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Notations

Task of binary classification with labels yi ∈ {−1, 1}

n = l + u labeled and unlabeled samples

Input part for all samples: X = {x 1, x 2, . . . , x n}
Target part for labeled samples: Y l = (y1, y2, . . . , yl)

>

Transduction ⇒ Ŷ u = (ŷl+1, ŷl+2, . . . , ŷn)
>

Induction ⇒ ŷ : x → ŷ(x )
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Cost Criterion for Semi-Supervised Learning

A good estimated labeling Ŷ = (Ŷ l , Ŷ u) should be:

1 consistent with the given labels: Ŷ l ' Y l

2 smooth on the manifold where the data lie (manifold
assumption):

ŷi ' ŷj when x i close to x j

Trade-off between (1) and (2) ⇒ cost function:

C(Ŷ ) =
l∑

i=1

(ŷi − yi)
2 +

µ

2

n∑
i,j=1

W ij(ŷi − ŷj)
2

with W ij = WX (x i , x j) a positive weighting function (e.g kernel)
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Graph-Based Cost Criterion

Graph Laplacian: L ii =
∑

j 6=i W ij and L ij = −W ij .

C(Ŷ ) =
l∑

i=1

(ŷi − yi)
2 +

µ

2

n∑
i,j=1

W ij(ŷi − ŷj)
2

= ‖Ŷ l − Y l‖2 + µŶ
>

LŶ

C(Ŷ ) is minimized when

(S + µL) Ŷ = Y

with S ij = δi=jδi≤l

⇒ linear system ( n unknowns and equations)
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(ŷi − yi)
2 +

µ

2

n∑
i,j=1

W ij(ŷi − ŷj)
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From Matrix Inversion to Label Propagation

Linear system rewrites for a labeled point

ŷi =

∑
j W ij ŷj + 1

µyi∑
j W ij + 1

µ

and for an unlabeled point

ŷi =

∑
j W ij ŷj∑
j W ij

.
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From Matrix Inversion to Label Propagation

Linear system rewrites for a labeled point

ŷ (t+1)
i =

∑
j W ij ŷ

(t)
j + 1

µyi∑
j W ij + 1

µ

and for an unlabeled point

ŷ (t+1)
i =

∑
j W ij ŷ

(t)
j∑

j W ij
.

⇒ Jacobi or Gauss-Seidel iterative algorithms (but there are
more refined algorithms for sparse system resolution)
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Related Work and Variants

M. Szummer and T. Jaakkola (2002): Partially labeled
classification with Markov random walks

X. Zhu, Z. Ghahramani and J. Lafferty (2003):
Semi-supervised learning using Gaussian fields and
harmonic functions

D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, B.
Schölkopf (2004): Learning with local and global
consistency

M. Belkin, I. Matveeva and P. Niyogi (2004): Regularization
and Semi-supervised Learning on Large Graphs

. . .
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Analogies

Electric networks (Doyle and Snell, 1984; Zhu,
Ghahramani and Lafferty, 2003): the estimated label at a
node is the same as its potential in an electric network
where resistors between nodes are such that R ij = W−1

ij ,
negative labels are linked to a −1V generator, and positive
labels to a +1V generator.

Markov random walks (Szummer and Jaakkola, 2002;
Zhu, Ghahramani and Lafferty, 2003): with labels 0 and 1
(instead of 0 and −1), the estimated label at a node is
equal to the probability of ending at a sample with label 1
when starting from the node and performing a random walk
with transition probabilities proportional to the weights W ij .

Heat diffusion , . . .
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Why Induction?

The previously presented techniques perform transduction .

Out-of-sample predictions

What to do with a new test point?

We could retrain, but computationally expensive O(n3) (or
O((kn)3/2) if sparse graph with k neighbors).

Trade-off

If we could do induction cheaply, even at the price of losing a bit
of the advantage of transduction, it might be useful in practice!

Induction Criterion in a Transductive Framework

Induction as an approximation to transduction : force
predictor’s response to remain fixed on previous training data
(labeled and unlabeled), when test point is added.
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From Transduction to Induction

Solving the linear system ⇒ Ŷ (transduction ).
From a new point x and already computed Ŷ :

minŷ(x )C(ŷ(x )) = C(Ŷ ) +
µ

2

n∑
i=1

WX (x i , x )(ŷi − ŷ(x ))2

⇒ ŷ(x ) =

∑n
i=1 WX (x i , x )ŷi∑n
i=1 WX (x i , x )

Induction like Parzen Windows, but using estimated labels Ŷ
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Faster (Approximate) Training from Subset

Previous algorithms are at least quadratic in n.

Induction formula ⇒ could train only on subset S
containing the labeled samples and some unlabeled ones.
For x i ∈ R = X \ S:

ŷi '
∑

j∈S W ij ŷj∑
j∈S W ij

i.e. Ŷ R ' W RSŶ S.

Better: minimize the full cost over Ŷ S only.
C(Ŷ ) = C(Ŷ S, Ŷ R) ' C(Ŷ S, W RSŶ S) = C′(Ŷ S)

⇒ linear system with only |S| unknowns.
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More Approximations

C′(Ŷ S) = ‖Ŷ l − Y l‖2︸ ︷︷ ︸
CL

O(l)

+ µŶ S
>

LSSŶ S︸ ︷︷ ︸
CSS

O(|S|2)

+ 2µŶ R
>

LRSŶ S︸ ︷︷ ︸
CRS

O(|S||R|)

+ µŶ R
>

LRRŶ R︸ ︷︷ ︸
CRR

O(|R|2)

Cost computation complexity: O(|R|2) is too much!
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More Approximations

C′(Ŷ S) = ‖Ŷ l − Y l‖2︸ ︷︷ ︸
CL

O(l)

+ µŶ S
>

LSSŶ S︸ ︷︷ ︸
CSS

O(|S|2)

+ 2µŶ R
>

LRSŶ S︸ ︷︷ ︸
CRS

O(|S||R|)

place holder
so that the two slides
look the same

Cost computation complexity: O(|S||R|) is ok!
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Justifications for the Proposed Cost

Keeping CRR would lead to a useless algorithm (too slow)

Removing CRS would mean training only on S (too simple)

Thus we have no choice but to use the proposed cost

Experiments show it is often better! The approximation

ŷi '
∑

k∈S W ik ŷk∑
k∈S W ik

can be very poor if x i ∈ R is far from all samples x k ∈ S,
which can lead to irrelevant terms in CRR with a significant
weight ⇒ overall accuracy is worse
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ŷi '
∑

k∈S W ik ŷk∑
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Subset Selection

1 Random :

fast, easy, crappy.
Main problem = does not “fill the space” well enough ⇒
bad approximation by the induction formula (some points
have no near neighbors in the subset)

2 Heuristic : greedy construction of subset. Start with the
labeled points (S = {x 1, . . . , x l}) and iteratively add

x ∗i = argmaxx i
dist(x i , S) = argminx i

∑
j∈S

W ij

i.e. choose the point x i “farthest” from the current subset.
(NB: additional tricks to eliminate outliers and sample more
points near decision surface)
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Experimental Results

Table: Comparative Classification Error (Induction)

% labeled LETTERS MNIST COVTYPE
1%

NoSub 56.0 35.8 47.3
RandSubsubOnly 59.8 29.6 44.8

RandSub 57.4 27.7 75.7
SmartSub 55.8 24.4 45.0

5%
NoSub 27.1 12.8 37.1

RandSubsubOnly 32.1 14.9 35.4
RandSub 29.1 12.6 70.6

SmartSub 28.5 12.3 35.8
10%

NoSub 18.8 9.5 34.7
RandSubsubOnly 22.5 11.4 32.4

RandSub 20.3 9.7 64.7
SmartSub 19.8 9.5 33.4

More comparisons between RandSub and SmartSub on 8 more UCI datasets ⇒
SmartSub always performs better.
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Curse of Dimensionality: Geometric Intuition

If we have to tile the space or manifold
where bulk of the distribution is con-
centrated, then will need exponential
number of “patches” :

For classification, no need to cover the
whole space/manifold, only decision
surface, but still has dim. d − 1.

May require O(constd) examples!
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Curse of Dimensionality (1)

Labeling function: ŷ(x ) =
∑

i ŷiW X (x i , x )

Curse #1 With WX a local similarity function the decision
surface is highly constrained ⇒ may need lots of unlabeled
data to be faithfully represented.
General argument (also applies to local kernel machines such
as SVMs):

1 for any point x on the (estimated) decision surface, a
smoothness property P is verified in neighborhood N (x )
(e.g. with Gaussian kernel, the normal vector is
constrained in a ball of radius proportional to σ)

2 in order to approximate the (true) decision surface
correctly, N (x ) must be small enough, as P is only valid
locally (e.g. the true normal vector may vary a lot)

3 for N (x ) to be small, one needs many training samples
(possibly a number exponential in the dimension)
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Curse of Dimensionality (2)

Labeling function: ŷ(x ) =
∑

i ŷiW X (x i , x )

Curse #2 The number of labeled samples must be
higher than the number of regions with constant la-
bel
⇒ may need lots of labeled data if there are many
such regions (possibly exponential in the dimen-
sion)
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Highly Varying: Parity Function

parity:

(b1, . . . , bd) ∈ {0, 1}d 7→
{

1 if even
∑d

i=1 bi

−1 otherwise

Theorem

A Gaussian kernel classifier needs at least 2d−1 Gaussians (i.e.
support vectors) to learn the parity function (when Gaussians
have fixed width and are centered on training points).
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Simple but Highly Variable Functions: Difficult to Learn

decision surface

Class −1

Class 1

This “complex” sinusoidal decision surface requires many
Gaussians to learn, but in “C” language, it has a high prior.
*** KEY RESULT ***

Corollary of (Schmitt 2002)

If ∃ a line in Rd that intersects m times with the decision surface
S (and is not included in S), then one needs at least dm

2 e
Gaussians (of same width) to learn S with a Gaussian kernel
classifier.
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Local-Derivative Kernels

The derivative of kernel predictor f is ∂f (x)
∂x =

∑n
i=1 αi

∂K (x ,xi )
∂x .

Local-derivative kernel: when
∂f/∂x is (approximately) con-
tained in the span of the vec-
tors (x − xj) with xj a neighbor
of x :

∂f (x)

∂x
'

∑
xj∈N (x)

γj(x − xj)

x
xi

Bad News!

Shape of manifold (tangent vector at x) mostly determined
by neighbors of x in the graph.
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Semi-Supervised Need of Examples
Need unlabeled exam-
ples along sinus decision
surface + labeled ones in
each class region.

Number of labeled and
unlabeled examples to
learn such decision sur-
face may grow exponen-
tially with dimension.
This could be easily
learned with a non-local
learning algorithm.

Theorem

After running a label propagation algorithm minimizing
quadratic cost, number of regions with constant estimated label
≤ number of labeled examples.



Graph-Based Semi-Supervised Learning Transduction, Induction, Approximation Curse of Dimensionality

Semi-Supervised Need of Examples
Need unlabeled exam-
ples along sinus decision
surface + labeled ones in
each class region.
Number of labeled and
unlabeled examples to
learn such decision sur-
face may grow exponen-
tially with dimension.

This could be easily
learned with a non-local
learning algorithm.

Theorem

After running a label propagation algorithm minimizing
quadratic cost, number of regions with constant estimated label
≤ number of labeled examples.



Graph-Based Semi-Supervised Learning Transduction, Induction, Approximation Curse of Dimensionality

Semi-Supervised Need of Examples
Need unlabeled exam-
ples along sinus decision
surface + labeled ones in
each class region.
Number of labeled and
unlabeled examples to
learn such decision sur-
face may grow exponen-
tially with dimension.
This could be easily
learned with a non-local
learning algorithm.

Theorem

After running a label propagation algorithm minimizing
quadratic cost, number of regions with constant estimated label
≤ number of labeled examples.



Graph-Based Semi-Supervised Learning Transduction, Induction, Approximation Curse of Dimensionality

Philosophical Question

Most common non-parametric approaches based on
smoothness prior, which leads to “local” learning algorithms,
e.g. most kernel-based ones, yielding to curse of
dimensionality = difficulty to learn structured but highly
variable functions.

No-free-lunch thm: no universal recipe without appropriate
prior.
Smoothness may not be the only way to obtain “simple
functions”: e.g. According to Kolmogorov complexity, sinus(x)
and parity(x) are simple yet they are highly variable (apparently
complex) functions.

Is there hope? Humans seem to learn highly-varying yet
structured functions! There might be loose enough priors on
general classes of functions that allow non-local learning
algorithms to learn them.
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Conclusion

Simple non-parametric setting ⇒ powerful non-parametric
semi-supervised algorithm

Can scale to large datasets thanks to sparsity / subset
selection

Interesting physical analogies

Limitations of local weights: curse of dimensionality

Is there hope to discover non-local semi-supervised
learning? yes!
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