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ABSTRACT

The performance of Statistical Downscaling (SD) techniques is critically re-assessed with respect
to their robust applicability in climate change studies. To this aim, in addition to standard accu-
racy measures and distributional similarity scores, we estimate the robustness of the methods under
warming climate conditions working with anomalous warm historical periods. This validation frame-
work is applied to intercompare the performance of twelve different SD methods (from the analogs,
weather typing and regression families) for downscaling minimum and maximum temperatures in
Spain. First, we perform a calibration of these methods in terms of both geographical domains and
predictor sets; the results are highly dependent on the latter, with optimum predictor sets including
information of near-surface temperature (in particular 2 meters temperature), which discriminate
appropriately cold episodes related to temperature inversion in the lower troposphere.
Although regression methods perform best in terms of correlation, analog and weather generator
approaches are more appropriate for reproducing the observed distributions, especially in case of
wintertime minimum temperature. However, the latter two families significantly underestimate the
temperature anomalies of the warm periods considered in this work. This underestimation is found
to be critical when considering the warming signal in the late 21st century as given by a Global
Climate Model (the ECHAM5-MPI model). In this case, the different downscaling methods provide
warming values with differences in a range of 1 degC, in agreement with the robustness significance
values. Therefore, the proposed test for robustness is a promising technique for detecting lack of
robustness in statistical downscaling methods for climate change projections.

1. Introduction

Statistical Downscaling (SD) methods are nowadays rou-
tinely applied for generating local climate change projec-
tions from the coarse-resolution outputs of Global Climate
Models (GCMs) (Timbal et al. 2003; Haylock et al. 2006;
Hewitson and Crane 2006; Timbal and Jones 2008; Benes-
tad 2010; Brands et al. 2011b; Gutzler and Robbins 2011).
These methods are based on empirical relationships linking
large-scale atmospheric variables (predictors) with some
local-scale variables of interest (predictands). Different SD
techniques have been proposed to infer these relationships
from data under the so-called perfect prog approach (Ma-
raun et al. 2010). In this case, reanalysis outputs for a rep-
resentative period of the past (typically 30 years) are used
as predictors while simultaneous historical observations at
the local scale are used as predictands for model training.
Once the optimal model configuration has been found us-
ing these (quasi) observed data, the model is applied to
the output of different GCM scenario runs to obtain future
projections in different climate change scenarios.

This perfect prog downscaling approach is affected by

some well known limiting factors, which are especially rel-
evant when applying it to GCM scenario runs. Some of
these factors are usually taken into account when generat-
ing climate change projections. For instance, the reanalysis
variables selected as large-scale predictors should be well
simulated by GCMs, should capture the climate change
‘signal’, and should have a significant and physically in-
terpretable association with the predictand (Wilby et al.
2004).

However, there are other important limiting factors that
have been rarely assessed in earlier studies. First, for the
particular choice of predictors made, the statistical down-
scaling method should provide a stable/stationary statis-
tical relationship between the predictors and the predic-
tand, in order to remain valid under climate change con-
ditions. This is usually referred to as the robustness or
stationarity assumption, and only a few studies have fo-
cused on this problem, using either global or regional cli-
mate model outputs as pseudo-observations (Frias et al.
2006; Vrac et al. 2007), or analyzing the stationarity of
empirical relationships (Schmith 2008). Second, the down-
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scaled and observed time series should have similar clima-
tological properties (i.e. similar distributions) in order to
avoid any form of post hoc correction like bias correction
or more advanced postprocessing techniques such as quan-
tile mapping (Deque 2007), which —if applied— must ad-
ditionally assumed to be stationary in time (Hagemann
et al. 2011). Finally, since future seasonal climates might
not exactly correspond to the present ones, the calibration
process should not be applied separately for each season —
as is common in most SD studies (Maraun et al. 2010),—
but for the training period as a whole (Imbert and Benes-
tad 2005; Teutschbein et al. 2011). This requires control-
ling the seasonal variability of the results, which may be
difficult to achieve, since the most informative predictor
combination may potentially vary from season to season
(Wetterhall et al. 2005, 2007). If some of the above factors
is not fulfilled, the results of any SD application should
be interpreted with caution, since the choice of the predic-
tors and/or the downscaling methodology can have a large
influence on the local climate change scenarios.

In this paper we provide a comprehensive validation
framework to test the suitability of common perfect prog SD
techniques for their applicability in climate change studies,
taking into account the above mentioned limitations. The
final aim of this work is to find robust downscaling schemes
which can be applied under climate change conditions with-
out the necessity of any form of post hoc correction. To this
aim, we combine standard accuracy validation scores with
additional scores obtained by statistically testing 1) the dis-
tributional similarity of the downscaled and observed series
and 2) the robustness of the bias to warmer climatic condi-
tions. In the former case, we consider the significance level
of the two-sample Kolmogorov-Smirnov test for the null
hypothesis of equal downscaled and observed distributions.
In the latter case, we compare the bias of the methods in
an historical warm period —defined by the eight warmest
years in the analysis period— with that obtained in “nor-
mal” conditions —characterized by the eight-year random
samples given from a 5-fold cross validation approach—.

As an illustrative example, we consider minimum and
maximum temperatures in Spain using the publicly avail-
able daily gridded dataset Spain02 (Herrera et al. 2012) as
predictands. It covers Peninsular Spain and the Balearic
Islands at a resolution of 0.2 ◦ and has been found to be
of particular interest for impact studies in this region. In
order to obtain general conclusions, we apply an ensem-
ble of the most commonly used statistical downscaling ap-
proaches (analogs, weather typing, regression, regression
conditioned on weather types) to the most commonly used
predictor variables considering both local and spatial pre-
dictors, given by the values at the nearest gridbox and
by the Principal Components (PCs), respectively. Special
focus is given to compare the results of using either free-
tropospheric or near-surface temperature as predictor for

the downscaling methods, since there has been some scien-
tific debate on which height-level to prefer (see Hanssen-
Bauer et al. 2005, for more details).

This work is structured as follows. In Sec. 2, the ge-
ographical domains and applied data are presented. Sec.
3 describes the different statistical downscaling methods.
The conducted cross-validation approach, as well as the
proposed validation scores are presented in Sec. 4. Sec.
5 refers to the screening of the different geographical do-
mains and predictors by using two reference SD-methods
(analogs and regression using PCs). On the basis of the
optimal configuration of domain and predictors, the per-
formance of all SD methods is inter-compared in Sec. 6.
Finally, some conclusions are given in Sec. 7.
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Fig. 1. Different domains used in the esTcena project,
numbered from East to West, and decreasing in size to-
wards the center: (1) esTcena, (2) W, (3) NW, (4) SW,
(5) NWsmall, (6) Iberia, (7) SEsmall, (8) SE, (9) NE, (10)
E.

2. Geographical Zones and Data

The target region of this work is the Iberian Peninsula.
Therefore, we defined different predictor areas, Z1, . . . , Z10,
with different sizes, as shown in Fig. 1; note that, here-
after, Zi stands for a specific zone. Over this region we
considered a number of atmospheric variables (see Table
1) typically used as predictors in temperature downscaling
studies (Benestad 2002; Huth 2002; Hanssen-Bauer et al.
2005; Huth et al. 2008). It has been recently shown that
these variables —considering anomalies— are suitable pre-
dictors for climate change studies, since their distribution
is skillfully reproduced by Global Climate Models (GCMs)
in the area under study (see Brands et al. 2011a). The only
exceptions are maximum and minimum temperatures (de-
noted as Tx and Tn, respectively), since their use as pre-
dictors in climate change downscaling studies has shown to
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Table 1. Predictor variables used in this work. Note that Tx and Tn have been only considered for benchmarking
purposes only, as their GCM-performance for the region of study is poor; see the text for more details.

Code Name level time unit

Z Geopotential 850,700,500,300 00 UTC m2s−2

T Temperature 850,700,500,300 00 UTC K
Q Specific humidity 850,700,500,300 00 UTC kgkg−1

U U-wind component 850,700,500,300 00 UTC ms−1

V V-wind component 850,700,500,300 00 UTC ms−1

SLP Mean sea-level pressure mean sea-level daily mean Pa
T2m Daily mean temperature model surface daily mean Pa
Tx Maximum temperature model surface instantaneous K
Tn Minimum temperature model surface instantaneous K

be problematic (Palutikof et al. 1997); thus, these variables
are only used as predictors in this study for benchmarking
purposes. All these variables were downloaded from the
publicly available ERA-40 reanalysis data (Uppala et al.
2005) with 2.5◦ resolution for the period 1961-2000, and
will be used to test the different SD methods in perfect prog

conditions focusing on validation measures informative for
climate change conditions.

We considered the predictor combinations listed in Ta-
ble 2, including the typical settings used in downscaling
studies; for instance, since the climate change signal is
much weaker for circulation variables than for temperature
and/or absolute humidity —linked to changes in the radia-
tion budged (Wilby et al. 1998, 2004),— we don’t consider
predictor datasets including only circulation variables (Z, ,
SLP, U and V). Note also that those combinations marked
with ‘d’ (P1, P2, P3, P4 and P6) have been tested with
two temporal setups: static and dynamic, as suggested
by Gutierrez et al. (2004). The “static” temporal setup
only takes into account 00 UTC values for the instanta-
neous variables (Z, T, Q, U and V) for day D, while the
“dynamic” temporal approach additionally includes the 00
UTC values for day D+1, thus, providing a window cover-
ing the observation period. We want to remark that using
12 UTC values instead of 00 UTC values for downscaling
Tmax did not improve the results (not shown). Note that,
hereafter, Pi, or Pid, stands for a specific static, or dy-
namic, predictor configuration, respectively.

For different configurations of the downscaling tech-
niques (see Table 3), we either consider the standardized
anomalies of the ERA-40 data at nearby grid boxes as pre-
dictors, or we alternatively use spatial patterns as given
by the PCs of the predictor field (Preisendorfer 1988). In
this case, the total number of PCs considered is limited to
the leading PCs yielding a fraction of explained variance of
95% —note that a maximum of 30 PCs is not exceeded in
any case.— In the former case, the spatial homogeneity of
the downscaled series is expected to be low, since different

Table 2. Tested predictor combinations, ranked by de-
creasing complexity; the combinations marked by “d” have
been tested with both the static and dynamic temporal
setup. Predictors P8 and P9 are only considered for bench-
marking purposes

Code Predictor variables

P1–P1d SLP, T850, Q850, U500, V500
P2–P2d SLP, T850, Q850, Z500
P3–P3d SLP, T850, Q850
P4–P4d SLP, T850

P5 SLP, T2m
P6–P6d T850

P7 T2m
P8 Tx
P9 Tn

predictors are used for each target location; however, in the
latter case, the predictors are shared by all locations which
should considerably enhance the spatial homogeneity of the
results.

The local target variables of interest in this work (pre-
dictands) are the daily 2m maximum (Tmax) and min-
imum (Tmin) air temperatures from the recently devel-
oped publicly available gridded interpolated observations
dataset Spain02 (Herrera 2011; Herrera et al. 2012, avail-
able at http://www.meteo.unican.es/datasets/spain02).
The data comes on a regular 0.2◦ grid and covers the com-
plete time period under study (1961-2000). Fig. 2a-b and
c-d show the corresponding means and standard devia-
tions for Tmax and Tmin, respectively, at each gridbox
of Spain02, as well as the inter- and intra-anual variability
of the spatial mean anomalies (e-f). Note that Tx (Tn)
hereafter refers to the maximum (minimum) temperatures
as predictors, whereas Tmax (Tmin) will be used as ab-
breviation for the predictands, respectively.
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Fig. 2. Daily mean and daily standard deviation of the Spain02 daily dataset for (a-b) maximum and (c-d) minimum
temperatures for the period 1961-2000. The boxes in these figures show the location of the 17 representative grid points
used in the study; the point labelled by (A) in panel (a) will be referred to for illustrative purposes in Sec. 5. The inter-
and intra-annual variability of the spatial mean values for these variables are shown in panels (e) and (f), respectively;
note that in these cases, anomalies with regards to the annual mean value are shown.

Due to the differing spatial extent of the different cli-
matic regions in the area under study, we will consider
the 17 grid boxes shown in Fig. 2 for calculating spa-
tial averages, since this will impede that the results are
dominated by the larger climatic regions. Note that the
time series associated to these grid boxes are very close
to those of 17 high quality observed time series public
from the Spanish Meteorological Agency (AEMET, http:
//www.aemet.es) and, thus, the interpolation error of the
interpolation/gridding scheme is minimized in this case.
This will be important when considering warm anomalous
periods in Sec. 4c, with magnitudes around one Celsius,
where spurious warm spatial patterns may arise in regions
with sparse data due to the interpolation method.

3. Downscaling Methods

In this paper we intercompare a number of different sta-
tistical downscaling methods, including the most popular
ones used for climate change applications. These methods
are described in Table 3 and have been classified according
to the following categories:

• M1: Analog Methods (AM).

• M2: Weather Typing methods (WT).

• M3: Multiple Linear Regression, from PCs, point-
wise, or both (LR).

• M4: Linear regression conditioned on weather types
(LR-WT).
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Table 3. Downscaling methods of four different families considered in this work: (AM) Analog methods, (WT) weather
typing, (LR) linear regression, and (LR-WT) regression conditioned on weather types.

Code Type Method and Predictor Field

M1a AM Nearest neighbour (1 analogue)
M1b AM Mean of 5 neighbours
M1c AM One out of 15 neighbors, random selection
M2a WT 100 WTs (k-means), mean of the observations
M2b WT 100 WTs (k-means), random selection
M2c WT 100 WTs (k-means), simulation from gaussian distribution
M3a LR Linear regression with n PCs (95% variance)
M3b LR Local predictor values in the nearest grid box
M3c LR 15 PCs + Nearest grid box
M4a LR-WT M3c conditioned on 10 WTs (k-means)
M4b LR-WT M3b conditioned on 10 WTs (k-means)
M4c LR-WT M3b (T,Q) conditioned on 10 WTs (SLP)

The first group of downscaling schemes (M1a to M1c)
includes three different versions of the analogue method
(AM), which was introduced in the atmospheric sciences by
Lorenz (1963, 1969) and compared with other SD-techniques
by Zorita and von Storch (1999). In all cases, the Euclidean
distance was used to obtain the analogs from the predictor
field (Matulla et al. 2008). The technique labeled as M1a
is based on the nearest analog, whereas M1b and M1c con-
sider the 5 and 15 nearest analogs, respectively. M1b uses
the mean of the corresponding observed values as the target
value, whereas M1c randomly selects one them (Brandsma
and Buishand 1998; Beersma and Buishand 2003). These
three configurations have been chosen after a sensitivity
analysis (w.r.t. the number of analogs, the applied distance
measures) and roughly reflect the different methodological
approaches. On the one hand, the optimum configuration
for M1b was selected comparing the results obtained for 5,
10, 15 and 20 analogs, obtaining similar results (correla-
tion), but progressively underestimating the variance. On
the other hand, 15 analogs for M1C was shown to yield a
reasonable trade-off between a decreasing correlation and
an increasing and thus more realistic ratio of modelled to
observed variance (see, e.g., Timbal and McAvaney 2001)

Due to its conceptional simplicity and applicability to
any predictand variable, the AM is still widely used as a
benchmark method in statistical downscaling applications
(Brands et al. 2011a; Pons et al. 2010; Teutschbein et al.
2011; Timbal et al. 2003; Timbal and Jones 2008; Wetter-
hall et al. 2005). However, its main drawback is its inability
to extrapolate unobserved values and, hence, it is inclined
to underestimate warming in climate change conditions.
A possible correction for this issue has been recently sug-
gested by Benestad (2010), but it has not been considered
in this study.

The second group of downscaling methods contains three
different classification or weather typing techniques (M2a-
c) based on the k-means clustering algorithm, which was
applied to the atmospheric state vector formed by all the
considered predictors standardized at a gridbox level to
avoid biased results due to different scales (Gutierrez et al.
2004). M2a and M2b are modifications of the above men-
tioned analogue method, with the search space being quan-
tized into Weather Types (WT). Weather types are first
calculated applying the k-means method (obtaining their
corresponding “centroids”) and, then, each day is assigned
to the closest WT (closest centroid). This consequently
reduces the computational cost and allows for an interpre-
tation of the results in terms of frequencies of the different
WTs. A sensitivity study revealed an optimum number
around 100 WTs, obtained as the threshold value where
both the correlation and variance of the results saturate,
allowing to keep the size of the groups large enough to
guarantee robust results (see Huth et al. 2010, for a de-
tailed overview of classification techniques in the atmo-
spheric sciences). M2a estimates the downscaled value as
the mean of the observations corresponding to the particu-
lar weather type, whereas M2b picks one value at random
within those in the corresponding WT. M2c combines the
k-means weather typing approach with a gaussian weather
generator, in order to avoid using the empirical WT dis-
tribution and to partially overcome the analog method’s
limitation to extrapolate values unobserved in the past. In
the training period, each observed temperature time series
is partitioned into 100 subseries corresponding to 100 WTs.
The parameters of the gaussian distribution are then fitted
to each of these subseries and are used for randomly gener-
ating temperature series conditioned to the corresponding
weather type in the independent test periods.
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The third group of methods contains three different ver-
sions of multiple linear regression (M3a-c) (Benestad 2002,
2005; Huth 2002, 2004). On the one hand, PCs are used
as predictors — considering those explaining a 95% of the
variance (with a maximum of 30 PCs)— making up the
“global” predictor setup M3a. On the other hand, the stan-
dardized values from the nearest gridbox are applied, mak-
ing up the “local” predictor setup M3b. Note that we also
tested the performance when considering several neighbor-
ing gridboxes, but similar results were obtained. Finally,
we combine both the global (15 PCs) and local (nearest
grixbox values) predictors, obtaining the mixed predictor
configuration M3c. The comparison of these three setups
will allow us assessing the performance of spatial vs. point-
wise predictors. Note that this family of methods has ex-
trapolation capabilities and, hence, may be more robust in
climate change conditions.

The fourth group of methods (M4a-c) is a combina-
tion of weather typing (M2) and multiple linear regression
(M3). As in M2, a k-means clustering is first applied to
determine a number of WTs. As a result of a previously
applied sensitivity study, 10 WTs were considered for this
family of methods. Note that although a higher number
of WTs was considered for M2 methods in order to in-
crease accuracy, for the family M4 accuracy is provided
by the regression rather than by the weather typing and,
thus, these methods can work with less WTs —actually,
they should do so in order to prevent working with too
small sample when adjusting the regression model—. In
the first two cases (M4a-b), the clustering is performed
upon all predictor variables, while in the third case (M4c),
it is performed on SLP (representing circulation) only. Af-
terwards, a linear regression is computed conditioned on
each weather type, considering either both the local and
global predictor info (M4a), or the local predictor informa-
tion (M4b-c) only. For M4c, the regression is limited to
those variables which have not been used in the cluster-
ing process (temperatures and humidity). In case of M4c,
the PCs used in the regression step have been calculated
upon these non-circulation variables only. The idea be-
hind the method M2c is that temperature and humidity
values some hundreds of kilometers away do not physically
affect the predictand at a given location. Hence, they are
excluded from the clustering of the large scale data, but
included as regressors (from the grid-box which is nearest
to the location of the predictand). Moreover, from a sta-
tistical point of view, this avoids the duplicity of using the
same variables for clustering and then for regression on the
resulting clusters.

In order to obtain the optimum configuration of these
methods, different combinations of the geographical zones
(Figure 1) and predictors (Table 2) are tested in the fol-
lowing sections.

4. Cross-Validation Scheme and Validation Scores

In order to appropriately assess and compare the perfor-
mance of different SD methods, a cross-validation approach
is considered to avoid model overfitting. The most popular
and simple of these approaches is data splitting, which con-
siders independent data for training (e.g. 80% of the avail-
able data) and validation/test (e.g. the remaining 20%).
In order to avoid spurious effects of the particular partition
performed, the process needs to be repeated several times,
which leads to more robust average scores and additionally
permits for the application of statistical inference in order
to estimate confidence intervals of the results. However,
in this case, the test subsets for the different realizations
may overlap, thus providing non-independent results. In
order to avoid this problem, we consider a non-overlapping
test set selection, namely a k-fold cross-validation approach
(Markatou 2005), which is commonly used in the machine
learning community to compare the performance of differ-
ent models. The available data (n years in our study) is
divided into k non-overlapping data subsets, each of which
contains n/k elements. Each data subset is then used as a
test set, with the remaining data acting as a training set in
each case. Thus, the resulting k scores are obtained from
independent test samples, allowing for a proper statistical
inference.

In our case, we consider five subsets (5-fold cross-valida-
tion), each containing 8 years for testing, and 32 years
for training. To circumvent statistical artefacts potentially
arising from trends (see Fig. 2e), we considered a stratified
regular sampling, where the first test sample was formed by
the years: 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996,
the second by the years 1962, 1967, etc. Note that with this
approach we keep a 80%/20% balance in the training/test
data, typically used in this type of studies.

Finally, in order to take into account future seasonal
shifts as projected by GCM-scenario runs, no season spe-
cific models have been considered in this work.

a. Accuracy

Accuracy validation scores assess the correspondence
of the simulated and observed day-to-day temperature se-
quences, which is the basis of the statistical downscal-
ing approach. The Pearson correlation coefficient is used
in this paper for this purpose, although there are other
popular measure, such as the Root Mean Square Error
(RMSE). Note that correlation (r) and RMSE are related

by the equation RMSE =
√

σ2
p + σ2

o − 2rσpσo + b2 (Mur-

phy 1988), where b is the bias and σp, σo the standard
deviation of the prediction and observation, respectively.
Thus, since the bias of the statistical downscaling methods
was found to be relative low (see Sec. 5), the correlation
can be seen as an standardized version of the RMSE, the
latter not being shown in this paper. In order to assess the
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season-dependence of the results, correlation coefficients
are calculated both for the annual and season-specific time
series.

b. Distributional consistency

Distributional consistency scores evaluate the down-
scaling methods’ capability to reproduce the distribution
of the target time series. The most popular scores are
the bias (mean difference) and the ratio of variances. In
addition, some studies have focused on the higher order
moments of the distribution (skewness, kurtosis) (Huth
et al. 2003), trying to obtain a more complete descrip-
tion of distributional similarity. Note that the observed
distribution should be reproduced by any SD-method ap-
plied in a climate change context in order to avoid the
post-hoc correction of the downscaled time series —such as
bias removal, quantile mapping, or output rescaling (Deque
2007),— which would require the additional assumption of
the error being constant under climate change conditions.

In this paper we apply the classical two-sample Kolmogorov-
Smirnov (KS) test to evaluate the hypothesis that the ob-
served and downscaled time series come from the same un-
derlying distribution. We computed the KS-statistic and
the corresponding p–values at a grid-point level. Note that
low p–values indicate significant distributional dissimilari-
ties between the observed and downscaled series. In order
to avoid the effect of serial autocorrelation on the analysis,
we consider time series formed by every tenth day only.
Alternatively, we could have modified the test considering
the effective sample size (Wilks 2006), but since the length
of the series is long enough we preferred using the standard
test. As was the case for the correlation coefficient, we ap-
plied this test both to the annual and to season-specific
time series in order to assess the season-dependence of the
results.

Besides the KS p–value, the annual bias of the down-
scaled series, as well as the standard deviation of the re-
sulting seasonal biasses (σbias, indicator of the bias’ season-
dependence) is calculated as additional distributional sim-
ilarity score. Both, bias and σbias should be kept small,
since large errors are likely to nonlinearly propagate in fu-
ture climate conditions (Raisanen 2007).

c. Robustness/stationarity to climate change conditions

In order to test the robustness of the downscaling meth-
ods to changing climate conditions (and hence the hypoth-
esis of model stationarity), in this paper we present a test
to determine whether or not the performance of a given
downscaling method in a historical warm period is signifi-
cantly different from the performance in a normal/random
period, measured in terms of the bias. If the bias in the
former case is significantly smaller, then the method fails
to properly predict the warming signal and it is prone to

underestimate the warming signal in future climate change
projections. This is done by comparing the biases obtained
in the five 5–fold test periods with the bias obtained in a
“warm” test period, defined by the eight warmest years
in the period 1961-2000 on the basis of the maximum tem-
peratures, considering the spatial mean of the standardized
anomalies at the 17 high-quality grid-boxes of Spain02 as
reference value. The resulting years were 1995, 1989, 1994,
1997, 1961, 1990, 1998 and 2000, in decreasing rank order.
Applying the analysis to the minimum temperatures leads
to an identical ranking of the warm years, with the excep-
tion of the least warmest one. Thus, to keep consistency
of the results, we decided to use the same period for both
variables. The resulting warm anomalies for Tmax and
Tmin, w.r.t. the remaining 32 years, have a spatial mean
value of +0.97 and +0.75 degC, respectively, and thus can
be taken as surrogates of a possible moderate warming al-
lowing to test the methods in conditions similar to those
projected by scenario runs for the next few decades.

In order to quantify whether the bias in the warm pe-
riod, bw, is significantly different from the five biases ob-
tained in the normal test periods, bk, k = 1, . . . , 5, (the five
folds of the cross-validation process) we apply a standard t-

test to the mean difference d̄ = 1

5

∑

5

k=1
dk = 1

5

∑

5

k=1
(bw −

bk), in order to test whether this difference is significantly
different from zero. Thus, we consider the following test
statistic (Dietterich 1998):

t =

√
5 d̄

√

var(d)
; var(d) =

1

4

5
∑

k=1

(dk − d̄)2, (1)

which follows a t-distribution with 4 degrees of freedom.
Although it has been recently reported that this approach
(k–fold cross validation) may slightly overestimate the vari-
ance (Markatou 2005), we apply this conservative proce-
dure in order to minimize the type 1 errors (false detec-
tion of positive differences) (DeGroot and Schervish 2002).
Note also that although five samples could be considered an
insufficient number to estimate the sample variance, the k-
fold cross-validation approach has shown to provide similar
values to the more computationally intensive leave-one-out
cross-validation, especially when the size of the test data
becomes large (Markatou 2005), as it is the case in our
study.

Therefore, we will consider the p–value corresponding
to a two-sided hypothesis test with null hypothesis H0 ≡
d̄ = 0 from (1) as a measure of robustness of the SD meth-
ods in climate change conditions. Low values (e.g. below
0.05) document significant difference of the bias in warm
condition w.r.t. the bias in ‘normal’ conditions. Large val-
ues, in turn, indicate an only spurious difference between
both bias types, the associated SD-method being robust to
warmer climate conditions.

As an illustrative example, Fig. 3 shows the applica-
tion of this test to the analog method M1a (based on the
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from a t-test; note that in this case, logarithmic coordinates are used in the y-axis.

closest analog, see Table 3) for minimum temperatures,
considering two different predictor sets (see Table 2): P5
(SLP+T2m, left column) and P3 (SLP+T850+Q850, right
column) over the domain Z8 (see Fig. 1). The figure
shows (first row) a comparison of the biases in normal
climatic conditions (as represented by the five fold cross-
validation and visualized by the box-and-wiskher plots)
and in the warm-period (red triangles) for each of the
17 representative grid-boxes shown in Fig. 2a and for
their mean (shaded in the figure). Note that whereas for
SLP+T850+Q850 (right column) the magnitude of the bi-
ases is clearly smaller for the warm conditions than for the
normal ones (i.e. the warming is underestimated by this
predictor combination), the results for SLP+T2m (left col-
umn) are more favorable at most of the gridpoints. This is
qualitatively shown in the figures in the second row, show-
ing the significance level (p–values) corresponding to these
differences, as obtained from a t-test. Thus, this test al-
lows for estimating the statistical significance of these dif-
ferences and provides a quantitative measure of robustness.
Moreover, the results for the spatial mean (labelled by ‘m’
and shaded in the above figures) are representative of the
behavior found for the set of stations, so the corresponding
p–values can be used for comparison purposes for the area
under study as a whole. In the following sections we will
follow this approach to characterize the robustness of the
methods (and their configurations) in warming conditions.

5. Selection of Geographical Domains and Predic-
tors

This section is dedicated to a screening of the differ-
ent domains (see Fig. 1) and predictor combinations (see
Table 2) in order to find optimal configurations for down-
scaling maximum (Tmax) and minimum (Tmin) temper-
atures. Two commonly used downscaling methods, the
nearest neighbor analog method (M1a) and multiple lin-
ear regression on PCs (M3a) are applied in this screening
process (see Table 3). For validation purpose, the down-
scaled series corresponding to the five non-overlapping test
periods of the cross-validation approach (see Sec. 4) are
joined into single continuous 40-year series which are then
evaluated with the above mentioned scores (Sec. 4a-c). To
avoid spurious effects of serial autocorrelation on the test
results, only every tenth time step of these joined series was
considered for validation. For the purpose of simplicity, the
results for the individual grid-boxes (we considered the 17
high-quality grid boxes shown in Fig. 2) are averaged to
obtain a single quantitative measure, except in the case of
the robustness test in the warm period, which is applied to
the time series of the daily spatial mean biases. Since the
10 domains displayed in Figure 1 are fully combined with
the 14 predictor sets listed in Table 2, the two methods
were tested for 140 different configurations.

The dynamic temporal predictor setup (recall: 00+24
UTC values) was found to generally outperform the static
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shows a typical situation of temperature inversion, obtained as the weather type with higher inversion frequency out of
a set of 25 weather types obtained applying the k-means algorithm to SLP.

one (recall: 00 UTC values only) for downscaling Tmax,
while the opposite is true for downscaling Tmin. Hence,
for the sake of simplicity, Fig. 4 shows the results of the
dynamic predictor combintations (P1d, P2d, P3d, P4d, P5,
P6d, P7 and P8) for Tmax, and of the static combinations
(P1, P2, P3, P4, P5, P6, P7, and P9) for Tmin. Along the
columns, the results of the two applied methods are dis-
played for Tmax (Columns 1 and 2) and Tmin (columns 3
and 4), respectively. Along the rows, the following valida-
tion scores are shown: Pearson correlation coefficient (R),
p–values of the Kolmogorov-Smirnov test for distributional
similarity (KS − pV alue), p–values of the robustness test
for warm climate conditions (warm− pV alue), bias of the
complete time series (Bias) and intra-seasonal variability
of the bias (σ–bias), the latter being defined as the stan-
dard deviation of the seasonal biases. In each matrix sub-
plot, the results for all possible combinations of domains
(along columns) and predictor sets (rows) are shown. Note
that the geographical domains have been numbered from
East to West, with smaller domains lying in the center, and
bigger ones at the margins of the x–axis (see Fig. 1).

The results are more sensitive to the predictor choice
than to the applied geographical domain, although in the
case of the analog method (M1a) better results are gener-
ally obtained with smaller domains. In particular, infor-
mation on the near-surface temperature (in terms of T2m
and Tx or Tn) generally yields the best results. The corre-
lation and KS p–values are highest in these cases, while the
bias and its associated seasonal variability are negligible.

Moreover, the warm p–values are larger in these cases in-
dicating a robust behavior in warming climate conditions.
With p–values lower than 0.01 in most of the cases, the
remaining predictor combinations are clearly less robust.

At a seasonal scale, the results are poorest in winter,
especially for Tmin, with low correlation values and sig-
nificant distributional inconsistencies (see more details in
the sections below). Moreover, a more pronounced effect
is found when excluding surface temperature predictors,
with a systematic overestimation of low temperature val-
ues. As an explanation for this problem we found that T850
does not appropriately discriminate cold episodes related to
temperature inversion in the lower troposphere/boundary
layer. In order to characterize this problem we defined the
inversion strength as the temperature difference between
T850 and T2m (a similar approach was used in Pavel-
sky et al. 2011), and studied the relationships between
minimum temperature and the predictors focusing on this
variable. Figure 5 illustrates this analysis for a particular
point by plotting the minimum temperature observations
(x-axis) vs. the closest T2m (panel a) and T850 (panel b)
predictor values. This figure shows that whereas the cold
episodes with strong inversions are appropriately captured
by T2m, exhibiting a good linear relationship with Tmin,
they correspond to high T850 values, destroying the linear
correlation with Tmin. These events have an annual fre-
quency of approximately 4% and typically occur in winter,
associated with stable conditions with high surface pressure
(see the inset in panel a for a typical situation, obtained
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Fig. 6. Correlation, as in Fig. 4 (first row), but for all seasons (in rows). For the sake of comparison, the same color bar
has been used for the seasonal panels (both for maximum and minimum temperatures) of a particular method (analogs
from 0.55 to 0.85 and regression from 0.7 to 0.95 correlations values, respectively).

as the weather type with higher inversion frequency, from
the set of 25 weather types obtained applying the k-means
algorithm to SLP).

As a general result, the best configuration of predic-
tors and geographical domains found to robustly downscale
both Tmin and Tmax is predictor P5 (SLP and T2m) in
combination with domain Z8 (South-East, SE). This con-
figuration will be used to compare the performance the
different statistical downscaling methods in Sec. 6.

As an extension to these general calibration results,
more detailed information including a comparison to earlier
studies are given in the next three subsections. Alterna-
tively, these subsection may be skipped, in which case the
reader should directly proceed to the full comparison of the
SD-methods (see Sec. 6).

a. Accuracy (correlation)

The results for the Pearson correlation coefficient (first
row in Fig. 4) are generally better for Tmax than for
Tmin. Moreover, correlation decreases in both cases if
near-surface temperature information are excluded from
the predictor field. This underlines the predictive power

of the latter and gives confidence in the strategy adopted
by the Norwegian downscaling community, which exclu-
sively uses T2m for temperature downscaling in many stud-
ies (see e.g. Benestad 2002, 2011). Among the lower free-
tropospheric fields (i.e. at 850 hPa), Q —in combination
with T— plays an important role for downscaling Tmin
whereas it does not improve the results for Tmax. This
finding is consistent to Timbal et al. (2003); Brands et al.
(2011b), who applied a version of the analogue method for
western France/the northwestern Iberian Peninsula. For
both Tmax and Tmin, information on middle-tropospheric
fields (500 hPa) do not provide an added value to the above
mentioned predictors. Multiple linear regression using PCs
(M3a) outperforms the nearest neighbor analogue method
(M1a). For the latter method, small domains generally
perform better than larger ones, which is consistent with
Gutierrez et al. (2004). The largest domain covering the
whole European-North Atlantic sector performs worse in
any case.

Similar results are obtained when analyzing the season-
specific time-series (see Fig. 6). Highest correlations are
found in autumn (> 0.9) and lowest in winter (< 0.6 for
some predictor-domain combinations).
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b. Distributional similarity (KS p–values)

In contrast to the results for accuracy (see former sec-
tion), the results for distributional similarity (in terms of
the KS p–value) are better for the nearest neighbor ana-
log method (M1a) than for regression using PCs (M3a),
particularly in case of Tmin.

In agreement with the accuracy results, distributional
consistency is generally best for autumn and poorest for
winter, where, in case of downscaling Tmin with M3a,
significant distributional inconsistencies are found for all
combinations of predictors and domains. Fig. 7 shows the
areas where distributional dissimilarities for Tmin are sig-
nificant at a test level of 5% (black areas). Results are
shown for two different predictor combinations (marked by
white boxes in Fig. 4), putting emphasis on the effect of
including/excluding surface temperature information. P3
combines SLP with T850 and Q850, while P5 combines
SLP with T2m (see Table 2). Both predictor combina-
tions are applied on the same geographical domain (Z8).
The first column corresponds to the analog method (M1a)
for which significant distributional inconsistencies are vir-
tually absent in any season and for both combinations of
predictors (only the results for one of the combinations are
shown). The second and third columns show the results
for linear regression with PCs (M3a) applied to the just

mentioned predictor combinations. Although the area of
significant inconsistencies can be considerably reduced by
using T2m (i.e. P8) instead of T850 and Q850 (i.e. P3),
results for the winter season are far from being satisfactory.

In case of Tmax, domains extended to the south and/or
east (e.g. domain 8, SW ) yield the best performance, as
they allow for solving the problem of systematic distribu-
tional inconsistencies in winter (not shown).

c. Robustness in climate change conditions (warm p–values)

One of the most surprising results obtained in this study
is that related to the robustness of the downscaling meth-
ods in anomalous warm periods. In particular, Fig. 4
(third row) shows that the only combinations of predic-
tors with no significant differences between the bias in
warm and normal conditions are those considering T2m.
For instance, as we have briefly described previously, Fig.
3 shows the robustness of the analog method (M1a) for
Tmin with different predictors (P5 on the left and P3 on
the right), but the same geographical domain (Z8). Note
that they differ in the use of T2m or T850 and Q850 in
addition to SLP, respectively (see Table 2). This figure
shows a comparison of the biases for normal conditions as
represented the 5-fold cross validation (box plots) with the
biases for the warm-period (red triangles), considering the
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time series of the spatial mean over the seventeen stations
shown in Fig. 2. Obviously, P5 leads to more robust re-
sults than P3, a result which is consistently found for all
applied SD-methods.

d. Bias and seasonal bias variability

Unlike the bias for multiple regression on PCs, the bias
of the nearest neigbor analog method (M1a) is especially
sensitive to the predictor and domain choice (see fourth
row in Figure 4). Varying the predictor combination for
a given domain, or vice-versa, changing the domain while
keeping the predictor combination constant, may lead to
considerable modifications in the magnitude of the bias.
For seasonal bias variability σ–bias (fifth row), however,
results are more sensitive to the predictor choice, again
obtaining better results when using near–surface– instead
of free–tropospheric temperature predictors. Fig. 8 gives
an illustrative example of the seasonal bias variability for
the Tmax, applying the nearest neighbor analog method
with two different predictor sets: P5 (left column) and P4d
(right column) on the same domain Z8 (the corresponding
spatial mean results are indicated by the black boxes in
Fig. 4). Biases for the complete time series are shown in
the first row (annual), while the season-specific ones are
shown in rows two to five. Note that although the bias for
the complete time series is smaller for P4d than for P5,
the opposite is the case for the season-specific results, the
latter being more important if working in a climate change
context, in which it is important to keep validation results
constant throughout all seasons of the year.

6. Intercomparison of the Downscaling Techniques

In this section, a full comparison of the twelve SD meth-
ods listed in Table 3 is given for both Tmax and Tmin,
based on the results obtained in the former section (i.e.
using the predictor-domain configuration P5-Z8; P5: SLP
and T2m, Z8: SE Iberia). Figure 9 shows the results for
Tmax (first column) and Tmin (second column) for the
17 high-quality grid-boxes of Spain02. Note that instead of
providing mean values, box-and-whisker plots of the 17 cor-
responding validation scores are given in this section, which
allows analyzing the spatial variability of the results. Since
distributional inconsistencies were found in Sec. 5 partic-
ularly for the winter season, we show the KS p–values for
both the complete series (annual) and the winter-specific
ones.

The overall performance of the different SD methods is
very similar for both target variables. With the exception
of method M1b, the family of analog methods exhibits a
good performance, with reasonable correlations (although
smaller than for the rest of methods) and optimum distri-
butional consistency results (particularly in winter). Al-
though a systematic warm bias is found for this family
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Fig. 8. Annual (first row) and seasonal (in rows) biases
for the same downscaling method (analogs, M1a) and geo-
graphical region (Z8), but with two different predictor sets:
P5 (left) and P4d (right).

(with median values around 0.2C), the seasonal variability
of the bias is small, as compared with the rest of the meth-
ods and, hence, M1a and M1c could be suitable for climate
change applications.

For the family of weather typing methods (M2), over-
all results are best for the gaussian variant (M2c), yielding
highest KS p–values particularly for Tmin. However, the
bias variability is too large, particularly for Tmax, so these
methods have to be carefully used in climate change con-
ditions. Therefore, M2c is the only weather typing method
that could be suitable for climate change applications, par-
ticularly for Tmin. Note, that in spite of its stochastic na-
ture, it yields reasonable correlation coefficients of at least
0.65, due to the weather typing component.

The family of regression methods (M3) exhibits a good
overall performance, with the exception of the technique
relying only on predictor from the closest reanalysis grid
box only (M3b), which suffers from significant distribu-
tional inconsistencies and a large seasonal variability of the
bias. Methods M3a and M3c (based on PCs or PCs com-
bined with predictors from the closest reanalysis grid box)
exhibit high correlation values, good distributional consis-
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tency (with the exception of winter for Tmin) and small
biases in all seasons. Therefore, these methods could be
suitable for climate change studies.

In the case of regression conditioned to weather types
(family M4), and in contrast to the M3 family, performance
is better when using predictors from the nearest reanaly-
sis grid-box (M4b and M4c) than when using PCs (M4a).
Note that this is a reasonable result, since the weather
types already provide spatial information and, thus, the
PCs become redundant in the regression phase. However,
the overall performance of the conditioned regression meth-
ods (M4) family is worse than that of the simple/non-
conditioned regression (M3), and only method M4c could
be considered to be suitable for climate change studies.
Note that in the latter case, the circulation predictor (SLP )
is used for weather typing and the regression is based on
the T2m temperature values.

Finally, Fig. 10 shows the results for testing the ro-
bustness of the methods under climate change conditions
considering both historical warm periods, used as surro-
gate of future warming —shown in panels a-d—, and fu-
ture projections of a state-of-the-art GCM (the ECHAM5
model), considering the warming signal for 2071-2100 (A1B
scenario) w.r.t. 1971-2000 (20C3M scenario) —shown in
panels e-f—. In this case, following the results from Fig.
3 and 4, the mean value temperature of the 17 stations is
considered for the analysis. The first row shows the box-
and-whisker plots corresponding to the five-fold test peri-
ods (indicating normal climate conditions), together with
a red triangle indicating the bias of the warm period. Dif-
ferences between warm and normal periods can be visually
established from this figure. The second row shows the sta-
tistical significance of these differences, as given by the p–
values obtained from (1); note that three significance levels
a) 0.01, b) 0.05 and c) 0.1 are indicated with the dashed
lines in the figures. No significant differences are found
for regression and regression conditioned on weather types
(except for M4a), indicating their robustness to warmer
climate conditions. Significant differences with p–values
smaller than 0.01 are found for all weather typing tech-
niques (M2, with the exception of M2b for Tmin, which ex-
hibits a large bias variance in normal periods) and also for
analog techniques M1b and M1c for Tmin. Moreover, all
the analog techniques exhibit significant differences at the
level 0.05. In case of the nearest neighbor analog method
(M1a), the relative bias differences for the warm period
(w.r.t. the lower bound of the interquartile range, i.e. the
25th percentile of the normal periods) are below 0.1 degC
(slightly higher for Tmin than for Tmax), which is less
than 10% of the warm anomaly. However, these differences
may nonlinearly propagate in future climate conditions, as
given by GCM projections, that are considerably warmer
than those considered in this study, so the downscaling
method may critically under-estimate the warming signal.

In order to test this possibility, we consider a state-
of-the-art GCM, the ECHAM5 model by the Max Planck
Institute of Meteorology, Germany (Roeckner 2008), and
compute the warming signal in the late 21st century as the
difference of temperatures in the period 2071-2100 (A1B
scenario) and the control period 1971-2000 (20C3M sce-
narios). Fig. 10e-f shows the warming signal for maximum
and minimum temperatures, respectively, as projected by
several statistical downscaling methods. Note that, de-
pending on the method, warming values range from 2.5 to
3.7 degC and from 2 to 3 degC, respectively, with a vari-
ability of 30%. Note also that these differences are in good
agreement with the values given in Figures 10c-d, so the
methods failing the historical warm period test are those
leading to smaller climate change signals. Therefore, if we
consider only the robust statistical downscaling methods
given by the test proposed in this paper, the variability
of the warming signal would be greatly reduced, leading
to robust mean increments of 3.5 degC and 2.9 degC for
maximum and minimum temperature, respectively.

7. Conclusions

In order to determine the suitability of statistical down-
scaling methods for climate change studies we propose a
validation framework using three criteria: accuracy (based
on correlation), distributional consistency (based on a two
sample Kolmogorov-Smirnov test), and stationarity under
global warming (based on a t–test for a historical warm pe-
riod), building on a k–fold cross–validation scheme. Note
that the first two criteria are currently being used in sim-
ilar studies to assess the reliability of statistical downscal-
ing methods in future climate change conditions (see, e.g.,
Bürger et al. 2012), whereas the latter is a novel approach
to assess the robustness of statistical downscaling methods.

Concerning the most suitable predictors and geograph-
ical domains for climate change studies, the result of an in-
tercomparison validation analysis of different combinations
of factors shown that 2m air temperatures are preferable to
free-tropospheric temperatures (in particular, temperature
at 850 hPa) since, if the latter are applied, results are not
reliable and non-robust to warming climate conditions for
any of the applied methods. An explanation of this result
is also provided, related to temperature inversion episodes
in the lower troposphere, with high pressure and low sur-
face temperatures, which are systematically overestimated
when using T850 as predictor.

The proposed validation framework was applied to a
number of downscaling methods commonly used for down-
scaling temperature, including analog methods, weather
typing techniques, multiple linear regression, and regres-
sion conditioned on weather types. Overall, regression
methods are most appropriate for climate change studies,
although they fail to reproduce the observed winter distri-
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Fig. 10. Robustness of the SD methods (along the x-axis of the figures) for Tmax (first column) and Tmin (second
column) under warm climate conditions. The first row shows the box-and-whisker plots for the five k-fold normal test
periods, together with a red triangle indicating the bias of the warm test period. The second row shows the statistical
significance of these differences, as given by the p–values obtained from (1). The last row shows the warming signal in
the late 21st century (defined as the difference of temperatures in the period 2071-2100 and the control period 1971-2000,
considering A1B and 20C3M projections, respectively) for the ECHAM5 (run3) model.

bution of minimum temperature. Weather typing methods
are less appropriate for climate change studies, as they sig-
nificantly underestimate the temperatures in moderately
warmer conditions. Analog methods best reproduce the
observed distributions, but significantly underestimate the
observed values in warm periods, although with magnitude
smaller than 10% for a warm anomaly close to 1 degC.
This underestimation is found to be critical when consid-
ering the warming signal in the late 21st century (differ-
ences of the period 2071-2100 w.r.t. 1971-2000 for A1B
and 20C3M scenarios, respectively), as given by a state-
of-the-art GCM, the ECHAM5-MPI model. In this case,
the different warming values resulting from the statisti-
cal downscaling methods —ranging from 2.5 to 3.7 degC
and from 2 to 3 degC, for maximum and minimum tem-
perature, respectively— are in good agreement with the
robustness significance values, so the methods detected to

be non robust are those leading to wrong climate change
signals with low values. For instance, critical differences
of approximately 1 degC are found when comparing ana-
log and regression methodologies. Therefore, the proposed
test for robustness based on warm historical periods pro-
vides and objective criterion for discarding non robust sta-
tistical downscaling techniques for climate change future
projections. This is the case, for instance, of the analog
methods, which should not be used for climate change pro-
jection of temperatures in the Iberian peninsula.

Note that analyzing the uncertainty due to different
GCMs is out of the scope of this paper and here we just
present some evidence of the suitability of the robustness
test in warm historical conditions to detect non-robust
methods when applied to future climate change projec-
tions.

Finally, note that the configurations considered in this
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paper are of quite general nature and better performance
could be obtained for each particular algorithm with some
further adaptation for the particular application at hand.
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