
Reasons for a Careful Design of Fuzzy Sets∗

Enric Trillas and Claudio Moraga

European Centre for Soft Computing, 33600 Mieres, Asturias, Spain

Abstract

This paper is, basically, a reflection on modeling,
starting by asking what happens when the meaning
of a predicate P is interpreted by the membership
function of a fuzzy set that, labeled P , is designed
with the information available to the designer on
the use of the predicate in the corresponding uni-
verse of discourse. In it, the modification of the
meaning that P can suffer by its identification with
the membership function of the fuzzy set, is ana-
lyzed and discussed. It is argued that what can be
done for reaching a least possible modification of the
meaning, is just a careful design of the membership
function. This reflection is further continued at the
level of linguistic variables, fuzzy if-then rules, and
rule-based systems. It is concluded that as argued
in the case of fuzzy sets, the involved operations in
rules and systems should be at least carefully cho-
sen, if not specially designed.

Keywords: Models, Quantity-Predicates, Collec-
tives, Elemental Meaning, Fuzzy sets, Ideal and
Practical membership functions, Design.

1. Introduction

What is a model? A model is the representation of
relevant parts of a system, in order to understand
the functionality of the (modeled parts of the) sys-
tem, to be able to possibly control its behavior, and
eventually, to predict its performance.

How should a model be developed? A model
builder has to consider first, who is going to use the
model, and which are his/her level of knowledge and
expectations for the model. Then choose a possibly
formal frame, where the user can understand the
representation (of the relevant parts of the system),
the functionality may be simulated, and the expec-
tations may be satisfied. (For instance, if a user is
(just) interested in ‘controlling’ a washing machine
to obtain ‘good results’, a User Handbook would be
an appropriate “model”: a textual/pictorial model.
If the user wants to understand how the machine
works, a totally different model would be needed,
where the User Handbook might be just a small,
almost insignificant, component.)

If the users are Engineers, they will rather be ac-
quainted with hierarchical models. At the high-
est level of abstraction block diagrams are used,
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representing the main components of the system
(specified just by names) and their interconnectiv-
ity. Blocks are refined to a next lower level of ab-
straction, where models with possibly different for-
malisms may be required. The refinements are con-
tinued until reaching a functionality level, where
mathematical formalisms, quite often systems of dif-
ferential equations, take over. Refinements end at
the hardware physical level. It is interesting to men-
tion that this method of hierarchical modeling has
been extended to many other areas. See, e.g. [7] for
examples of block diagrams of the brain.

As it is typical in Engineering when for some
purpose a physical system has to be represented
at the level of functionality in mathematical terms,
the first choice is to apply an abstract mathemati-
cal formalism, with which the user is familiar. For
building a model, it is necessary to know previously
on which theory, presuppositions, equations, etc., it
can be based in the context where the current prob-
lem is inscribed. When all this is done, and pro-
vided a general mathematical model is constructed,
it should be tuned according to both its own pre-
requisites, and the data coming from the reality to
which it will be applied; that is, the model should
be adapted and particularized to the current con-
text the system is inscribed in. On the contrary,
the model would not reflect well enough the current
system, the outcome solutions will not allow to fore-
see the real behavior of it, and the representation
will be, at least partially, a failure.

For such endeavor, a plan of actuation sometimes
can be designed. A plan of design that, when suc-
cessful, finally ends with the freezing of the model
once all in it that is variable, like parameters, ini-
tial and border conditions, etc., is contextually fixed
[22]. Then, and after some additional checking with
the real behavior of the system, the model can be
actually applied. This process is sometimes known
as the ‘design of the system’. Mainly after the ap-
pearance of the new area of research called “Com-
puting with Words”, efforts have been done, to de-
velop mathematical models for words, as a first step
to achieve at some time in the future, computable
formal models of language. This, however, should
be done within a process of design.

A very simple example of a design process, is
given by the case the behavior of the linguistic
negation «not», appearing in some expressions go-
ing to be represented in fuzzy terms, is contextu-
ally analyzed and consequently “decided” that it
is not only a strong negation, but can correspond
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with one among those in the parameterized family
Np(x) = (1 − x)/(1 + px), with p > −1, and the pa-
rameter p is yet to be fixed by using some more con-
textual information. If, for instance and for some
plausible reason, it were known that Np(1/2) = 1/3,
then it will immediately follow p = 1, and the corre-
sponding strong negation N1(x) = (1−x)/(1+x) is
yet to be checked before freezing it as the designed
functional model for «not».

This paper is mainly devoted to exhibit some
plausible arguments in pro of choosing the member-
ship function of a predicate through a careful pro-
cess of design. As already suggested in the former
example, the chosen mathematical frame is fuzzy
logic. It is assumed that the readers -“users of the
model”- are familiar with its basics.

2. Some basic concepts

A predicate is understood in this paper as the
name of a property exhibited by the elements of a
set X. In what follows, P is a predicate, p the prop-
erty it names, and the meaning of P in X is given
just by the use of P in X; a use that depends on the
purpose for doing it. That is, the meaning of P in
X is viewed as something that, arising from some
relationships between the elemental statements «x
is P», with x in X, is established thanks to both the
extent up to which each x shows p, and its variations
among the pairs of elements in X.

It will be supposed that the management of P in
X is done with the goal of introducing some kind of
organization in X trying to clarify how the elements
in X become related when p is taken into account.
For instance, one thing is just the set of ages of the
inhabitants of a big city (a set of numbers that can
be taken from one to 33 × 108 seconds), and an-
other and very different thing is that appearing as
soon as those inhabitants that are «young», are con-
sidered; that is, when the collective of the «young
people» in the city is considered. This is the sense in
which it can be said that a predicate ‘collectivizes’,
or ‘extents’, in its universe of discourse, and even if
such extension is of a virtual, or mental, character;
that is, it has not a physical existence out of the
brain. This collective is clearly different from that
constituted by the inhabitants that are between 18
and 36 years old, and that, at least ideally, can be
made physical by simply placing this people in a
list of which the inhabitants with other ages are ex-
cluded. On the contrary, and as it can be shown by
a Sorites type of argument, not a satisfactory list
can be made with the inhabitants qualified by the
predicate «young». Most collectives, like that given
by «young», are nebulous-like entities that, appear-
ing in the language after using P , are very difficult
to study in themselves, and, in particular, of being
represented in mathematical terms. Nevertheless,
collectives do exist in the language. A way of ap-
proaching the collectives can be done by functions

(fuzzy sets) able to express up to which degree it
can be stated that «x is P», for all x in X.

3. Towards describing the ‘collective’, or

‘extent’, a predicate generates.

3.1. To face a scientific-like study of predicates, we
will restrict ourselves to those that can be viewed
as measurable quantities. To such an end, it will be
firstly supposed [6] that the two empirically based
binary relations defined in X by,

a) x =P y iff x is as equally P as y, and

b) x ≤P y iff x is less P than y. 1

can be (perceptively) captured through the way of
using P in X, and we will also suppose that the two
following working-hypotheses hold:

• ≤P is a preorder (that is, a reflexive and tran-
sitive relation), and

• =P is the equivalence associated to ≤P (that is,
=P = ≤P ∩ ≤−1

P , with x ≤−1

P y ⇔ y ≤P x)

Notice that only ≤P is strictly necessary, al-
though it is neither obvious that ≤P is always a
preorder, nor that =P is always its associated equiv-
alence. Obviously, =P is not the identity: If x = y,
then x =P y, but not reciprocally.

In this relational framework, it is supposed that
each x in X shows p to some extent, and that ≤P

is the organization the use of P induces in X. The
graph (X, ≤P ), a preordered set, is an interpreta-
tion of the elemental, or primary, meaning of P in X
that, in the form of the graph, is expressed in math-
ematical terms allowing to look at it as a, perhaps
measurable, qualitative quantity.

If there exists some mapping mP : X → [0, 1],
such that: 1) x ≤P y ⇒ mp(x) ≤ mP (y), it will be
said that mP (x) measures the amount up to which
each x is P , or exhibits p, and that mP is a measure

for P in X. Additionally, it will be supposed the fol-
lowing two prototype-hypotheses for mP : Provided
(X, ≤P ) contains minimals x0 (x0 ≤P x, for all x
in X), or maximals x1 (x ≤P x1 for all x in X),
then 2) mP (x0) = 0, and 3) mP (x1) = 1. Once ≤P

and mP are known, it can be said that the triplet
(X, ≤P , mP ) is a measurable quantity interpret-
ing the use, or meaning, of P in X. Minimals x0

play the role of anti-prototypes of P in X, and
maximals x1 play like prototypes of P in X [20].
Obviously, properties 1, 2, and 3, do not individu-
ate a single measure mP , but a family of them; to
have a single one, more information on the current
behavior of P in X is needed.

1 Stricto sensu it should be “ x ≤P y iff x is less P

than y or as equally P as y”, however, when no confusion

arises, to simplify the linguistic expressions, the shorter form

will be preferred.
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Remarks

1. Property 1 of mP is basic, since it shows that
the numbers mP (x) also grow when the ele-
ments x ‘grow’ under ≤P .

2. The quotient set X/=P consists of the classes
of those elements that are as «equally P» as
a given one; for instance, and if a minimal x0

exists, it is [x0] = {x in X; x =P x0}.
3. If x =P y, or x ≤P y and y ≤P x, then

mP (x) ≤ mP (y) and mP (y) ≤ mP (x), imply
mP (x) = mP (y), that is, all elements in a class
[x] have the same measure mP (x); for instance,
if x is in [x0] it is mP (x) = 0: Measures mP

are constant on the classes in X/=P .
4. In the quotient set X/=P , the relation de-

fined by [x] ≤∗ [y] ⇔ x ≤P y, does not
depend on the chosen representatives x and
y in the classes, and provided ≤P is a pre-
order, then ≤∗ is a partial order (a reflexive,
anti-symmetric, and transitive binary relation).
Hence, (X/=P , ≤∗) is a poset, and the map-
ping defined by mP

∗([x]) = mP (x), is also a
≤∗-measure.

3.2 Once (X, ≤P ) is endowed with a measure mP ,
the new relation ≤mP , defined by

x ≤mP t ⇔ mP (x) ≤ mP (y),

is obviously a linear, or total, preorder that is larger
than ≤P , since for all x, y it is either mP (x) ≤
mP (y), or mP (x) ≥ mP (y), and if x ≤P y, then
mP (x) ≤ mP (y) ⇔ x ≤mP y: ≤P is included in
≤mP . Hence, if a working-scientist directly deals
with a measure mP , he/she is adding to the meaning
of ≤P the difference set ≤mP − ≤P .

It should be noticed that many times it is diffi-
cult to know ≤P , especially if the cardinality of X
is big; notwithstanding, there are cases in which the
universe of discourse can be assimilated to an inter-
val of the real line, and ≤P is either the order ≤ in
such line, or its reverse ≤−1. This is, for instance,
the case of P = big in the closed interval [0, 10],
where it can be easily agreed in the identification
«x ≤P y ⇔ x ≤ y», with at least the minimal 0,
and the maximal 10, or the case of P = small with
«x ≤P y ⇔ y ≤ x», with at least the minimal 10,
and the maximal 0. In the first case, a measure mP

should be selected among those that verify mP (0) =
0, mP (10) = 1, and «x ≤ y ⇒ mP (x) ≤ mP (y)»,
and in the second among those verifying mP (0) = 1,
mP (10) = 0, and «x ≤ y ⇒ mP (y) ≤ mP (x)».
In both cases, and provided mP is strictly non-
decreasing (respectively, decreasing), it is ≤P =
≤mP . Linear instances of these functions are, re-
spectively, mP (x) = x/10, and mP (x) = 1 − x/10.
In those cases in which it is ≤P = ≤mP , it can be
said that mP perfectly reflects the meaning of P
in X. Nevertheless, since ≤P is not always a total
preorder, in general, mP will not perfectly reflect
≤P , and then the non-empty set ≤mP − ≤P can

produce a modification of the meaning ≤P of P in
X, by enlarging it to ≤mP . The working-scientist
should take care of this possibility, and especially,
when this enlargement could be excessive for cor-
rectly interpreting the meaning of P in X through
mP .
Example. In X = [0, 10], the relation ≤P for the
predicate P = «Around Four», can be taken as co-
incidental with

x ≤P y ⇔ x ≤ y, if both x and y are in [0, 4],

and y ≤ x, if both are in [4, 10],

and showing at least the two minimals 0 and 10, and
at least the maximal 4. Hence, all the measures mP

will come from the ‘axioms’: mP (0) = mP (10) = 0;
mP (4) = 1; «0 ≤ x ≤ y ≤ 4 ⇒ mP (x) ≤ mP (y)»,
and «4 ≤ x ≤ y ≤ 10 ⇒ mP (x) ≥ mP (y)». Of
course, at each particular case, a single one among
this multitude of functions should be selected to rep-
resent the current use of the predicate, and thus
more information on the particular use of P in X
is needed for it. If, for instance, it is known that
the numbers in [0, 1] ∪ [9, 10] are minimals, those in
[3.5, 4.5] are maximals, and that the growing of mP

is lineal, then mP will be the function:

mP (x) = 0, if x is in [0, 1] ∪ [9, 10];

mP (x) = 1, if x is in [3.5, 4.5];

mP (x) = (x − 1)/2.5, if x is in [1, 3.5], and

mP (x) = (9 − x)/4.5, if x is in [4.5, 9].

Provided it were known that in the interval [1, 3.5]
the growing of mP is quadratic, that is, with proto-
type function mP (x) = ax2 + bx + c, if 1 < x < 3.5,
the three parameters can be obtained by simply
having an information like mP (2.5) = 0.5. Then,
and jointly with mP (1) = 0 and mP (3.5) = 1, it is
easy to compute a, b, and c, and the corresponding
measure mP is:

mP (x) = 0, if x is in [0, 1] ∪ [9, 10];

mP (x) = 1, if x is in [3.5, 4.5];

mP (x) = 0.067x2 − 4.4x + 4.33, if x is in [1, 3.5], and

mP (x) = (9 − x)/4.5, if x is in [4.5, 9].

Remarks

1) By considering non numerical measures mP tak-
ing their values in a poset (L, ≤) instead of in the
unit interval, there is a natural way for obtaining a
non numerical measure mP : X → L with which the
meaning of P is perfectly reflected [6]. It is enough
to take L = X/=P , with its partial ordering ≤∗,
and defining mP (x) = [x]. Then, it is: ′x ≤P y ⇔
[x] ≤∗ [y], or mP (x) ≤∗ mP (y) ⇔ x ≤∗

mP y′, and
≤P = ≤∗

mP . Hence, mP perfectly reflects ≤P .
Thus, in the case of a numerical measure taking
its values in [0, 1] and perfectly reflecting ≤P , it is
≤P = ≤mP = ≤∗

mP , showing the relevance at the
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respect of the equivalence classes [x].
2) With all that, any possible way to descriptively
approach the concept of ‘collective’ cannot forget all
the possible measures mP . Each one of them will
represent a kind of ‘state’ of the collective, respect
to a given scale (L, ≤).

4. The usual case with Fuzzy Sets

4.1 Once a triplet (X, ≤P , mP ) is given, the fuzzy
set labeled P (P) can be immediately defined
through [21]:

• x belongs to P with degree of membership r,
x ∈r P, if and only if mP (x) = r ∈ [0, 1], with
the understanding that r = 0 means that x
does not belong at all to P, and that r = 1
means that x completely belongs to P.

• Two fuzzy sets P and Q are identical, P = Q,
if and only if mP (x) = mQ(x), for all x in X,
that is, mP = mQ.

Notice that each fuzzy set P is defined by just
changing the way of speaking, and that it is
completely defined by a function mP . That is,
provided mP and m∗

P were two different measures
for the same predicate P , two different fuzzy sets
P and P∗ will be correspondingly defined. In
principle, a predicate P allows to define a family of
fuzzy sets in X sharing some similar shape. Notice
also that a crisp set is a fuzzy set whose measure
mP verifies mP (x) ∈ {0, 1}, for all x in X, and that
in these cases the extent of P is just the classical
subset mP

−1(1) in X. Classical sets A are viewed,
in this way, as degenerate fuzzy sets for which, in
addition, if A = B, also B is a classical set. A
‘proper fuzzy set’ is one with some value mP (x)
in [0, 1]. In the same vein, no proper fuzzy set
can be identical to a crisp set. For crisp sets, the
new symbol ∈r only admits the two possibilities
∈1 (∈), and ∈0 (/∈), and the collective reduces to
just the crisp set, something that shows the ‘static’
character of those predicates that generate crisp
sets.

4.2 The membership function of a fuzzy set labeled
P , is not always obtained by a process like those in
the last examples with «big», «small», and «around
four», but through one in which only the main fea-
tures at hand on the behavior of P in X, are taken
into account. This can be particularly worrying
when X cannot be either directly assimilated to a
set of real numbers, or the preorder ≤P has nothing
to do with the order of the real line. It happens,
for instance, with the predicate F =«fuzzy», ap-
plied to fuzzy sets A, in which case it is accepted
that A ≤s B ⇔ A(x) ≤ B(x), if B(x) ≤ 0.5, and
B(x) ≤ A(x), if 0.5 ≤ B(x), the so-called ‘sharp-
ened order’ between fuzzy sets, translates the lin-
guistic relation «A is less fuzzy than B». Neverthe-
less, this definition leaves some doubts in what re-

spects to its coincidence with ≤F , (less fuzzy than),
even if it seems to verify ≤s ⊂ ≤F [23].

When the preorder ≤P is not well, or fully,
known, the membership function fP of a fuzzy set
labeled P directly obtained from the information
at hand, can easily be not coincidental with one of
the measures mP , and hence does not define the
fuzzy set P but another one. Let us call mP an
‘ideal membership function’, and fP a ‘practical
membership function’; for short, and respectively,
an im-function, and a pm-function. Of course,
an im and a pm functions are not necessarily
identical, even if they should keep some similarity
concerning, at least, their shape; for instance, if
mP is strictly decreasing in some part of X, in
this part fP cannot be strictly non-decreasing.
Provided, the pm-function fP comes from a good
enough information on the behavior of P in X,
and depending on the characteristics of the current
problem, this lack of coincidence could have no
importance at all, but in some specific cases as they
are, for instance, those in which the values mP (x)
are of upmost importance, the numerical differences
|mP (x) − fP (x)| can be of some relevance.

4.3 If, either ≤mP
⊂ ≤fP

, or ≤fP
⊂ ≤mP

, the
‘working meaning’ ≤fP

could be, respectively, too
large, or too short, and since usually it is also ≤P ⊂
≤mP

, by transitivity it will follow ≤P ⊂ ≤fP
in

the first case, and ≤fP
∩ ≤P ⊂ ≤mP

in the second.
Additionally, it should be remarked that mP could
perfectly reflect the meaning of P , but fP could not.
As it is clear, each time the best representation of
the meaning of P is at a stake, the pm-function
fP plays a role of paramount importance. In fact,
and from a qualitative point of view, a function fP

can be considered as an approximation to a function
mP , and the fitness of such approximation can be
relevant. At this respect, what can the working-
scientist do? The best he/she can do is to design
fP in the best possible form, by taking into account
as much information as he/she can collect on the
behavior of P in X. That is, by doing the finest
possible design of fP .

Remarks

The example in section 2.2, shows the basic treats
for a good enough process of designing the pm-
function of a fuzzy set labeled P . The process con-
sists in the following steps:

1. Capture the main aspects on the behavior of P
in X (the ‘axioms’ in the example).

2. Once a shape for a prototype of the member-
ship function is obtained, its final form fP de-
pends on getting more information about either
some parameters, or on something else that can
come from the particular use of P in X. The
designer should carefully search for this addi-
tional information.
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3. Introducing the additional information into the
prototype, the pm-function fP is obtained.

4. Once fP is known, it should be checked against
all the known data, to be sure that it satisfies
what is required by the current problem.

5. In a positive case, fP is accepted; in a nega-
tive, the designer should return to point 1, and
proceed newly through points 2 and 3.

The process just described is nothing rare in Engi-
neering, where plans of ‘design’ are a common way
of working, for instance to obtain what is necessary
with the goal of applying the models with which
computations can be made.

5. Beyond predicates

The former sections presented a comprehensive view
of modeling, designing, possibly imprecise pred-
icates with very simple mathematical structures:
partial ordered sets, equivalence relations and the
resulting quotient sets, partitions and classes. The
next level of complexity would be the modeling of
linguistic variables [24], whose “values” are linguis-
tic terms, i.e., predicates. In this case, the ad-
ditional design aspects include the definition of a
universe of discourse -the domain of the linguistic
variable- and its granularity- the number and dis-
tribution of the linguistic terms in the universe. The
psychology rule “seven plus minus two” [10] helps
for a preliminary choice of the number of linguistic
terms, which should be complemented with addi-
tional knowledge about the linguistic variable under
modeling to complete the design. Predicates and
linguistic variables represent linguistic statements.
Possibly the simplest, but most used, models of sys-

tems associated to fuzzy logic are the rule-based
ones:

«if conditions(s) then conclusion»,

where the «if conditions(s)» part implies that if the
stated conditions are satisfied, then a conclusion,
possibly constrained by the degree of satisfaction of
the conditions, will follow. The «if conditions(s)»
part has the structure «if x1 is X1 and . . . and xn

is Xn», where xi , Xi (i = 1, 2, . . . , n) represent
a physical and a linguistic term of an associated
linguistic variable, respectively, and “is” formally
denotes measuring the similarity between a single-
ton with the actual value of xi and the fuzzy set
representing Xi. To model this part of a rule, the
connective “and” has to be considered. Notice that
when a human being is using a rule of this kind, with
“and”, s/he is meaning that the conditions should
be satisfied at the same time. In the case of fuzzy
logic, “and” is meant to denote an aggregation of the
degrees of satisfaction of the conditions. For this,
mostly t-norms [2], [3], [4] are used. (There are how-
ever systems -compensating systems- which cannot
be properly modelled with t-norms, and other ag-
gregations, (frequently linear or non-linear combi-

nations of t-norms and t-conorms) are required [25],
[13]). The problem for the model builder is, that
there exist infinite many t-norms. It is obviously a
very hard, and still an open problem, how to find
the right one. There are however serious studies
on the consequences of a bad choice (see e.g. [19],
[22]). Before discussing how to solve this problem,
(see below), some remarks about the «conclusion»
part are needed. Conclusions may be of two general
types: crisp actions, («if the book is not expensive
then buy it»), or fuzzy statements («if the external
temperature is low then the heating demand will
be high»). As in the former case, besides modeling
the statements, the main problem here is the ap-
propriate choice, among many, of the conditional to
realize the connecting “then”.

6. Data driven modeling

Particularly in our days it is not rare to have a good
amount of behaviour data of the systems we are
faced to model. In this case it is possible to take ad-
vantage of the capabilities of other members of the
Soft Computing consortium to realize “data driven
fuzzy modeling”, instead of making a blind choice
of operations and prototypical shapes of fuzzy sets.
For instance, the learning capability of neural net-
works can be used to “learn” membership functions
of the conditions-fuzzy sets [9], [1], [5], [11], [17] or
to learn aggregation connectives [12], to use data
driven evolutionary algorithms to optimize the dis-
tribution of linguistic terms in a given universe of
discourse or even to optimize full fuzzy rules sets [7],
to adjust the shape of the transitions between co-
support and core of fuzzy sets [15], or to design and
adjust parameterized conjunctions and conditional
operations [14], [16].

7. Conclusions

This paper is mainly devoted to present some plau-
sible reasons in pro of carefully designing the mem-
bership function of fuzzy sets, based on the modifi-
cation of the meaning that P can show with just a
rough and quick design of the membership function.
Nevertheless, it should be noticed that when repre-
senting in fuzzy terms a dynamical system whose
behavior is known through a linguistic description
of it, all the predicates, linguistic connectives and
modifiers, quantifiers, conditional statements, etc.,
should also be carefully designed in mathematical
terms. (See the chapter Conclusions of [18]).

A good help for the designer of a fuzzy system
could come from some of the papers of a mathe-
matical character that, usually published under the
rubric ‘fuzzy something’, contain abstract models
potentially applicable to the problems in the ap-
plications. This, of course, provided those models
can be designed to fit well enough with the neces-
sary requisites in the corresponding application [22],
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[16].
With all that, and just for a didactical purpose,

it seems recommendable to improve the famous
Zadeh’s statement,

In fuzzy logic everything is

a matter of degree,

by completing it to the form,

In fuzzy logic everything is not only a

matter of degree, but also of design.

Hence, engineers needing to become fuzzy-
practitioners, up to some extent should master the
‘art of designing fuzzy systems’. This art can sug-
gest some new questions like, for instance:

Why, in fuzzy ruled systems, and as it is currently
done in Fuzzy Control, all the rules are always

represented by the same conditional, or implication
function, but not each rule by a different one?

Preliminary positive results on a fuzzy rule-based
regression system with diversity of operations for
the rules may be found in [16]. It is beyond dis-
cussion that the same question is important if the
specification of the system or some of its relevant
signals are expressed in natural language, i.e., if we
enter the world of “Computing with Words”.
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