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Reassessing the role of the NLRP3 
inflammasome during pathogenic 
influenza A virus infection via 
temporal inhibition
Michelle D. Tate1,2, James D. H. Ong1,2, Jennifer K. Dowling1,2, Julie L. McAuley3, 

Avril B. Robertson4, Eicke Latz5,6,7, Grant R. Drummond8, Matthew A. Cooper4,  

Paul J. Hertzog1,2 & Ashley Mansell1,2

The inflammasome NLRP3 is activated by pathogen associated molecular patterns (PAMPs) during 
infection, including RNA and proteins from influenza A virus (IAV). However, chronic activation by 
danger associated molecular patterns (DAMPs) can be deleterious to the host. We show that blocking 
NLRP3 activation can be either protective or detrimental at different stages of lethal influenza A virus 
(IAV). Administration of the specific NLRP3 inhibitor MCC950 to mice from one day following IAV 
challenge resulted in hypersusceptibility to lethality. In contrast, delaying treatment with MCC950 until 
the height of disease (a more likely clinical scenario) significantly protected mice from severe and highly 
virulent IAV-induced disease. These findings identify for the first time that NLRP3 plays a detrimental 
role later in infection, contributing to IAV pathogenesis through increased cytokine production and lung 
cellular infiltrates. These studies also provide the first evidence identifying NLRP3 inhibition as a novel 
therapeutic target to reduce IAV disease severity.

Seasonal in�uenza A virus (IAV) epidemics are a major cause of morbidity and severe illness globally. �e emer-
gence of highly pathogenic H5N1 and H7N9 avian IAV strains predominately across Asia has caused sporadic 
infections in humans with high mortality. �e potential of these stains to adapt and mediate human-to-human 
transmission and to cause a pandemic poses a constant and realistic threat to global health1, particularly as many 
isolates have been identi�ed to carry genetic modi�cations that confer antiviral drug resistance. A character-
istic feature of these deadly infections is exaggerated cellular in�ux into the lungs and elevated concentrations 
of in�ammatory mediators linked to hypercytokinemia, or ‘cytokine storm’, which is indicative of poor disease 
outcomes2. Understanding the mechanisms involved in the development of a cytokine storm and fatal disease is 
imperative to allow for the development of improved and better-targeted treatments to reduce mortality associ-
ated with pathogenic IAV.

�e NLRP3 in�ammasome is an oligomeric innate immune intracellular signalling complex that senses a 
range of pathogen-, host- and environmental-derived factors3. Following activation, NLRP3 binds to the adaptor 
protein, apoptosis-associated speck-like protein containing a CARD (ASC). ASC further recruits the enzyme 
caspase-1 to form the in�ammasome complex initiating autocatalytic cleavage of caspase-1. �e NLRP3 in�am-
masome is now recognized as a major pathway by which the innate immune system recognizes and responds 
during IAV infection3. To date, IAV single-stranded RNA (ssRNA) and proton �ux via the IAV-encoded matrix-2 
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(M2) ion channel have been shown to activate the NLRP3 in�ammasome4,5, which is important in the develop-
ment of adaptive immune responses to IAV6.

Studies utilising mice lacking components of the NLRP3 in�ammasome have demonstrated its importance 
in eliciting an early, protective immune response when challenged with the mouse-adapted A/Puerto Rico/8/34 
strain (PR8, H1N1)5,7. In these studies, in�ammasome-de�cient mice were highly susceptible to both low and 
high inoculum doses of PR8 and the NLRP3 in�ammasome was shown to be required for production of pyro-
genic IL-1β  and IL-18 in the airways, cellular in�ltration and lung immunopathology. Previously studies had 
shown that mice de�cient in the IL-1R display increased mortality following infection with PR8 H1N1 despite a 
reduction in lung immunopathology8. Furthermore, IL-18-de�cient mice also demonstrated increased mortality 
to A/PR8 challenge with increased pathophysiology in the lung for the �rst 3 days of infection, which included 
pronounced virus growth with massive in�ltration of in�ammatory cells and elevated nitric oxide production9.

We recently demonstrated that the IAV virulence factor PB1-F2, derived from highly pathogenic strains, acti-
vates the NLRP3 in�ammasome inducing IL-1β  production and pulmonary in�ammation10. PB1-F2 also triggers 
excessive cellular recruitment and hyper-in�ammatory responses in the lungs of infected mice11,12 and the dele-
tion of PB1-F2 is protective to PR8-induced lethality. �ese �ndings therefore suggest that while seasonal IAV 
infections, factors such as M2 and viral RNA may induce protective in�ammasome activation, during pathogenic 
IAV infections, PB1-F2-induced activation of the in�ammasome induces a damaging environment to the host 
which can lead to the induction of disease and mortality.

In this study, we have used a small molecule inhibitor of the NLRP3 in�ammasome to examine the temporal 
contribution of the NLRP3 in�ammasome to the pathogenesis of IAV. MCC950 was �rst identi�ed amongst a 
screen of diarylsulfonylurea-containing compounds described as novel IL-1β  maturation inhibitors13. Recently, 
MCC950 was characterized as a highly speci�c inhibitor, blocking NLRP3, but not Toll-like receptor, AIM2, 
NLRC4 or NLRP1 in�ammasome activation and in�ammation14. Importantly from a clinical and speci�city 
perspective, MCC950 blocked IL-1β  secretion from PBMCs from individuals with Muckle-Wells Syndrome, a 
cryopyrin-associated periodic syndrome disease caused by a gain-of-function mutation in NLRP315. Recently, we 
further utilised MCC950 to successfully reduce in�ammation and blood pressure in a mouse model of hyperten-
sion16. �ese studies highlight the speci�city of MCC950 and its superiority to antibody-based therapies by allow-
ing temporal application (and if necessary removal) while avoiding the universal suppression of IL-1β  secretion 
by other in�ammasome complexes.

We have shown that early inhibition of NLRP3 in�ammasome exacerbates disease consistent with the pro-
tective role previously described using in�ammasome-de�cient mice. In contrast, late inhibition of the NLRP3 
in�ammasome by MCC950 alleviated disease and reduced lung in�ammation, demonstrating that the NLRP3 
in�ammasome was contributing to development of a ‘cytokine storm’ and lethality. Temporal inhibition of 
NLRP3 function therefore discloses for the �rst time that NLRP3 plays a dual role during pathogenic IAV: an early 
in�ammatory response inducing a protective environment, and a subsequent excessive damaging in�ammatory 
response that contributes to pathogenesis and mortality. �is study identi�es for the �rst time that activation of 
the in�ammasome in the later stages of IAV disease detrimentally contributes to pathogenesis and suggests that 
targeting the in�ammasome may be a therapeutic option to treat pathogenic IAV infections.

Results
Using MCC950, we examined the temporal role of NLRP3-induced inflammation during mild (102 PFU; 
Fig. 1a,d) and severe (105 PFU; Fig. 1b,c,e and f) IAV infection. HKx31 (H3N2) is an IAV reassortant of PR8 that 
expresses the hemagglutinin (HA) and neuraminidase (NA) of a H3N2 human isolate from the deadly Hong 
Kong pandemic of 1968. Unlike the mouse-adapted PR8 strain, HKx31 is similar to many pathogenic IAV strains 
such as H5N1 and H7N9 in its ability to infect macrophages17–19. Mice were intranasally treated with MCC950 
or PBS alone on days 1, 3 and 5 post-IAV infection. Consistent with an early protective role of NLRP3 reported 
previously5,7 commencement of MCC950-treatment within 24 h post-infection with either low or high doses 
of HKx31, resulted in mice displaying accelerated weight loss (Fig. 1d,e) and mortality (Fig. 1a,b) respectively. 
By comparison, uninfected mice treated with MCC950 did not display any adverse e�ects over an 8-day period 
(Fig. 1d).

We next examined the e�ect of delaying NLRP3 in�ammasome inhibition to the later stages of HKx31 infec-
tion. Mice were infected with a high dose of HKx31 (105 PFU) to induce disease and treated with MCC950 or 
PBS alone on days 3 and 5, the period during which viral load in the lungs and overt signs of illness peak. As 
expected, HKx31-infected mice exhibited signi�cant weight loss (Fig. 1f) and mortality within 4 days (Fig. 1c). 
While MCC950-treated mice also lost weight, there was a signi�cant (48h) delay in HKx31-associated lethal-
ity (p <  0.001). Signi�cantly, MCC950 treatment on day 3 post-HKx31 infection reduced total leukocytes and 
inflammatory macrophage populations in bronchoalveolar lavage (BAL; Fig. 1g,h), while neutrophils, DC 
in�ltrates and resident macrophages were not signi�cantly altered between the groups on day 4 post-infection 
(Supplementary Fig. 1a–c). Critically, on day 4 post-infection, IL-1β , TNFα , IL-6, CCL2 and CCL5 concentra-
tions were signi�cantly reduced in BAL �uid (Fig. 1i–m) while IL-6 and IL-18 were reduced in the sera (Fig. 1n,o). 
Expression of IL-12p70, IFNγ , IL-10 and CXCL1 were not altered in the lung BAL, while IL-1β , TNFα , CCL2, 
IFNγ , IL-12p70 and IL-10 levels in the serum were not a�ected (Supplemental Fig. 1e–n). Importantly, MCC950 
treatment on day 3 did not alter viral loads (Fig. 1p) suggesting the suppression of in�ammation was not due to a 
MCC950-mediated reduction in viral load.

Given MCC950 was successful in suppressing lung in�ammation following viral challenge, we next wished 
to identify within which cells MCC950 may be mediating its inhibitory e�ect. We therefore treated mice with 
MCC950 linked to �uorescent rhodamine (MCC950-R) on days 1 or 3 post-HKx31 infection. As can be seen in 
Fig. 2, MCC950-R was readily detected 3 hours following intranasal treatment in a broad range of CD45− (such 
as epithelial cells) and CD45+ cell types (e.g. macrophages and DCs), suggesting its absorption is non-speci�c.
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Figure 1. Administration of MCC950 modulates survival and reduces airway in�ammation during 
IAV- infection. Groups of wild-type C57BL/6 mice were infected intranasally with (a/d) low dose (102 PFU) 
(n =  5/group) or (b/c/e/f) high dose (n =  10 per group) HKx31 (105 PFU). Mice were treated intranasally 
with MCC950 (5 mg/kg) at indicated time points following infection (arrows). Uninfected mice treated with 
MCC950 are included for comparison. (a–c) Survival curves are shown. * * * P <  0.001, Mantel–Cox log-
rank test. (d–f) Mice were weighed daily and resulted expressed as mean percent weight change. (g–p) Mice 
(n =  5 mice/group) were treated with MCC950 on day 3 following high dose HKx31 infection and 24 hours 
later (g,h) total numbers of leukocytes in BAL were determined by viable cell counts and Ly6G+ neutrophils, 
total CD11c+ MHC Class IIlo macrophages and Ly6C+ in�ammatory macrophages in BAL were determined by 
�ow cytometry. Pro-in�ammatory cytokine levels were determined by ELISA or CBA in (i–m) BAL �uid and 
(n,o) sera. Data presented is mean ±  SEM from 5 mice per group. * p <  0.05, * * p <  0.01, * * * p <  0.001, One-way 
ANOVA. (p) Viral loads in the lung and nasal tissues by standard plaque assay.
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Having established that delayed administration of MCC950 prolonged survival and reduced in�ammatory 
cell in�ltrates in mice following infection with the clinically-relevant IAV HKx31, we next assessed the impact 
of inhibition of NLRP3 in�ammasome activity against disease parameters in mice infected with the highly viru-
lent and mouse-adapted PR8 H1N1 strain. Consistent with previous studies in in�ammasome-de�cient mice5,7, 
inhibition of NLRP3 function via treatment with MCC950 on days 1, 3 and 5 following lethal PR8 infection 
rendered mice hyper-susceptible, displaying signi�cant mortality (Fig. 3a) and weight loss (Fig. 3c). Critically, 
however, initiation of MCC950 treatment of PR8-infected mice on day 7 provided signi�cant protection from 
PR8-induced lethality (Fig. 3b), weight loss (Fig. 3d). We further assessed airway cellular in�ltration and cytokine 
concentrations following MCC950 treatment on day 7. As per Fig. 3e–h, MCC950-treated mice displayed signif-
icantly reduced total leukocytes, neutrophils and macrophages in�ltrates following PR8 infection compared to 
PBS-treated mice, while DC in�ltrates were also reduced (Supplementary Fig. 2a). In addition, MCC950 treat-
ment reduced B220+ , CD4+  and CD8+  cells, as well as in�uenza-speci�c CD8+  T cell numbers (Supplementary 
Fig. 3). Importantly, BAL concentrations of in�ammasome-dependent in�ammatory cytokines IL-1β  and IL-18 
and the CCL2 were signi�cantly reduced in MCC950-treated mice (Fig. 3i–k). Consistent with earlier results, 
MCC950 had no e�ect on viral load (Fig. 3l). In contrast to the HKx31 infection model, concentrations of IL-6, 
TNFα  and CCL5 in BAL (Supplementary Fig. 2) were unchanged by in�ammasome inhibition during PR8 infec-
tion, di�erences which may re�ect the cellular tropism of each virus20 and the timing of the MCC950 treatment 
and analysis following infection.

Discussion
�e strength of the innate immune response to IAV infection is a key determinant in clinical outcome. Excessive 
in�ammation can lead to death, particularly in the case of highly pathogenic IAV infections. However, the under-
lying mechanisms that incite excessive cellular in�ux into the lungs and cytokine storm are poorly understood. 
Previous studies using gene-de�cient mice identi�ed a protective role for the NLRP3 in�ammasome during PR8 
infection5,7. In contrast, we demonstrated that expression of full length PB1-F2 found in pathogenic IAV contrib-
utes to pathogenesis via activation of the NLRP3 in�ammasome inducing excessive cytokine production10. For 
the �rst time, temporal use of the speci�c NLRP3 inhibitor MCC950 has identi�ed that the NLRP3 in�ammas-
ome mediates both an early protective immune response, and later in infection, induces a highly in�ammatory, 
damaging state that contributes to disease pathogenesis.

�e emerging potential of H7N9 avian IAV to infect and cause death in humans is a very real threat, with 
a 38% mortality rate in hospitalized humans observed21. A recent study that sequenced the complete genomes 
of 438 H7N9, 263 related in�uenza related viruses and the 19 H7N9 human isolates, found promiscuous RNA 
swapping among H7N9 circulating in humans and avian viruses1. �is study concluded that it is reasonable to 
expect the H7N9 and other viruses studied to persist and cause substantial severe human infections and that 
H7N9 viruses should be considered a major candidate to cause a pandemic in humans. Considering the poten-
tially disastrous consequences of a highly pathogenic pandemic outbreak, identifying new therapeutics that target 
hyperin�ammatory responses of the host is of urgent priority.

It is well known that the three pandemics of the 20th century caused millions of deaths worldwide. While a 
large proportion of the fatalities have been contributed to complications arising from secondary bacterial infec-
tions22, the initial infection by the novel H1N1, H2N2 and H3N2 viruses caused remarkable in�ammatory dis-
ease and contributed signi�cantly to hospitalization of patients presenting with pneumonia-like illness. Recent 
reports analysing the clinical outcomes and hypercytokinemia of H7N9-infected patients identi�ed that ele-
vated cytokine levels including both IL-1β  and IL-18 in BAL �uid were predictive of fatal outcomes23,24. In these 

Figure 2. MCC950 is permissive to multiple cell types following IAV challenge. Groups of 4 wild-type 
C57BL/6 mice were intranasally infected with 104 PFU of HKx31 and treated with rhodamine-tagged MCC950 
(MCC950-R; 10mg/kg) on days 1 or 3 post-infection. Uptake was determined 3 h following MCC950-R 
treatment (unshaded histograms) by �ow cytometry analysis. Mice infected with HKx31 but not treated 
with MCC950-R were included for comparison (shaded histograms). Representative histograms for CD45+ 
leukocytes, macrophages (mac; CD11c+ MHC Class IIlow), dendritic cells (DC; CD11c+ MHC Class IIhigh), 
neutrophils (Neut; Ly6G+), in�ammatory macrophages (IM; Ly6C+ Ly6G−), CD45− cells and epithelial cells 
(Ep; CD45− intracellular cytokeratin C+).
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studies, in�ammatory cytokines such as CCL2, IL-6, IL-8, CCL4 and TNFα  were high in the lung and plasma of 
H7N9-infected individuals, while measurable levels of IL-1β  were only detected in BAL. We note that MCC950 
signi�cantly reduced the concentration of these in�ammatory cytokines in our in vivo models. Interestingly, 
a study by Katz and co-workers examining the early and sustained innate response of macaques to H5N1 IAV 
observed a dramatic increase of acute genes such as IL-1, IL-6 and TNFα  in the �rst 3 days following infection25. 
However, while a slight decline in induction was noted on day 4, this rebounded on day 7 to levels similar to that 
early in infection. �is suggests there may be two ‘waves’ of in�ammation further supporting the concept that 

Figure 3. In�ammasome inhibition with MCC950 provides protection and reduces in�ammation against 
IAV-induced pathogenicity. C57BL/6 mice (n =  5 mice/group) were intranasally infected with 50 PFU of PR8 
and treated with MCC950 (5mg/kg) on (a/c) days 1, 3, 5, 7 or (b/d) day 7 and 9 (arrows). (a/b) Survival curves 
are shown. * * * p <  0.001, Mantel–Cox log-rank test and represent 2 independent experiments. (c/d) Mice were 
weighed daily and resulted expressed as mean percent weight change. (e–l) Wild type C57Bl/6 mice (n =  5/
group) were intranasally inoculated with PR8 (50 PFU) alone or in combination with MCC950 (5 mg/kg) on day 
7 post-infection and euthanized 24 h later. (e–h) Total numbers of leukocytes in BAL were determined by viable 
cell counts and numbers of Ly6G+ neutrophils and Ly6C+ in�ammatory macrophages in BAL were determined 
by �ow cytometry. (I–k) Levels of pro-in�ammatory cytokines were determined by ELISA or CBA in BAL �uid. 
Data presented is mean ±  SEM from 5 mice per group of 2 independent experiments. * p <  0.05, * * p <  0.01,  
* * * p <  0.001, One-way ANOVA. (l) Viral loads in the lung and nasal tissues by standard plaque assay.
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excessive or sustained IL-1β  and IL-18 maturation by the in�ammasome may drive a ‘feed-forward’ in�ammatory 
loop. �is activation may potently activate NF-κ B inducing a milieu of in�ammatory cytokines and chemokines 
in addition to ‘priming’ the in�ammasome leading to poor clinical outcomes. It is important to note that H7N9, 
along with PR8 and other avian IAV strains, expresses a full length PB1-F2 protein which we have found to 
activate the NLRP3 in�ammasome in a similar manner to the PB1-F2 protein from PR8 (unpublished �ndings).

Recent developments and characterization of the role innate immune sensors plays in excessive in�ammation 
has led to the emergence of therapeutics to target these sensors rather than anti-virals to treat pathogenic viral 
infections26,27. Indeed, two recent studies by Vogel and colleagues have ‘repurposed’ the speci�c TLR4 antago-
nist Eritoran to protect mice from pathogenic PR8 in�uenza infection and propose a host-targeted therapeutic 
approach as a novel strategy for IAV infection28,29. Critically, these studies found that the timing of Eritoran 
treatment was crucial for protection as early or prophylactic treatment was not protective from lethality and that 
a late-acting non-TLR4 mediator of lethality must be the target. �ese studies would therefore appear to support 
and enhance our �ndings that delayed, excessive in�ammation mediated by the NLRP3 in�ammasome contrib-
utes to lethality and augurs the possibility of complementary therapies to protect from the damaging in�amma-
tion characteristic of pathogenic IAV strains.

Timing of therapeutic administration is therefore critical to clinical bene�t. As previously established, the 
NLRP3 in�ammasome is crucial to establishing a protective environment5,7. Indeed, IAV components common 
to all strains such as IAV RNA and the M2 ion channel protein that are NLRP3 in�ammasome activators4,7 which 
during infection may be responsible for initiating this ‘protective’ in�ammasome activation, leading to protective 
immunity, increased disease tolerance through cellular recruitment, and induction of tissue repair3,4,6. However, 
virulence factors such as full length PB1-F2 found in avian and pandemic strains may initiate this ‘second wave’ 
of in�ammation that drives a detrimental, pathophysiological in�ammatory component. Importantly, secondary 
bacterial infection is also a leading cause of death during severe IAV infection and has been reported in human 
cases of H7N930. Induction of in�ammasome-driven pyroptosis may therefore lead to removal of alveolar mac-
rophages and epithelial cell barriers which may result in increased susceptibility to secondary bacterial infections 
causing potentially TLR4-mediated in�ammation and pneumonia31. Consistent with our model, we have previ-
ously demonstrated that PR8 or 1918 pandemic PB1-F2 proteins induce in�ammatory disease which predisposes 
mice to secondary bacterial pneumonia12. Our study therefore, taken in conjunction TLR4 antagonism, identify 
that targeting these later stages of in�ammation that may correspond to the clinical presentation of fulminant 
infection, may provide a means of reducing in�ammation, pyroptosis, an environment favourable to secondary 
bacterial infection and reduce the cytokine and cellular in�ux burden. Consequently, targeting this ‘second wave’ 
of in�ammation may only be bene�cial in highly in�ammatory or pathogenic IAV strains. Indeed, this and previ-
ous studies4,5,7 have demonstrated, early targeting of the in�ammasome would presumably antagonize protective 
in�ammation, inducing a highly susceptible immune state and ultimately not suitable for seasonal IAV infections. 
�erefore, determining the optimal point of intervention, or the co-administration of therapies such as TLR4 and 
in�ammasome antagonists may provide more e�ective treatment for pathogenic or pandemic IAV infections.

Recent studies have further identi�ed a critical role for the NLRP3 in�ammasome in the host response to 
several viral and parasitic pathogens such as West Nile virus, Dengue virus, Trypanosoma cruzi and malaria 
(reviewed32,33). Importantly, the function and role of the NLRP3 in�ammasome was characterized by use of 
gene-de�cient mice. Our discovery that NLRP3 has both a protective and detrimental role in IAV infection and 
pathogenesis due to the temporal use of a speci�c inhibitor may suggest revisiting the role of the in�ammasome 
in these diseases, particularly diseases such as malaria which involve periodic in�ammatory episodes. While 
a valuable tool for characterizing gene function, our studies further highlight the limitations of relating gene 
function based on total gene knockout studies and emphasise the balancing role innate sensors play in inducing 
in�ammation during disease.

Development of novel therapies that speci�cally target the NLRP3 in�ammasome may therefore provide an 
e�ective treatment to reduce the mortality associated with pathogenic IAV, and o�set the ine�ectiveness of cur-
rent antiviral treatments in the later stages of infection.

Methods
Quantification of mouse pro-inflammatory cytokines. To detect cytokines, BAL �uid and sera were 
collected and stored at − 80 °C. IL-1β  was quanti�ed by ELISA according to manufacturer’s instructions (Becton 
Dickinson). Levels of IL-18 were determined by ELISA as previously described34. Levels of IL-6, CCL2, IFNβ , 
IL-10, IL-12p70, CCL5, CXCL1 and TNFα  proteins were determined by cytokine bead array, mouse in�amma-
tion and �ex kit (Becton Dickinson).

Influenza virus infection of mice. 6–8 week old male C57BL/6 mice were maintained in the Speci�c 
Pathogen Free Physical Containment Level 2 (PC2) Animal Research Facility at the Monash Medical Centre. All 
experimental procedures were approved by the Monash Medical Centre Animal Ethics Committee and exper-
imental procedures carried out in accordance with approved guidelines. IAV strains used in this study were  
A/PR/8/34 (H1N1), as well as HKx31 (H3N2), which is a high-yielding reassortant of PR8 that carries the surface 
glycoproteins of A/Aichi/2/1968 (H3N2). Viruses were grown in 10-day embryonated chicken eggs by standard 
procedures and titrated on Madin-Darby Canine Kidney (MDCK) cells as described previously35.

For virus infection studies, groups of 10 C57BL/6 mice were anesthetized and infected with 102 or 105 PFU of 
HKx31 (H3N2) or 50 PFU PR8 (H1N1) intranasally in 50 µ l PBS. Following infection, mice were treated with 
MCC950 (5 mg/kg) via the intranasal route in 50 µ l PBS at the time points indicated. Mice were weighed daily 
and assessed for visual signs of clinical disease, including inactivity, ru�ed fur, laboured breathing and hud-
dling behaviour. Animals that displayed severe clinical signs of disease were euthanized. BAL was obtained from 
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euthanized mice via �ushing the lungs three times with 1 mL of PBS. Titres of infectious virus in lung and nasal 
tissue homogenates were determined by standard plaque assay on MDCK cells.

Recovery and characterization of leukocytes from mice. For �ow cytometric analysis, BAL cells were 
treated with red blood cell lysis bu�er (Sigma Aldrich, USA) and cell numbers and viability assessed via trypan 
blue exclusion using a hemocytometer. BAL cells were incubated with Fc block (BD Biosciences, USA), fol-
lowed by staining with monoclonal antibodies to Ly6C, Ly6G, CD11c, I-Ab (BD Biosciences, USA). Neutrophils 
(Ly6G+), airway macrophages (CD11c+ I-Ad low), dendritic cells (DC; CD11c+ I-Ad high), in�ammatory mac-
rophages (IM; Ly6G− Ly6C+) were quanti�ed by �ow cytometry, as described previously36. In some experiments, 
cells were stained with PE or APC-labelled DbPA224 (acid polymerase; SSLENFRAYV) or DbNP366 (nucleopro-
tein; ASNENMETM)-speci�c MHC-I tetramers (a gi� from Department of Microbiology and Immunology, �e 
University of Melbourne), as previously described37. Live cells (propidium iodide negative) were analysed using 
a BD FACS Canto II �ow cytometer (BD Biosciences, USA) and total cell counts were calculated from viable cell 
counts performed via trypan blue exclusion.

Statistical analysis. When comparing three or more sets of values, a one-way analysis of variance (ANOVA) 
was used with Tukey’s post-hoc analysis. A Student’s t-test was used when comparing 2 values (two-tailed, 
two-sample equal variance). Survival proportions were compared using the Mantel–Cox log-rank test.  
A p value <  0.05 was considered statistically signi�cant.
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