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Reassessing False Discoveries
in Mutual Fund Performance:

Skill, Luck, or Lack of Power?

Angie Andrikogiannopoulou Filippos Papakonstantinou∗

ABSTRACT

Barras, Scaillet, Wermers (2010) propose the False Discovery Rate to separate skill (alpha) from

luck in fund performance. Using simulations with parameters informed by the data, we find that

this methodology is overly conservative and underestimates the proportion of nonzero-alpha

funds. For example, 65% of funds with economically large alphas of ±2% are misclassified

as zero-alpha. This bias arises from the low signal-to-noise ratio in fund returns and the con-

sequent low statistical power. Our results raise concerns regarding the FDR’s applicability

in performance evaluation and other domains with low power, and can materially change its

conclusion that most funds have zero alpha.
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In an influential study, Barras, Scaillet and Wermers (2010) — hereafter BSW — propose the False

Discovery Rate (FDR) as an advantageous methodology for separating skill from luck and precisely

estimating the proportions of funds that generate true ‘alpha’. Applying this approach to U.S. equity

mutual funds, they find that the vast majority (75%) of funds have zero alpha net of expenses, a siz-

able minority (24.4%) have negative alpha, and only a negligible proportion (0.6%) beat the bench-

marks. These findings have been widely cited in the literature as evidence of no skill in the industry,

and they have been interpreted as being consistent with the Berk and Green (2004) equilibrium.1 But

the contribution of BSW stretches beyond the mutual fund literature and extends to introducing and

popularizing the FDR methodology in finance. The remarkable accuracy of the FDR estimator as

shown by BSW in a simulation — together with the approach’s simplicity — has spurred a number of

subsequent studies to apply it not only in the context of fund performance but also in other contexts.

For example, it has been used to assess the performance of trading strategies, to estimate the pro-

portion of takeovers that experience abnormal trading volume, and to detect jumps in asset returns.2

In this study, we reassess whether the FDR methodology can successfully distinguish skill

from luck in mutual funds. We expand the simulation of BSW and we find that, for data generating

processes that are informed by the mutual fund data, the FDR estimator becomes markedly biased.

This bias arises from the fact that the pivotal assumptions behind the estimator fail due to the low

signal-to-noise ratio in fund return data and the consequent lack of statistical power in tests of

fund alpha. In particular our simulations show that, given the information in the data, the FDR

1For example, see Busse, Goyal and Wahal (2010), Ben-Rephael, Kandel and Wohl (2012), Jiang, Verbeek and

Wang (2014).

2Cuthbertson, Nitzsche and O’Sullivan (2012) and Criton and Scaillet (2014) apply the FDR in the context of UK

mutual funds and of hedge funds respectively; Bajgrowicz and Scaillet (2012) apply it in the context of trading strategies

and Augustin, Brenner and Subrahmanyam (2015) in the context of takeovers; Patton and Ramadorai (2013) use it

to assess funds’ risk exposures; and Bajgrowicz, Scaillet and Treccani (2015) use it to detect jumps in asset returns.
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methodology misclassifies as zero-alpha many funds with economically large alphas (e.g., ±2%

per year), and as a result, it may greatly underestimate the proportion of nonzero-alpha funds.

We also find that, while the number of observations per fund affects the estimator’s accuracy, the

number of funds itself does not, as it does not affect the signal-to-noise ratio. This distinction is

important, as most applications of the FDR in finance involve panels with a large N but small T

dimension. We note that, though the simulation in BSW is a valuable first step in assessing the

FDR methodology for fund performance evaluation, it does not diagnose these limitations, because

it is conducted under the specific assumptions that all nonzero alphas are very large (around 3.5%

per year) and there is a large number of observations per fund.

The bias we demonstrate brings into question the economic conclusions of the FDR approach

for fund alpha. Specifically, the finding that most mutual funds have (almost) zero alpha may not be

due to a lack of skill in the industry and may not support the Berk and Green (2004) model in which

decreasing returns to scale and rational capital reallocation drive fund alphas to zero. Rather it is

likely an artifact of an estimation methodology that has low power to detect nonzero-alpha funds.3

Overall, our results raise concerns about the applicability of the FDR in fund performance evaluation

and more widely in areas in finance where the signal-to-noise ratio in the data is similarly low.

The FDR. The FDR approach was developed by Benjamini and Hochberg (1995) in statistics

to control the proportion of null hypotheses that are falsely rejected when conducting multiple

tests. As a less conservative alternative to previous approaches such as the Bonferroni correction,

the FDR has become widespread in biology-related fields where multiple testing is common. The

3To clearly see that the FDR analysis of the real mutual fund data yields biased estimates, one need only compare

the proportion of funds it classifies as skilled/unskilled on the basis of returns before and after expenses (which average

1% per year). It estimates that 75% of funds have zero alpha after expenses, which would imply that at least as many

have positive alpha before expenses. But it estimates that only 10% of funds have positive alpha before expenses.
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idea behind this approach is simple. Let I be the number of hypothesis tests and p̂i the p-value

for test i . Assuming that i) the p-values corresponding to true nulls are independent and uniformly

distributed on [0, 1] and ii) the p-values corresponding to the alternatives are near 0, one can

estimate the proportion of true nulls as follows. Since, by assumption (ii), all p-values above some

threshold λ ∈ (0, 1) correspond to true nulls, the proportion π0 of true nulls can be estimated by

counting these p-values, extrapolating to the entire [0, 1] interval, and dividing by the number of

tests, that is, π̂0
=

1
1−λ ·#{ p̂i : p̂i>λ}

I . Then, the proportion of nulls expected to be falsely rejected at

significance γ ∈ (0, 1) is π̂0 (λ) · γ .

While assumption (i) is relatively innocuous,4 assumption (ii) is quite strong and may easily

fail. Essentially, if (some) individual tests have low power to detect the alternative, the p-values

that correspond to the alternatives will be distributed over the entire [0, 1] interval. Then, some

of the p-values above the threshold λ will correspond to alternatives, so the proportion of nulls

(alternatives) will be overestimated (underestimated). Thus, to get meaningful estimates from the

FDR approach, it is crucial to assess its performance in the context in which it is applied.

In the context of fund performance, the literature typically separates funds into three groups:

i) those with negative alpha because, for example, they suffer from exploitable biases or have high

costs/fees, ii) those with (almost) zero alpha, consistent with the Berk and Green (2004) equilib-

rium, and iii) those with positive alpha because, for example, they possess superior information or

trading skill. The FDR methodology can be used to estimate the proportions of these groups while

accounting for false discoveries, that is, lucky/unlucky zero-alpha funds for which the zero-alpha

null is incorrectly rejected. But the aforementioned assumption (ii) of the FDR is equivalent here

4To be precise, uniformity also fails in the presence of dependent data. Benjamini and Yekutieli (2001) have refined

the FDR to work for arbitrary dependence, at the expense of over-conservativeness. We examine this issue in the fund

performance context in Section II.D.
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to assuming that nonzero alphas are sufficiently large and/or alpha is estimated with great precision.

This is unlikely to hold for the real data: Not only is the true alpha distribution likely to have

complex features, with some less extreme alphas, but also we know that the amount of information

in fund returns varies widely across funds.5

Our analysis. First, we investigate the FDR estimates’ sensitivity to variations in the distri-

bution of fund alphas. Our starting point is the data generating process that BSW use in their

simulations, which is a discrete distribution with large nonzero alphas: a 75% mass at α = 0, a 23%

mass at α = −3.2%, and a 2% mass at α = 3.8%, per year. Then, we vary the proportions of funds

with zero, negative, and positive alpha as well as the location and spread of the nonzero alphas.

We find that, as the proportion of zero-alpha funds gets smaller and nonzero alphas become less

extreme, the FDR estimator becomes inaccurate: the point estimates are far from the truth and their

confidence intervals rarely contain the true proportions. Importantly, the FDR methodology does

not misclassify as zero-alpha only funds with small nonzero alphas (which might be reasonably

expected), but also funds that have economically large alphas. For example, 90% (65%) of funds

with an alpha of 1% (2%) per year are misclassified as zero alpha. Due to this bias, in many cases

the FDR does not outperform the naive approach of simply counting the null rejections without

performing a correction for false discoveries.

Second, we explore how the number of observations — hence the amount of information — in

the data affects the FDR estimator. BSW are conservative in the cross-sectional dimension of their

5Indeed, it has been estimated (see Jones and Shanken (2005), Andrikogiannopoulou and Papakonstantinou (2016),

Harvey and Liu (2018)) that very few funds have very large alphas of the order that would ensure accurate estimation

and a small p-value, while a large proportion of funds have less extreme — but economically large — alphas (e.g., about

half of all fund alphas are between 1% and 2.5%, in absolute value, annualized). Furthermore, the number of monthly

return observations per fund ranges across funds from fewer than 100 to almost 400, with an average value close to 150.
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simulated data but less so in the time-series dimension. That is, they generate balanced panels of

fund returns in which the number of funds (1,400) is smaller than in the real data (over 2,000), but

the number of observations per fund (384) is equal to the maximum — and more than two times

the mean — number of observations across all funds in the data. On the one hand, we find that in

fact the number of funds has no effect on the estimator’s accuracy, as it does not affect the power of

each individual test, nor the distribution of alpha p-values in the sample. It is a little like estimating

the mean weight of individuals by separately weighing them with a biased scale; no matter how

many individuals are weighed, the result will be equally biased. On the other hand, we find that the

number of observations per fund has a strong effect, but convergence to the true proportions can

be very slow as this number increases. Alarmingly, given the relatively short time-series dimension

of fund data, the FDR methodology is inaccurate even if nonzero alphas are as large as in the

BSW simulation; for example, 30% of funds with alphas of ±3.5% are misclassified as zero-alpha.

Furthermore, we find that even two hundred years of data may not be sufficient to get accurate

estimates from the FDR, which is quite discouraging regarding its applicability in this context.

Finally, we study the effect that cross-sectional correlation in fund return errors has on the FDR

estimator. Like BSW, we allow for a latent linear factor error structure, using realistic parameters

estimated from the data. We find that error correlation increases the estimator’s variability by a

factor of five. This means that, even if alphas are large and the FDR estimator is unbiased, it will

often be far from the truth.

The remainder of the paper is structured as follows. In Section I, we describe in more detail

the FDR approach and its assumptions. In Section II, we use simulations to examine the FDR

approach’s accuracy in the mutual fund setting as we vary the characteristics of the data generating

process. In Section III, we conclude.
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I. Fund Performance and the False Discovery Rate

Mutual fund skill, ‘alpha’, is typically estimated using a linear factor model of fund returns (e.g.,

Carhart (1997)).6 A natural approach to estimating the proportions of funds with zero, negative, and

positive alpha is to i) perform multiple fund-level regressions of fund returns on factor returns to

calculate fund-level alpha estimates α̂i ; ii) calculate alpha p-values p̂i for the zero-alpha null hypoth-

esis H0
i : αi = 0 against the alternative H A

i : αi 6= 0, for each fund i = 1, . . . , I ; and iii) count the

proportion of funds for which the null is rejected at some significance level. However, this approach

(henceforth the ‘no-luck’ approach) does not control for the probability of incorrectly rejecting true

nulls (Type I error). To account for the problem of false discoveries in multiple testing in the context

of mutual fund performance evaluation, BSW apply the False Discovery Rate (FDR) approach.

The FDR methodology estimates the proportion π0 of true nulls (funds with zero alpha) as

π̂0 (λ) =

1
1−λ · #

{
p̂i : p̂i > λ

}
I

, (1)

where λ ∈ (0, 1) is some threshold p-value. This estimate relies on the following crucial assump-

tions: i) funds satisfying the zero-alpha null have estimated p-values that are independent and

uniformly distributed on the interval [0, 1], and ii) all the p-values that lie above λ correspond

to true null hypotheses. Then, given this estimate π̂0 (λ), the proportion of nulls that are expected

to be falsely rejected at any significance level γ ∈ (0, 1) can be calculated as π̂0 (λ) · γ . Finally,

6This definition of skill follows BSW and much of the related literature (e.g., Baks, Metrick and Wachter (2001),

Kosowski et al. (2006), Fama and French (2010)). We note, however, that other definitions of skill have been

proposed. Berk and Green (2004) define skill as alpha before costs (including, importantly, information acquisition),

Pastor, Stambaugh and Taylor (2015) define it as alpha adjusted for fund and industry size (i.e., the alpha on the first

dollar invested in the fund and industry), while Koijen (2014) defines it, under market efficiency, as the price of the

active-portfolio risk (i.e., the compensation for holding assets that earn a risk premium).
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for a significance level γ ≤ λ high enough that the null hypothesis is rejected for all alternatives

(funds with nonzero alpha), we can calculate the proportion of null rejections and adjust downward

for the proportion of false null rejections. That is, we can estimate the true proportions π− and

π+ of negative-alpha and positive-alpha funds as

π̂− (γ, λ) =
#
{(
α̂i , p̂i

)
: α̂i < 0, p̂i < γ

}
I

− π̂0 (λ) ·
γ

2
(2a)

π̂+ (γ, λ) =
#
{(
α̂i , p̂i

)
: α̂i > 0, p̂i < γ

}
I

− π̂0 (λ) ·
γ

2
. (2b)

If the assumption holds that all p-values above λ correspond to true nulls, then choosing a large γ

effectively also deals with the problem of failing to reject the zero-alpha null when it is false (Type

II error). The values for λ and γ can be optimally selected using a bootstrap procedure to minimize

the estimated mean squared error of π̂0 and of π̂− and π̂+ respectively.7 We note that this is the

procedure used in the simulations by BSW as well as in our simulations in Section II below.

The crucial assumption that all p-values above the threshold λ correspond to zero-alpha funds

is met when nonzero alphas are far from 0 and/or the amount of information in the data is large.

But it is likely that some nonzero alphas are not very far from zero, and moreover the information

contained in each fund’s returns is known to vary widely across funds. As a result, in the context

of mutual funds, it is unlikely that the density of p-values satisfies the assumption on which the

FDR correction relies. In this case, the FDR methodology overestimates the proportion of true

7In particular, Storey (2002) suggests the following procedure for selecting λ. First, set a range of possible

values for λ, for exmaple, λ ∈ {0.30, 0.35, . . . , 0.70}, and compute π̂0 (λ) for each. Second, for each λ, form a

number of bootstrap replications of π̂0 (λ) by drawing with replacement from the p-values in the sample of funds;

for example, form π̂0
b (λ) for b ∈ {1, . . . , 1,000}. Then, for each λ, calculate the estimated Mean Squared Error (MSE)

1
1,000

∑1,000
b=1

[(
π̂0

b (λ)−minλ π̂0 (λ)
)2], where minλ π̂0 (λ) is used as a proxy of π0 as the latter is unknown. Finally,

select the value of λ that minimizes the estimated MSE. BSW suggest an analogous procedure for selecting the value

of γ (for details, see the Internet Appendix of BSW).
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null hypotheses.8

To illustrate this limitation of the FDR approach, we conduct two preliminary simulations

using the framework described in Section II. We generate two samples of fund returns: one in

which alphas are generated from the distribution used by BSW — a discrete distribution with 75%

mass at α = 0, 23% mass at α = −3.2%, and 2% mass at α = 3.8%, annualized — and one in

which alphas are generated from a distribution with 45% mass at α = 0 and equal weight on two

continuous distributions with negative and positive support respectively, as shown in Figure 1B;

the remaining simulation parameters are as in BSW (for details, see Section II.A below).

In Figure 1, we plot the two alpha distributions and the corresponding histograms of estimated

p-values from fund-by-fund tests of the zero-alpha null. We see that, under the first distribution,

nonzero alphas are sufficiently far from zero so all p-values above λ belong to zero-alpha funds.

But under the second distribution, some nonzero alphas are closer to zero so about a quarter of

p-values above λ belong to nonzero-alpha funds. Thus, in the former case the FDR approach esti-

mates the true proportions of funds accurately, while in the latter it overestimates (underestimates)

the true proportion of zero-alpha (nonzero-alpha) funds by about a third.

We note that, for illustration purposes, in these simulations we have used λ = 0.5. We also note

that it is not (generally) possible to increase the accuracy of the FDR estimates by increasing λ or

by selecting it optimally. This can clearly be seen in Panel D of the figure: Since the distribution of

p-values is flat above 0.5, the FDR estimate of zero-α funds is essentially the same for all values

of λ above it. The intuition for this is that, while the number of Type II errors falls as the threshold

λ increases, their proportion remains the same as they occur in the smaller interval (λ, 1). Indeed,

BSW note that — in the mutual fund setting — the FDR estimate of zero-α funds is not very

8In Section II.D, we also investigate the impact of p-value dependence on the performance of the FDR estimator

in the fund performance context; it greatly increases the variability of the FDR estimator but not its bias.
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sensitive to the value of λ, and intermediate values such as 0.5 produce estimates that are very

close to those produced by the optimal approach described above.

Next, we use additional simulations to methodically investigate the effect that the lack of

statistical power may have on the estimation of the proportions of fund types, and how this effect

varies as we vary the characteristics of the data generating process.

II. Simulation Analysis

A. Simulation Setup

To examine the accuracy of the FDR estimator in the context of fund performance, we generate

samples of fund returns by combining various data generating processes (DGPs) for alpha with a

model for returns. In each sample, we then use the FDR methodology to estimate the proportions

of funds with zero, negative, and positive alpha. Here we describe our simulation framework,

which closely follows that in BSW.

Model of Returns We generate samples of fund returns according to the linear factor model

ri t = αi + F ′t βi + εi t , (3)

with ri t the month-t net return of fund i in excess of the risk-free rate, αi the fund-specific alpha, Ft

the month-t factor returns, βi the fund-specific factor loadings, and εi t the month-t error for fund i .

Mutual Fund Data To select plausible simulation parameters, we use the same mutual fund data

sources and apply the same data filters as BSW. Specifically, we obtain monthly fund return data

from the CRSP Survivorship-Bias-Free US Mutual Fund Database, for the period 1975 to 2006.9

9Extending the sample to 2011 has no material effect on our results regarding the accuracy of the FDR estimator.
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We focus on actively managed open-end US equity funds, so we exclude index, fixed income,

international, accrual, money market, and sector funds. We identify funds’ share classes using the

MFLINKS database, and we compute the monthly return for each fund as the weighted average

of its classes’ returns, with weights equal to the beginning-of-month total net asset value of each

class. To improve data accuracy, we omit any return that directly follows a missing one, as it may

compound multiple months’ returns. We also keep funds with at least 60 return observations, not

necessarily contiguous but with no gaps greater than a year. The benchmarks against which we

measure performance are as in Carhart (1997), that is, the vector of factor returns, Ft , contains

the excess return of the market portfolio and the returns of zero-investment factor-mimicking port-

folios for size, book-to-market, and momentum. To construct these benchmarks, we use the CRSP

NYSE/Amex/NASDAQ value-weighted index as the market factor and the one-month Treasury bill

rate as the risk-free rate, while monthly returns for the factor-mimicking portfolios are downloaded

from Kenneth French’s website.

Simulation Parameters Our starting point is a simulation in which the sample size and the

DGPs for the alphas, betas, factor returns, and errors in Equation 3 are as in BSW. In detail, in this

baseline a balanced panel of fund returns is generated, with cross-sectional dimension N = 1,400

and time-series dimension equal to the total number of months in the data (T = 384). Alphas are

drawn from a discrete distribution with 3 point masses representing funds with zero, negative, and

positive alpha. This distribution’s parameters are chosen as follows. Initially, the FDR approach

is applied to the real data at the end of each year from 2002 to 2006, using all funds’ returns up to

that point. Next, the proportions of zero-, negative-, and positive-alpha funds are set to the mean

estimated proportions (75%, 23%, and 2% respectively). And then, the location of the nonzero
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alphas (at −3.2% and 3.8% per year) is calibrated to be consistent with these proportions.10 Factor

returns (Ft ) are drawn from a normal with parameters equal to their sample counterparts in the

data, and factor loadings (βi ) are drawn from a normal with parameters equal to their sample

counterparts from fund-level estimations of Equation 3 in the data. Finally, the errors are assumed

to be homogeneous, homoscedastic, and cross-sectionally independent, that is, εi t ∼ N
(
0, σ 2),

with standard deviation equal to its sample counterpart (σ = 0.021).

Subsequently, we consider a variety of alternative simulation parameters. First, the aforemen-

tioned alpha DGP may miss the mark, because it is calibrated under the assumptions that nonzero

alphas come from a point mass and that the FDR methodology is accurate when applied to the real

data. However, either of these assumptions may not hold in reality. Thus, in Section II.B we exam-

ine the estimator’s sensitivity to alternative alpha DGPs, in which we vary both the proportions of

fund types and the distribution (location and spread) of nonzero alphas. Second, since the real data

sample is an unbalanced panel with 2,076 funds and a median (mean) of 150 (180) observations

per fund, in Section II.C we examine the FDR estimator’s performance on an unbalanced panel

similar to the one in the data. We also explore how the number of observations in the data — both

in the time series and in the cross section — affects the FDR estimator. Third, in Section II.D

we allow for cross-sectional error correlation, using parameters estimated from the data.

To mitigate the effect of simulation noise, in all simulations we calculate the mean estimate

for the proportion of each alpha type across 1,000 repetitions.

10In detail, assuming the negative (and similarly the positive) alphas come from a point mass implies that the distribu-

tion of the t-statistics corresponding to these alphas follows a noncentral t distribution with noncentrality that depends on

the point mass’s location. If, in addition, the FDR approach is accurate, this location can be calculated by comparing the

estimated proportions of negative alphas at different significance levels; for details, see the Internet Appendix of BSW.
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B. Variation in DGP for alpha

B.1. Discrete Nonzero alphas

In our first simulations, we generate alphas from a discrete distribution with three point masses

(δ0, δ−ᾱ , and δ+ᾱ ), that is,

α ∼ π0δ0
+ π−δ−ᾱ + π

+δ+ᾱ , (4)

varying the proportions π0, π−, and π+ of funds with zero, negative, and positive alpha, and the

location (−ᾱ and +ᾱ) of the nonzero alphas. Specifically, we vary π0 from 93.75% to 6.25%,

keeping the ratio π−

π+
equal to 11.5 (as in BSW), and we vary ᾱ from 1% to 3.5% per year.11

In Table I we report, for each DGP, the true and the mean (across 1,000 repetitions) estimated

proportions of funds with zero, negative, and positive alpha from the FDR methodology, along with

the estimates’ standard deviations. Each cell of the table is shaded, with darker (lighter) shades

corresponding to more (less) biased estimates.12

We see that for the DGP similar to that used in the BSW simulations — π0
= 75%, π− = 23%,

π+ = 2%, and ᾱ = 3.5% — the FDR yields proportions (76.3%, 21.4%, 2.3%, respectively) close

to the true ones. But it becomes biased as the proportion of zero-alpha funds becomes lower and

nonzero alphas become less extreme but remain economically large. For example, for the DGP close

to the Andrikogiannopoulou and Papakonstantinou (2016) estimates from the real data — π0
=

11In the Internet Appendix, we present results where the ratio π−

π+
equals 6, and our conclusions remain the same.

12To be precise, unbiased estimators have no shading and estimators with the maximum possible bias across all DGPs

in the table have the darkest shading. For example, across all DGPs in Table I, the minimum true π0 is 6.25% (the maxi-

mum true π+ is 7.50%) so the maximum possible bias is 93.75% (7.50%), hence estimators of π0 (π+) with bias closer

to 93.75% (7.50%) have darker shades. We note that light shading does not indicate small bias, but rather bias that is sub-

stantially smaller than the maximum possible. For example, for DGP D-3 and ᾱ = 2.5%, the FDR estimates are lightly

shaded even though they are very biased (π0
= 37.50% but π̂0

= 52.58%). All tables in the paper are shaded similarly.
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6.25%, π− = 86.25%, π+ = 7.5%, and ᾱ = 1% — the FDR approach is very conservative: It esti-

mates more than ten times as many zero-alpha funds (π̂0
= 80%), a quarter as many negative-alpha

funds (π̂− = 20%), and virtually no positive-alpha funds (π̂+ = 0.01%), massively underestimat-

ing their presence. Notably, our results also raise concerns about the accuracy of the FDR estimates

calculated from the real data (π̂0
= 75%, π̂− = 24.4%, π̂+ = 0.6%). As we see in Table I, these

estimates could have arisen from several DGPs that are economically very different, for example,

both from DGP D-2, for which zero-alpha funds are a large majority, as well as from DGPs D-3 and

D-4, for which zero-alpha funds are a minority and the majority of funds have alpha of 1% to 2%.

Importantly, the mis-estimation we document is not because the FDR approach is econom-

ically conservative, but because it is statistically conservative. That is, it does not misclassify

as zero-alpha funds those with alpha close to zero but rather those for which, given the noise

in the data, there is insufficient power to reject the null. To see this, it is useful to consider a

back-of-the-envelope calculation. In the real (hence in our simulated) data, the average fund has

return volatility of about 5% per month and about 80% of this is explained by the factor model. So,

with 384 observations, the standard error of a fund’s α̂ is about 0.115% per month (
√

0.052·0.2
384 ).13

With a threshold p-value λ = 0.5, a fund with an economically significant alpha of, for example,

±1% (±2%) annualized has α̂ p-value that exceeds λ with probability 40% (20%).14 This implies

that the FDR methodology misclassifies 40%
1−λ = 80% (20%

1−λ = 40%) of funds with α = ±1%

(α = ±2%). Indeed, in the first (third) column of Table I we see that, across DGPs, about 80%

13The standard error SE can be written as
√
σ̂ 2

r
(
1−R2)/N , with σ̂r the sample standard deviation of returns. Also,

the power of rejecting at significance level λ the zero-alpha null against a two-sided alternative when the true value

is α can be roughly approximated by 1−8
(
8−1 (1− λ

2

)
− |α|/SE

)
, where 8 is the standard normal cdf.

14As noted in BSW and our discussion above toward the end of Section I, λ = 0.5 yields close to optimal results

for the FDR methodology in the mutual fund context. To be clear, λ = 0.5 is used for illustration purposes here; in

all our simulations, we select λ optimally (see Footnote 7).
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(40%) of nonzero-alpha funds are misclassified as having zero alpha.15

A further important point is that, as a consequence of the FDR estimator’s bias, the resulting

confidence intervals can become highly misleading. To see this, we construct 95% confidence

intervals for the proportions — π0, π−, π+ — for all DGPs of Table I, and we present in Table

II their actual coverage probabilities, that is, the percentage (across 1,000 repetitions) of samples

in which the true proportion is in the corresponding interval. For example, for π0 we calculate

the proportion of samples such that the true π0 is in the interval π̂0
± 1.96 · σ̂π̂0 , where π̂0 is the

FDR estimate of π0 and σ̂π̂0 is the estimate’s standard deviation. We find that, for most DGPs,

the actual coverage probabilities are very different from the nominal. In particular, for about half

our DGPs, the confidence intervals never contain the true proportions.16

Next, we check if the FDR approach offers a significant improvement relative to the previously

used ‘no-luck’ approach, which simply counts the proportion of funds with significant alphas at

the 0.1 significance level without correcting for Type I errors. In Figure 2, we compare the two

approaches for different levels of ᾱ. We plot the true and estimated proportions of negative- and

positive-alpha funds from each approach as a function of the true proportion of zero-alpha funds,

for three levels of ᾱ: 1%, 2%, and 3.5%. In Panels C, F of the figure we see that, for extreme

15Following BSW, in these simulations we use samples of 384 observations per fund. As we have noted above,

in the real data the average number of observations per fund is half that, so the standard error of the α̂ estimate is even

higher and the FDR approach’s accuracy is even lower than shown in this rough calculation. In a sample with 180

observations per fund, the FDR approach misclassifies 90% (65%) of nonzero-alpha funds with α = ±1% (α = ±2%)

as zero-alpha funds.

16Similar results for 90% and 99% confidence intervals are presented in the Internet Appendix. The coverage

probabilities of the confidence intervals are similarly low for all subsequent simulations in Sections II.C and II.D; while

we do not present a table of coverage probabilities for each of them, it is easy to see that taking an interval that extends

twice the standard deviation on either side of the FDR estimates of the proportions rarely contains the true proportions.
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alphas (ᾱ = 3.5%), the FDR approach estimates the proportions accurately for all levels of π0,

while the no-luck approach is less accurate as it fails to account for lucky and unlucky funds. But

in the other panels we see that for less extreme, yet economically large, alphas — ᾱ = 1% and

ᾱ = 2% — the FDR approach does not perform better than the no-luck approach, and it may even

perform worse on average, due to its large bias.17

B.2. Normal Nonzero alphas

Next, we generate fund alphas from a mixture of a point mass at 0 and a normal distribution,

that is,

α ∼ π0δ0
+
(
π− + π+

)
fN(µα,σ 2

α), (5)

where we set µα = 0 for ease of exposition, and we vary the proportion of zero-alpha funds (π0)

from 95% to 1% and the standard deviation (σα) from 0.5% to 5% per year. This specification

is important as it nests the distributions estimated by some studies in the literature (e.g., Jones and

17Panels C and F replicate Figure 3 in BSW, with slight differences. First, in BSW’s Figure 3C, the line plotting

π− should be steeper than — not identical to — the line plotting the FDR estimates (as plotted, π− + π+ 6= 1 when

π0
= 0). Second, for expositional purposes, BSW have drawn t-statistics from a mixture of distributions with small

variance so that Type II errors do not occur. Instead, we simulate fund returns using the baseline simulation parameters

and compute alpha t-statistics by regressing the returns on the factor model; so Type II errors do occur. Third, in our

figure, lines plotting the no-luck estimates are constructed using tests of size 10% rather than 20%; this explains why the

no-luck line in our Figure 2F is downward-sloping and tends to 5% as π0 increases, rather than being upward-sloping

and tending to 10%.
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Shanken (2005), Fama and French (2010)).18 We present results from these simulations in Table III.

As in the previous simulations, the lower the proportion of zero-alpha funds and the narrower

the spread of the distribution, the larger the FDR estimates’ bias. For example, for the DGP close

to the ones estimated by Jones and Shanken (2005) and Fama and French (2010) on the real data —

with π0
= 1%, π− = π+ = 49.5%, and σα = 1.5% — the FDR approach grossly overestimates

π0 (70% instead of 1%) and underestimates π− and π+ (about 15% instead of 50% each).

Motivated by recent studies which suggest that the distribution of fund alpha may be fat-tailed

(Sastry (2015), Andrikogiannopoulou and Papakonstantinou (2016)), we also examine the sensitivity

of the FDR estimators to fat tails by simulating nonzero alphas from a t distribution. We find that fat

tails slightly ameliorate the bias in the FDR estimates, but this effect is very weak and the bias is still

large even with very fat tails. We present detailed results from this analysis in the Internet Appendix.

C. Variation in Simulated Sample Size

The above simulations use a balanced panel with N = 1,400 funds and T = 384 observations

per fund, as in BSW. But the real data sample is an unbalanced panel with N = 2,076 funds and

T ranging from 60 to 384 with median/mean of 150/180. As a result, it is important to examine

the FDR estimator’s sensitivity to the number of funds, to the number of observations per fund,

as well as to the use of an unbalanced panel similar to the one observed in reality.

In Table IV we report the mean estimated proportions of funds as a function of the simulated

sample size, for a DGP in which the FDR approach performs poorly and which is consistent with

18Jones and Shanken (2005) find that alphas follow a normal with mean around −0.8% and standard deviation

around 2%, and Fama and French (2010) estimate a normal with zero mean and standard deviation around 1% per

year. Here, we generate alphas from a normal centered at 0, and in the Internet Appendix we present results from

a normal centered at −0.8%; the results are very similar.
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empirical evidence using the real data (see Andrikogiannopoulou and Papakonstantinou (2016),

Harvey and Liu (2018)). Specifically, in this simulation alpha is drawn from a discrete distribution

with π0
= 9%, π− = 78%, π+ = 13%, and ᾱ = ±1%. We see that increasing N has virtually

no effect on the bias in the FDR estimator, while increasing T makes the estimates more accurate.

However, for the DGP we consider, we see that convergence is very slow: even two hundred years of

data (i.e., more than 2,000 monthly observations) are not sufficient to get accurate estimates from the

FDR approach.19 Given that varying N has no effect on the accuracy of the FDR estimators, without

loss of generality we use N = 2,000, as in the real data, in all subsequent simulations we conduct.

Next, we study the effect of having an unbalanced panel with characteristics similar to the panel

observed in reality. We revisit our first simulations (see Equation 4), but we draw the number of

observations per fund from its empirical distribution in the data. We report our results in Table V.

Comparing Tables I and V we see that, for all DGPs, the bias is more pronounced in the presence

of an unbalanced panel with a shorter average time-series dimension. With the shorter unbalanced

panel, the FDR methodology misclassifies 90% (65%) of nonzero-alpha funds with α = ±1% (α =

±2%) as zero-alpha funds. Even for large alphas of ±3.5%, the FDR approach is not as accurate as

shown above: it misclassifies about 30% of nonzero-alpha funds. We note that this increase in bias is

not due to the unbalanced nature of the panel, but due to the smaller average number of observations

per fund. Indeed, the FDR estimates are almost identical whether we simulate an unbalanced panel

with a mean of 180 observations per fund (see Table V) or a balanced panel with T = 180 (see Table

IA.VII in the Internet Appendix). This is because the empirical distribution of the number of obser-

vations per fund has small positive skewness, so alphas that are estimated less precisely are balanced

out by those estimated more precisely and the overall proportion of misclassified funds is unchanged.

19In the Internet Appendix, we show similar effects for a DGP with ᾱ = ±2%, for which the FDR approach performs

better. Even though in that case convergence to the true values is, as expected, faster as T increases, it is still very slow.
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D. Cross-sectional Error Correlation

As we have noted, the FDR approach assumes that p-values, therefore the errors in Equation 3,

are independent. BSW show in a simulation that the FDR estimators continue to be very accurate

when they introduce cross-sectional correlation in the factor model errors. Here, we revisit this

simulation and make several adjustments to better capture the characteristics of the real data.

In detail, BSW replace the assumption εi t ∼ N
(
0, σ 2) in Equation 3 with a latent linear factor

structure intended to capture the role of non-priced factors. In particular,

εi t = G tδ + G−t δ Iαi=−ᾱ + G+t δ Iαi=ᾱ + ξi t , (6)

where all funds load on factor G t , only negative- and positive-alpha funds load on factors G−t and

G+t respectively, δ is the common loading of funds on these factors, and ξi t ∼ N
(
0, σ ∗2

)
is the

cross-sectionally independent part of the error. Assuming each factor follows a normal N (0, σG),

BSW set rule-of-thumb parameters σG = 0.035 (the mean monthly standard deviation of the

Fama-French factors) and δ = 0.11 (the mean loading to the Fama-French factors).

Here, we replace the assumption εi t ∼ N
(
0, σ 2) with εi t := G ′tδi + ξi t , where G t is a vector

of four latent factors, one on which all funds may load and three strategy-specific factors on

which only funds with a specific investment strategy (Growth & Income, Growth, or Aggressive

Growth) may load, δi are fund-specific loadings, and ξi t ∼ N
(
0, σ ∗2i

)
with σ ∗i a fund-specific

standard deviation. Importantly, the fund-specific δi and σ ∗i we use in our simulations are estimated

from the data (for estimation details, see Geweke and Zhou (1996) and Andrikogiannopoulou and
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Papakonstantinou (2016)).20

We find that the FDR estimator’s bias is unaffected but its variability is greatly increased in the

presence of this correlation. For the baseline DGP, the 90% intervals for the estimates of π0/π−/π+

are 4.6/7.5/5.5 times wider than in the independence case (compare results for DGP D-2 with ᾱ =

3.5% in Panels A and B of Table VI). For other alpha DGPs, this difference becomes even larger.21

A consequence of this increased estimator variability is that, even if nonzero alphas are large

enough that the FDR estimator is not biased, the estimator will often be far from the truth. For

DGP D-2 with large alphas of ±3.5%, the FDR methodology has little bias but it estimates the

proportions of zero-, negative, and positive-alpha funds to be above 90%, below 10%, and 0%,

respectively, in more than a quarter of the simulated samples. Another consequence of this in-

creased estimator variability is that, when the true proportions are near the natural boundaries of

0 and 1, the FDR estimator becomes biased, even for very large ᾱ. For example for a DGP with

π+ = 0.5%, the estimates of π+ are 5 to 7 times larger than the truth, even for ᾱ = 3.5% (see

Table IA.III in the Internet Appendix).

20The proportions of funds following each investment strategy in our simulations are as in the data (strategy

classifications derived from the Thomson database): 22%, 66%, and 12%, respectively. The fund-specific δi and σ ∗i

are estimated from the data; the means and standard deviations of δi are 10−2
·

[
0.60 0.33 1.07 2.01

]′
and

10−2
·

[
0.78 0.46 1.08 1.07

]′
, respectively, and the mean of σ ∗i is 0.014. Also, G t ∼ N (0, I ) without loss

of generality.

21For the same DGP, BSW find a more modest increase of 1.5/2.0/2.2 in the confidence intervals. BSW also

consider other types of error correlation (e.g., block dependence), one of which they term “extreme.” In this case,

they find that the 90% intervals for the estimates of π0/π−/π+ are 2.8/2.7/2.5 times wider than in the baseline. This

effect is still considerably smaller than the one we find.

19



III. Concluding Discussion

BSW propose the FDR approach to precisely estimate the proportion of funds with negative,

zero, and positive alpha in the population of mutual funds. Owing to its simplicity and its remark-

able accuracy as demonstrated in their simulations, this methodology has subsequently been widely

adopted in finance. In this study, we expand the BSW simulations to gain a deeper understanding

of the FDR’s performance. We find that the FDR performs poorly under certain conditions, and

that the accuracy found in past simulations in the mutual fund setting can be traced to potentially

unrealistic simulation assumptions such as that i) fund alphas follow a discrete distribution with

point masses very far from zero, ii) there is a large number of observations per fund, and iii) there

is no or limited cross-sectional correlation across funds.

First, we show that, for a wide range of DGPs, the FDR approach produces estimates for the

proportion of zero-alpha (nonzero-alpha) funds that are upward (downward) biased and that the

corresponding confidence intervals almost never contain the true proportions. We also show that the

FDR estimator’s accuracy is not improved as the number of funds in the sample increases, and that

convergence to the true values is very slow as the number of observations per fund increases. Finally,

we show that realistic levels of cross-sectional correlation increase the estimator’s variability by as

much as an order of magnitude. Overall, our results indicate that the FDR approach is unlikely to

offer a substantial improvement over simpler methodologies in settings where the signal-to-noise

ratio in the data is low and consequently individual tests have low power. Specifically in the context

of mutual funds, the bias we demonstrate can materially change the economic conclusions regarding

the prevalence of skill in the mutual fund industry, the rationality of investing in mutual funds,

and the validity of the Berk and Green (2004) theory, which suggests most funds have zero alpha.

Our results highlight that, while the FDR methodology can be very advantageous in some
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settings, it needs to be applied with caution. Therefore, it is important that researchers in finance

examine the data at hand to check, for example using simulations, that individual tests have suf-

ficient power to render the FDR accurate. Another possibility would be to consider approaches

that aim to mitigate the problem of low power by focusing on the alternative hypothesis and/or by

pooling information from all individuals (e.g., funds) to learn about the cross-sectional distribution

of the parameters of interest (e.g., alpha). This is a potentially fruitful avenue that is being pursued

in recent working papers in the context of fund performance evaluation (Ferson and Chen (2015),

Andrikogiannopoulou and Papakonstantinou (2016), Harvey and Liu (2018)).
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Table I: Estimates of Alpha Group Proportions — Discrete Nonzero αs

Results from simulations in which nonzero αs (expressed as annualized percentages) are generated
from various discrete distributions, that is, α ∼ π0δ0

+π−δ−ᾱ +π
+δ+ᾱ . Across rows, we vary the true

proportions π0, π−, π+, and across columns we vary the distance ᾱ of nonzero αs from 0. Other
simulation parameters are as in BSW. In the table, we report the mean (across 1,000 repetitions)
estimated proportions from the FDR approach and their standard deviations (in parentheses). Each
cell is shaded, with darker shades corresponding to more biased estimates. Results corresponding
to the DGP used by BSW are enclosed in a border.

ᾱ = 1.0 ᾱ = 1.5 ᾱ = 2.0 ᾱ = 2.5 ᾱ = 3.0 ᾱ = 3.5

DGP D-1: π0
= 93.75% 97.95 (2.95) 97.25 (2.95) 96.06 (2.94) 94.99 (2.94) 94.54 (2.94) 94.08 (2.93)

π− = 5.75% 1.25 (2.62) 1.90 (2.62) 2.96 (2.61) 3.86 (2.61) 4.39 (2.61) 4.77 (2.61)

π+ = 0.50% 0.81 (1.30) 0.85 (1.30) 0.98 (1.29) 1.15 (1.29) 1.07 (1.29) 1.15 (1.29)

DGP D-2: π0
= 75.00% 94.97 (2.94) 89.96 (2.91) 85.00 (2.89) 80.85 (2.86) 78.35 (2.84) 76.33 (2.82)

π− = 23.00% 4.61 (2.59) 9.35 (2.57) 13.75 (2.55) 17.27 (2.53) 19.65 (2.52) 21.41 (2.50)

π+ = 2.00% 0.42 (1.24) 0.69 (1.22) 1.25 (1.21) 1.89 (1.20) 2.00 (1.20) 2.26 (1.20)

DGP D-3: π0
= 37.50% 86.71 (2.90) 74.42 (2.80) 62.35 (2.67) 52.58 (2.52) 45.22 (2.39) 40.94 (2.30)

π− = 57.50% 13.18 (2.53) 24.96 (2.45) 35.47 (2.34) 43.75 (2.24) 49.82 (2.14) 53.75 (2.07)

π+ = 5.00% 0.10 (1.11) 0.63 (1.06) 2.18 (1.03) 3.66 (1.01) 4.95 (1.00) 5.31 (1.00)

DGP D-4: π0
= 6.25% 80.41 (2.85) 61.95 (2.66) 43.50 (2.35) 28.03 (1.97) 17.77 (1.61) 11.62 (1.32)

π− = 86.25% 19.59 (2.46) 37.66 (2.30) 53.28 (2.06) 65.99 (1.77) 74.71 (1.51) 80.48 (1.31)

π+ = 7.50% 0.01 (0.99) 0.39 (0.90) 3.22 (0.85) 5.98 (0.82) 7.51 (0.80) 7.90 (0.79)
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Table II: Actual Coverage Probabilities of 95% Confidence Intervals of FDR Estimates

Results corresponding to the simulations in Table I, where nonzero αs come from discrete distribu-
tions (α ∼ π0δ0

+π−δ−ᾱ +π
+δ+ᾱ ), with the true proportions π0, π−, π+ varying across rows, and

the distance ᾱ of nonzero αs from 0 varying across columns. Here, we report the percentage (across
1,000 repetitions) of samples such that the true proportion is contained in the 95% confidence
interval constructed by the FDR methodology (e.g., for π0, it is π̂0

± 1.96 σ̂π̂0). Each cell of the
table is shaded, with darker (lighter) shades corresponding to cases in which the actual percentage
of confidence intervals containing the true value is farther (closer) to the nominal coverage of 95%.
Results for the DGP used by BSW are enclosed in a border.

ᾱ = 1.0 ᾱ = 1.5 ᾱ = 2.0 ᾱ = 2.5 ᾱ = 3.0 ᾱ = 3.5

DGP D-1: π0
= 93.75% 63.50% 76.00% 89.50% 92.50% 95.00% 98.00%

π− = 5.75% 57.50% 73.50% 88.50% 92.50% 94.50% 97.50%
π+ = 0.50% 92.00% 92.50% 89.50% 88.50% 88.50% 89.50%

DGP D-2: π0
= 75.00% 0.00% 0.50% 5.50% 48.00% 79.50% 94.00%

π− = 23.00% 0.00% 0.00% 0.50% 29.50% 85.50% 97.50%
π+ = 2.00% 99.50% 98.50% 96.00% 93.00% 91.50% 87.50%

DGP D-3: π0
= 37.50% 0.00% 0.00% 0.00% 0.00% 8.00% 72.00%

π− = 57.50% 0.00% 0.00% 0.00% 0.00% 0.00% 67.00%
π+ = 5.00% 0.50% 6.00% 30.50% 63.00% 79.00% 80.00%

DGP D-4: π0
= 6.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.50%

π− = 86.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
π+ = 7.50% 0.00% 0.00% 4.50% 53.50% 89.00% 93.00%
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Table III: Estimates of Alpha Group Proportions — Normal Nonzero αs

Results from simulations in which nonzero αs (expressed as annualized percentages) are generated
from normals, that is, α ∼ π0δ0

+
(
π− + π+

)
fN(0,σ 2

α). Across rows, DGPs differ in the true
proportions π0, π−, and π+ — though π− = π+ since N

(
0, σ 2

α

)
is symmetric at 0 — and across

columns they differ in the standard deviation σα of the nonzero αs. Other simulation parameters
are as in BSW. In the table, we report the mean (across 1,000 repetitions) estimated proportions
from the FDR approach and their standard deviations (in parentheses). Cells are shaded, with
darker shades corresponding to more biased estimates.

σα = 0.5 σα = 1.0 σα = 1.5 σα = 2.0 σα = 3.0 σα = 5.0

DGP N -1: π0
= 95.00% 98.67 (2.95) 98.21 (2.95) 98.01 (2.95) 97.46 (2.95) 96.89 (2.95) 96.12 (2.94)

π− = 2.50% 0.54 (2.63) 0.78 (2.63) 0.79 (2.63) 1.13 (2.63) 1.39 (2.63) 1.74 (2.63)

π+ = 2.50% 0.80 (1.32) 1.01 (1.32) 1.20 (1.33) 1.41 (1.33) 1.73 (1.34) 2.15 (1.34)

DGP N -2: π0
= 75.00% 98.18 (2.95) 95.42 (2.94) 92.43 (2.93) 89.58 (2.91) 85.68 (2.89) 81.87 (2.86)

π− = 12.50% 0.74 (2.63) 2.07 (2.63) 3.39 (2.62) 4.92 (2.62) 6.86 (2.61) 8.90 (2.60)

π+ = 12.50% 1.09 (1.32) 2.51 (1.34) 4.18 (1.36) 5.50 (1.37) 7.46 (1.39) 9.24 (1.41)

DGP N -3: π0
= 20.00% 95.67 (2.94) 86.00 (2.89) 76.18 (2.82) 67.58 (2.73) 55.15 (2.56) 42.52 (2.33)

π− = 40.00% 1.84 (2.63) 6.33 (2.61) 10.97 (2.58) 15.43 (2.53) 21.69 (2.44) 28.24 (2.30)

π+ = 40.00% 2.49 (1.34) 7.67 (1.39) 12.85 (1.43) 16.99 (1.45) 23.16 (1.47) 29.24 (1.48)

DGP N -4: π0
= 10.00% 94.94 (2.94) 84.02 (2.88) 72.80 (2.79) 63.46 (2.68) 49.70 (2.47) 35.32 (2.17)

π− = 45.00% 2.21 (2.63) 7.24 (2.61) 12.73 (2.56) 17.47 (2.50) 24.18 (2.38) 31.80 (2.20)

π+ = 45.00% 2.85 (1.34) 8.75 (1.39) 14.46 (1.43) 19.07 (1.46) 26.12 (1.47) 32.88 (1.47)

DGP N -5: π0
= 1.00% 94.52 (2.94) 82.61 (2.87) 70.05 (2.76) 59.56 (2.63) 44.56 (2.38) 29.09 (2.00)

π− = 49.50% 2.50 (2.63) 7.95 (2.60) 14.08 (2.55) 19.20 (2.47) 26.69 (2.32) 34.78 (2.10)

π+ = 49.50% 2.98 (1.35) 9.44 (1.40) 15.87 (1.44) 21.23 (1.46) 28.75 (1.48) 36.13 (1.46)
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Table IV: Estimates of Alpha Group Proportions — Varying N and T

Results from simulations in which we vary the number of funds N and the number of observations T
per fund in the sample, assuming a balanced panel. In all simulations, αs (expressed as annualized
percentages) are drawn from α ∼ π0δ0

+ π−δ−ᾱ + π
+δ+ᾱ , with π0

= 9%, π− = 78%, π+ = 13%
and ᾱ = 1%. Other simulation parameters are as in BSW. In the table, we report the mean (across
1,000 repetitions) estimated proportions from the FDR approach and their standard deviations (in
parentheses). Each cell is shaded, with darker shades corresponding to more biased estimates.

T = 180 T = 384 T = 500 T = 750 T = 1,000 T = 2,000

N = 1,400: π0
= 9.00% 90.65 (2.92) 81.29 (2.86) 76.28 (2.82) 66.53 (2.72) 58.89 (2.62) 35.74 (2.18)

π− = 78.00% 9.31 (2.55) 18.50 (2.49) 23.17 (2.46) 31.51 (2.38) 37.67 (2.31) 55.05 (1.99)

π+ = 13.00% 0.04 (1.13) 0.21 (1.07) 0.55 (1.06) 1.96 (1.04) 3.44 (1.03) 9.20 (1.00)

N = 2,000: π0
= 9.00% 90.79 (2.44) 80.94 (2.39) 76.31 (2.36) 66.79 (2.28) 58.82 (2.19) 35.89 (1.83)

π− = 78.00% 9.19 (2.13) 18.90 (2.08) 23.25 (2.06) 31.44 (2.00) 37.71 (1.93) 54.95 (1.67)

π+ = 13.00% 0.02 (0.94) 0.16 (0.90) 0.44 (0.89) 1.77 (0.87) 3.47 (0.86) 9.16 (0.84)

N = 3,500: π0
= 9.00% 90.70 (1.85) 81.30 (1.81) 76.18 (1.78) 66.76 (1.72) 58.57 (1.65) 36.11 (1.39)

π− = 78.00% 9.30 (1.61) 18.64 (1.58) 23.55 (1.56) 31.63 (1.51) 37.77 (1.46) 54.88 (1.26)

π+ = 13.00% 0.00 (0.71) 0.05 (0.68) 0.27 (0.67) 1.61 (0.65) 3.66 (0.65) 9.01 (0.63)

N = 5,000: π0
= 9.00% 90.70 (1.54) 81.31 (1.51) 76.25 (1.49) 66.83 (1.44) 58.62 (1.38) 35.93 (1.16)

π− = 78.00% 9.30 (1.35) 18.67 (1.32) 23.60 (1.30) 31.61 (1.26) 37.79 (1.22) 54.97 (1.06)

π+ = 13.00% 0.00 (0.60) 0.02 (0.57) 0.15 (0.56) 1.56 (0.55) 3.58 (0.54) 9.10 (0.53)
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Table V: Estimates of Alpha Group Proportions — Unbalanced Panel

Results from simulations in which nonzero αs (expressed as annualized percentages) are generated
from discrete distributions (α ∼ π0δ0

+π−δ−ᾱ +π
+δ+ᾱ ), but additionally the sample of funds is an

unbalanced panel with the number of observations per fund drawn from its empirical distribution
in the data (whose mean is 180). Across rows, DGPs differ in the true proportions π0, π−, and
π+, and across columns they differ in the distance ᾱ of nonzero αs from zero. Other simulation
parameters are as in BSW. We report the mean (across 1,000 repetitions) estimated proportions
from the FDR methodology and their standard deviations (in parentheses). Cells are shaded, with
darker shades corresponding to more biased estimates.

ᾱ = 1.0 ᾱ = 1.5 ᾱ = 2.0 ᾱ = 2.5 ᾱ = 3.0 ᾱ = 3.5

DGP D-1: π0
= 93.75% 98.66 (2.47) 98.57 (2.47) 97.71 (2.47) 96.72 (2.46) 96.25 (2.46) 95.97 (2.46)

π− = 5.75% 0.81 (2.19) 1.02 (2.19) 1.61 (2.19) 2.48 (2.19) 2.96 (2.19) 3.27 (2.19)

π+ = 0.50% 0.53 (1.09) 0.41 (1.08) 0.69 (1.08) 0.80 (1.08) 0.79 (1.08) 0.77 (1.08)

DGP D-2: π0
= 75.00% 97.11 (2.46) 94.85 (2.46) 91.35 (2.44) 88.14 (2.43) 85.11 (2.42) 82.95 (2.40)

π− = 23.00% 2.57 (2.18) 4.83 (2.17) 8.14 (2.16) 11.03 (2.15) 13.74 (2.14) 15.60 (2.13)

π+ = 2.00% 0.32 (1.05) 0.32 (1.04) 0.50 (1.03) 0.82 (1.02) 1.14 (1.01) 1.45 (1.01)

DGP D-3: π0
= 37.50% 93.56 (2.45) 86.61 (2.42) 78.89 (2.38) 70.75 (2.31) 63.33 (2.24) 57.16 (2.17)

π− = 57.50% 6.37 (2.15) 13.31 (2.12) 20.91 (2.08) 28.45 (2.02) 34.78 (1.97) 39.96 (1.92)

π+ = 5.00% 0.06 (0.97) 0.08 (0.93) 0.20 (0.90) 0.80 (0.88) 1.89 (0.87) 2.88 (0.85)

DGP D-4: π0
= 6.25% 90.60 (2.44) 79.99 (2.38) 68.62 (2.30) 55.76 (2.15) 45.10 (2.00) 35.57 (1.82)

π− = 86.25% 9.40 (2.12) 20.00 (2.06) 31.31 (1.98) 43.26 (1.87) 52.20 (1.74) 59.96 (1.61)

π+ = 7.50% 0.00 (0.90) 0.01 (0.83) 0.06 (0.78) 0.99 (0.74) 2.71 (0.72) 4.47 (0.70)
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Table VI: Interval Estimates of Alpha Group Proportions — Independent vs. Correlated Errors

Interval estimates corresponding to simulations in which the sample of funds is an unbalanced
panel and nonzero αs (expressed as annualized percentages) are generated from a variety of discrete
distributions (α ∼ π0δ0

+π−δ−ᾱ +π
+δ+ᾱ ), and the errors in the model of returns are heterogeneous

across funds and independent (Panel A) or correlated (Panel B). Across rows, the DGPs differ in
the true proportions π0, π−, and π+, and across columns they differ in the distance ᾱ of nonzero
αs from zero. For each DGP, we conduct 1,000 simulations and calculate the estimated proportions
from the FDR approach. In the table, we report the interval that contains 90% of the estimated
proportions across the 1,000 repetitions. Note: For mean point estimates corresponding to the
interval estimates in Panel A (B), see Table IA.II (IA.III) in the Internet Appendix.

Panel A: Cross-sectionally Independent Errors

ᾱ = 1.0 ᾱ = 1.5 ᾱ = 2.0 ᾱ = 2.5 ᾱ = 3.0 ᾱ = 3.5

DGP D-1: π0
= 93.75% (94.9 , 99.9) (93.9 , 99.9) (93.5 , 99.9) (92.7 , 99.9) (92.2 , 99.9) (92.4 , 99.7)

π− = 5.75% ( 0.0 , 2.7) ( 0.0 , 3.7) ( 0.0 , 4.3) ( 0.0 , 5.0) ( 0.0 , 5.4) ( 0.3 , 5.4)
π+ = 0.50% ( 0.0 , 2.8) ( 0.0 , 3.3) ( 0.0 , 2.8) ( 0.0 , 3.1) ( 0.0 , 2.9) ( 0.0 , 3.1)

DGP D-2: π0
= 75.00% (92.6 , 99.9) (89.5 , 96.7) (85.9 , 93.2) (83.7 , 90.6) (80.6 , 88.4) (78.8 , 86.3)

π− = 23.00% ( 0.0 , 6.2) ( 3.3 , 8.9) ( 6.8 , 11.8) ( 9.4 , 14.3) (11.6 , 16.2) (13.7 , 18.0)
π+ = 2.00% ( 0.0 , 1.6) ( 0.0 , 2.1) ( 0.0 , 3.0) ( 0.0 , 3.2) ( 0.0 , 3.6) ( 0.0 , 3.7)

DGP D-3: π0
= 37.50% (86.7 , 94.9) (78.7 , 87.1) (71.3 , 78.7) (63.8 , 71.2) (58.2 , 65.3) (54.0 , 60.4)

π− = 57.50% ( 5.1 , 12.8) (12.9 , 20.4) (21.3 , 27.8) (28.7 , 33.8) (34.1 , 38.5) (38.2 , 41.9)
π+ = 5.00% ( 0.0 , 0.4) ( 0.0 , 1.6) ( 0.0 , 2.4) ( 0.0 , 3.3) ( 0.0 , 4.4) ( 0.3 , 4.8)

DGP D-4: π0
= 6.25% (81.6 , 89.1) (69.8 , 78.3) (58.4 , 65.6) (47.7 , 55.0) (39.4 , 46.1) (31.9 , 38.3)

π− = 86.25% (10.9 , 18.3) (21.7 , 30.1) (34.4 , 40.3) (44.2 , 49.5) (52.4 , 56.8) (58.3 , 63.0)
π+ = 7.50% ( 0.0 , 0.0) ( 0.0 , 0.0) ( 0.0 , 2.5) ( 0.0 , 3.6) ( 0.8 , 4.9) ( 2.5 , 5.6)

Panel B: Cross-sectionally Correlated Errors

ᾱ = 1.0 ᾱ = 1.5 ᾱ = 2.0 ᾱ = 2.5 ᾱ = 3.0 ᾱ = 3.5

DGP D-1: π0
= 93.75% (74.8 , 99.9) (76.8 , 99.9) (75.9 , 99.9) (77.1 , 99.9) (72.5 , 99.9) (76.1 , 99.9)

π− = 5.75% ( 0.0 , 18.0) ( 0.0 , 19.4) ( 0.0 , 17.7) ( 0.0 , 19.4) ( 0.0 , 23.9) ( 0.0 , 16.6)
π+ = 0.50% ( 0.0 , 16.2) ( 0.0 , 15.3) ( 0.0 , 17.8) ( 0.0 , 16.5) ( 0.0 , 19.1) ( 0.0 , 16.9)

DGP D-2: π0
= 75.00% (75.4 , 99.9) (73.8 , 99.9) (74.7 , 99.9) (71.6 , 99.9) (69.2 , 99.9) (63.8 , 98.3)

π− = 23.00% ( 0.0 , 21.7) ( 0.0 , 22.9) ( 0.0 , 21.2) ( 0.0 , 27.8) ( 0.0 , 27.8) ( 1.7 , 33.8)
π+ = 2.00% ( 0.0 , 10.4) ( 0.0 , 12.3) ( 0.0 , 15.1) ( 0.0 , 14.2) ( 0.0 , 18.5) ( 0.0 , 20.5)

DGP D-3: π0
= 37.50% (70.9 , 99.9) (58.2 , 99.9) (59.8 , 91.6) (52.0 , 82.6) (49.7 , 76.1) (43.6 , 67.5)

π− = 57.50% ( 0.0 , 28.0) ( 0.0 , 40.3) ( 6.6 , 40.2) (14.3 , 46.9) (20.7 , 48.8) (26.8 , 55.7)
π+ = 5.00% ( 0.0 , 10.8) ( 0.0 , 10.5) ( 0.0 , 9.7) ( 0.0 , 10.2) ( 0.0 , 8.9) ( 0.0 , 8.2)

DGP D-4: π0
= 6.25% (63.7 , 99.9) (57.6 , 94.3) (42.2 , 85.2) (34.8 , 69.3) (27.9 , 64.6) (23.8 , 56.7)

π− = 86.25% ( 0.0 , 36.3) ( 5.1 , 42.3) (14.4 , 56.8) (26.2 , 63.3) (32.9 , 69.8) (39.7 , 72.2)
π+ = 7.50% ( 0.0 , 5.8) ( 0.0 , 5.0) ( 0.0 , 6.1) ( 0.0 , 5.6) ( 0.0 , 5.9) ( 1.2 , 6.2)
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Panel A: Alpha distribution in BSW Panel B: Dispersed alphas

Panel C: Alpha p-values in BSW
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Figure 1: Illustration of the FDR approach’s intuition and potential failure. We simulate funds
with αs drawn from the distribution used by BSW (in Panel A) and an alternative in which αs are
dispersed (in Panel B). In Panels C and D, we plot for each distribution the histogram of p-values
p̂ from fund-by-fund tests of the zero-α null; the dark blue (light blue) areas correspond to zero-α
(nonzero-α) funds. The FDR approach assumes all p̂ above some threshold — for example, λ = 0.5,
indicated by the dashed vertical line — belong to zero-α funds. Since p̂ ∼ U (0, 1) under the null,
it then estimates the proportion of zero-α (nonzero-α) funds as the area of the histogram below
(above) the dotted horizontal line. Thus, the light-blue-shaded area below the dotted horizontal
line corresponds to the proportion of nonzero-α funds that are misclassified as zero α.
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Figure 2: Comparison of the FDR and ‘no-luck’ approaches, for various levels of the true nonzero
alphas ᾱ and the true proportion π0 of zero-alpha funds. We plot as a function of π0 the true
and estimated proportions of negative-alpha (Panels A, B, C) and positive-alpha (Panels D, E, F)
funds. We plot the true proportions in solid blue and the FDR (no-luck) estimates in dashed green
(dotted red) lines. Each column of panels corresponds to a different ᾱ: Panels A, D correspond
to ᾱ = 1%, Panels B, E to ᾱ = 2%, and Panels C, F to ᾱ = 3.5%.
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