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Abstract: Modeling the thin-layer drying of foods is based on describing the moisture ratio versus
time data by using a suitable mathematical model or models. Several models were proposed for
this purpose and almost all studies were related to the application of these models to the data, a
comparison and selecting the best-fitted model. A careful inspection of the existing drying data in
literature revealed that there are only a limited number of curves and, therefore, the use of some
models, especially the complex ones and the ones that require a transformation of the data, should
be avoided. These were listed based on evidence with the use of both synthetic and published drying
data. Moreover, the use of some models were encouraged, again based on evidence. Eventually, some
suggestions were given to the researchers who plan to use mathematical models for their drying
studies. These will help to reduce the time of the analyses and will also avoid the arbitrary usage of
the models.
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1. Introduction

One common method to preserve food and agricultural products is drying, in which,
moisture is removed by evaporation and simultaneous heat and mass transfer takes place
between the sample and the adjacent environment [1,2]. Drying also reduces the weight
and the volume of food products, which leads to a reduction in the expenses for packaging,
storage and transportation [3]. In addition, the shelf-life of the foods are extended by
drying. Although hot air drying is the most common method, different techniques can also
be used, such as microwave drying [4] and infrared radiation drying [5].

Drying is an energy-intensive application because 10–15% of the total energy require-
ments of all food industries in developed countries are estimated to be consumed by
this operation [6–8]. Modeling and describing the drying data is important for selecting
the suitable drying conditions, which are, in turn, significant for the equipment design,
optimization and improving the food quality [8,9]. Therefore, mathematical modeling,
including thin-layer modeling, can be an essential tool not only for describing the ex-
perimental data but also for the optimization of the drying process, and, eventually, for
reducing the total energy requirement [8].

Thin-layer drying is the term used for the lumped systems [10]; that is to say, a uniform
temperature is generally assumed because of the thin structure of the fruit or vegetable that
has been sliced before drying. Although the thin-layer models are classified as theoretical,
semi-empirical (semi-theoretical) and empirical [10], the empirical equations are still widely
used because of their simplicity and ease of computation [11,12]. Parameters of theoretical
models have physical meaning because they are based on the general theory of heat and
mass transfer laws, and they take into account the fundamentals of the drying process.
Moreover, these models can be used to explain the phenomena occurring during drying.
Nevertheless, they are more difficult to apply compared to semi-empirical and empirical
models [12,13]. The semi-empirical models are derived from Fick’s second law of diffusion
(theoretical model) or Newton’s law of cooking i.e., a simplified version of Fick’s second
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law of diffusion [8,14,15]. The empirical models are generally formulated from the direct
relationship between the moisture content and drying time, and their parameters may have
no physical meaning [15,16].

Modeling the thin-layer drying of foods is mainly based on describing the moisture
ratio (MR) versus time (t) data by using suitable mathematical model or models. Many
different models were used for this purpose and most of the studies were about the fitting
of these models to the data, a comparison of the models and selecting the best-fitted
model or models among all. Unfortunately, the comparisons of the models were based
on fitting performances, which were generally the coefficient of determination (R2), and
uncertainties (standard error or confidence interval) of the model parameters were rarely
given together with the parameter values. However, they are as important as the parameter
values themselves, and parameter estimates are uninterpretable if the uncertainties are
omitted [17]. This is usually the case in thin-layer drying modeling studies. Moreover,
the same models with different mathematical structures were fitted to the same data, and
comparisons were also performed. In fact, these are the same models with exactly the same
fit—see below—and, hence, there is no need for a comparison.

Review articles on thin-layer models are available in literature [8,10,16,18] and more
than 20 models were investigated in some of these reviews. Hence, the objective of this
communication is not to add another contribution to the existing ones, but to show some
common mistakes that could be made during the usage of thin-layer models, and also to
give some beneficial but simple suggestions that would improve the analysis and gain
time for researchers in the field. Note that, although thin-layer models were classified as
theoretical, semi-empirical and empirical, no classification will be performed in this review,
and we will examine the models without considering their background.

2. Types of Drying Curves

A careful inspection of the drying data available in literature suggested that the
number of drying curves is limited and, in general, can be divided into four categories
that are simulated in Figure 1: (i) concave (tailing) curves, which are simple exponential
decaying curves (Figure 1a); (ii) strong tailing curves, which are similar to concave curves,
though their initial period is much steeper (Figure 1b); (iii) sigmoid-type I or slightly convex
followed by concave curves (Figure 1c); and (iv) sigmoid-type II or concave followed by
slight convex curves (Figure 1d). Concave and strong tailing curves are too numerous to list.
On the other hand, sigmoid curves (either type I or II) are rarely observed. Sigmoid-type
I curves can be seen from Sadeghi et al. [5], although the convex (or shoulder) section
is slightly observable (see also Figure 1c). Sigmoid-type II curves can be seen from Zhu
and Shen [19].

Sadeghi et al. [5] listed 100 models, including feed-forward neural networks that could
be used for thin-layer modeling. In fact, most of the drying curves can be described by
models with only two adjustable parameters; therefore, we will try to answer “Are all
of those models proposed for drying data necessary to describe the limited number of
curves?” or “Can we eliminate some of those models and focus more on the secondary
modeling, i.e., the effect of temperature on the primary model’s parameters?”. However,
before that, we will discuss modifications of the existing models, the transformation of
drying data and the use of complex models to eliminate some of those models.
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Figure 1. Simulated drying curves: concave or tailing (a), strong tailing (b), sigmoid-type I (convex
followed by concave) (c) and sigmoid-type II (concave followed by convex) (d).

3. Modification of the Models

Models proposed to use drying curves are sometimes modified. These modifica-
tions may result in better parameter properties, such as fewer correlations between the
parameters, and they may also be useful to avoid convergence failure; however, these
modifications lead to no improvement in the original model’s fit in the case of drying
modeling. Let us consider the Page model [20]:

MR = exp(−k·tn) (1)
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where MR is the moisture ratio (dependent variable) and t is the time (independent vari-
able). The model has two parameters (k and n) and can be used to describe many drying
curves—these curves are shown in Figure 1a–c. This model can be modified as such:

MR = exp
[
−(K·t)n] (2)

Equation (2), which is known as the modified Page [21] model, also has two pa-
rameters (K and n), and note that k = Kn. It can be said that both models, without any
calculation, should have identical fits with the same parameter n, R2 and RMSE values,
since n determines the shape—see below (unfortunately, in some published studies, the
results of the Page model [Equation (1)] and modified Page model [Equation (2)] differ,
which is unacceptable). The only difference should be the values of k and K.

Published data were used to show the application of the models. These datasets
were selected because (i) they are at different temperatures (min: 50 ◦C, max: 80 ◦C), (ii)
air velocities (min: 0.5 m/s, max: 1.3 m/s) and (iii) thickness (min: 3 mm, max: whole
fruit), (iv) they have a different number of data points (min: 8, max: 35) and (v) their
time-scales are different (min: 75 min, max: 720 min). The fits of both models (Page and
modified Page) are shown in Figure 2 for one dataset. The Page or modified Page model
produced a reasonable fit visually, although the last two data points seemed to be the
outliers. Furthermore, R2 = 0.9960 and RMSE = 0.0192 also revealed a good fit to the data.
The parameter values were obtained as k = 0.0227 ± 0.0023a, K = 0.0331 ± 0.0005a and
n = 1.1102 ± 0.0288a, where superscript a is the standard error. The results of all datasets
for the Page and modified Page models are presented in Table 1. As expected, both models
had the same fit, meaning that they are not rival models. Therefore, fitting these models
to the same data and comparing them is meaningless. However, unfortunately, this was
the case for many published studies. Admittedly, the correlation between the parameters
of the modified Page model [Equation (2)] was low, whereas parameter correlations were
high for the Page model [Equation (1)], although this had no effect on parameter estimation.
Moreover, the errors on K (for modified Page) were less than the errors on k (Page model)—
see Table 1. It could be said that a modification of the Page model can improve the
correlation between the parameters, but it certainly has no effect on the model’s fit.
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Table 1. Result of the fit of the Page [Equation (1)] and modified Page [Equation (2)] models to the
published data.

Sample T (◦C) Air Velocity
(m/s)

Thickness
(mm) Page Modified Page R2 RMSE Reference

Apple 50 1.3 5.0 k = 0.0023 ± 0.0003
n = 1.3182 ± 0.0295

K = 0.0098 ± 0.0001
n = 1.3182 ± 0.0295 0.9988 0.0142 [22]

Apricot 70 0.5 Whole fruit k = 0.0018 ± 0.0002
n = 1.1445 ± 0.0226

K = 0.0039 ± 5.3 × 10−5

n = 1.1445 ± 0.0226
0.9963 0.0216 [23]

Peach 65 0.8 3.5 k = 0.0083 ± 0.0019
n = 1.1237 ± 0.0519

K = 0.0141 ± 0.0004
n = 1.1237 ± 0.0519 0.9973 0.0196 [24]

Peach 60 0.946 3.0 k = 0.0227 ± 0.0023
n = 1.1102 ± 0.0288

K = 0.0331 ± 0.0005
n = 1.1102 ± 0.0288 0.9960 0.0192 [19]

Pear 80 1.3 5.0 k = 0.0042 ± 0.0007
n = 1.3205 ± 0.0395

K = 0.0158 ± 0.0003
n = 1.3182 ± 0.0295 0.9984 0.0175 [22]

Another modification of the Page model [Equation (1)] is the following [25]:

MR = exp
{
−
[

k·
(

t
L2

)]n}
(3)

Once again, without any calculation, this model should have the same fit with the
Page and modified Page models (n also determines the shape here) and should also have
the same R2. The values of RMSE will be different because now we have three parameters
(k, L and n) not two. However, using a complex model with the identical fit is not a valid
option; therefore, this modification is not reasonable.

4. Models That Require Transformation

Some models that are used to describe drying data require transformation, where, data
[whether dependent (MR) or independent (t) variable] are first transformed and then the
regression is applied. However, the transformation of the dependent variable changes the
error structure of the data [26]. Drying data of foods can be considered as homoscedastic
(see the data of Lutovska et al. [27], and Turan and Fıratlıgil [28]) and transformation can
make the data heteroscedastic. Hence, the models that require transformation should be
used with caution.

Two frequently used models requiring transformation to describe drying data are the
Diamante [29] and Thompson [30] models:

ln(− ln MR) = a + b· ln t + c·(ln t)2 (4)

t = a· ln MR + b·(ln MR)2 (5)

In the Diamante model [Equation (4)], the double logarithm of MR is used with
a logarithmic transformation of t, and in the Thomson model [Equation (5)], the inde-
pendent variable (t) and logarithmic transformation of the dependent variable (MR) are
replaced. Linear regression can be applied since both models are linear in their parameters.
Diamante et al. [29] also admitted that the aim of the transformation is to use polyno-
mial regression (i.e., linear regression), which is available in almost all software and also
some scientific calculators. In the case of drying data, however, there is no reason for
transformation [22], and software/freeware for non-linear regression are accessible for
everyone nowadays.

Synthetic but realistic drying data (MR versus t) were generated with equal uncertainty
(error bar) for each datum point in order to investigate how transformation affects the
error structure. Common practice in the modeling studies of drying data is to report the
average values without the standard deviations; even the replicate measurements are
available. Hence, it is not easy to find published drying data with uncertainties. Even if
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the error bars are available, it is also not easy to digitize and extract such data; therefore,
synthetic homoscedastic data were used to show the effect of transformation. The results
are presented in Figure 3.
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Figure 3. Synthetic drying data with equal error bars (a), fit of Diamante model—red line
[Equation (4)] to the transformed data, where R2 = 0.9987 and RMSE = 0.0331 (b) and fit of Thompson
model—black line [Equation (5)] to the transformed data, where R2 = 0.9966 and RMSE = 0.4546 (c).

It is clear that both models changed the error structure of the original data which
were initially homoscedastic (Figure 3a). In the Diamante model [Equation (4)], at low
time values, high errors were observed, and as time increased (so did lnt), errors were
reduced to a certain period, and then increased again (Figure 3b). On the other hand, as
time increased, errors increased for the Thomson model [Equation (5)] (Figure 3c). It can
be said that the transformation carried out for both models ended up with heteroscedastic
data, which is unwanted [26]. In conclusion, models that require transformation should not
be used for drying data, or the heteroscedasticity of the data should be taken into account
after the transformation; otherwise, regression will be flawed [31].

5. Use of Complex Models for Drying Data

In this section, we tried to fit some complex models to published drying data of some
fruits, such as apple, pear and peach, and we also commented on those fits. By complex,
we mean that the models have at least three or more adjustable parameters.

The first model used was the modified Henderson and Pabis equation [32], which is
given below:

MR = a· exp(−k·t) + b· exp(−g·t) + c· exp(−h·t) (6)

Equation (6) with six parameters (a, k, b, g, c and h) was used for all datasets given
in Table 1, and the parameter values with their standard errors and the goodness-of-fit
indices (R2 and RMSE) were obtained. R2 values were between 0.9880–0.9946 and RMSE
values were between 0.0285–0.0609. The model also fitted well to the data visually, which
is shown in Figure 4 for one dataset. However, these can be misleading because some of
the parameters in the model were statistically insignificant (p > 0.05) and there is no reason
to use a complex model. In fact, parameters k and h were insignificant (p > 0.05) for all
datasets, and in three out of the five data sets, parameter g was also insignificant together
with k and h. This is also shown in Table 2 for the same data set given in Figure 4.
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Table 2. Parameter estimates, standard errors and p values of the modified Henderson and Pabis
equation [Equation (6)] to the data shown in Figure 4.

Parameter Estimate Standard Error p Value

a 0.3369 0.0406 <0.0001
k 0.0343 0.0869 0.6994
b 0.3486 0.0580 <0.0001
g 0.0343 0.3713 0.9278
c 0.3364 0.0580 <0.0001
h 0.0343 0.3583 0.9251

The statistical significance of a single parameter in a model equation can be established
by looking at the p value (the probability of being wrong in concluding that there is a
relationship between the dependent and independent variables). Traditionally, p values
higher than 0.05 indicate a statistically insignificant association between dependent and
independent variables [33].

The second equation was a two-term model [34], which is similar to the modified
Henderson and Pabis model but has fewer parameters:

MR = a· exp(−k·t) + b· exp(−g·t) (7)

The question arises “does the two-term model [Equation (7)], with four parameters,
have a satisfactory fit and significant parameters for the same datasets, or does it not?”
Therefore, we tried this model, as we did the modified Henderson and Pabis model before.
The R2 values were again between 0.9880–0.9946 and the RMSE values were between
0.0266–0.0527. The model [Equation (7)] had an identical fit (with the same R2 but slightly
lower RMSE because it has a lower number of parameters. It is also unfortunate that, in
most drying studies, RMSE is defined with only the number of data points; however, the
number of parameters in the models should also exist in the formula [35]), and for four out
of the five data sets parameters, k and g were insignificant (p > 0.05). In addition, in one
data set, all parameters (a, k, b and g) were statistically significant (p ≤ 0.05). Table 3 shows
the results for the same data set given in Figure 4.
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Table 3. Parameter estimates, standard errors and p values of the two-term model [Equation (7)] to
the data shown in Figure 4.

Parameter Estimate Standard Error p Value

a 0.5134 0.0380 <0.0001
k 0.0343 0.1004 0.7372
b 0.5085 0.0542 <0.0001
g 0.0343 0.5067 0.9469

One can argue that both the Henderson–Pabis and the two-term models have similar
structures and that it may not be surprising that both can have insignificant parameters.
Hence, as a third equation, we proposed to use the Midilli model [36], which also has four
parameters (a, k, n and b):

MR = a· exp(−k·tn) + b·t (8)

For the same datasets, the R2 values were between 0.9990–0.9996 and the RMSE values
were between 0.0071–0.0146, indicating that the Midilli model [Equation (8)] produced a
much better fit than the previous models. Parameter b was insignificant (p > 0.05) in only
two out of the five cases, and all other parameters were significant (p ≤ 0.05). The fit is
shown in Figure 5 together with the other models in this section, and Table 4 presents the
parameter values and standard errors in which all parameters were significant (p ≤ 0.05).
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Figure 5. Drying data of peach slices at 60 ◦C (gray circles). Solid blue line indicates the fit of
modified Henderson–Pabis model [Equation (6)] (R2 = 0.9931 and RMSE = 0.0285) and two-term
model [Equation (7)] (R2 = 0.9931 and RMSE = 0.0266). Dashed red line indicates the fit of Midilli
model [Equation (8)] (R2 = 0.9989 and RMSE = 0.0104). Original data are from Zhu and Shen [19].

Table 4. Parameter estimates, standard errors and p values of the Midilli–Küçük model [Equation (8)]
to the data shown in Figure 5.

Parameter Estimate Standard Error p Value

a 0.9984 0.0098 <0.0001
k 0.0319 0.0036 <0.0001
n 0.9688 0.0361 <0.0001
b −0.0012 0.0002 <0.0001
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The results presented here revealed that the complex models should be used with
caution because parameters can be insignificant, and a simpler model with significant
parameters can be used instead with the same degree of fit or with a slight loss of goodness-
of-fit. It should also be noted that the significances of the parameters are highly dependent
on the dataset and model structure. Nevertheless, it could be said that the simple models
(models with or fewer than three adjustable parameters) should be preferred for the drying
of foods.

Two problems may further arise if there are many parameters in a model equation:
(i) Available programs for non-linear regression generally obtain the parameter values
by minimizing the sum of square errors between experimental data and model fits (least-
squares method) and may require the initial estimate of the parameters. Since the non-linear
regression is an iterative procedure, the initial values for each parameter should be entered
to start the iteration [37]. If the initial values are poorly selected, software cannot find a
solution (known as convergence failure) within the iteration range. (ii) There is a possibility
that the final values of the parameters found by the program do not belong to the best fit.
This is due to obtaining a false or local minimum and is usually not a problem when only
one or two parameters are being fit [38].

6. Models Proposed for Drying of Foods

Before proposing the models to be used for the drying of foods, we would like to
summarize the results up until now, and we would also like to answer the question that
we have asked in Section 2. There is no reason to use all the models available for drying
data. The following models can be safely eliminated without hesitation:

(i) Models that require transformed data;
(ii) Complex models or models that have more than three parameters;
(iii) Models that have the same fit with another model but have more parameters.

Moreover, it is known that when t = 0, MR = 1, and when t→ ∞, MR→ 0; hence, the
models that do not satisfy the initial and final conditions can be eliminated too. Let us
consider two models given below:

MR = exp(−k·t) (9)

MR = a· exp(−k·t) (10)

According to Equation (10), when t = 0, MR = a, and, as can be guessed, parameter
a should be obtained by a regression that is as close to 1 (according to our results, the a
values were always > 0.99). Equation (10) has some flexibility compared to Equation (9),
where the initial condition is satisfied. Nevertheless, this model was eliminated because
of the initial condition failure, and the same was also applied for the models that do not
satisfy the final condition.

The thin-layer models eliminated and reasons for this elimination are listed in Table 5.
Those models can still be used; however, researchers who will use those models should
be aware of the drawbacks. Initial (t = 0, MR = 1) and final (t→ ∞, MR→ 0) conditions
may not be big issues but using the models with insignificant parameters is not a valid
option and should be avoided. Another remark is that the models that were commented
on as “insignificant parameters” in Table 5 may be specific to our datasets. Nevertheless,
the probability of obtaining insignificant parameters is high and, therefore, these models
should be checked by the researchers before presenting the results.

Suggested models for thin-layer drying are given in Table 6. The simplest model on
the list was the Lewis or Newton model [39] because they only have one parameter but
being simple does not always mean being the best. The Lewis model has a limited usage
because it may be only used for the curves shown in Figure 1a. Some of the models given
in Table 6 have exactly the same fit with each other; therefore, using one of them should be
enough. Another important remark is that the meaning of the parameters should be well
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understood so that their effect on the shape of the drying curve can be established. See the
following model for example:

MR = 10−(
t
δ )

n
(11)

Table 5. Eliminated thin-layer drying models and the reasons for this elimination.

Model No. Model Name Model Equation Reason Reference

1 Henderson–Pabis MR = a· exp(−k·t) Initial condition [40]

2 Modified
Henderson–Pabis

MR = a· exp(−k·t)
+ b· exp(−g·t) + c· exp(−h·t)

Initial condition
Insignificant
parameters

[32]

3 Modified Page II MR = exp
{
−
[
k·
(

t
L2

)]n} Simpler version with
the same fit but fewer

parameters is available
[25]

4 Logarithmic
(Asymptotic) MR = a· exp(−k·t) + c Initial condition

Final condition [41]

5 Midilli MR = a· exp(−k·tn) + b·t

Initial condition
Final condition

Insignificant
parameters

[36]

6 Modified Midilli I MR = exp(−k·tn) + b·t
Final condition

Insignificant
parameters

[42]

7 Modified Midilli II MR = a· exp(−k·tn) + b

Initial condition
Final condition

Insignificant
parameters

[43]

8 Two-term MR = a· exp(−k·t) + b· exp(−g·t)
Initial condition

Insignificant
parameters

[34]

9 Modified two-term I MR = a· exp(−k·t) + (1− a)· exp(−k·b·t) Insignificant
parameters [44]

10 Modified two-term II MR = a· exp(−k·t) + (1− a)· exp(−g·t) Insignificant
parameters [45]

11 Diamante ln(− ln MR) = a + b· ln t + c·(ln t)2 Transformation
Heteroscedastic data [29]

12 Thompson t = a· ln MR + b·(ln MR)2 Transformation
Heteroscedastic data [30]

13 Wang–Singh MR = 1 + b·t + a·t2 Final condition [46]

14 Aghbashlo MR = exp
(
− k1·t

1+k2·t

)
Final condition [47]

This model only has two parameters (δ and n), and it also satisfies the initial and final
conditions. Hence, it can be used to describe the drying data of fruits and vegetables [22,48].
Moreover, it produces the same fit with the Page (or the Modified Page) and the Weibull
model given in Table 6 as mentioned above, but the question that arises here is whether the
parameters have a physical significance or not. The effect of different parameter values
on the curve’s shape is demonstrated in Figure 6. Parameter n is the shape parameter
because, if n < 1, the drying curve has a strong tailing, if n = 1, it is concave (or tailing)
and if n > 1, then it has a sigmoid-type I shape (Figure 6a). Parameter δ is the time (its
unit can be min or h) necessary to reduce the initial MR (1.0) to MR/10 (0.1). In Figure 6a,
δ = 4; therefore, all curves intersect at t = 4 MR = 0.1 regardless of the value of the shape
parameter, and, in Figure 6b, δ was set to 2, 4 and 8, respectively; hence, each curve passed
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t = 2 MR = 0.1, t = 4 MR = 0.1 and t = 8 MR = 0.1, respectively. It should be admitted that
not all parameters in a model could have a specific or interpretable meaning as in this
example. Nonetheless, researchers should try to understand the effects of parameters on
the shape of the curve, and a simulation by using different parameter values can be very
beneficial for this purpose.

Table 6. Suggested thin-layer drying models.

Model No. Model Name Model Equation Comment Reference

1 Lewis (Newton) MR = exp(−k·t) Simplest model, but not flexible enough to
describe many drying data [39]

2 Page * MR = exp(−k·tn)
Simple, and can be used to describe drying data

of many foods. Strong correlation between
the parameters.

[20]

3 Modified Page I * MR = exp
[
−(K·t)n] Same fit with the Page model; however, it has

fewer errors on the rate parameter (K), and also
correlation between the parameters are low.

[21]

4 Weibull * MR = exp
[
−
( t

α

)β
] Same fit with the Page model, low parameter

correlation (same as Modified Page I). [49]

5 Weibull I * MR = 10−(
t
δ )

n

Same fit with the Page model, mild parameter
correlation. Interpretable time parameter (δ)

that can be roughly estimated by visual
inspection of the data.

[22]

6 Modified two-term III MR = a· exp(−k·t) +
(1− a)· exp(−k·a·t) Mild to strong parameter correlation [50]

* These models have the same fit; therefore, use of one of them is sufficient.
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7. Conclusions

This study reviewed some of the thin-layer drying models that are commonly used to
describe the drying kinetics of different foods. The main conclusions are:

– The arbitrary use of thin-layer drying models should be avoided;
– Complex models, most of the time, result in insignificant parameters;
– Models with two adjustable parameters work well for drying data;
– Logarithmic transformation generates heteroscedastic data and should not be used.

Moreover,

1. Drying data should not be presented with only the average values. Even using the
average values with the error bars is not a good choice [37,51]. Instead, all genuine
replicates should be entered, and the data should be modeled as such, since the
replicates are generally independent [37];

2. The simplest possible model that can describe the data should be considered as the
best model (known as Ockham’s razor or rule of parsimony). Most drying data can
be described with the two-parameter models. Therefore, it is best to try them first.
More complex models should only be used if the simple model is not adequate to
describe the data;

3. Two different forms of the same models (having the same number of parameters)
should not be used together because they are not rival models but the same mod-
els with different mathematical structures. The one that has less uncertainty on
parameters and also a correlation between the parameters could be preferred;

4. Parameters should also be listed together with their standard errors or confidence inter-
vals, since uncertainties could also give information on the parameters’ significance;
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5. The meaning of the parameters and the effect of their values on the curve’s shape
should be well known, even if the model used is an empirical one;

6. The R2 alone is not adequate to compare the models, and the RMSE and residuals
should also be used to compare the models with the same number of parameters. A
comparison of the models that have a different number of parameters (i.e., comparing
a three-parameter model with a two-parameter model) may require different analyses,
such as the F-test.

After selecting a suitable model or models, more efforts can be focused on finding
secondary models. This would also lead to the prediction of drying curves under non-
isothermal conditions, which is usually the case in microwave drying.
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