 1 1 1 2
ν6 t f t f f 1 1 1 2
ν7 t f f f f 1 1 1 2
ν8 f t t f f 1 1 1 2
ν9 f t f f f 1 1 1 2
ν10 f f t f f 1 1 1 2
ν11 f f f f f 0 1 0 1

Thus, ∆S(Γ ) = {ν1, ν11} and ∆S(Γ ′) = {ν1, ν2, ν4, ν11}.

We turn now to the proofs of the propositions in the paper: Proposition 1
and Proposition 2 are easy. The proofs of Propositions 3, 5, and 6 appear in [6].
The proof of Proposition 4 is a variation of the proof of Proposition 39 in [6].
Below, we show the other results:

Proof of Proposition 7: Let Γ = {ψ1, . . . , ψn} and µ ∈ ΛM, s.t. µ(ψ) = f . As
Γ |=S ψ, µ 6∈ ∆S(Γ ), so there is ν ∈ ∆S(Γ ) with δ

↓SF(Γ )
d,f (ν, Γ ) < δ

↓SF(Γ )
d,f (µ, Γ ),

i.e., f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn)}) < f({d↓SF(Γ )(µ, ψ1), . . . , d↓SF(Γ )(µ, ψn)}).
As Γ |=S ψ, it follows that ν(ψ) = t. Now, as Atoms(Γ ∪{ψ})∩Atoms({φ}) = ∅,
one can easily define an M-valuation σ such that σ(ϕ) = ν(ϕ) for every ϕ ∈
SF(Γ ∪ {ψ}) and σ(ϕ) = µ(ϕ) for every ϕ ∈ SF({φ}). By Proposition 2, and
since f is hereditary, we have:

δ
↓SF(Γ )
d,f (σ, Γ ∪ {φ}) = f({d↓SF(Γ )(σ, ψ1), . . . , d↓SF(Γ )(σ, ψn), d↓SF(Γ )(σ, φ)})

= f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn), d↓SF(Γ )(µ, φ)})
< f({d↓SF(Γ )(µ, ψ1), . . . , δ

↓SF(Γ )
d,f (µ, ψn), d↓SF(Γ )(µ, φ)})

= δ
↓SF(Γ )
d,f (µ, Γ ∪ {φ})

Thus, for every µ ∈ ΛM such that µ(ψ) = f , there is some σ ∈ ΛM such
that σ(ψ) = t and δ↓SF(Γ )

d,f (σ, Γ ∪ {φ}) < δ
↓SF(Γ )
d,f (µ, Γ ∪ {φ}). It follows that the

elements of ∆S(Γ ∪ {φ}) must satisfy ψ, and so Γ, φ |=S ψ. ut



Proof of Proposition 8: Cautious reflexivity follows from Proposition 3. The
proofs for cautious monotonicity and cautious transitivity are an adaptation of
the ones for the deterministic case (see [3]):

For cautious monotonicity, let Γ = {γ1, . . . , γn} and suppose that Γ |=S ψ,
Γ |=S φ, and ν ∈ ∆S(Γ ∪ {ψ}). We show that ν ∈ ∆S(Γ ) and since Γ |=S φ
this implies that ν ∈ modM({φ}). Indeed, if ν /∈ ∆S(Γ ), there is a valuation
µ ∈ ∆S(Γ ) so that δd,f (µ, Γ ) < δd,f (ν, Γ ), i.e., f({d(µ, γ1), . . . , d(µ, γn)}) <
f({d(ν, γ1), . . . , d(ν, γn)}). Also, as Γ |=S ψ, µ ∈ modM({ψ}), thus d(µ, ψ) = 0.
By these facts, then,

δd,f (µ, Γ ∪ {ψ})=f({d(µ, γ1), . . . , d(µ, γn), 0})
<f({d(ν, γ1), . . . , d(ν, γn), 0})
≤f({d(ν, γ1), . . . , d(ν, γn), d(ν, ψ)}) = δd,f (ν, Γ ∪ {ψ}),

a contradiction to ν ∈ ∆S(Γ ∪ {ψ}).
For cautious transitivity, let again Γ = {γ1, . . . , γn} and assume that Γ |=S ψ,

Γ, ψ |=S φ, and ν∈∆S(Γ ). We have to show that ν∈modM({φ}). Indeed, since
ν ∈ ∆S(Γ ), for all µ∈ΛM, f({d(ν, γ1), . . . , d(ν, γn)}) ≤ f({d(µ, γ1), . . . , d(µ, γn)}).
Moreover, since Γ |=S ψ, ν ∈modM({ψ}), and so d(ν, ψ) = 0 ≤ d(µ, ψ). It fol-
lows, then, that for every µ ∈ ΛM,

δd,f (ν, Γ ∪ {ψ})=f({d(ν, γ1), . . . , d(ν, γn), d(ν, ψ)})
≤f({d(µ, γ1), . . . , d(µ, γn), d(ν, ψ)})
≤f({d(µ, γ1), . . . , d(µ, γn), d(µ, ψ)}) = δd,f (µ, Γ ∪ {ψ}).

Thus, ν ∈ ∆S(Γ ∪ {ψ}), and since Γ, ψ |=S φ, necessarily ν ∈ modM({φ}). ut

Proof outline of Proposition 9: Suppose that S is a computable setting.
By Definition 17, in order to check whether Γ |=S ψ, one has to check whether
∆S(Γ ) ⊆ modM(ψ). For decidability, we show that this condition, which involves
infinite sets, can be reduced to an equivalent condition in terms of finite sets. For
this, we denote by mod↓CM(ψ) the set {µ↓C | µ ∈ modM(ψ)}. Next, we extend the
notions of distance between a valuation and a formula and distance between a
valuation and a theory to partial valuations as follows: for every context C such
that SF(Γ ) ⊆ C, define, for every ν ∈ Λ↓SF(Γ )

M and every ψ ∈ Γ ,

– d↓SF(Γ )(ν, ψ) ={
min{d↓SF(Γ )(ν↓SF(Γ ), µ↓SF(Γ )) | µ ∈ mod↓CM(ψ)} if mod↓CM(ψ) 6= ∅,
1 + max{d↓SF(Γ )(µ↓SF(Γ )

1 , µ
↓SF(Γ )
2 ) | µ1, µ2 ∈ Λ↓CM} otherwise.

– δ
↓SF(Γ )
d,f (ν, Γ ) = f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn)}).

Note that since all the partial valuations involved in the definitions above are
defined on finite contexts, there are finitely many such valuations to check, and so
d↓SF(Γ )(ν, ψ) and δ↓SF(Γ )

d,f (ν, Γ ) are computable for every ν ∈ Λ↓CM. Now, consider



the following set of partial valuations on C:

∆↓C
S (Γ ) =

{{
ν ∈ Λ↓CM | ∀µ ∈ ΛM δ

↓SF(Γ )
d,f (ν, Γ ) ≤ δ

↓SF(Γ )
d,f (µ, Γ )

}
if Γ 6= ∅,

Λ↓CM otherwise.

Clearly, ∆↓C
S (Γ ) and mod↓CM(ψ) are computable. Decidability now follows from

the fact that ∆S(Γ ) ⊆ modM(ψ) if and only if ∆↓C
S (Γ ) ⊆ mod↓CM(ψ). ut

Proof of Proposition 10: Let µ ∈ ΛM. As Γ = {ϕ1, . . . , ϕn} is not M-
satisfiable, µ is not a model of Γ , and so there is some formula ϕj ∈ Γ such that
d
↓SF(Γ )
U (µ, ϕj) = 1. Moreover, for every ϕi ∈ Γ we have that d↓SF(Γ )

U (µ, ϕi) ∈
{0, 1} and so, since f is range-restricted,

δ
↓SF(Γ )
dU,f

(µ, Γ ) = f({d↓SF(Γ )
U (µ, ϕ1), . . . , d

↓SF(Γ )
U (µ, ϕn)}) = 1.

This shows that all the valuations in ΛM are equally distant from Γ and so
∆S(Γ ) = ΛM. Thus, Γ |=S ψ iff ∆S(Γ ) ⊆ modM(ψ), iff modM(ψ) = ΛM, iff ψ
is a tautology. ut

Proof of Proposition 11: Consider a theory Γ = {ψ1, . . . , ψn}, and assume
first that mSATM(Γ ) 6= ∅. Since S is drastic, for every ψ ∈ Γ and every ν ∈ ΛM,
d
↓SF(Γ )
U (ν, ψ) = 0 if ν ∈ modM(ψ), and otherwise d↓SF(Γ )

U (ν, ψ) = 1. Now, since
f is additive, we have that

δ
↓SF(Γ )
dU,f

(ν, Γ ) = f{d↓SF(Γ )
U (ν, ψ1), . . . , d

↓SF(Γ )
U (ν, ψn)}

= g(n) · (d↓SF(Γ )
U (ν, ψ1) + . . .+ d

↓SF(Γ )
U (ν, ψn))

= g(n) · |{ψ ∈ Γ | ν /∈ modM(ψ)}|.

Thus, ν ∈ ∆S(Γ ) iff the set {ψ ∈ Γ | ν /∈ modM(ψ)} is minimal in its size, iff
{ψ ∈ Γ | ν ∈ modM(ψ)} is maximal in its size, iff this set belongs to mSATM(Γ ).

Now assume that mSATM(Γ ) = ∅. In this case none of the formulas in Γ is
M-satisfiable (see Note 4). Thus, as

MdU
(Γ ) = max{d↓SF(Γ )

U (µ↓SF(Γ )
1 , µ

↓SF(Γ )
2 ) | µ1, µ2 ∈ Λ↓SF(Γ )

M } = 1,

we have that for every ν ∈ ΛM,

δ
↓SF(Γ )
dU,f

(ν, Γ ) = f{d↓SF(Γ )
U (ν, ψ1), . . . , d

↓SF(Γ )
U (ν, ψn)}

= g(n) · (d↓SF(Γ )
U (ν, ψ1) + . . .+ d

↓SF(Γ )
U (ν, ψn))

= g(n) · n · (1 + MdU
(Γ ))

= 2n · g(n).

Thus, all the elements in ΛM are equally distant from Γ , and so ∆S(Γ ) = ΛM.
ut


