Reassuring and Troubling Views on Graph-Based Semi-Supervised Learning

Yoshua Bengio, Olivier Delalleau and Nicolas Le Roux

Université de Montréal

ICML Workshop - August 7th, 2005

Graph-Based Semi-Supervised Learning

2 Transduction, Induction, Approximation

• Task of **binary classification** with labels $y_i \in \{-1, 1\}$

- Task of **binary classification** with labels $y_i \in \{-1, 1\}$
- n = l + u labeled and unlabeled samples

- Task of **binary classification** with labels $y_i \in \{-1, 1\}$
- n = l + u labeled and unlabeled samples
- Input part for all samples: $X = \{x_1, x_2, \dots, x_n\}$

- Task of **binary classification** with labels $y_i \in \{-1, 1\}$
- n = l + u labeled and unlabeled samples
- Input part for all samples: $X = \{x_1, x_2, \dots, x_n\}$
- Target part for **labeled** samples: $\mathbf{Y}_{I} = (y_{1}, y_{2}, \dots, y_{l})^{\top}$

- Task of **binary classification** with labels $y_i \in \{-1, 1\}$
- n = l + u labeled and unlabeled samples
- Input part for all samples: $X = \{x_1, x_2, \dots, x_n\}$
- Target part for **labeled** samples: $\mathbf{Y}_I = (y_1, y_2, \dots, y_l)^{\top}$
- Transduction $\Rightarrow \hat{\mathbf{Y}}_u = (\hat{y}_{l+1}, \hat{y}_{l+2}, \dots, \hat{y}_n)^\top$

- Task of **binary classification** with labels $y_i \in \{-1, 1\}$
- n = l + u labeled and unlabeled samples
- Input part for all samples: $X = \{x_1, x_2, \dots, x_n\}$
- Target part for **labeled** samples: $\mathbf{Y}_I = (y_1, y_2, \dots, y_l)^{\top}$
- Transduction $\Rightarrow \hat{\mathbf{Y}}_u = (\hat{y}_{l+1}, \hat{y}_{l+2}, \dots, \hat{y}_n)^\top$
- Induction $\Rightarrow \hat{y} : \mathbf{x} \to \hat{y}(\mathbf{x})$

Curse of Dimensionality

Cost Criterion for Semi-Supervised Learning

A good estimated labeling $\hat{\mathbf{Y}} = (\hat{\mathbf{Y}}_I, \hat{\mathbf{Y}}_u)$ should be:

Cost Criterion for Semi-Supervised Learning

A good estimated labeling $\hat{\mathbf{Y}} = (\hat{\mathbf{Y}}_l, \hat{\mathbf{Y}}_u)$ should be:

① consistent with the given labels: $\hat{\mathbf{Y}}_{I} \simeq \mathbf{Y}_{I}$

Cost Criterion for Semi-Supervised Learning

A good estimated labeling $\hat{\mathbf{Y}} = (\hat{\mathbf{Y}}_{l}, \hat{\mathbf{Y}}_{u})$ should be:

- ① consistent with the given labels: $\hat{\mathbf{Y}}_{I} \simeq \mathbf{Y}_{I}$
- Smooth on the manifold where the data lie (manifold assumption):

 $\hat{y}_i \simeq \hat{y}_j$ when $oldsymbol{x}_i$ close to $oldsymbol{x}_j$

Cost Criterion for Semi-Supervised Learning

A good estimated labeling $\hat{\mathbf{Y}} = (\hat{\mathbf{Y}}_{l}, \hat{\mathbf{Y}}_{u})$ should be:

- ① consistent with the given labels: $\hat{\mathbf{Y}}_{I} \simeq \mathbf{Y}_{I}$
- Smooth on the manifold where the data lie (manifold assumption):

 $\hat{y}_i \simeq \hat{y}_j$ when \boldsymbol{x}_i close to \boldsymbol{x}_j

Trade-off between (1) and (2) \Rightarrow cost function:

$$C(\hat{\mathbf{Y}}) = \sum_{i=1}^{l} (\hat{y}_i - y_i)^2 + \frac{\mu}{2} \sum_{i,j=1}^{n} \mathbf{W}_{ij} (\hat{y}_i - \hat{y}_j)^2$$

with $\boldsymbol{W}_{ij} = W_X(\boldsymbol{x}_i, \boldsymbol{x}_j)$ a positive weighting function (e.g kernel)

Graph-Based Cost Criterion

Graph Laplacian: $\boldsymbol{L}_{ii} = \sum_{j \neq i} \boldsymbol{W}_{ij}$ and $\boldsymbol{L}_{ij} = -\boldsymbol{W}_{ij}$.

$$C(\hat{\mathbf{Y}}) = \sum_{i=1}^{l} (\hat{y}_i - y_i)^2 + \frac{\mu}{2} \sum_{i,j=1}^{n} \mathbf{W}_{ij} (\hat{y}_i - \hat{y}_j)^2$$
$$= \|\hat{\mathbf{Y}}_l - \mathbf{Y}_l\|^2 + \mu \hat{\mathbf{Y}}^\top \mathbf{L} \hat{\mathbf{Y}}$$

Graph-Based Cost Criterion

Graph Laplacian: $\boldsymbol{L}_{ii} = \sum_{j \neq i} \boldsymbol{W}_{ij}$ and $\boldsymbol{L}_{ij} = -\boldsymbol{W}_{ij}$.

$$C(\hat{\mathbf{Y}}) = \sum_{i=1}^{l} (\hat{y}_i - y_i)^2 + \frac{\mu}{2} \sum_{i,j=1}^{n} \mathbf{W}_{ij} (\hat{y}_i - \hat{y}_j)^2$$
$$= \|\hat{\mathbf{Y}}_l - \mathbf{Y}_l\|^2 + \mu \hat{\mathbf{Y}}^\top \mathbf{L} \hat{\mathbf{Y}}$$

 $C(\hat{\mathbf{Y}})$ is minimized when

$$(\mathbf{S} + \mu \mathbf{L}) \ \hat{\mathbf{Y}} = \mathbf{Y}$$

with $S_{ij} = \delta_{i=j} \delta_{i \le l}$ \Rightarrow linear system (*n* unknowns and equations)

Curse of Dimensionality

From Matrix Inversion to Label Propagation

Linear system rewrites for a labeled point

$$\hat{y}_i = rac{\sum_j oldsymbol{W}_{ij} \hat{y}_j + rac{1}{\mu} oldsymbol{y}_i}{\sum_j oldsymbol{W}_{ij} + rac{1}{\mu}}$$

and for an unlabeled point

$$\hat{y}_i = rac{\sum_j \boldsymbol{W}_{ij} \hat{y}_j}{\sum_j \boldsymbol{W}_{ij}}.$$

Curse of Dimensionality

From Matrix Inversion to Label Propagation

Linear system rewrites for a labeled point

$$\hat{y}_{i}^{(t+1)} = rac{\sum_{j} m{W}_{ij} \hat{y}_{j}^{(t)} + rac{1}{\mu} y_{i}}{\sum_{j} m{W}_{ij} + rac{1}{\mu}}$$

and for an unlabeled point

$$\hat{y}_i^{(t+1)} = \frac{\sum_j \boldsymbol{W}_{ij} \hat{y}_j^{(t)}}{\sum_j \boldsymbol{W}_{ij}}$$

 \Rightarrow **Jacobi** or **Gauss-Seidel** iterative algorithms (but there are more refined algorithms for sparse system resolution)

Related Work and Variants

- M. Szummer and T. Jaakkola (2002): Partially labeled classification with Markov random walks
- X. Zhu, Z. Ghahramani and J. Lafferty (2003): Semi-supervised learning using Gaussian fields and harmonic functions
- D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, B.
 Schölkopf (2004): *Learning with local and global consistency*
- M. Belkin, I. Matveeva and P. Niyogi (2004): *Regularization* and Semi-supervised Learning on Large Graphs

• • • • •

Electric networks (Doyle and Snell, 1984; Zhu, Ghahramani and Lafferty, 2003): the estimated label at a node is the same as its potential in an electric network where resistors between nodes are such that $\mathbf{R}_{ij} = \mathbf{W}_{ij}^{-1}$, negative labels are linked to a -1V generator, and positive labels to a +1V generator.

- Electric networks (Doyle and Snell, 1984; Zhu, Ghahramani and Lafferty, 2003): the estimated label at a node is the same as its potential in an electric network where resistors between nodes are such that $\mathbf{R}_{ij} = \mathbf{W}_{ij}^{-1}$, negative labels are linked to a -1V generator, and positive labels to a +1V generator.
- **Markov random walks** (Szummer and Jaakkola, 2002; Zhu, Ghahramani and Lafferty, 2003): with labels 0 and 1 (instead of 0 and -1), the estimated label at a node is equal to the probability of ending at a sample with label 1 when starting from the node and performing a random walk with transition probabilities proportional to the weights W_{ij} .

- Electric networks (Doyle and Snell, 1984; Zhu, Ghahramani and Lafferty, 2003): the estimated label at a node is the same as its potential in an electric network where resistors between nodes are such that $\mathbf{R}_{ij} = \mathbf{W}_{ij}^{-1}$, negative labels are linked to a -1V generator, and positive labels to a +1V generator.
- **Markov random walks** (Szummer and Jaakkola, 2002; Zhu, Ghahramani and Lafferty, 2003): with labels 0 and 1 (instead of 0 and -1), the estimated label at a node is equal to the probability of ending at a sample with label 1 when starting from the node and performing a random walk with transition probabilities proportional to the weights W_{ij} .
- Heat diffusion, ...

Why Induction?

The previously presented techniques perform transduction.

Out-of-sample predictions

What to do with a new test point?

We could retrain, but computationally expensive $O(n^3)$ (or $O((kn)^{3/2})$ if sparse graph with *k* neighbors).

Trade-off

If we could do induction cheaply, even at the price of losing a bit of the advantage of transduction, it might be useful in practice!

Induction Criterion in a Transductive Framework

Induction as an **approximation to transduction**: force predictor's response to remain fixed on previous training data (labeled and unlabeled), when test point is added.

From Transduction to Induction

Solving the linear system $\Rightarrow \hat{\mathbf{Y}}$ (transduction). From a new point \mathbf{x} and already computed $\hat{\mathbf{Y}}$:

$$\min_{\hat{y}(\boldsymbol{x})} C(\hat{y}(\boldsymbol{x})) = C(\hat{\boldsymbol{Y}}) + \frac{\mu}{2} \sum_{i=1}^{n} W_X(\boldsymbol{x}_i, \boldsymbol{x}) (\hat{y}_i - \hat{y}(\boldsymbol{x}))^2$$

From Transduction to Induction

Solving the linear system $\Rightarrow \hat{\mathbf{Y}}$ (transduction). From a new point \mathbf{x} and *already computed* $\hat{\mathbf{Y}}$:

$$\min_{\hat{y}(\boldsymbol{x})} C(\hat{y}(\boldsymbol{x})) = C(\hat{\boldsymbol{Y}}) + \frac{\mu}{2} \sum_{i=1}^{n} W_X(\boldsymbol{x}_i, \boldsymbol{x}) (\hat{y}_i - \hat{y}(\boldsymbol{x}))^2$$

$$\Rightarrow \hat{y}(\boldsymbol{x}) = \frac{\sum_{i=1}^{n} W_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}) \hat{y}_{i}}{\sum_{i=1}^{n} W_{X}(\boldsymbol{x}_{i}, \boldsymbol{x})}$$

Induction like Parzen Windows, but using estimated labels $\hat{\mathbf{Y}}$

Curse of Dimensionality

Faster (Approximate) Training from Subset

• Previous algorithms are at least quadratic in *n*.

Faster (Approximate) Training from Subset

- Previous algorithms are at least quadratic in *n*.
- Induction formula ⇒ could train only on subset S containing the labeled samples and **some** unlabeled ones.
 For *x_i* ∈ *R* = *X* \ *S*:

$$\hat{y}_i \simeq rac{\sum_{j \in \mathcal{S}} oldsymbol{W}_{ij} \hat{y}_j}{\sum_{j \in \mathcal{S}} oldsymbol{W}_{ij}}$$

i.e. $\hat{\mathbf{Y}}_R \simeq \overline{\mathbf{W}}_{RS} \hat{\mathbf{Y}}_S$.

Faster (Approximate) Training from Subset

- Previous algorithms are at least quadratic in *n*.
- Induction formula ⇒ could train only on subset S containing the labeled samples and **some** unlabeled ones.
 For *x_i* ∈ *R* = *X* \ S:

$$\hat{\mathbf{y}}_i \simeq rac{\sum_{j \in \mathcal{S}} \mathbf{W}_{ij} \hat{\mathbf{y}}_j}{\sum_{j \in \mathcal{S}} \mathbf{W}_{ij}}$$

i.e.
$$\hat{\mathbf{Y}}_R \simeq \overline{\mathbf{W}}_{RS} \hat{\mathbf{Y}}_S$$
.

Better: minimize the full cost over $\hat{\mathbf{Y}}_{S}$ only. $C(\hat{\mathbf{Y}}) = C(\hat{\mathbf{Y}}_{S}, \hat{\mathbf{Y}}_{R}) \simeq C(\hat{\mathbf{Y}}_{S}, \overline{\mathbf{W}}_{RS} \hat{\mathbf{Y}}_{S}) = C'(\hat{\mathbf{Y}}_{S})$

 \Rightarrow linear system with only |S| unknowns.

Curse of Dimensionality

More Approximations

$$\begin{aligned} \mathcal{Y}(\hat{\mathbf{Y}}_{S}) &= \underbrace{\|\hat{\mathbf{Y}}_{I} - \mathbf{Y}_{I}\|^{2}}_{C_{L}} & O(I) \\ &+ \underbrace{\mu \hat{\mathbf{Y}}_{S}^{\top} \mathbf{L}_{SS} \hat{\mathbf{Y}}_{S}}_{C_{SS}} & O(|S|^{2}) \\ &+ \underbrace{2\mu \hat{\mathbf{Y}}_{R}^{\top} \mathbf{L}_{RS} \hat{\mathbf{Y}}_{S}}_{C_{RS}} & O(|S||R|) \\ &+ \underbrace{\mu \hat{\mathbf{Y}}_{R}^{\top} \mathbf{L}_{RR} \hat{\mathbf{Y}}_{R}}_{C_{RR}} & O(|R|^{2}) \end{aligned}$$

Cost computation complexity: $O(|R|^2)$ is too much!

More Approximations

$$\mathcal{Y}(\hat{\mathbf{Y}}_{S}) = \underbrace{\|\hat{\mathbf{Y}}_{I} - \mathbf{Y}_{I}\|^{2}}_{C_{L}} \quad O(I)$$

$$+ \underbrace{\mu \hat{\mathbf{Y}}_{S}^{\top} \mathbf{L}_{SS} \hat{\mathbf{Y}}_{S}}_{C_{SS}} \quad O(|S|^{2})$$

$$+ \underbrace{2\mu \hat{\mathbf{Y}}_{R}^{\top} \mathbf{L}_{RS} \hat{\mathbf{Y}}_{S}}_{C_{RS}} \quad O(|S||R|)$$

Cost computation complexity: O(|S||R|) is ok!

• Keeping *C_{RR}* would lead to a useless algorithm (too slow)

- Keeping *C_{RR}* would lead to a useless algorithm (too slow)
- Removing C_{RS} would mean training only on S (too simple)

- Keeping *C_{RR}* would lead to a useless algorithm (too slow)
- Removing *C_{RS}* would mean training only on *S* (too simple)
- Thus we have no choice but to use the proposed cost

- Keeping *C_{RR}* would lead to a useless algorithm (too slow)
- Removing C_{RS} would mean training only on S (too simple)
- Thus we have no choice but to use the proposed cost
- Experiments show it is often better! The approximation

$$\hat{y}_i \simeq rac{\sum_{k \in \mathcal{S}} \boldsymbol{W}_{ik} \hat{y}_k}{\sum_{k \in \mathcal{S}} \boldsymbol{W}_{ik}}$$

can be very poor if $x_i \in R$ is far from all samples $x_k \in S$, which can lead to irrelevant terms in C_{RR} with a significant weight \Rightarrow overall accuracy is worse

Subset Selection

Subset Selection

Random: fast,

Subset Selection

Random: fast, easy,

Subset Selection

 Random: fast, easy, crappy.
 Main problem = does not "fill the space" well enough ⇒ bad approximation by the induction formula (some points have no near neighbors in the subset)

Subset Selection

- Random: fast, easy, crappy.
 Main problem = does not "fill the space" well enough ⇒ bad approximation by the induction formula (some points have no near neighbors in the subset)
- 2 **Heuristic**: greedy construction of subset. Start with the labeled points ($S = \{x_1, ..., x_l\}$) and iteratively add

$$\boldsymbol{x}_{i}^{*} = \operatorname{argmax}_{\boldsymbol{x}_{i}} dist(\boldsymbol{x}_{i}, S) = \operatorname{argmin}_{\boldsymbol{x}_{i}} \sum_{j \in S} \boldsymbol{W}_{ij}$$

i.e. choose the point x_i "farthest" from the current subset. (NB: additional tricks to eliminate outliers and sample more points near decision surface)

Experimental Results

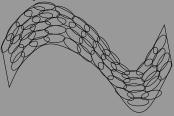
Table: Comparative Classification Error (Induction)

% labeled	LETTERS	MNIST	COVTYPE
1%			
NoSub	56.0	35.8	47.3
RandSub _{subOnly}	59.8	29.6	44.8
RandSub	57.4	27.7	75.7
SmartSub	55.8	24.4	45.0
5%			
NoSub	27.1	12.8	37.1
RandSub _{subOnly}	32.1	14.9	35.4
RandSub	29.1	12.6	70.6
SmartSub	28.5	12.3	35.8
10%			
NoSub	18.8	9.5	34.7
RandSub _{subOnly}	22.5	11.4	32.4
RandSub	20.3	9.7	64.7
SmartSub	19.8	9.5	33.4

More comparisons between *RandSub* and *SmartSub* on 8 more UCI datasets \Rightarrow *SmartSub* always performs better.

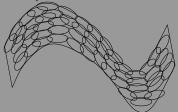
Curse of Dimensionality: Geometric Intuition

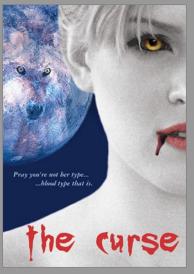
If we have to tile the space or manifold where bulk of the distribution is concentrated, then will need **exponential number of "patches"**:



Curse of Dimensionality: Geometric Intuition

If we have to tile the space or manifold where bulk of the distribution is concentrated, then will need **exponential number of "patches"**:

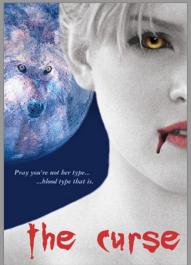




Curse of Dimensionality: Geometric Intuition

If we have to tile the space or manifold where bulk of the distribution is concentrated, then will need **exponential number of "patches"**:

For classification, no need to cover the whole space/manifold, only decision surface, but still has dim. d - 1.



Curse of Dimensionality: Geometric Intuition

If we have to tile the space or manifold where bulk of the distribution is concentrated, then will need **exponential number of "patches"**:

For classification, no need to cover the whole space/manifold, only decision surface, but still has dim. d - 1. May require $O(\text{const}^d)$ examples!

Curse of Dimensionality (1)

Labeling function: $\hat{y}(\boldsymbol{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\boldsymbol{x}_{i}, \boldsymbol{x})$

Labeling function: $\hat{y}(\mathbf{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\mathbf{x}_{i}, \mathbf{x})$ **Curse #1** With W_{X} a local similarity function the decision surface is highly constrained \Rightarrow may need lots of **unlabeled** data to be faithfully represented.

Labeling function: $\hat{y}(\mathbf{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\mathbf{x}_{i}, \mathbf{x})$ **Curse #1** With W_{X} a local similarity function the decision surface is highly constrained \Rightarrow may need lots of **unlabeled** data to be faithfully represented.

General argument (also applies to local kernel machines such as SVMs):

Labeling function: $\hat{y}(\mathbf{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\mathbf{x}_{i}, \mathbf{x})$ **Curse #1** With W_{X} a local similarity function the decision surface is highly constrained \Rightarrow may need lots of **unlabeled** data to be faithfully represented.

General argument (also applies to local kernel machines such as SVMs):

for any point *x* on the (estimated) decision surface, a smoothness property *P* is verified in neighborhood *N*(*x*) (e.g. with Gaussian kernel, the normal vector is constrained in a ball of radius proportional to *σ*)

Labeling function: $\hat{y}(\mathbf{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\mathbf{x}_{i}, \mathbf{x})$ **Curse #1** With W_{X} a local similarity function the decision surface is highly constrained \Rightarrow may need lots of **unlabeled** data to be faithfully represented.

General argument (also applies to local kernel machines such as SVMs):

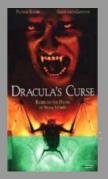
- for any point *x* on the (estimated) decision surface, a smoothness property *P* is verified in neighborhood *N*(*x*) (e.g. with Gaussian kernel, the normal vector is constrained in a ball of radius proportional to *σ*)
- ² in order to approximate the (true) decision surface correctly, $\mathcal{N}(\mathbf{x})$ must be small enough, as *P* is only valid locally (e.g. the true normal vector may vary a lot)

Labeling function: $\hat{y}(\mathbf{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\mathbf{x}_{i}, \mathbf{x})$ **Curse #1** With W_{X} a local similarity function the decision surface is highly constrained \Rightarrow may need lots of **unlabeled** data to be faithfully represented.

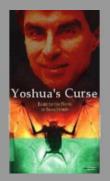
General argument (also applies to local kernel machines such as SVMs):

- for any point *x* on the (estimated) decision surface, a smoothness property *P* is verified in neighborhood *N*(*x*) (e.g. with Gaussian kernel, the normal vector is constrained in a ball of radius proportional to *σ*)
- ² in order to approximate the (true) decision surface correctly, $\mathcal{N}(\mathbf{x})$ must be small enough, as *P* is only valid locally (e.g. the true normal vector may vary a lot)
- 3 for $\mathcal{N}(\mathbf{x})$ to be small, one needs many training samples (possibly a number exponential in the dimension)

Curse of Dimensionality (2)



Labeling function: $\hat{y}(\boldsymbol{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\boldsymbol{x}_{i}, \boldsymbol{x})$



Labeling function: $\hat{y}(\mathbf{x}) = \sum_{i} \hat{y}_{i} \overline{W}_{X}(\mathbf{x}_{i}, \mathbf{x})$

Curse #2 The number of labeled samples must be higher than the number of regions with constant label

 \Rightarrow may need lots of **labeled** data if there are many such regions (possibly exponential in the dimension)

Highly Varying: Parity Function

parity:

$$(b_1,\ldots,b_d)\in\{0,1\}^d\mapsto iggl\{egin{array}{c} 1 ext{ if even } \sum_{i=1}^d b_i \ -1 ext{ otherwise} \end{array}$$

Highly Varying: Parity Function

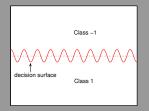
parity:

$$(b_1,\ldots,b_d)\in\{0,1\}^d\mapsto iggl\{egin{array}{c} 1 ext{ if even } \sum_{i=1}^d b_i \ -1 ext{ otherwise} \end{array}$$

Theorem

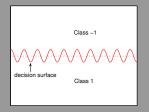
A Gaussian kernel classifier needs at least 2^{d-1} Gaussians (i.e. support vectors) to learn the parity function (when Gaussians have fixed width and are centered on training points).

Simple but Highly Variable Functions: Difficult to Learn



This "complex" sinusoidal decision surface requires many Gaussians to learn, but in "C" language, it has a high prior. ***** KEY RESULT *****

Simple but Highly Variable Functions: Difficult to Learn



This "complex" sinusoidal decision surface requires many Gaussians to learn, but in "C" language, it has a high prior. ***** KEY RESULT *****

Corollary of (Schmitt 2002)

If \exists a line in \mathbb{R}^d that intersects *m* times with the decision surface *S* (and is not included in *S*), then one needs at least $\lceil \frac{m}{2} \rceil$ Gaussians (of same width) to learn *S* with a Gaussian kernel classifier.

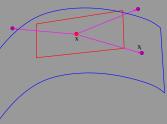
Local-Derivative Kernels

The derivative of kernel predictor *f* is $\frac{\partial f(x)}{\partial x} = \sum_{i=1}^{n} \alpha_i \frac{\partial K(x,x_i)}{\partial x}$.

Local-Derivative Kernels

The derivative of kernel predictor f is $\frac{\partial f(x)}{\partial x} = \sum_{i=1}^{n} \alpha_i \frac{\partial K(x,x_i)}{\partial x}$. Local-derivative kernel: when $\partial f/\partial x$ is (approximately) contained in the span of the vectors $(x - x_i)$ with x_i a neighbor of x:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \simeq \sum_{\mathbf{x}_j \in \mathcal{N}(\mathbf{x})} \gamma_j (\mathbf{x} - \mathbf{x}_j)$$



Local-Derivative Kernels

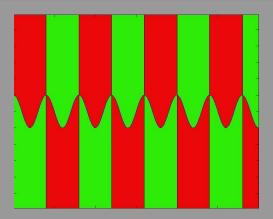
The derivative of kernel predictor f is $\frac{\partial f(x)}{\partial x} = \sum_{i=1}^{n} \alpha_i \frac{\partial K(x,x_i)}{\partial x}$. *Local-derivative kernel*: when $\frac{\partial f}{\partial x}$ is (approximately) contained in the span of the vectors $(x - x_j)$ with x_j a neighbor of x:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \simeq \sum_{\mathbf{x}_j \in \mathcal{N}(\mathbf{x})} \gamma_j (\mathbf{x} - \mathbf{x}_j)$$

Bad News!

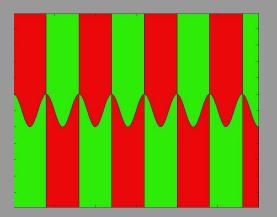
Shape of manifold (tangent vector at *x*) mostly determined by neighbors of *x* in the graph.

Semi-Supervised Need of Examples



Need unlabeled examples along *sinus* decision surface + labeled ones in each class region.

Semi-Supervised Need of Examples

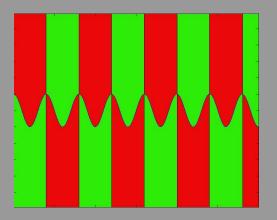


Need unlabeled examples along *sinus* decision surface + labeled ones in each class region. Number of labeled and unlabeled examples to learn such decision surface may grow **exponentially** with dimension.

Theorem

After running a label propagation algorithm minimizing quadratic cost, number of regions with constant estimated label \leq number of labeled examples.

Semi-Supervised Need of Examples



Need unlabeled examples along sinus decision surface + labeled ones in each class region. Number of labeled and unlabeled examples to learn such decision surface may grow exponentially with dimension. This could be easily learned with a non-local learning algorithm.

Theorem

After running a label propagation algorithm minimizing quadratic cost, number of regions with constant estimated label \leq number of labeled examples.

Most common non-parametric approaches based on smoothness prior, which leads to "local" learning algorithms, e.g. most kernel-based ones, yielding to **curse of dimensionality** = difficulty to learn structured but highly variable functions.

Most common non-parametric approaches based on smoothness prior, which leads to "local" learning algorithms, e.g. most kernel-based ones, yielding to **curse of dimensionality** = difficulty to learn structured but highly variable functions.

No-free-lunch thm: no universal recipe without appropriate prior.

Most common non-parametric approaches based on smoothness prior, which leads to "local" learning algorithms, e.g. most kernel-based ones, yielding to **curse of dimensionality** = difficulty to learn structured but highly variable functions.

No-free-lunch thm: no universal recipe without appropriate prior.

Smoothness may not be the only way to obtain "simple functions": e.g. According to Kolmogorov complexity, sinus(x) and parity(x) are simple yet they are highly variable (apparently complex) functions.

Most common non-parametric approaches based on smoothness prior, which leads to "local" learning algorithms, e.g. most kernel-based ones, yielding to **curse of dimensionality** = difficulty to learn structured but highly variable functions.

No-free-lunch thm: no universal recipe without appropriate prior.

Smoothness may not be the only way to obtain "simple functions": e.g. According to Kolmogorov complexity, sinus(x) and parity(x) are simple yet they are highly variable (apparently complex) functions.

Is there hope? Humans seem to learn highly-varying yet structured functions! There might be loose enough priors on general classes of functions that allow non-local learning algorithms to learn them.

Simple non-parametric setting ⇒ powerful non-parametric semi-supervised algorithm

- Simple non-parametric setting ⇒ powerful non-parametric semi-supervised algorithm
- Can scale to large datasets thanks to sparsity / subset selection

- Simple non-parametric setting ⇒ powerful non-parametric semi-supervised algorithm
- Can scale to large datasets thanks to sparsity / subset selection
- Interesting physical analogies

- Simple non-parametric setting ⇒ powerful non-parametric semi-supervised algorithm
- Can scale to large datasets thanks to sparsity / subset selection
- Interesting physical analogies
- Limitations of local weights: curse of dimensionality

- Simple non-parametric setting ⇒ powerful non-parametric semi-supervised algorithm
- Can scale to large datasets thanks to sparsity / subset selection
- Interesting physical analogies
- Limitations of local weights: curse of dimensionality
- Is there hope to discover **non-local** semi-supervised learning? yes!

References

Belkin, M., Matveeva, I., and Niyogi, P. (2004).

Regularization and semi-supervised learning on large graphs.

In Shawe-Taylor, J. and Singer, Y., editors, COLT'2004. Springer.

Delalleau, O., Bengio, Y., and Le Roux, N. (2005)

Efficient non-parametric function induction in semi-supervised learning.

n Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics.

Doyle, P. G. and Snell, J. L. (1984).

Random walks and electric networks.

Mathematical Association of America.

Szummer, M. and Jaakkola, T. (2002

Partially labeled classification with markov random walks.

In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, Cambridge, MA. MIT Press.

Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., and Schölkopf, B. (2004).

Learning with local and global consistency.

In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information Processing Systems 16, Cambridge, MA. MIT Press.

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003).

Semi-supervised learning using Gaussian fields and harmonic functions. In $\mathit{ICML'2003}$