
Journal of Artificial Intelligence Research 65 (2019) 87-180 Submitted 10/2018; published 05/2019

REBA: A Refinement-Based Architecture for Knowledge

Representation and Reasoning in Robotics

Mohan Sridharan M.SRIDHARAN@BHAM.AC.UK

School of Computer Science

University of Birmingham, UK

Michael Gelfond MICHAEL.GELFOND@TTU.EDU

Department of Computer Science

Texas Tech University, USA

Shiqi Zhang SZHANG@CS.BINGHAMTON.EDU

Department of Computer Science

SUNY Binghamton, USA

Jeremy Wyatt JLW@CS.BHAM.AC.UK

School of Computer Science

University of Birmingham, UK

Abstract

This article describes REBA, a knowledge representation and reasoning architecture for robots

that is based on tightly-coupled transition diagrams of the domain at two different levels of granu-

larity. An action language is extended to support non-boolean fluents and non-deterministic causal

laws, and used to describe the domain’s transition diagrams, with the fine-resolution transition

diagram being defined as a refinement of the coarse-resolution transition diagram. The coarse-

resolution system description, and a history that includes prioritized defaults, are translated into an

Answer Set Prolog (ASP) program. For any given goal, inference in the ASP program provides a

plan of abstract actions. To implement each such abstract action, the robot automatically zooms to

the part of the fine-resolution transition diagram relevant to this abstract transition. The zoomed

fine-resolution system description, and a probabilistic representation of the uncertainty in sensing

and actuation, are used to construct a partially observable Markov decision process (POMDP). The

policy obtained by solving the POMDP is invoked repeatedly to implement the abstract transition

as a sequence of concrete actions. The fine-resolution outcomes of executing these concrete ac-

tions are used to infer coarse-resolution outcomes that are added to the coarse-resolution history

and used for subsequent coarse-resolution reasoning. The architecture thus combines the com-

plementary strengths of declarative programming and probabilistic graphical models to represent

and reason with non-monotonic logic-based and probabilistic descriptions of uncertainty and in-

complete domain knowledge. In addition, we describe a general methodology for the design of

software components of a robot based on these knowledge representation and reasoning tools, and

provide a path for proving the correctness of these components. The architecture is evaluated in

simulation and on a mobile robot finding and moving target objects to desired locations in indoor

domains, to show that the architecture supports reliable and efficient reasoning with violation of

defaults, noisy observations and unreliable actions, in complex domains.

c©2019 AI Access Foundation. All rights reserved.

SRIDHARAN, GELFOND, ZHANG, & WYATT

1. Introduction

Robots are increasingly being used to assist humans in homes, offices, warehouses, and other com-

plex domains. To truly assist humans in such domains, robots need to be re-taskable and robust. We

consider a robot to be re-taskable if its reasoning system enables it to achieve a wide range of goals

in a wide range of environments. We consider a robot to be robust if it is able to cope with unreliable

sensing, unreliable actions, changes in the environment, and the existence of atypical environments,

by representing and reasoning with different descriptions of knowledge and uncertainty. While there

have been many attempts, satisfying these desiderata remains an open research problem.

Robotics and artificial intelligence (AI) researchers have developed many approaches for robot

reasoning, drawing on ideas from two very different classes of systems for knowledge representa-

tion and reasoning, which are based on logic and probability theory respectively. Systems based on

logic incorporate compositionally structured commonsense knowledge about objects and relations,

and support powerful generalization of reasoning to new situations. Systems based on probability

reason optimally (or near optimally) about the effects of numerically quantifiable uncertainty in

sensing and actuation. There have been many attempts to combine the benefits of these two classes

of systems, including work on joint (i.e., logic-based and probabilistic) representations of state and

action, and algorithms for reasoning in such formalisms. These approaches provide significant ex-

pressive power, but they also impose a significant computational burden. More efficient (and often

approximate) reasoning algorithms for such unified probabilistic-logical paradigms are being de-

veloped. However, practical robot systems that combine abstract task-level logical reasoning with

probabilistic reasoning and action execution, link, rather than unify, their logic-based and proba-

bilistic representations. Such an approach is pursued primarily because roboticists often need to

trade expressivity or correctness guarantees for computational speed. Also, a unified representation

is not necessary for all the reasoning tasks that have to be performed by the robot. As a result, infor-

mation close to the sensorimotor level is often represented probabilistically to quantitatively model

and reason about the uncertainty in sensing and actuation, with the robot’s beliefs including state-

ments such as “the robotics book is on the shelf with probability 0.9”. At the same time, logic-based

systems are used to reason with (more) abstract commonsense knowledge, which may not neces-

sarily be natural or easy to represent probabilistically. This knowledge may include hierarchically

organized information about object sorts (e.g., “a cookbook is a book”), and default information

that holds in all but a few exceptional situations (e.g., “books are typically found in the library, but

cookbooks may be in the kitchen”). The probabilistic reasoning system will periodically commit

particular claims about the world being true, with some residual uncertainty, to the logical reasoning

system, which then reasons about those claims as if they were true. There are thus representations of

different expressive strengths within an architecture, and proper transfer of control and information

between the corresponding reasoning systems is essential for reliable and efficient reasoning.

The existing work in architectures for robot reasoning has some key limitations. First, many

of these systems are driven by the demands of robot systems engineering, and there is little for-

malization of the different representations, reasoning methods, or the links between them, in the

corresponding architectures. Second, many systems employ a logical language that is indefeasi-

ble, e.g., first order predicate logic, with incorrect commitments leading to irrecoverable failures,

or reason with a purely probabilistic representation that does not make full use of the available

knowledge. Our proposed architecture seeks to address these limitations. It represents and reasons

about the world, and the robot’s knowledge of it, at two granularities. A fine-resolution descrip-

88

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

tion of the domain, close to the data obtained from the robot’s sensors and actuators, is reasoned

about probabilistically, while a coarse-resolution description of the domain, including common-

sense knowledge, is reasoned about using non-monotonic logic. While we do not use a unified

logical-probabilistic representation, our architecture establishes and precisely defines a tight cou-

pling between the representations at the two granularities, enabling the robot to represent and effi-

ciently reason about commonsense knowledge, what the robot knows (or does not know), and how

actions change the robot’s knowledge. The interplay between the two types of knowledge and the

corresponding reasoning methods is viewed as a conversation between, and the physical and mental

actions of, a logician and a statistician. Consider, for instance, the following exchange:

Logician: the goal is to find the robotics book. I do not know where it is, but I know that books are

typically in the library and I am in the library. We should first look for the robotics book in

the library.

Logician→ Statistician: look for the robotics book in the library. You only need to reason about

the robotics book and the library.

Statistician: In my representation of the world, the library is a set of grid cells. I shall determine

how to locate the book probabilistically in these cells considering the probabilities of move-

ment failures and errors in visual processing.

Statistician: I visually searched for the robotics book in the grid cells of the library, but did not

find the book. Although there is a small probability that I missed the book, I am prepared to

commit that the robotics book is not in the library.

Statistician→ Logician: here are my observations from searching the library; the robotics book is

not in the library.

Logician: the robotics book was not found in the library either because it was not there, or because

it was moved to another location. The next default location for books is the bookshelf in the

office. We should go look there next.

and so on...

where the representations used by the logician and the statistician, and the transfer of control and

information between them, is coordinated by a controller. This imaginary exchange illustrates the

following key features of our approach:

• Reasoning about the states of the domain, and the effects of actions, happens at different

levels of granularity, e.g., the logician reasons about rooms, whereas the statistician reasons

about grid cells in those rooms.

• For any given goal, the logician computes a plan of abstract actions, and each abstract action

is executed probabilistically as a sequence of concrete actions planned by the statistician.

• The effects of the coarse-resolution (logician’s) actions are non-deterministic, but the effects

of the statistician’s fine-resolution actions, and thus the corresponding beliefs, have proba-

bilistic measures of uncertainty associated with them.

• The coarse-resolution knowledge base (of the logician) may include knowledge of things that

are irrelevant to the current goal. Probabilistic reasoning at fine resolution (by the statistician)

only considers things deemed relevant to the current coarse-resolution transition.

89

SRIDHARAN, GELFOND, ZHANG, & WYATT

• Fine-resolution probabilistic reasoning about observations and actions updates probabilistic

beliefs, and highly likely statements (e.g., probability > 0.9) are considered as being com-

pletely certain for subsequent coarse-resolution reasoning by the logician.

1.1 Technical Contributions

The design of our architecture, REBA, is based on tightly-coupled transition diagrams at two levels

of granularity. A coarse-resolution description includes commonsense knowledge, and the fine-

resolution transition diagram is defined as a refinement of the coarse-resolution transition diagram.

For any given goal, non-monotonic logical reasoning with the coarse-resolution system descrip-

tion and the system’s recorded history, results in a sequence of abstract actions. Each such ab-

stract action is implemented as a sequence of concrete actions by zooming to a part of the fine-

resolution transition diagram relevant to this abstract action, and probabilistically modeling the

non-determinism in action outcomes. The technical contributions of REBA are summarized below.

Action language extensions. An action language is a formalism used to model action effects,

and many action languages have been developed and used in robotics, e.g., STRIPS, PDDL (Ghal-

lab, Nau, & Traverso, 2004), BC (Lee, Lifschitz, & Yang, 2013), and ALd (Gelfond & Inclezan,

2013). We extend ALd in two ways to make it more expressive, and use the extended version of

ALd to describe the coarse-resolution and fine-resolution transition diagrams of our architecture.

First, we allow fluents (domain attributes that can change) that are non-Boolean, which allows us

to compactly model a wider range of situations. Second, we allow non-deterministic causal laws,

which capture the non-deterministic effects of the robot’s actions, not only in probabilistic but also

qualitative terms.

Defaults, histories and explanations. Our architecture makes three contributions related to rea-

soning with default knowledge and histories. First, we expand the notion of the history of a dynamic

domain, which typically includes a record of actions executed and observations obtained (by the

robot), to support the representation of (prioritized) default information. We can, for instance, say

that a textbook is typically found in the library and, if it is not there, it is typically found in the

auxiliary library. Second, we define the notion of a model of a history with defaults in the initial

state, enabling the robot to reason with such defaults. Third, we limit reasoning with such expanded

histories to the coarse resolution, and enable the robot to efficiently (a) use default knowledge to

compute plans to achieve the desired goal; and (b) reason with the history to generate explanations

for unexpected observations. For instance, in the absence of knowledge about the locations of a spe-

cific object, the robot constructs a plan using the object’s default location to speed up search. Also,

the robot builds a revised model of the history to explain subsequent observations that contradict

expectations based on initial assumptions.

Tightly-coupled transition diagrams. The next set of contributions are related to establishing

and precisely defining the relationship between different models of the domain used by the robot. In

other words, these contributions precisely define the tight coupling between the transition diagrams

at two resolutions. First, we provide a formal definition of one transition diagram being a refine-

ment of another, and use this definition to formalize the notion of the coarse-resolution transition

diagram being refined to obtain the fine-resolution transition diagram. This definition is obtained

in two steps—we first define a notion of weak refinement that does not consider the robot’s ability

to observe the values of domain fluents, and then introduce a theory of observations to define a

90

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

notion of strong refinement that includes the robot’s ability to observe the values of fluents. The

fact that both transition diagrams are described in the same language facilitates their construction

and this formalization. A coarse-resolution state is, for instance, magnified to provide multiple

states at the fine-resolution—the corresponding ability to reason about space at two different res-

olutions is central for scaling to larger environments. We find two resolutions to be practically

sufficient for many robot tasks, and leave extensions to other resolutions as an open problem. Sec-

ond, we define randomization of a fine-resolution transition diagram, replacing deterministic causal

laws by non-deterministic ones. Third, we formally define and automate zooming to a part of the

fine-resolution transition diagram relevant to any given coarse-resolution transition. This zooming

allows the robot, while implementing any given abstract action, to avoid considering parts of the

fine-resolution transition diagram irrelevant to this action. For example, if a robot is moving a cup

between two neighboring rooms, the fine-resolution states do not consider grid cells except those in

the two rooms and do not consider object parts other than the parts of the cup being moved.

Dynamic generation of probabilistic representations. The next set of innovations connect the

contributions described so far to quantitative models of action and observation uncertainty. First,

we use a semi-supervised algorithm, the randomized fine-resolution transition diagram, prior knowl-

edge (if any), and experimental trials, to collect statistics and compute probabilities of fine-resolution

action outcomes and observations. Second, we provide an algorithm that, for any given abstract

action, uses these computed probabilities and the zoomed fine-resolution description to automat-

ically construct the data structures for probabilistic reasoning. This construction uses the axioms

encoded in the zoomed fine-resolution description to automatically eliminate impossible states, ob-

servations, and transitions from further consideration, thus significantly limiting the computational

requirements of probabilistic reasoning. Third, based on the coupling between transition diagrams

at the two resolutions, the outcomes of probabilistic reasoning update the coarse-resolution history

for subsequent reasoning.

Methodology and architecture. The final set of contributions are related to the overall architec-

ture. First, for the design of the software components of robots that are re-taskable and robust, we

articulate a methodology that is general, provides a path for proving correctness of these compo-

nents, and enables us to predict the robot’s behavior. Second, our knowledge representation and

reasoning architecture combines the representation and reasoning methods from action languages,

declarative programming, probabilistic state estimation and probabilistic planning, to support reli-

able and efficient operation. The domain representation for logical reasoning is translated into a

program in SPARC (Balai, Gelfond, & Zhang, 2013), an extension of CR-Prolog, and the represen-

tation for probabilistic reasoning is translated into a partially observable Markov decision process

(POMDP) (Kaelbling, Littman, & Cassandra, 1998). CR-Prolog (Balduccini & Gelfond, 2003b)

and SPARC incorporate consistency-restoring rules in Answer Set Prolog (ASP)—in this article, the

terms ASP, CR-Prolog and SPARC are often used interchangeably—and have a close relationship

with our action language, allowing us to reason efficiently with hierarchically organized knowledge

and default knowledge, and to pose state estimation, planning, and explanation generation within

a single framework. Also, using an efficient approximate solver to reason with POMDPs supports

a principled and quantifiable trade-off between accuracy and computational efficiency in the pres-

ence of uncertainty, and provides a near-optimal solution under certain conditions (Kaelbling et al.,

1998; Ong, Png, Hsu, & Lee, 2010). Third, our architecture avoids exact, inefficient probabilistic

reasoning over the entire fine-resolution representation, while still tightly coupling the reasoning

91

SRIDHARAN, GELFOND, ZHANG, & WYATT

at different resolutions. This intentional separation of non-monotonic logical reasoning and proba-

bilistic reasoning is at the heart of the representational elegance, reliability and inferential efficiency

provided by our architecture.

Our architecture is evaluated in simulation and on a physical robot finding and moving target objects

to desired locations in indoor domains. We show that the architecture enables a robot to reason with

violation of defaults, noisy observations, and unreliable actions, in more complex domains, e.g.,

with more rooms and objects, than was possible before.

1.2 Structure of the Article

The remainder of the article is organized as follows. Section 2 introduces a domain used as an

illustrative example throughout the article, and Section 3 discusses related work in knowledge rep-

resentation and reasoning for robots. Section 4 presents the methodology associated with the pro-

posed architecture, and Section 5 introduces definitions of basic notions used to build mathematical

models of the domain. This includes the action language used to describe the architecture’s coarse-

resolution and fine-resolution transition diagrams (Section 5.1). It also includes histories with ini-

tial state defaults as an additional type of record, models of system histories, and the reduction of

planning with the coarse-resolution domain representation to computing the answer set of the corre-

sponding ASP program (Section 5.2). The logician’s domain representation based on these defini-

tions is provided in Section 6. Next, Section 7 describes the (a) refinement of the coarse-resolution

transition diagram to obtain the fine-resolution transition diagram, including the introduction of a

theory of observations; (b) randomization of the fine-resolution system description; (c) collection

of statistics to compute the probability of action outcomes, and (d) zoom operation that identifies

the part of the randomized system description relevant to the execution of any given abstract ac-

tion. Next, Section 8 describes how a POMDP is constructed and solved to obtain a policy that

implements the abstract action as a sequence of concrete actions. The overall control loop of the

architecture is described in Section 9. Section 10 describes the experimental results in simulation

and on mobile robots, followed by conclusions in Section 11. In what follows, we refer to the ab-

stract functions and actions of the coarse-resolution transition diagram using H as the subscript or

superscript. The concrete functions and actions of the fine-resolution transition diagram are referred

to using L as the subscript or superscript.

2. Illustrative Example: Office Domain

The following domain will be used as an illustrative example throughout the article.

Example 1. [Office domain] Consider a robot that is assigned the goal of moving specific objects

to specific places in an office domain. This domain contains:

• The sorts: place, thing, robot, and object, with object and robot being subsorts of thing.

Sorts textbook and cup are subsorts of the sort object. Sort names and constants are written

in lower-case, while variable names are in uppercase.

• Four specific places: office, main library, aux library, and kitchen. We assume that

these places are accessible without the need to navigate any corridors, and that the doors

between these places are always open.

92

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

main_office

kitchen
robotics_lab

d_lab

study_corner

main_libraryaux_library

(a) Domain map (b) Peoplebot (c) Turtlebot

Figure 1: (a) Subset of the map of an entire floor of a building—specific places are labeled as shown,

and used in the goals assigned to the robot; (b)-(c) the “Peoplebot” and “Turtlebot” robot

platforms used in the experimental trials.

• Instances of the subsorts of the sort object, and an instance of sort robot, called rob1; we

do not consider other robots, but any such robots are assumed to have similar sensing and

actuation capabilities.

�

As an extension of this illustrative example that will be used in the experimental trials on physical

robots, consider the robot shown in Figure 1(b) operating on a particular floor of an office building

whose map is shown in Figure 1(a). Assume that the robot can (a) build and revise the map of the

domain based on data from a laser range finder; (b) recognize objects of interest in images of scenes

in the domain; and (c) execute actuation commands, although neither the information extracted

from sensor inputs nor the action execution is completely reliable. Next, assume that the robot is

in the study corner and is given the goal of fetching the robotics textbook. Since the robot knows

that books are typically found in the main library, ASP-based reasoning provides a plan of abstract

actions that require the robot to go to the main library, pick up the book and bring it back. For the

first abstract action, i.e., for moving to the main library, the robot focuses on the relevant part of

the fine-resolution representation, e.g., the cells through which the robot must pass, but not the cells

in other places or other domain objects that are irrelevant at this stage of reasoning. It then creates

and solves a POMDP for this movement sub-task, and executes a sequence of concrete movement

actions until it believes that it has reached the main library with high probability. This information

is used to reason at the coarse resolution, prompting the robot to execute the next abstract action to

pick up the robotics book. Now, assume that the robot is unable to pick up the robotics book because

it fails to find the book in the main library despite a thorough search. This observation violates what

the robot expects to see based on default knowledge, but the robot explains this by understanding

that the book was not in the main library to begin with, and creates a plan to go to the auxiliary

library, the second most likely location for textbooks. In this case, assume that the robot finds the

book and completes the task. Our architecture, REBA, enables such robot behavior.

93

SRIDHARAN, GELFOND, ZHANG, & WYATT

3. Related Work

We motivate the contributions of our architecture by discussing related work. We first discuss

some work on knowledge representation and reasoning in robotics, followed by work on action

languages, refinement and zooming. We then discuss some existing frameworks for hybrid reason-

ing with logical and probabilistic representations, including general frameworks based on unified

representations.

Knowledge Representation and Reasoning. There are many recent examples of researchers us-

ing probabilistic graphical models such as POMDPs to formulate tasks such as planning, sensing,

navigation, and interaction on robots (Bai et al., 2014; Göbelbecker et al., 2011; Hoey et al., 2010;

Rosenthal et al., 2011).These formulations, by themselves, are not well-suited for reasoning with

commonsense knowledge, i.e., for key desired capabilities in robotics such as default reasoning and

non-monotonic logical reasoning. In parallel, research in classical planning and logic programming

has provided many algorithms for knowledge representation and reasoning, which have been used

on mobile robots. These algorithms typically require a significant amount of prior knowledge of

the domain, the agent’s capabilities, and the preconditions and effects of the actions. Many of these

algorithms are based on first-order logic, and do not support capabilities such as non-monotonic

logical reasoning, default reasoning, and the ability to merge new, unreliable information with the

current beliefs in a knowledge base. Other logic-based formalisms address some of these limita-

tions. This includes, for instance, theories of reasoning about action and change, as well as An-

swer Set Prolog (ASP), a non-monotonic logic programming paradigm, which is well-suited for

representing and reasoning with commonsense knowledge (Baral, 2003; Gelfond & Kahl, 2014).

An international research community has developed around ASP, with applications in cognitive

robotics (Erdem & Patoglu, 2012, 2018) and other non-robotics domains. For instance, ASP has

been used for planning and diagnostics by a team of heterogeneous, simulated or physical robots

operating as housekeepers (Erdem, Aker, & Patoglu, 2012) or in toy factory settings (Saribatur,

Patoglu, & Erdem, 2019), and for representation of domain knowledge learned through natural

language processing by robots interacting with humans (Chen, Xie, Ji, & Sui, 2012). ASP-based ar-

chitectures have also been used for the control of unmanned aerial vehicles in dynamic indoor envi-

ronments (Balduccini, Regli, & Nguyen, 2014). More recent research has removed the need to solve

ASP programs entirely anew when the problem specification changes. As a result, new information

can expand existing programs, and ground rules and conflict information can be reused to support

interactive theory exploration (Gebser, Janhunen, Jost, Kaminski, & Schaub, 2015). However, ASP,

by itself, does not support probabilistic models of uncertainty, whereas a lot of information avail-

able to robots is represented probabilistically to quantitatively model the uncertainty in sensor input

processing and actuation.

Action Languages. Many approaches for reasoning about actions and change in robotics and AI are

based on action languages, which are formal models of parts of natural language used for describ-

ing transition diagrams. The syntax and intuitive semantics of action languages are much easier

for system designers to understand than those of lower level declarative languages such as ASP,

Plog (Baral, Gelfond, & Rushton, 2009) and situation calculus (Reiter, 2014). Even designers with-

out any prior expertise in action languages are able to learn their use without any knowledge of

the formal semantics. There are many different action languages such as STRIPS, PDDL (Ghal-

lab et al., 2004), BC (Lee et al., 2013), ALd (Gelfond & Inclezan, 2013), and ALM (Inclezan &

Gelfond, 2016), which have been used for different applications (Brenner & Nebel, 2009; Erdem,

94

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Gelfond, & Leone, 2016; Khandelwal, Yang, Leonetti, Lifschitz, & Stone, 2014). In robotics appli-

cations, we often need to represent and reason with recursive state constraints, non-boolean fluents

and non-deterministic causal laws. We chose to expandALd to address these requirements because

it already supports the main construct needed for our goal—recursive state constraints. One other

option was to use action language BC, which also supports such constraints, but it contains some

constructs that are not easy to use given our knowledge representation requirements. For instance,

in addition to basic fluents of ALd, BC allows fluents whose behavior is described by arbitrary

defaults. This certainly gives more power to a knowledge engineer, but it may make the task of

representing knowledge more difficult. This is especially true when such defaults interfere with

each other and have a substantial number of exceptions. The use of ALd allows us to keep this key

component of our architecture reasonably simple. In our approach we do assign default values to

fluents but it is only done in the initial state and is dealt with by suitably expanding the original no-

tion of history. Although there is no reasoning system for the new version of ALd, an independent

group of researchers have developed (and are in the process of releasing) software to automate the

translation between a description in ALd and the corresponding ASP description. In this article,

however, we describe the steps for this translation and apply them manually.

Refinement and Zooming. Refinement of models or action theories has been researched in differ-

ent fields. In the field of software engineering and programming languages, there are approaches

for type and model refinement (Freeman & Pfenning, 1991; Lovas, 2010; Lovas & Pfenning, 2010;

Mellies & Zeilberger, 2015). These approaches do not consider the theories of actions and change

that are important for robot domains. More recent work in AI has examined the refinement of action

theories of agents, which are represented using situation calculus (Banihashemi, Giacomo, & Les-

perance, 2017, 2018). This work assumes the existence of a bisimulation relation between the action

theories for a given refinement mapping between the theories, which often does not hold for robotics

domains. They also do not support key capabilities that are needed in robotics such as: (i) reason-

ing with commonsense knowledge; (ii) automatic construction and use of probabilistic models of

sensing and actuation; and (iii) automatic zooming to the relevant part of the refined description.

Although we do not describe it here, it is possible to introduce simplifying assumptions and a map-

ping that reduces our approach to one that is similar to work discussed above. In parallel, there has

been work on combining discrete and continuous planning at different resolutions in the context of

motion planning in robotics. For instance, one approach uses classical planners based on first-order

propositional logic for planning discrete abstract movement actions, and implements each abstract

action using continuous planners such as rapidly exploring random trees (RRTs) (Srivastava, Riano,

Russell, & Abbeel, 2013). This approach was extended to enable a search for suitable (continuous

space) instantiations of pose references in the abstract plan, and to communicate relevant geometric

information to the abstract (task) planner using logical predicates (Srivastava et al., 2014). However,

these approaches do not support non-monotonic logical reasoning with commonsense knowledge

or non-deterministic action outcomes. They also do not formally define refinement or zooming for

states, actions and observations.

Hybrid Reasoning. Although our architecture does not include a unified representation for log-

ical and probabilistic reasoning, this is a related fundamental problem in robotics and AI. Many

principled frameworks have been developed to address this problem over the previous few decades.

For instance, a Markov logic network (MLN) combines probabilistic graphical models and first or-

der logic, assigning weights to logic formulas (Richardson & Domingos, 2006). Bayesian Logic

95

SRIDHARAN, GELFOND, ZHANG, & WYATT

(BLOG) relaxes the unique name constraint of first-order probabilistic languages to provide a com-

pact representation of distributions over varying sets of objects (Milch et al., 2006). Probabilistic

Logic (ProbLog) programming annotates facts in logic programs with probabilities and supports

efficient inference and learning using weighted Boolean formulas (Fierens, Broeck, Renkens, Shte-

rionov, Gutmann, Thon, Janssens, & Raedt, 2015; Raedt & Kimmig, 2015). Other examples include

independent choice logic (Poole, 2000), PRISM (Gorlin, Ramakrishnan, & Smolka, 2012), prob-

abilistic first-order logic (Halpern, 2003), first-order relational POMDPs (Juba, 2016; Sanner &

Kersting, 2010), and a system (Plog) that assigns probabilities to different possible worlds repre-

sented as answer sets of ASP programs (Baral et al., 2009; Lee & Wang, 2016; Lee & Yang, 2017).

Despite the development of these sophisticated frameworks, combining logical and probabilistic

reasoning continues to be an open problem, especially in the context of robots collaborating with

humans in complex domains. Algorithms based on first-order logic do not support non-monotonic

logical reasoning, and do not provide the desired expressiveness for capabilities such as default

reasoning—it is not always possible or meaningful to express degrees of belief and uncertainty

quantitatively, e.g., by attaching probabilities to logic statements. Other algorithms based on logic

programming do not support one or more of the desired capabilities such as reasoning about rela-

tions as in causal Bayesian networks; incremental addition of probabilistic information; reasoning

with large probabilistic components; or dynamic addition of variables to represent open worlds.

Hybrid Reasoning in Robotics. Many algorithms and architectures have been designed based on

the understanding that robots interacting with the environment through sensors and actuators need

both logical and probabilistic reasoning capabilities. For instance, architectures have been devel-

oped to support hierarchical representation of knowledge and axioms in first-order logic, and prob-

abilistic processing of perceptual information (Laird, 2008; Langley & Choi, 2006; Talamadupula,

Benton, Kambhampati, Schermerhorn, & Scheutz, 2010), while deterministic and probabilistic al-

gorithms have been combined (as stated earlier) for task and motion planning on robots (Kaelbling

& Lozano-Perez, 2013). Another approach for behavior control of a robot included semantic maps

and commonsense knowledge in a probabilistic relational representation, and used a continual plan-

ner to switch between decision-theoretic and classical planning procedures based on degrees of

belief (Hanheide et al., 2011). More recent work extended this approach to use a three-layered

organization of knowledge (instance, default and diagnostic), with knowledge at the higher level

modifying that at the lower levels. A three-layered architecture (competence layer, belief layer and

deliberative layer) was then used for distributed control of information flow, combining first-order

logic and probabilistic reasoning for open world planning (Hanheide et al., 2017). The performance

of such architectures can be sensitive to the choice of threshold for switching between the different

planning approaches, and the use of first order logic in these architectures limits expressiveness

and the use of commonsense knowledge. Declarative programming has also been combined with

continuous-time planners for decision making in teams of simulated or physical robots operating in

scenarios that mimic housekeeping or manufacturing in a toy factory (Saribatur, Erdem, & Patoglu,

2014; Saribatur et al., 2019). These architectures do not provide a tight coupling between the

deterministic and probabilistic components, e.g., through refinement and zooming or a unified rep-

resentation. This lack of coupling has a negative effect on the computational efficiency, reliability

and the ability to fully utilize the available information. More recent work has combined a proba-

bilistic extension of ASP with POMDPs for commonsense inference and probabilistic planning in

the context of human-robot dialog (Zhang & Stone, 2015), used a probabilistic extension of ASP

to determine some model parameters of POMDPs (Zhang, Khandelwal, & Stone, 2017), and used

96

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

an ASP-based architecture to learn action costs on a robot (Khandelwal et al., 2014). ASP-based

reasoning has also been combined with reinforcement learning (RL), e.g., to enable an RL agent to

only explore relevant actions (Leonetti, Iocchi, & Stone, 2016), or to compute a sequence of sym-

bolic actions that guides a hierarchical MDP controller computing actions for interacting with the

environment (Yang, Lyu, Liu, & Gustafson, 2018). However, these architectures do not establish

or formally define the coupling between the different representations included in the architecture or

the corresponding reasoning methods.

Our Initial Work. The authors of this article have developed other architectures that support some

of the knowledge representation and reasoning capabilities of REBA. Early work included an ar-

chitecture that coupled probabilistic planning based on a hierarchy of POMDPs with ASP-based

inference (Zhang, Sridharan, & Bao, 2012). The domain knowledge used for non-monotonic log-

ical inference in this architecture was incomplete and included default knowledge, but it did not

include a model of action effects. In other work, ASP-based inference provided priors for POMDP

state estimation, and observations and historical data from comparable domains were considered for

early termination of the execution of action sequences unlikely to achieve the desired goal (Zhang,

Sridharan, & Wyatt, 2015). The initial version of the architecture described in this article focused

on the concept of step-wise refinement for knowledge representation and reasoning on robots (Srid-

haran & Gelfond, 2016; Zhang, Sridharan, Gelfond, & Wyatt, 2014). These papers introduced the

idea of representing and reasoning with tightly-coupled transition diagrams at two different levels

of granularity. More recent work built on this idea to establish a tight coupling between ASP-based

reasoning, active learning, and relational RL, enabling an agent to interactively and cumulatively

learn previously unknown actions, related domain axioms, and action capabilities (Sridharan &

Meadows, 2018; Sridharan, Meadows, & Gomez, 2017). In this article, we formalize and establish

the properties of such a coupling, present a general methodology for the design of software com-

ponents of robots, provide a path for establishing correctness of these components, and describe

detailed experimental results in simulation and on physical robot platforms.

4. Design Methodology

REBA is based on a design methodology. A designer following this methodology will:

1. Provide a coarse-resolution description of the robot’s domain in action languageALd together

with the description of the initial state.

2. Provide the necessary domain-specific information for, and construct and examine correctness

of, the fine-resolution refinement of the coarse-resolution description.

3. Provide domain-specific information and randomize the fine-resolution description of the do-

main to capture the non-determinism in action execution.

4. Run experiments and collect statistics to compute probabilities of the outcomes of actions and

the reliability of observations.

5. Provide these components, together with any desired goal, to a reasoning system that directs

the robot towards achieving this goal.

The reasoning system implements an action loop that can be viewed as an interplay between a logi-

cian and statistician (Section 1 and Section 9). In this article, the reasoning system uses ASP-based

97

SRIDHARAN, GELFOND, ZHANG, & WYATT

non-monotonic logical reasoning, POMDP-based probabilistic reasoning, models and descriptions

constructed during the design phase, and records of action execution and observations obtained from

the robot. The following sections describe components of the architecture, design methodology

steps, and the reasoning system. We first define some basic notions, specifically action description

and domain history, which are needed to build mathematical models of the domain.

5. Action Language and Histories

This section first describes extensions to action language ALd to support non-boolean fluents and

non-deterministic causal laws (Section 5.1). Next, Section 5.2 expands the notion of the history of a

dynamic domain to include initial state defaults, defines models of such histories, and describes how

these models can be computed. Section 5.3 describes how these models can be used for reasoning.

The subsequent sections describe the use of these models (of action description and history) to

provide the coarse-resolution description of the domain, and to build more refined fine-resolution

models of the domain.

5.1 ALd with Non-Boolean Functions and Non-Determinism

Action languages are formal models of parts of natural language used for describing transition

diagrams. In this article, we extend action languageALd (Gelfond & Inclezan, 2009, 2013; Gelfond

& Kahl, 2014) (we preserve the old name for simplicity) to allow functions (fluents and statics) with

non-boolean values, and non-deterministic causal laws.

5.1.1 SYNTAX AND INFORMAL SEMANTICS OF ALd

The description of the syntax of ALd will require some preliminary definitions.

Sorted Signature: By sorted signature we mean a tuple:

Σ = 〈C,S,F〉

where C and F are sets of strings, over some fixed alphabet, which are used to name “user-defined”

sorts and functions respectively. S is a sort hierarchy, a directed acyclic graph whose nodes are

labeled by sort names from C. A link 〈c1, c2〉 of S indicates that c1 is a subsort of c2. A pair 〈C,S〉
will occasionally be referred to as an ontology. Each function symbol f ∈ F is assigned a non-

negative integer n (called f ’s arity), sorts c0, . . . , cn for its parameters, and sort c for its values. We

refer to c0 × c1 · · · × cn as the domain of f , written as dom(f), and to c as the range of f , written

as range(f). If n > 0 we use the standard mathematical notation f : c0 × · · · × cn → c for this

assignment. We refer to a vector c0, . . . , cn, c as the signature of f . For functions of arity 0 (called

object constants), the notation turns into f : c. We say that o : c is compatible with sort c′ if S
contains a path from c to c′. A sort denoted by a sort name c is the collection {o1, . . . , on} of all

object constants compatible with c; this will be written as c = {o1, . . . , on}.
In addition to all these “user-defined” sorts and functions, sorted signatures often contain stan-

dard arithmetic symbols such as 0, 1, 2, . . . of sort N of natural numbers, and relations and functions

such as ≥ and +, which are interpreted in the usual way.

Terms of a sorted signature Σ are constructed from variables and function symbols as follows:

• A variable is a term.

98

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

• An object constant o : c is a term of sort c.

• If f : c0 × · · · × cn → c where n > 0 is a function symbol and oi is a variable or a constant

compatible with sort ci for 0 ≤ i ≤ n, then f(o0, . . . , on) is a term of sort c.

Atoms of Σ are either of the form:

f(x̄) = y

where y and elements of x̄ are variables or properly-typed object constants, or they are standard

arithmetic atoms formed by ≥, >, etc. If f is boolean, we use the standard notation f(x̄) and

¬f(x̄). Literals are expressions of the form f(x̄) = y and f(x̄) 6= y. Furthermore, terms and

literals not containing variables are called ground.

Action Signature: Signatures used by action languages are often referred to as action signatures.

They are sorted signatures with some special features that include various classifications of functions

from F and the requirements for inclusion of a number of special sorts and functions. In what

follows, we describe the special features of the action signatures that we use in this article.

To distinguish between actions and attributes of the domain, F is divided into two disjoint parts:

A and DA. Functions from A are always boolean. Terms formed by function symbols from A and

DA will be referred to as actions and domain attributes respectively. DA is further partitioned

into DAs and DAf . Terms formed by functions from DAs are referred to as statics, and denote

domain attributes whose truth values cannot be changed by actions (e.g., locations of walls and

doors). Terms formed by functions fromDAf are referred to as fluents. DAf is further divided into

DAbf and DAdf . Terms formed by symbols from DAbf are called basic fluents and those formed

by symbols from DAdf are called defined fluents. The defined fluents are always boolean—they do

not obey laws of inertia, and are defined in terms of other fluents. Basic fluents, on the other hand,

obey laws of inertia (thus often called inertial fluents in the knowledge representation literature) and

are directly changed by actions. Distinction between basic fluents and defined fluents, as introduced

in (Gelfond & Inclezan, 2013), was the key difference between the previous version of ALd and its

predecessor AL.

The new version of ALd described in this article introduces an additional partition of basic

fluents into basic physical fluents (DApbf) describing physical attributes of the domain, and basic

knowledge fluent (DAkbf) describing the agent’s knowledge. There is a similar partition of A into

physical actions (Ap) that can change the physical state of the world (i.e., the value of physical

fluents), and knowledge producing actions that are only capable of changing the agent’s knowledge

(i.e., the value of knowledge fluents). Since robots observe their world through sensors, we also

introduce observable fluents (DAobsf) to represent the fluents whose values can be checked by the

robot by processing sensor inputs, or inferred based on the values of other fluents. The set DAobsf

can be divided into two parts: the set DAdobsf of directly observable fluents, i.e. fluents whose

values can be observed directly through sensors, and the set DAindobsf of indirectly observable

fluents i.e., fluents whose values are not observed directly but are (instead) inferred from the values

of other directly or indirectly observed fluents. For instance, in Example 1 (Section 2), the robot in

any given grid cell can directly observe if a cup is in that grid cell. The observation of the cup in a

particular cell can be used to infer the room location of the cup. Our classification of functions is

also expanded to literals of the language. Specifically, if f is static then f(x̄) = y is a static literal,

and if f is a basic fluent then f(x̄) = y is a basic fluent literal.

99

SRIDHARAN, GELFOND, ZHANG, & WYATT

In addition to the classifications of functions, action signatures considered in this article also include

a collection of special sorts like robot, place, etc., and fluents intrinsic to reasoning about observa-

tions. We will refer to the latter as observation related fluents. A typical example is a collection of

defined fluents:

observablef : robot× dom(f)× range(f)→ boolean (1)

where f is an observable function. These fluents are used to specify domain-specific conditions

under which a particular robot can observe particular values of particular observable fluents. For

instance, in the domain in Example 1, we may need to say that robot rob1 can only observe the place

location of an object if it is also in the same place:

observableloc(rob1, O, P l) if loc(rob1) = Pl

For readability, we will slightly abuse the notation and write the above statements as:

observable : robot× obs fluent× value→ boolean

where obs fluent stands for “observable fluent”, and:

observable(rob1, loc(O), P l) if loc(rob1) = Pl

In Section 7.1.2, we describe the use of these (and other such) observation-related fluents for de-

scribing a theory of observations. Then, in Section 10.1, we describe the processing of inputs from

sensors to observe the values of fluents.

Statements of ALd: Action language ALd allows five types of statements: deterministic causal

laws, non-deterministic causal laws, state constraints, definitions, and executability conditions.

With the exception of non-deterministic causal law (Statement 3), these statements are built from

ground literals.

• Deterministic causal laws are of the form:

a causes f(x̄) = y if body (2)

where a is an action literal, f is a basic fluent literal, and body is a collection of fluent and

static literals. If a is formed by a knowledge producing action, f must be a knowledge fluent.

Intuitively, Statement 2 says that if a is executed in a state satisfying body, the value of f in

any resulting state would be y. Non-deterministic causal laws are of the form:

a causes f(x̄) = {Y : p(Y)} if body (3)

where p is a unary boolean function symbol from DA, or:

a causes f(x̄) : sort name if body (4)

Statement 3 says that if a is executed in a state satisfying body, f may take on any value

from the set {Y : p(Y)} ∩ range(f) in the resulting state. Statement 4 says that f may

take any value from {sort name ∩ range(f)}. If the body of a causal law is empty, the if

part of the statement is omitted. Note that these axioms are formed from terms and literals

100

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

that are ground, and (possibly) from the expression {Y : p(Y)} that is sometimes referred

to as a set term. Occurrences of Y in a set term are called bound. A statement of ALd is

ground if every variable occurring in it is bound. Even though the syntax ofALd only allows

ground sentences, we often remove this limitation in practice. For instance, in the context of

Example 1, we may have the deterministic causal law:

move(R,P l) causes loc(R) = Pl

which says that for every robot R moving to place Pl will end up in Pl. In action languages,

each such statement is usually understood as shorthand for a collection of its ground instances,

i.e., statements obtained by replacing its variables by object constants of the corresponding

sorts. We use a modified version of this approach in which only non-bound variables are

eliminated in this way.

• State constraints are of the form:

f(x̄) = y if body (5)

where f is a basic fluent or static. The state constraint says that f(x̄) = y must be true in

every state satisfying body. For instance, the constraint:

loc(Ob) = Pl if loc(R) = Pl, in hand(R,Ob)

guarantees that the object grasped by a robot shares the robot’s location.

• The definition of the value of a defined fluent f on x̄ is a collection of statements of the form:

f(x̄) if body (6)

where f(x̄) is true if it follows from the truth of at least one of its defining statements. Other-

wise, f(x̄) is false.

• Executability conditions are statements of the form:

impossible a0, . . . , ak if body (7)

which implies that in a state satisfying body, actions a0, . . . ak cannot occur simultaneously.

For instance, the following executability condition:

impossible move(R,P l) if loc(R) = Pl

implies that a robot cannot move to a location if it is already there; and

impossible grasp(R1, Th), grasp(R2, Th) if R1 6= R2

prohibits two robots from simultaneously grasping the same thing.

We can now define the notion of a system description.

Definition 1. [System Description]

A system description of ALd is a collection of ALd statements over some action signature Σ. N

Next, we discuss the formal semantics of ALd.

101

SRIDHARAN, GELFOND, ZHANG, & WYATT

5.1.2 FORMAL SEMANTICS OF ALd

The semantics of system description D of the new ALd is similar to that of the old one. In fact,

the old language can be viewed as the subset of ALd in which all functions are boolean, causal

laws are deterministic, and no distinction is made between physical and knowledge related actions

and fluents. The semantics of D is given by a transition diagram τ(D) whose nodes correspond

to possible states of the system. The diagram contains an arc 〈σ1, a, σ2〉 if, after the execution of

action a in state σ1, the system may move into state σ2. We define the states and transitions of τ(D)
in terms of answer sets of logic programs, as described below—see (Gelfond & Inclezan, 2009;

Gelfond & Kahl, 2014) for more details.

In what follows, unless otherwise stated, by “atom” and “term” we refer to “ground atom” and

“ground term” respectively. Recall that an interpretation of the signature of D is an assignment of

a value to each term f(x̄) in the signature. An interpretation can be represented by the collection of

atoms of the form f(x̄) = y, where y is the value of f(x̄). For any interpretation σ, let σnd be the

collection of atoms of σ formed by basic fluents and statics—nd stands for non-defined. Let Πc(D),
where c stands for constraints, denote the logic program defined as:

1. For every state constraint (Statement 5) and definition (Statement 6), program Πc(D) con-

tains:

f(x̄) = y ← body (8)

2. For every defined fluent f , Πc(D) contains the closed world assumption (CWA):

¬f(x̄)← not f(x̄) (9)

where, unlike classical negation “¬ a” that implies “a is believed to be false”, default negation

“not a” only implies that “a is not believed to be true”, i.e., a can be true, false or just

unknown.

We can now define states of τ(D).

Definition 2. [State of τ(D)]
An interpretation σ is a state of the transition diagram τ(D) if it is the unique answer set of program

Πc(D) ∪ σnd. N

To illustrate the need for the uniqueness condition, consider the following example. Let system

description Ds from (Gelfond & Kahl, 2014) with two defined fluents f and g defined by mutually

recursive laws:

g if ¬f

f if ¬g

For this system description, the program Πc(Ds) consists of the following statements:

g ← ¬f

f ← ¬g

¬g ← not g

¬f ← not f

102

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

and σnd = ∅ because all the fluents of Ds are defined. Πc(Ds) ∪ σnd has two answer sets {f,¬g}
and {g,¬f}; based on Definition 2, the transition diagram τ(Ds) has no states. This outcome is

expected because the mutually recursive laws are not strong enough to uniquely define f and g.

Next, we define a sufficient condition for guaranteeing that the defined fluents of a system

description are uniquely defined by the system’s statics and basic fluents. To do so, we introduce

some terminology from (Gelfond & Kahl, 2014). A system descriptionD is said to be well-founded

if for any complete and consistent set of fluent literals and statics σ satisfying the state constraints

of D, program Πc(D) ∪ σnd has an unique answer set. Next, the fluent dependency graph of D is a

directed graph such that:

• its vertices are arbitrary domain literals.

• it has an edge:

– from l to l′ if l is formed by a static or a basic fluent, and D contains a state constraint

with the head l and the body containing l′;

– from f to l′ if f is a defined fluent, and D contains a state constraint with the head f

and body containing l′ and not f ; and

– from ¬f to f for every defined fluent f .

Also, a fluent dependency graph is said to be weakly acyclic if it does not contain paths from defined

fluents to their negations. A system description with a weakly acyclic fluent dependency graph is

also said to be weakly acyclic. Although well-foundedness is not easy to check, it is easy to check

(and automate the checking of) weak acyclicity, and Proposition 8.4.1 in (Gelfond & Kahl, 2014)

establishes weak acyclicity as a sufficient condition for well-foundedness (Gelfond & Inclezan,

2013). It is easy to show that all system descriptions discussed in this article are well-founded, a

fact that we will use later in this article, e.g., in Proposition 1 in Section 5.2 and Proposition 2 in

Section 5.3.

Next, to define the transition relation of τ(D), we first describe the logic programming encoding

Π(D) of D. This encoding Π(D) consists of the encoding of the signature of D and rules obtained

from statements of D, as described below.

Definition 3. [Logic programming encoding of D]

• Encoding of the signature: we start with the encoding sig(D) of signature of D.

– For each sort c, sig(D) contains: sort name(c).

– For each subsort link 〈c1, c2〉 of the hierarchy of sorts, sig(D) contains: s link(c1, c2).

– For each constant x : c from the signature of D, sig(D) contains: m link(x, c).

– For every static g(x̄) of D, sig(D) contains: static(g(x̄)).

– For every basic fluent f(x̄), sig(D) contains: fluent(basic, f(x̄)).

– For every defined fluent f(x̄), sig(D) contains: fluent(defined, f(x̄)).

– For every observable fluent f(x̄), sig(D) contains: obs fluent(f(x̄)).

– For every directly observable fluent f(x̄), sig(D) contains: dir obs fluent(f(x̄)).

103

SRIDHARAN, GELFOND, ZHANG, & WYATT

– For every indirectly observable fluent f(x̄), sig(D) contains: indir obs fluent(f(x̄)).

– For every action a of D, sig(D) contains: action(a).

We also need axioms describing the hierarchy of basic sorts:

subsort(C1, C2)← s link(C1, C2) (10)

subsort(C1, C2)← s link(C1, C), subsort(C,C2)

member(X,C)← m link(X,C)

member(X,C1)← m link(X,C0), subsort(C0, C1)

• Encoding of statements of D: To define transitions of our diagram we need two time-steps

that stand for the beginning and the end of a transition. We would like, however, to later use

the rules of our program to describe longer chains of events. To make this possible we intro-

duce a symbolic constant n and allow time-steps of the program to range over [0,max step].
This is expressed by statement:

step(0..max step)

For defining transitions we set max step to 1:

#const max step = 1

We also need a relation val(f(x1, . . . , xn), y, i), which states that the value of f(x1, . . . , xn)
at step i is y; and relation occurs(a, i), which states that action a occurred at step i. We then

encode statements of D as follows:

– For every deterministic causal law (Statement 2), Π(D) contains a rule:

val(f(x̄), y, I + 1)←val(body, I), occurs(a, I), I < n (11)

where val(body, I) is obtained by replacing every literal of the form fm(x̄m) = z from

body by the literal val(fm(x̄m), z, I).

– For every non-deterministic causal law (described in Statements 3-4), where the range

of f is {y1, . . . , yk}, Π(D) contains a rule:

val(f(x̄), y1, I + 1) or . . .or val(f(x̄), yk, I + 1)←val(body, I), (12)

occurs(a, I), I < n

For Statement 3, to encode that due to this action, f(x̄) only takes a value that satisfies

property p, Π(D) contains a constraint:

← val(f(x̄), Y, I + 1), not val(p(Y), true, I) (13)

For Statement 4, we need a similar constraint:

← val(f(x̄), Y, I + 1), not member(Y, sort name) (14)

The next two axioms guarantee that in the case of Statement 3, action a is not executed

in a state in which property p is not satisfied:

satisfied(p, I)← val(p(Y), true, I) (15)

¬occurs(a, I)← not satisfied(p, I)

104

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

– For every state constraint and definition (Statements 5, 6), Π(D) contains:

val(f(x̄), y, I)← val(body, I) (16)

– Π(D) contains the CWA for defined fluents:

val(F, false, I)← fluent(defined, F), not val(F, true, I) (17)

– For every executability condition (Statement 7), Π(D) contains:

¬occurs(a0, I) or . . . or ¬occurs(ak, I)←val(body, I), I < n (18)

– For every static g(x̄), Π(D) contains:

g(x̄) = y (19)

– Π(D) contains the Inertia Axiom:

val(F, Y, I + 1)←fluent(basic, F), (20)

val(F, Y, I), not ¬val(F, Y, I + 1), I < n

– Π(D) contains CWA for actions:

¬occurs(A, I)← not occurs(A, I), I < n (21)

– Finally, we need the rule:

¬val(F, Y1, I)← val(F, Y2, I), Y1 6= Y2 (22)

which says that a fluent can only have one value at each time step.

This completes the construction of encoding Π(D) of system description D. Later we will consider

a version of D in which time step max step is set to some positive number k. We denote such a

program by Πk(D). N

Recall that the axioms described above are shorthand for the set of ground instances obtained by re-

placing variables by ground terms from the corresponding sorts. We now formally define a transition

of the transition diagram τ(D).

Definition 4. [Transition of τ(D)]
Let a be a non-empty collection of actions, and σ0 and σ1 be states of the transition diagram τ(D)
defined by system description D. To describe a transition 〈σ0, a, σ1〉, we construct a program

Π(D, σ0, a) comprising:

• Logic programming encoding Π(D) of system description D, as described above.

• The encoding val(σ0, 0) of initial state σ0:

val(σ0, 0) =def {val(f(x̄), y, 0) : (f(x̄) = y) ∈ σ0}, where f is a fluent ∪

{f(x̄) = y : (f(x̄) = y) ∈ σ0} where f is a static

105

SRIDHARAN, GELFOND, ZHANG, & WYATT

• Encoding occurs(a, 0) of set of actions a:

occurs(a, 0) =def {occurs(ai, 0) : ai ∈ a}

In other words, the program Π(D, σ0, a) includes our description of the system’s laws, the initial

state, and the actions that occur in it:

Π(D, σ0, a) =def Π(D) ∪ val(σ0, 0) ∪ occurs(a, 0)

A state-action-state triple 〈σ0, a, σ1〉 is a transition of τ(D) iff Π(D, σ0, a) has an answer set AS

such that σ1 = {f(x̄) = y : val(f(x̄), y, 1) ∈ AS}. The answer sets of Π(D, σ0, a) thus determine

the states the system can move into after executing of a in σ0.

N

5.2 Histories with Defaults

In action languages, domain knowledge is typically represented by a system description containing

general knowledge about the domain and the agent’s abilities, and the domain’s recorded history

containing information pertinent to the agent’s activities in the domain. This history H typically

contains the agent’s observations of the value of domain attributes, and the occurrences of actions,

as recorded by statements of the form:

obs(rob1, f(x̄), y, true, i) (23a)

obs(rob1, f(x̄), y, false, i) (23b)

and

hpd(a, i) (24)

where f is an observable fluent, y is a possible value of this fluent, a is an action, and i is a time-

step. Statements 23(a-b) say that a particular fluent was observed to have (or not have) a particular

value at time-step i by robot rob1, and Statement 24 says that action a happened at time-step i. For

instance, obs(rob1, loc(tb1), office, true, 0) denotes the observation of textbook tb1 in the office

by robot rob1, and hpd(move(rob1, kitchen), 1) is the record of successful execution of rob1’s

move to the kitchen at time step 1. Note that the standard representation of obs does not include the

robot as the first argument—we include it to emphasize that observations are obtained by specific

robots. Also, for convenience, we write obs(rob1, f(x̄), y, true, i) as obs(rob1, f(x̄) = y, i), and

obs(rob1, f(x̄), y, false, i) as obs(rob1, f(x̄) 6= y, i). In addition, the notion of observations at the

coarse resolution is different from that of observations obtained from sensor inputs, which are mod-

eled at the fine resolution; the former is based on the latter, as described in Section 7.1. Furthermore,

there is a subtle difference between relation occurs used in logic programming encoding of system

descriptions and relation hpd. Statement occurs(a, i) may denote an actual occurrence of action a

at i as well as a hypothetical action (e.g., in a plan computed for a specific goal), whereas hpd(a, i)
indicates that a was actually executed at i. For a discussion on the need for such a distinction

between hpd and occurs, please see Section 10.5 in (Gelfond & Kahl, 2014).

We say that n is the current step of history H if n − 1 is the maximum time step occurring in

statements of the form hpd(a, i) in H. If no such statement exists, the current step of H is 0. The

106

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

recorded history thus defines a collection of paths in the transition diagram that, from the standpoint

of the agent, can be interpreted as the system’s possible pasts. The precise formalization of this is

given by the notion of a model of the recorded history. The definition of such a model for histories

consisting of Statements 23 and 24 can be found in Section 10.1 in (Gelfond & Kahl, 2014).

In our work, we extend the syntax and semantics of recorded histories to support a more conve-

nient description of the domain’s initial state. In addition to the statements above, we introduce an

additional type of historical record:

initial default d(x̄) : f(x̄) = y if body(d) (25)

and:

prefer(d1, d2) (26)

where f is a basic fluent and the ds are the names of defaults. Statements 25 and 26 refer to the

initial state of the system. Statement 25 is a default named d stating that in any initial state satisfying

body(d), the default value of f(x̄) is y. Statement 26 defines an anti-symmetric and transitive

preference relation between defaults, stating that if the simultaneous application of defaults d1 and

d2 leads to a contradiction, then d1 is preferred to d2.

The addition of defaults makes the task of defining models substantially more challenging. Be-

fore providing a formal semantics of a recorded history with defaults (i.e., before defining models

of such histories), we illustrate the intended meaning of these statement with an example.

Example 2. [Example of initial state defaults]

Consider the following statements about the locations of textbooks in the initial state in our illustra-

tive domain. Textbooks are typically in the main library. If a textbook is not there, it is typically in

the auxiliary library. If a textbook is checked out, it is usually in the office. These defaults can be

represented as:

initial default d1(X) : loc(X) = main library if textbook(X) (27)

initial default d2(X) : loc(X) = aux library if textbook(X) (28)

initial default d3(X) : loc(X) = office if textbook(X) (29)

prefer(d1(X), d2(X)) (30)

prefer(d2(X), d3(X))

where the fluent {loc : thing → place}, as before, represents the place where a particular thing is

located. A historyHa with the above statements will entail val(loc(tb1) = main library, true, 0)
for textbook tb1 using default d1(tb1). The other two defaults (Statements 28, 29) are disabled

(i.e., not used) due to Statement 30 and the transitivity of the prefer relation. A history Hb that

adds obs(rob1, loc(tb1) 6= main library, 0) as an observation to Ha renders default d1(tb1) (see

Statement 27) inapplicable. Now the second default (i.e., Statement 28) is enabled and entails

val(loc(tb1) = aux library, true, 0). A history Hc that adds observation obs(rob1, loc(tb1) 6=

107

SRIDHARAN, GELFOND, ZHANG, & WYATT

aux library, 0) to Hb should entail val(loc(tb1) = office, true, 0). In all these histories, the

defaults were defeated by initial observations and by higher priority defaults.

Now, consider the addition of observation obs(rob1, loc(tb1) 6= main library, 1) to Ha to

obtain history Hd. This observation is different because it defeats default d1(tb1), but forces the

agent to reason back in time. If the default’s conclusion, loc(tb1) = main library, were true in

the initial state, it would also be true at step 1 (by inertia), which would contradict the observation.

Default d2(tb1) will be used to conclude that textbook tb1 is initially in the aux library; the inertia

axiom will propagate this information to entail val(loc(tb1) = aux library, true, 1). For more

information on indirect exceptions to defaults and their formalization see Section 5.5 in (Gelfond &

Kahl, 2014).

Figure 2 illustrates the beliefs corresponding to these four histories—the column labeled “CR

rule outcome” and the row labeled “He” are explained later in this section. Please see example2.sp

at https://github.com/mhnsrdhrn/refine-arch for the complete program formaliz-

ing this reasoning in SPARC. �

Room 1

Main library: main_library

Textbook is typically in the main library. If a textbook is not there, it is
typically in the auxiliary library. If a textbook is checked out, it can
usually be found in the office.

initial default d
1
(X) : loc(X) = main_library if textbook(X).

initial default d
2
(X) : loc(X) = aux_library if textbook(X).

initial default d
3
(X) : loc(X) = office if textbook(X).

prefer(d
1
(X), d

2
(X))

prefer(d
2
(X), d

3
(X))

Room 2

Auxiliary library: aux_library

Room 3

Office: office

Believed location of tb
1

obs(rob
1
, loc(tb

1
) ≠ main_library, 0)

 obs(rob
1
, loc(tb

1
) ≠ main_library, 0)

obs(rob
1
, loc(tb

1
) ≠ aux_library, 0)

main_library

aux_library

office

 aux_library

 d
1

Applicable defaultCR-rule outcome(s)Observation(s)

 d
2

 d
3

 d
2

ab(d
1
)

ab(d
1
)

ab(d
1
), ab(d

2
)

obs(rob
1
, loc(tb

1
) ≠ main_library, 1)

kitchen noneab(d
1
), ab(d

2
), ab(d

3
)

 obs(rob
1
, loc(tb

1
) ≠ main_library, 1)

obs(rob
1
, loc(tb

1
) ≠ aux_library, 1)

obs(rob
1
, loc(tb

1
) ≠ office, 1)

 H
e

 H
b

 H
c

 H
d

 H
a

Figure 2: Illustration of the beliefs of a robot corresponding to the histories with the same initial

state defaults, as described in Example 2 and Example 3.

To better understand the definition of histories with defaults, recall the definition of a model for

histories not containing defaults. In this case, a model ofHn is a path M = 〈σ0, a0, σ1, . . . , σn, an〉
of τ(D) such that:

108

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

• M satisfies every obs(rob1, f(x̄) = y, i) ∈ Hn, i.e., for every such observation, we also have

that (f(x̄) = y) ∈ σi.

• ai = {e : hpd(e, i) ∈ H
n}.

In the presence of defaults, however, these conditions, though necessary, are not sufficient. Con-

sider, for instance, history Ha from Example 2. Since it contains no actions or observations, these

conditions are satisfied by any path M = 〈σ0〉. However, M is a model of Ha only if σ0 contains

loc(tb1) = main library. In general, to define the initial states of models of Hn, we need to un-

derstand reasoning in the presence of defaults, along with their direct and indirect exceptions. The

situation is similar to, but potentially more complex than, the definition of transitions of τ(D). To

define the models ofHn, we thus pursue an approach similar to that used to define the transitions of

τ(D). Specifically, we define models of Hn in terms of answer sets of the logic program Π(D,H)
that axiomatizes the agent’s knowledge. However, due to the presence of indirect exceptions, our

language of choice will be CR-Prolog, an extension of ASP well-suited for representing and reason-

ing with such knowledge. The syntax and semantics of CR-Prolog can be found in Appendix A.1.

For more information about CR-Prolog, and its use for reasoning with defaults and their exceptions,

please see (Gelfond & Kahl, 2014). We begin by defining the program encoding both D andH.

Definition 5. [Program Π(D,H)]
Program Π(D,H), which encodes the system descriptionD and historyH of the domain, is obtained

by changing the value of constant n in Π(D) from 1 to the current step of H and adding to the

resulting program:

• Observations and actions, i.e., Statements 23 and 24, fromH.

• Encoding of each default, i.e., for every default such as Statement 25 fromH, we add:

val(f(x̄), y, 0)←val(body(d(x̄)), 0), (31)

not ab(d(x̄))

ab(d(x̄))
+
← val(body(d(x̄)), 0) (32)

where Statement 31 is a simplified version of the standard CR-Prolog (or ASP) encoding

of a default, and the relation ab(d), read as default d is abnormal, holds when default d is

not applicable. Statement 32 is a consistency restoring (CR) rule, which says that to restore

consistency of the program one may refrain from applying default d. It is an axiom in CR-

Prolog used to allow indirect exceptions to defaults—it is not used unless assuming f(x̄) = y

leads to a contradiction.

• Encoding of preference relations. If there are two or more defaults with preference relations,

e.g., Statements 27-30, we first add the following:

ab(D2)←prefer(D1, D2), (33)

val(body(D1), 0),

not ab(D1)

109

SRIDHARAN, GELFOND, ZHANG, & WYATT

where D1 and D2 are defaults. Then, we add the following:

prefer(D1, D3)←prefer(D1, D2), (34)

prefer(D2, D3)

¬prefer(D,D) (35)

Statement 33 prevents the applicability of a default if another (preferred) default is applica-

ble. The other two axioms (Statements 34, 35) express transitivity and anti-symmetry of the

preference relation.

• Rules for initial observations, i.e., for every basic fluent f and its possible value y:

val(f(x̄), y, 0)← obs(rob1, f(x̄) = y, 0) (36a)

¬val(f(x̄), y, 0)← obs(rob1, f(x̄) 6= y, 0) (36b)

These axioms say that the initial observations are correct. Among other things they may be

used to defeat the defaults ofH.

• Assignment of initial values to basic fluents that have not been defined by other means.

Specifically, the initial value of a basic fluent not defined by a default is selected from the

fluent’s range. To do so, for every initial state default (of the form of Statement 25) fromH:

defined by default(f(x̄))←val(body(d(x̄)), 0), (37)

not ab(d(x̄))

Then, for every basic fluent f :

val(f(x̄), y1, 0) or . . . or val(f(x̄), yn, 0)← not defined by default(f(x̄)) (38)

where {y1, . . . , yn} are elements in the range of f(x̄) that do not occur in the head of any

initial state default ofH.

• A reality check (Balduccini & Gelfond, 2003a):

←val(F, Y1, I), obs(rob1, F = Y2, I), Y1 6= Y2 (39)

which says that the value of a fluent predicted by our program shall not differ from its ob-

served value, or (equivalently) that a robot cannot simultaneously observe a fluent to have

a particular value and believe that the fluent has a different value. It does not, however, di-

rectly force everything observed to hold true—there is a subtle difference between these two

interpretations, as discussed further in Section 10.5 in (Gelfond & Kahl, 2014).

• And a rule:
occurs(A, I)← hpd(A, I) (40)

which establishes the relation between relation hpd of the language of recorded histories and

relation occurs used in the program. Recall that occurs denotes both actual and hypothetical

occurrences of actions, whereas hpd indicates an actual occurrence.

110

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

This completes construction of the program. N

We will also need the following terminology in the discussion below. Let H be a history of D and

AS be an answer set of Π(D,H). We say that a sequence M = 〈σ0, a0, σ1, . . . , σn, an〉 such that

∀i ∈ [0, n]:
• σi = {f = y : val(f, y, i) ∈ AS},
• ai = {e : hpd(e, i) ∈ AS}.

is induced by AS. Now we are ready to define semantics ofH.

Definition 6. [Model]

A sequence 〈σ0, a0, σ1, . . . , σn, an〉 induced by an answer set AS of Π(D,H) is called a model of

H if it is a path of transition diagram τ(D). N

Definition 7. [Entailment]

A literal l is true at step i of a path M = 〈σ0, a0, σ1, . . . , σn, an〉 of τ(D) if l ∈ σi. We say that l is

entailed by a historyH of D if l is true in all models ofH. N

The following proposition shows that for well-founded system descriptions this definition can be

simplified.

Proposition 1. [Answer sets of Π(D,H) and paths of τ(D)]
IfD is a well-founded system description andH is its recorded history, then every sequence induced

by an answer set of Π(D,H) is a model ofH. ⋆

The proof of this proposition is in Appendix A.2. This proposition guarantees that for a well-

founded system description D, computing a model of a historyH can be reduced to just computing

the answer set of the program Π(D,H), i.e., we do not need to check if such an answer set is a path

of the transition diagram τ(D). Next, we look at some examples of histories with defaults.

Example 3. [Example 2 revisited]

Let us revisit the histories described in Example 2 and show how models of system descriptions

from this example can be computed using our axiomatization Π(D,H) of models of a recorded

history. We see that models ofHa are of the form 〈σ0〉 where σ0 is a state of the system containing

{loc(tb1) = main library}. Since textbook(tb1) is a static relation, it is true in every state of the

system. The axiom encoding default d1 (Statement 31) is not blocked by a CR rule (Statement 32)

or a preference rule (Statement 33), and the program entails val(loc(tb1),main library, 0). Thus,

{loc(tb1) = main library} ∈ σ0.

Now consider historyHb containing obs(rob1, loc(tb1) 6= main library, 0). Based on rules for

initial observations (Statement 36) we have ¬val(loc(tb1),main library, 0) which contradicts the

first default. The corresponding CR-rule (Statement 32) restores consistency by assuming ab(d1),
making default d1 inapplicable. Default d2(tb1), which used to be blocked by a preference rule (i.e.,

prefer(d1(tb1), d2(tb1))), becomes unblocked and we conclude that val(loc(tb1), aux library, 0).
Models of Hb are states of τ(D) that contain {loc(tb1) = aux library}. The models of Hc in

Example 2 are computed in a similar manner.

Recall that the last history,Hd, is slightly different. The current step ofHd is 1 and its models are

of the form 〈σ0, a, σ1〉. It contains obs(rob1, loc(tb1) 6= main library, 1). Since Π(D,Hd) has no

111

SRIDHARAN, GELFOND, ZHANG, & WYATT

rules with an action in the head, a = { }. Based on default d1, {loc(tb1) = main library} should

belong to state σ0. However, if this were true, {loc(tb1) = main library} would belong to σ1 by

inertia, which contradicts the observation and the reality check axiom creates an inconsistency. This

inconsistency is resolved by the corresponding CR-rule (Statement 32) by assuming ab(d1) in the

initial state, i.e., at time 0. Default d2 is activated and the reasoner infers {loc(tb1) = aux library}
at time step 0 and (by inertia) at time step 1.

To illustrate the use of axioms governing the initial value of a basic fluent not defined by a default

(Statements 37 and 38), consider history He in which observations at step 1 establish that textbook

tb1 is not in any of the default locations. An argument similar to that used for Hd would allow the

reasoner to conclude ab(d1(tb1)), ab(d2(tb1)), and ab(d3(tb1)), and defined by default(loc(tb1))
can not be derived. Statement 38 is now used to allow a choice between the four locations that form

the range of the loc() function. The first three are eliminated by observations at step 1 and we

thus conclude val(loc(tb1), kitchen, 0), i.e., {loc(tb1) = kitchen} ∈ σ1. Note that if the domain

included other available locations, we would have additional models of historyHe. �

Example 4. [Examples of models of history]

As further examples of models of history, consider a system description Da with basic boolean

fluents f and g (and no actions), and a historyHa consisting of:

initial default ¬g if f

The paths of this history consist of states without any transitions. Using axiom in Statement 38, we

see that {f,¬g}, {¬f, g}, and {¬f,¬g} are models of 〈Da,Ha〉 and σ = {f, g} is not. The latter

is not surprising since even though σ may be physically possible, the agent, relying on the default,

will not consider σ to be compatible with the default since the history gives no evidence that the

default should be violated. If, however, the agent were to record an observation obs(rob1, g, 0), the

only states compatible with the resulting historyHb would be {f, g} and {¬f, g}.)

Next, we expand our system description Da by a basic fluent h and a state constraint:

h if ¬g

In this case, to compute models of a history Hc of a system Db, where Hc consists of the default

in Ha and an observation obs(rob1,¬h, 0), we need CR rules. The models are {f,¬h, g} and

{¬f,¬h, g}.

Next, consider a system description Dc with basic fluents f , g, and h, the initial-state default, and

an action a with the following causal law:

a causes h if ¬g

and a history Hd consisting of obs(rob1, f, 0), hpd(a, 0). We then have 〈{f,¬g, h}, a, {f,¬g, h}〉
and 〈{f,¬g,¬h}, a, {f,¬g, h}〉 as the two models of Hd. Finally, history He obtained by adding

obs(rob1,¬h, 1) to Hd has a single model 〈{f, g,¬h}, a, {f, g, h}〉. The new observation is an

indirect exception to the initial default, which is resolved by the corresponding CR rule. �

112

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

5.3 Reasoning

The main reasoning task of an agent with a high level deterministic system descriptionD and history

H is to find a plan (i.e., a sequence of actions1) that would allow it to achieve goal G. We assume

that the length of this sequence is limited by some number h referred to as the planning horizon.

This is a generalization of a classical planning problem in which the history consists of a collection

of atoms which serves as a complete description of the initial state. If history H has exactly one

model, the situation is not very different from classical planning. The agent believes that the system

is currently in some unique state σn—this state can be found using Proposition 1 that reduces the

task of computing the model of H to computing the answer set of Π(D,H). Finding a plan is thus

equivalent to solving a classical planning problem Pc, i.e., finding a sequence of actions of length

not exceeding h, which leads the agent from an initial state σ to a state satisfying G. The ASP-based

solution of this planning problem can be traced back to work described in (Dimopoulos, Koehler,

& Nebel, 1997; Subrahmanian & Zaniolo, 1995). Also see program plan(Pc, h) and Proposition

9.1.1 in Section 9.1 of (Gelfond & Kahl, 2014), which establish the relationship between answer

sets of this program and solutions of Pc, and can be used to find a plan to achieve the desired goal.

A more subtle situation arises when H has multiple models. Since there are now multiple possible

current states, we can either search for a possible plan, i.e. a plan leading to G from at least one of

the possible current states, or for a conformant plan, i.e., a plan that can achieve G independent of

the current state. In this article, we only focus on the first option2.

Definition 8. [Planning Problem]

We define a planning problem P as a tuple (D,H, h,G) consisting of system descriptionD, history

H, planning horizon h and a goal G. A sequence 〈a0, . . . , ak−1〉 is called a solution of P if there is

a state σ such that:

• σ is the current state of some model M ofH; and

• 〈a0, . . . , ak−1〉 is a solution of classical planning problem Pc = (D, σ,G) with horizon h.

N

To find a solution of P we consider:

• CR-Prolog program Diag =def Πn(D,H) with maximum time step n where n is the current

step ofH.

• ASP program Classical plan consisting of:

1. Π[n..n+h](D) obtained from Π(D) by setting max step to n + h and sort step to

(n,max step).

2. Encoding of the goal f(x̄) = y by the rule:

goal(I)← val(f(x̄), y, I)

1. For simplicity we only consider sequential plans in which only one action occurs at a time. The approach can be

easily modified to allow actions to be performed in parallel.

2. An ASP-based approach to finding conformant plans can be found in (Tu, Son, Gelfond, & Morales, 2011).

113

SRIDHARAN, GELFOND, ZHANG, & WYATT

3. Simple planning module, PM , obtained from that in Section 9.1 of (Gelfond & Kahl,

2014) (see statements on page 194) by letting time step variable I range between n and

n+ h.

• Diagnoses Preserving Constraint (DPC):

← Y = count{X : ab(X)}, Y > m

where m is the size of abductive support of Diag3. For any program Π, if Πreg is the set of

all regular rules of Π and α(R) is the set of regular rules obtained by replacing
+
← by← in

each CR rule in R, a cardinality-minimal set of CR rules such that Π(R) =def Πreg ∪ α(R)
is consistent, is called an abductive support of Π4.

We reduce the task of finding the solutions of the planning problem P to:

1. Computing the size, m, of an abductive support of Diag.

2. Computing answer sets of CR-Prolog program:

Plan = Diag ∪ Classical plan ∪ {DPC}

Based on Proposition 1, the first sub-task of finding the abductive support of Diag can be accom-

plished by computing a model of:

Diag ∪ {size(Y)← count{X : ab(X)} = Y }

and displaying atom size(m) from this model. The second sub-task (and overall task) of reduc-

ing planning to computing answer sets is based on the following proposition that is analogous to

Proposition 9.1.1 in Section 9.1 of (Gelfond & Kahl, 2014).

Proposition 2. [Reducing planning to computing answer sets]

Let P = (D,H, h,G) be a planning problem with a well-founded, deterministic system description

D. A sequence 〈a0, . . . , ak−1〉 where k < h is a solution of P iff there is an answer set A of Plan

such that:

1. For any n < i ≤ n+ k, occurs(ai, i− 1) ∈ A,

2. A contains no other atoms of the form occur(∗, i)5 with i ≥ n.

⋆

The proof of this proposition is provided in Appendix B. Similar to classical planning, it is possible

to find plans for our planning problem that contain irrelevant, unnecessary actions. We can avoid

this problem by asking the planner to search for plans of increasing length, starting with plans of

length 1, until a plan is found (Gebser, Kaminski, Kaufmann, & Schaub, 2014). There are other

ways to find minimum-length plans, but we do not discuss them here.

3. Here count is an aggregate function. For semantics of ASP with aggregates, see (Gelfond & Zhang, 2014).

4. A program may have multiple abductive support, but they all have the same size due to the minimality requirement.

5. The “*” denotes a wild-card character.

114

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

6. Logician’s Domain Representation

We are now ready for the first step of our design methodology (see Section 4), which is to provide

a coarse-resolution description of the robot’s domain in ALd along with a description of the initial

state—we re-state this step as specifying the transition diagram of the logician.

1. Specify the transition diagram, τH , which will be used by the logician for coarse-resolution

reasoning, including planning and diagnostics.

This step is accomplished by providing the signature and ALd axioms of system description DH

defining this diagram. We will use standard techniques for representing knowledge in action lan-

guages, e.g., (Gelfond & Kahl, 2014). We illustrate this process by describing the domain represen-

tation for the office domain introduced in Example 1.

Example 5. [Logician’s domain representation]

The system description DH of the domain in Example 1 consists of a sorted signature (ΣH) and

axioms describing the transition diagram τH . ΣH defines the names of objects and functions avail-

able for use by the logician. Building on the description in Example 1, ΣH has an ontology of sorts,

i.e., sorts such as place, thing, robot, and object, which are arranged hierarchically, e.g., object

and robot are subsorts of thing, and textbook and cup are subsorts of object. The statics include

a relation next to : place × place → boolean, which holds iff two places are next to each other.

This domain has two basic fluents that are subject to the laws of inertia: loc : thing → place,

in hand : robot × object → boolean. For instance, the loc(Th) = Pl if thing Th is located at

place Pl, and the value of in hand(R,Ob) is true if robot R is holding object Ob. In this domain,

the basic fluents are observable.

Three actions: move(robot, place), grasp(robot, object), and putdown(robot, object), are

defined in this domain. The axioms that define domain dynamics consist of causal laws such as:

move(R,P l) causes loc(R) = Pl (41a)

grasp(R,Ob) causes in hand(R,Ob) (41b)

putdown(R,Ob) causes ¬in hand(R,Ob) (41c)

state constraints such as:

loc(Ob) = Pl if loc(R) = Pl, in hand(R,Ob) (42a)

next to(P1, P2) if next to(P2, P1) (42b)

and executability conditions such as:

impossible move(R,P l) if loc(R) = Pl (43a)

impossible move(R,P l2) if loc(R) = Pl1, ¬next to(Pl1, P l2) (43b)

impossible A1, A2 if A1 6= A2 (43c)

impossible grasp(R,Ob) if loc(R) = Pl1, loc(Ob) = Pl2, P l1 6= Pl2 (43d)

impossible grasp(R,Ob) if in hand(R,Ob) (43e)

impossible putdown(R,Ob) if ¬in hand(R,Ob) (43f)

115

SRIDHARAN, GELFOND, ZHANG, & WYATT

loc(rob1) = office

move(rob1, kitchen)

move(rob1, office)

loc(rob1) = c6

loc(rob1) = c5

move(rob1, c2) move(rob1, c1) move(rob1, c5) move(rob1, c6)

loc(rob1) = c1

loc(rob1) = c2

move(rob1, c5)

move(rob1, c2)

r1 (office) r2 (kitchen)

loc(rob1) = kitchen

Fine

resolution

Coarse

resolution

(a) Some state transitions

r1 r2

r3 r4

Doors

Wall

c1

c3 c4

c2 c5

c6

(b) Different resolutions

Figure 3: (a) Illustration of state transitions for specific move actions in our illustrative (office) do-

main, viewed at coarse resolution and at fine resolution; and (b) A closer look at specific

places brings into focus the corresponding rooms and grid cells in those rooms.

The part of ΣH described so far, the sort hierarchy and the signatures of functions, is unlikely to

undergo substantial changes for any given domain. However, the last step in the constructions of ΣH

is likely to undergo more frequent revisions—it populates the sorts of the hierarchy with specific

objects; e.g robot = {rob1}, place = {r1, . . . , rn}where rs are rooms, textbook = {tb1, . . . tbm},
kitchenware = {cup1, cup2, plate1, plate2} etc. Ground instances of the axioms are obtained by

replacing variables by ground terms from the corresponding sorts.

The transition diagram τH described by DH is too large to depict in a picture. The top part of

Figure 3(a) shows the transitions of τH corresponding to a move between two places. The only

fluent shown there is the location of the robot rob1—the values of other fluents remain unchanged

and are not shown. The actions of this transition diagram τH of the logician, as described above,

are assumed to be deterministic. Also, the values of coarse-resolution fluents are assumed to be

known at each step. These assumptions allow the robot to do fast, tentative planning and diagnostics

necessary for achieving its assigned goals.

The domain representation described above should ideally be tested extensively. This can be

done by including various recorded histories of the domain, which may include histories with pri-

oritized defaults (Example 2), and using the resulting programs to solve various reasoning tasks.

�

The logician’s model of the world thus consists of the system description DH (Example 5), and

recorded history H of initial state defaults (Example 2), actions, and observations. The logician

achieves any given goal by first translating the model (of the world) to an ASP program Π(DH ,H),
as described in Sections 5.1, 5.2, and expanding it to include the definition of goal and suitable

axioms, as described at the end of Section 5.3. For planning and diagnostics, this program is

passed to an ASP solver—we use SPARC, which expands CR-Prolog and provides explicit con-

structs to specify objects, relations, and their sorts (Balai et al., 2013). Please see example4.sp

at https://github.com/mhnsrdhrn/refine-arch for the SPARC version of the com-

plete program. The solver returns the answer set of this program. Atoms of the form:

occurs(action, step)

116

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

belonging to this answer set, e.g., occurs(a1, 1), . . . , occurs(an, n), represent the shortest plan, i.e.,

the shortest sequence of abstract actions for achieving the logician’s goal. Prior research results in

the theory of action languages and ASP ensure that the plan is provably correct (Gelfond & Kahl,

2014). In a similar manner, suitable atoms in the answer set can be used for diagnostics, e.g., to

explain unexpected observations by triggering suitable CR rules.

7. Refinement, Zoom and Randomization

For any given goal, each abstract action in the plan created by the logician by reasoning with the

coarse-resolution domain representation is implemented as a sequence of concrete actions by the

statistician. To do so, the robot probabilistically reasons about the part of the fine-resolution tran-

sition diagram relevant to the abstract action to be executed. This section defines refinement, ran-

domization, and the zoom operation, which are necessary to build the fine-resolution models for

such probabilistic reasoning, along with the corresponding steps of the design methodology. In do-

ing so, we formally define the relationship, and establish the tight coupling, between the transition

diagrams at the two resolutions.

7.1 Refinement

Although the representation of a domain used by a logician specifies fluents with observable values

and assumes that all of its actions are executable, the robot may not be able to directly make some

of these observations or directly execute some of these actions. For instance, a robot may not have

the physical capability to directly observe if it is located in a given room, or to move in a single step

from one room to another. We refer to such actions that cannot be executed directly and fluents that

cannot be observed directly as abstract; actions that can be executed and fluents that can be observed

directly are, on the other hand, referred to as concrete. The second step of the design methodology

(see Section 4) requires the designer to refine the coarse-resolution transition diagram τH of the

domain by including information needed to execute the abstract actions suggested by a logician,

and to observe values of relevant abstract statics and fluents. This new transition diagram τL defined

by system description DL, is called the refinement of τH . Its construction may be imagined as the

designer taking a closer look at the domain through a magnifying lens. Looking at objects of a sort s

of ΣH at such finer resolution may lead to the discovery of parts of these objects and their attributes

previously abstracted out by the designer. Instead of being a single entity, a room may be revealed

to be a collection of cells with some of them located next to each other, a cup may be revealed to

have parts such as handle and base, etc. If such a discovery happens, the sort s and its objects will

be said to have been magnified, and the newly discovered parts are called the components of the

corresponding objects. In a similar manner, a function f : s1, . . . , sn → s0 from ΣH is affected by

the increased resolution or magnified if:

• It is an abstract action or fluent, i.e., it cannot be executed or observed directly by robots; and

• At least one of s0, . . . , sn is magnified.

In the signature ΣL of the fine-resolution model τL, the newly discovered components of objects

from a sort s of ΣH form a new sort s∗, which is called the fine-resolution counterpart of s. For in-

stance, in our illustrative example domain (Example 1 and Example 5), place∗, which is a collection

of grid cells {c1, . . . , cn}, is the fine-resolution counterpart of place, which is a collection of rooms,

117

SRIDHARAN, GELFOND, ZHANG, & WYATT

and object∗ may be the collection of parts of cups. A vector s̄∗ is a fine-resolution counterpart of

s̄ with respect to magnified sorts si1 , . . . , sik (with k > 0) if it is obtained by replacing si1 , . . . , sik
by s∗i1 , . . . , s

∗
ik

. Every element x̄ of s̄∗ is obtained from the unique6 element ū of s̄ by replacing

ui1 , . . . , uik from si1 , . . . , sik by their components. We say that ū is the generator of x̄ in s̄∗ and

x̄ is a fine-resolution counterpart of ū. A function f∗ with signature s̄∗ is called the fine-resolution

counterpart of a magnified function f with respect to 〈si1 , . . . , sik〉 if for every 〈u1, . . . , un, v〉 ∈ s̄,

f(u1, . . . , un) = v iff there is a fine-resolution counterpart 〈x1, . . . , xn, y〉 ∈ s̄∗ of 〈u1, . . . , un, v〉
such that f∗(x1, . . . , xn) = y. For instance, fluents loc∗ : thing → place∗, loc∗ : object∗ →
place∗, and loc∗ : object∗ → place are fine-resolution counterparts of loc with respect to 〈place〉,
〈object, place〉 and 〈object〉 respectively; and action move∗ : robot × place∗ → boolean is the

fine-resolution counterpart of move : robot × place → boolean with respect to place. In many

interesting domains, some fine-resolution counterparts can be used to execute or observe magnified

functions of ΣH , e.g., an abstract action of moving to a neighbouring room can be executed by a

series of moves to neighbouring cells. We describe other such examples later in this section.

We now define the refinement of a transition diagram in two steps. We first define a notion of

weak refinement that does not consider the robot’s ability to observe the values of domain fluents.

We then introduce our theory of observations, and define a notion of strong refinement (or simply

refinement) that includes the robot’s ability to observe the values of domain fluents.

7.1.1 WEAK REFINEMENT

We introduce some terminology used in the definition below. Let signature Σ1 be a subsignature

of signature Σ2 and let σ1 and σ2 be interpretations over these signatures. We say that σ2 is an

extension of σ1 if σ2|Σ1
= σ1

7.

Definition 9. [Weak refinement of τH]

A transition diagram τL over ΣL is called a weak refinement of τH if:

1. For every state σ⋄ of τL, the collection σ⋄|ΣH
of atoms of σ⋄ formed by symbols from ΣH is

a state of τH .

2. For every state σ of τH , there is a state σ⋄ of τL such that σ⋄ is an extension of σ.

3. For every transition T = 〈σ1, a
H , σ2〉 of τH , if σ⋄

1 and σ⋄
2 are extensions of σ1 and σ2 respec-

tively, then there is a path P in τL from σ⋄
1 to σ⋄

2 such that:

• actions of P are concrete, i.e., directly executable by robots; and

• P is pertinent to T , i.e., all states of P are extensions of σ1 or σ2.

N

We are now ready to construct the fine-resolution system description DL,nobs corresponding to the

coarse-resolution system description DH for our running example (Example 5). This construc-

tion does not consider the robot’s ability to observe the values of domain fluents (hence the sub-

script “nobs”). We start with the case in which the only magnified sort in ΣH is place. The

6. For simplicity we assume that no object can be a component of two different objects.

7. As usual f |B where f is a function with domain A and B ⊂ A denotes the restriction of f on B.

118

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

signature ΣL will thus contain three fine-resolution counterparts of functions from ΣH : (i) ba-

sic fluent loc∗ : thing → place∗; (ii) action move∗ : robot → place∗; and (iii) defined static

next to∗ : place∗ × place∗ → boolean. We assume that loc∗ and next to∗ are directly observ-

able and move∗ is executable by the robot. These functions ensure indirect observability of loc and

next to and indirect executability of move. Although this construction is domain dependent, the

approach is applicable to other domains.

2. Constructing the fine-resolution system description DL corresponding to the coarse-

resolution system description DH .

(a) Constructing DL,nobs.

To construct signature ΣL,nobs:

1. Preserve all elements of signature ΣH .

In our running example, this includes sorts thing, place, robot, cup etc, object constants rob1,

kitchen, office, cup1, tb1 etc, static next to(place, place), fluents loc : thing → place and

in hand : robot×place→ boolean, and actions move(robot, place), grasp(robot, object)
and putdown(robot, object).

2. Introduce a new sort s∗ for every sort s of ΣH that is magnified by the increase in resolution,

with s∗ comprising the components of elements of s. Add s∗ to the sort hierarchy as a sibling

of s. Also, for each abstract function f magnified by the increase in resolution, introduce

appropriate fine-resolution counterparts that support the execution or observation of f at the

fine-resolution.

In our example, we introduce the sort place∗ as the fine-resolution counterpart of place, and

object constants c1, . . . , cn of sort place∗ that are grid cells; no new sort is introduced for the

sort object. Also, ΣL,nobs includes new static relation next to∗(place∗, place∗), new fluent

loc∗ : thing → place∗, and new action move∗(robot, place∗), but the signature does not

include any new symbols corresponding to in hand or grasp.

3. Introduce static relations component(O∗, O), which hold iff object O∗ of sort s∗ is a compo-

nent of magnified object O of sort s of ΣH . These relations are domain dependent and need

to be provided by the designer.

Continuing with our running example, we introduce the static relation:

component : place∗ × place→ boolean

where component(c, r) is true iff cell c is part of room r.

Next, to construct the axioms of DL,nobs:

1. For each axiom of DH , if it contains any abstract functions, replace them by their fine-

resolution counterparts and make these functions’ variables range over appropriate sorts re-

quired by these fine-resolution counterparts.

119

SRIDHARAN, GELFOND, ZHANG, & WYATT

In our running example, occurrences of the functions next to(place, place), loc : thing →
place, and move(robot, place) in the axioms ofDH are replaced by next to∗(place∗, place∗),
loc : thing → place∗, and move∗(robot, place∗) respectively. At the same time, the

functions in hand(robot, object), grasp(robot, object), and putdown(robot, object) re-

main unchanged. This results in DL,nobs having causal laws:

move∗(R,C) causes loc∗(R) = C (44a)

grasp(R,O) causes in hand(R,O) (44b)

putdown(R,O) causes ¬in hand(R,O) (44c)

state constraints:

loc∗(O) = C if loc∗(R) = C, in hand(R,O) (45a)

next to∗(C2, C1) if next to∗(C1, C2) (45b)

and executability conditions such as:

impossible move∗(R,C) if loc∗(R) = C (46a)

impossible move∗(R,C2) if loc∗(R) = C1, ¬next to
∗(C1, C2) (46b)

impossible grasp(R,O) if loc∗(R) = C1, loc
∗(O) = C2, C1 6= C2 (46c)

impossible putdown(R,O) if ¬in hand(R,O) (46d)

where C, C1, and C2 are grid cells.

2. Introduce bridge axioms, i.e., axioms relating the coarse-resolution functions and their fine-

resolution counterparts. These axioms have the form:

f(X1, . . . , Xm) = Y if component(C1, X1), . . . , component(Cm, Xm), (47)

component(C, Y), f∗(C1, . . . , Cm) = C

In our running example, we have:

loc(Th) = P if component(C,P), loc∗(Th) = C (48a)

next to(P1, P2) if component(C1, P1), component(C2, P2), next to
∗(C1, C2) (48b)

These axioms are domain dependent and need to be provided by the designer.

This completes the construction of DL,nobs for our running example.

To illustrate the robot’s reasoning with DL,nobs, consider a fine-resolution state δ1 in which the

robot is in cell c2 of the office, i.e., (loc∗(rob1) = c2) ∈ δ1. If δ1 is a fine-resolution counter-

part of a coarse-resolution state σ1, then (loc(rob1) = office) ∈ σ1 because the bridge axiom in

Statement 48(a) infers loc(rob1) = office from loc∗(rob1) = c2. Next, consider the robot’s move

from δ1, with book tb1 in its hand, to a cell c5 in the kitchen. If δ2 is the resultant fine-resolution

state, (loc∗(rob1) = c5) ∈ δ2 based on Statement 44(a), and (loc∗(tb1) = c5) ∈ δ2 based on State-

ment 45(a). Now, if δ2 is a fine-resolution counterpart of a coarse-resolution state σ2, then based on

the bridge axiom in Statement 48(a), (loc(rob1) = kitchen) ∈ σ2 and (loc(tb1) = kitchen) ∈ σ2.

The following proposition says that DL,nobs as constructed above is a weak refinement of DH .

120

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Proposition 3. [Weak Refinement]

Let DH and DL,nobs be the coarse-resolution and fine-resolution system descriptions from our run-

ning example. Then τL,nobs is a weak refinement of τH . ⋆

The proof of this proposition is in Appendix C. Although the statement of the proposition and its

proof are provided here for our example domain, this approach can also be used to constructDL,nobs

and establish weak refinement in many other robotics domains.

7.1.2 THEORY OF OBSERVATIONS

The definition of weak refinement does not take into account the robot’s ability to observe the

values of fluents in the domain. This ability to observe plays an important role in updating beliefs

and monitoring the results of action execution in the fine-resolution. As stated earlier, observability

of fluents and executability of actions are specified in the coarse resolution description. The actual

observations are obtained when the robot interacts with the domain through knowledge-producing

actions. This interaction only happens in the fine resolution in our architecture and it is thus modeled

during refinement. Recall that abstract fluents and statics are indirectly observable and the concrete

fluents and statics are directly observable. In our running example, the observation of a thing being

in a room can be inferred by checking if the thing can be observed in some cell of this room.

Also, the robot has to monitor its movement between a series of neighboring cells when it attempts

to execute the abstract action of moving to a neighbouring room. In this section, we introduce a

Theory of Observations that supports this ability. This theory is used in conjunction with any given

system description DL,nobs as follows.

1. Expand ΣL,nobs:

• For every directly observable function f , include the actions:

testf : robot× dom(f)× range(f)→ boolean

For y ∈ range(f), this action checks if the value of f is y in a given state. For read-

ability, we will sometimes abuse notation and write this action as test(R,F, Y).

In our example domain, we include an action such as testloc∗(rob1, O, C) for the robot

to check if the location of an object O is a particular cell C.

• For every (directly or indirectly) observable function f , include the basic knowledge

fluent:

observedf : robot× dom(f)× range(f)→ {true, false, undet}

where the outcome undet stands for “undetermined”. For every x ∈ dom(f) and

y ∈ range(f), the value of observedf (rob1, x, y) is the result of the most recent exe-

cution of testf (rob1, x, y). Initially, the value is set to undet. After testf (rob1, x, y) is

executed at least once, the value becomes (and remains) boolean. It is true if the most

recent test returned true and false otherwise.

In our example domain, we have basic knowledge fluents such as:

observedloc∗(rob1, O, C)

observedloc(rob1, O, P)

121

SRIDHARAN, GELFOND, ZHANG, & WYATT

• For every indirectly observable function f , introduce an observation-related, domain-

dependent defined fluent, as described in Statement 1:

observablef : robot× dom(f)× range(f)→ boolean

Also, for every directly observable domain function f , introduce observation-related,

domain-dependent defined fluents:

can be observedf : robot× dom(f)× range(f)→ boolean (49)

These fluents will be used to describe conditions for the observability of the correspond-

ing functions. These domain dependent fluents need to be defined by the designer.

2. Expand axioms of DL,nobs by axioms that model the robot’s ability to observe.

• Introduce causal laws to describe the effects of testf∗(R, X̄, Y), i.e., the knowledge-

producing action, on the fine-resolution basic fluent f∗:

testf∗(R, X̄, Y) causes observedf∗(R, X̄, Y) = true if f∗(X̄) = Y (50)

testf∗(R, X̄, Y) causes observedf∗(R, X̄, Y) = false if f∗(X̄) = Y1, Y1 6= Y

Also introduce the executability condition:

impossible testf∗(R, X̄, Y) if ¬can be observedf∗(R, X̄, Y) (51)

where X̄ represents the domain of f∗.

In our running example, if robot rob1 located in cell c checks the presence or absence

of an object o, observedloc∗(rob1, o, c) will be true iff o is in c during testing; it will be

false iff o is not in c. These values will be preserved by inertia axioms until the state is

observed to have changed when the same cell is tested again. If the robot has not yet

tested a cell c for an object o, the value of observedloc∗(rob1, o, c) remains undet.

• Introduce axioms for domain-dependent defined fluents describing the ability of the

robot to sense the values of directly and indirectly observable functions.

In our running example, an object’s room location is observable by a robot only when

the robot and the object are in the same room:

observableloc(rob1, O, P l) if loc(rob1) = Pl (52)

Also, the robot in a particular cell can test the presence (or absence) of an object in

that cell, and it can always test whether it has an object in its grasp. We encode this

knowledge as:

can be observedloc∗(rob1, Th, C) if loc∗(rob1) = C (53a)

can be observedin hand(rob1, Th, true) (53b)

We use different fluents (observable and can be observed) to serve a similar purpose

because the conditions under which a particular value of a particular function can be

observed may be significantly different at the coarse-resolution and fine-resolution.

122

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

• Introduce axioms for indirect observation of functions. First, we introduce a defined

fluent for each indirectly observable function f :

may be truef : robot× dom(f)× range(f)→ boolean

which holds true if the value of f(x), where x ∈ dom(f) may be discovered to be

y ∈ range(f).

The axioms for indirect observation are then given by:

observedf (R, X̄, Y) = true if observedf∗(R, X̄∗, C) = true, (54a)

component(X∗
1 , X1), . . . , component(X∗

m, Xm),

component(C, Y)

may be truef (R, X̄, Y) if observedf (R, X̄, Y) = true (54b)

may be truef (R, X̄, Y) if observedf (R, X̄, Y) = undet, component(C, Y),

observedf∗(R, X̄∗, C) = undet (54c)

observedf (R, X̄, Y) = false if ¬may be truef (R, X̄, Y) (54d)

observedf (R, X̄, Y1) = false if observedf (R, X̄, Y2), Y1 6= Y2 (54e)

which implies that a coarse-resolution function is observed to have a particular value

if any of its fine-resolution counterparts is observed to be true, and that the coarse-

resolution function may be observed to have a particular value as long as it is possible

that at least one of its fine-resolution counterparts may be observed to be true.

In our example domain, observing an object in a cell in a room implies that the object is

indirectly observed to be in the room:

observedloc(R,O, P) = true if observedloc∗(R,O,C) = true, component(C,P)

Example 6 includes other examples of the use of such axioms for indirect observations.

7.1.3 STRONG REFINEMENT

We are now ready to define a notion of strong refinement that takes into account the theory of

observations. We do so by expanding Definition 9 of weak refinement as follows.

Definition 10. [Strong refinement of τH]

A transition diagram τL over ΣL is called a strong refinement of τH if:

1. For every state σ⋄ of τL, the collection σ⋄|ΣH
of atoms of σ⋄ formed by symbols from ΣH is

a state of τH .

2. For every state σ of τH , there is a state σ⋄ of τL such that σ⋄ is an extension of σ.

3. For every transition T = 〈σ1, a
H , σ2〉 of τH , if σ⋄

1 is an extension of σ1, then for every

observable fluent f such that observablef (rob1, x̄, y) ∈ σ2, there is a path P in τL from σ⋄
1

to an extension σ⋄
2 of σ2 such that:

• P is pertinent to T , i.e., all states of P are extensions of σ1 or σ2;

123

SRIDHARAN, GELFOND, ZHANG, & WYATT

• actions of P are concrete, i.e., directly executable by robots; and

• observedf (rob1, x, y) = true ∈ σ⋄
2 iff (f(x) = y) ∈ σ⋄

2 , and observedf (rob1, x, y) =
false ∈ σ⋄

2 iff (f(x) = y1) ∈ σ⋄
2 and y1 6= y.

N

We are now ready to complete the second step of the design methodology, i.e., constructing the

fine-resolution system description that considers the robot’s ability to observe the values of domain

fluents. We do so by expanding DL,nobs to include the theory of observations.

2. Constructing the fine-resolution system description DL that is the refinement of the coarse-

resolution system description DH .

(b) Constructing DL with theory of observations.

Specifically, the system description DL is obtained by:

1. Augmenting the signature ΣL,nobs of system description DL,nobs with the actions (e.g., test)

and fluents (e.g., can be observed) of the theory of observations.

2. Augmenting the axioms of DL,nobs with the axioms needed to represent the robot’s ability

to observe, i.e., Statements 50, 51, and 54, and axioms for domain-dependent, observation-

related defined fluents.

Next, consider the relationship between DL,nobs, a well-founded system description, and DL, its

extension by the theory of observations, which is used in the proof of the following proposition. If

τL,nobs and τL are the transition diagrams defined by these system descriptions, then:

• The states of τL,nobs and τL differ mainly in the knowledge functions observedf for directly

or indirectly observable fluents.

• For every transition 〈σ⋄
1, testf (rob1, y), σ

⋄
2〉 of τL:

– Physical fluents are the same in σ⋄
1 and σ⋄

2 .

– observedf (rob1, x̄, y) = true ∈ σ⋄
2 iff (f(x̄) = y) ∈ σ⋄

2 .

– observedf (rob1, x̄, y) = false ∈ σ⋄
2 iff (f(x̄) = y1) ∈ σ⋄

2 and y1 6= y.

Finally, the following proposition says that DL as constructed above is a strong refinement of DH .

Proposition 4. [Strong Refinement]

Let DH and DL be the coarse-resolution and fine-resolution system descriptions from our running

example. Then τL is a strong refinement of τH . ⋆

The proof of this proposition is in Appendix D. Please see refined.sp at https://github.

com/mhnsrdhrn/refine-arch for the ASP program (in SPARC format) describing the re-

fined signature and refined axioms for our illustrative example, along with additional axioms that

support planning to achieve particular goals.

124

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Example 6. [Expanded example of refinement]

LetDH be as in Example 5, and let its refinementDL be as described above in Sections 7.1.1– 7.1.3.

The key difference is that, in addition to the cells of rooms, the increase in resolution has also led

to the discovery of component of cups such as handle and base. To construct a refinement De
L of

DH suitable for this expanded domain, we expand the signature of DL by a new sort cup∗ and add

it to the sort hierarchy of DH as a sibling of sort cup. Now the sort object has three children: cup,

cup∗ and textbook. Similar to DL, we will need the sort place∗ and object constants of specific

sorts such as:

textbook = {tb1, tb2}

cup = {cup1}

cup∗ = {cup base1, cup handle1}

Similar toDL, we will need the function loc∗, and we need new instances of the component relation:

component(cup base1, cup1)

component(cup handle1, cup1)

. . .

To construct De
L, we consider actions that can no longer be executed directly, and then consider

fluents that can no longer be observed directly.

In our example, actions grasp and putdown are no longer directly executable on cups, but are

executable on the components of cups. To support indirect execution of these actions on cups, we

introduce new executable actions grasp∗(robot, cup∗) and putdown∗(robot, cup∗) for grasping

and putting down a cup’s handle and base. System description De
L will inherit from DL the axioms

for next to∗, move∗ and loc∗, i.e., Statements 44(a), 45(a-b), 46(a-b), and 48(a-b). Ground

instances of the axiom describing the effects of grasp for objects other than cups and their parts

will remain as in DH ; this can be written as:

grasp(R,O) causes in hand(R,O) if O 6∈ cup,O 6∈ cup∗ (55)

A new axiom is needed to describe the effects of grasping parts of cups:

grasp∗(R,O) causes in hand(R,O) if O ∈ cup∗ (56)

Executability conditions for grasp and grasp∗ are handled in a similar manner. In addition to

Statement 46(c) of DL:

impossible grasp(R,O) if loc∗(R) = C1, loc
∗(O) = C2, C1 6= C2

we will need an additional axiom for grasp∗:

impossible grasp∗(R,O) if loc∗(R) = C1, loc
∗(O) = C2, C1 6= C2 (57)

125

SRIDHARAN, GELFOND, ZHANG, & WYATT

Similar axioms are also introduced for actions putdown and putdown∗. Finally, we will need

axioms describing newly discovered relationships between objects and their parts:

in hand(R,O) = in hand(R,OPart) if component(OPart,O) (58a)

(loc∗(O) = C) = (loc∗(OPart) = C) if component(OPart,O) (58b)

where the equality is shorthand for two statements8. To illustrate reasoning with De
L consider

initial situation in which rob1 and cup1 are in a cell c5 of kitchen. Suppose rob1 grasps the

cup’s handle, i.e., grasp∗(rob1, cup handle1) is executed, and moves to location c2 of office,

i.e., executes move∗(rob1, c2). Both actions are clearly executable based on Statement 57 and

Figure 3(b). By Statement 56, after the execution of grasp∗, the handle will be in the robot’s

hand, i.e., in hand(rob1, cup handle1). Based on Statement 44(a), executing action move∗ will

result in loc∗(rob1) = c2. Based on Statement 45(a), we conclude that loc∗(cup handle1) = c2.

Then, based on Statement 58(b), we have loc∗(cup1) = c2 and thus, by Statement 48(a), we have

loc(cup1) = office.

Next, we examine the effect of the robot being able to directly observe neither the location of a cup

nor if it is holding a cup, but being able to do so for a cup’s parts and for textbooks. This requires us

to introduce fine-resolution counterparts loc∗ : cup∗ → place∗ and in hand∗(robot, cup∗) of loc

and in hand respectively for cups, and change the related axioms. Statement 55 is not related to

cups and remains unchanged. Statement 56 will, on the other hand, be replaced by the axiom:

grasp∗(R,O) causes in hand∗(R,O) if O ∈ cup∗ (59)

The bridge axioms in Statement 58(a-b) will be replaced by bridge axioms:

in hand(R,Cup) if in hand∗(R,Part), component(Part, Cup) (60a)

loc∗(O) = C if loc∗(OPart) = C, component(OPart,O) (60b)

defining in hand and loc for cups in terms of its fine-resolution counterparts. Next, we introduce

actions testloc∗ and testin hand∗ to check the cell location of a cup’s part and to check whether a

part of a cup is in the robot’s hand:

testloc∗(R,OPart, C) causes observedloc∗(R,OPart, C) = true if loc∗(OPart) = C

testloc∗(R,OPart, C) causes observedloc∗(R,OPart, C) = false if loc∗(OPart) = C1,

C1 6= C

testin hand∗(R,OPart, V) causes observedin hand∗(R,OPart, V) = true if

in hand∗(R,OPart) = V

testin hand∗(R,OPart, V) causes observedin hand∗(R,OPart, V) = false if

in hand∗(R,OPart) = V1, V1 6= V

We also replace Statements 53(a-b) about the observation-related, domain-dependent defined fluents

with the following statements:

can be observedloc∗(R, Th,C) if loc∗(R) = C, Th 6∈ cup (61a)

can be observedin hand(R,O, V) if O 6∈ cup, 6∈ cup∗ (61b)

can be observedin hand∗(R,O, V) if O ∈ cup∗ (61c)

8. f(x) = g(x) if body is shorthand for f(x) = y if body, g(x) = Y and g(x) = y if body, f(x) = Y .

126

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

which imply that the robot can no longer directly observe the location of a cup or whether a cup is in

its hand; it can do so for parts of cups. Reasoning similar to that used in the context of grasp∗ above

can be used to show that if the robot grasps a cup’s handle and moves to a cell c2 of the office, the

robot, the cup, and the cup’s handle will be in the office. If needed, test actions and the theory of

observations can be used to observe that the robot is holding the cup, and to observe the locations

of other things in the domain.

Next, consider the inclusion of an additional action fill(robot, cup) in DH . Executing this action

causes a cup to be filled—we thus introduce a basic fluent filled : cup → boolean in DH and the

corresponding axioms described below:

fill(R,C) causes filled(C) (62a)

impossible fill(R,C) if filled(C) (62b)

impossible fill(R,C) if loc(C) = P1, loc(R) = P2, P1 6= P2 (62c)

Here, action fill is directly executable and fluent filled in directly observable. We also include

same loc : object × object → boolean in DH , a defined fluent to reason about co-occurrence of

objects, with the corresponding axiom:

same loc(O1, O2) if loc(O1) = Pl, loc(O2) = Pl (63)

which defines when two objects are considered to be in the same place. In the refined system

description, the action fill is still directly executable, and the fluent filled is directly observable,

for cups. These functions are not defined for parts of cups, e.g., we cannot fill a cup’s handle, and

we thus do not create their fine-resolution counterparts (e.g., fill∗). We do, however, introduce a

new function in the signature of the refined system description:

same loc∗(O1, O2), O1, O2 6∈ cup (64)

representing parts of cups and/or other objects being in the same grid cell location. Note that

elements of sort cup are not included because we cannot directly observe the location of a cup in

the fine resolution. We also introduce the following axiom in the refined system description, which

corresponds to Statement 63 introduced above:

same loc∗(O1, O2) if loc∗(O1) = C, loc∗(O2) = C (65)

Finally, we need to introduce a suitable bridge axiom:

same loc(O1, O2) if loc∗(OPart1) = C1, loc
∗(OPart2) = C2, (66)

component(C1, P), component(C2, P),

component(OPart1, O1), component(OPart2, O2)

Once we have the refined system description, we can reason with it as before. For instance, consider

a fine-resolution state in which loc∗(cup handle1) = c5 and loc∗(tb1) = c6 where c5 and c6 are

grid cells in the kitchen. Based on the bridge axioms, we can infer that loc(cup1) = kitchen,

loc(tb1) = kitchen and same loc(cup1, tb1). �

127

SRIDHARAN, GELFOND, ZHANG, & WYATT

7.2 Randomization

The system description DL of transition diagram τL, obtained by refining transition diagram τH , is

insufficient to implement a coarse-resolution transition T = 〈σ1, a
H , σ2〉 ∈ τH . We need to capture

the non-determinism in action execution, which is done by the third step of the design methodology

(Section 4).

3. Provide domain-specific information and randomize the fine-resolution description of the

domain to capture the non-determinism in action execution.

This step of the design methodology models the non-determinism by first creating DLR, the ran-

domized fine-resolution system description. It does so by:

• Replacing the deterministic causal laws of each action in DL that has non-determinism in its

execution, by non-deterministic ones; and

• Modifying the signature by declaring each affected fluent as a random fluent, i.e., define the

set of values the fluent can choose from when the action is executed. A defined fluent may be

introduced to describe this set of values in terms of other variables.

Note that only causal laws of actions with non-determinism in their execution need to be replaced

with non-deterministic ones. For instance, consider a robot moving to a specific cell in the office.

During this move, the robot can reach the desired cell or one of the neighboring cells. The causal

law for the move action in DL can therefore be (re)stated as:

move∗(R,C2) causes loc∗(R) = {C : range(loc∗(R), C)} (67)

where the relation range is a defined fluent used to represent the cell the robot currently is in, and

the cells next to its current location:

range(loc∗(R), C) if loc∗(R) = C

range(loc∗(R), C) if loc∗(R) = C1, next to
∗(C,C1)

As described by Statement 46(b), the robot can only move to a cell that is next to its current

location. In general, the fluent affected by the change in the causal law can take one of a set of

values that satisfy a given property (range in the current example), as described in Statement 3. In

a similar manner, the non-deterministic version of the test action that determines the robot’s cell

location in the office is:

testloc∗(rob1, rob1, ci) causes observedloc∗(rob1, rob1, ci) = {true, false} if loc∗(rob1) = ci

which indicates that the result of the test action may not always be as expected, and ci are cells

in the office. Similar to refinement, it is the designer’s responsibility to provide domain-specific

information needed for randomization. Furthermore, note that the paths in the randomized transition

diagram τLR match those in τL except for the addition of the defined fluents that model the domain-

specific information.

Once the randomized system descriptionDLR has been constructed, we can construct its probabilis-

tic version DP
LR that consists of:

128

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

• System description DLR that defines a non-deterministic transition diagram τLR of all the

system’s trajectories.

• A function P assigning probabilities to each of the transitions.

In addition to the actual states, DP
LR will reason with probability distributions over the states, and

consider transitions between one such probabilistic state to another as a result of executing particular

actions. We obtain the probabilities needed to construct DP
LR, we experimentally collect statistics

of action outcomes and the reliability of observations as described below.

Collecting statistics: Running experiments to collect statistics that are used to compute the prob-

abilities of action outcomes and the reliability of observations, corresponds to the fourth step of the

design methodology (see Section 4).

4. Run experiments, collect statistics, and compute probabilities of action outcomes and relia-

bility of observations.

Specifically, we need to compute the:

• Causal probabilities for the outcomes of physical actions; and

• Probabilities for the outcomes of the knowledge-producing actions, i.e., a quantitative model

for the observations being correct.

This collection of statistics is typically a one-time process performed in an initial training phase,

although it is also possible to do this incrementally over time. Also, the statistics are computed

separately for each basic fluent in DLR. To collect the statistics, we consider the direct effects of

one action at a time. In our domain, this corresponds to considering one non-deterministic causal

law inDLR at a time. We sample ground instances of this causal law, e.g., corresponding to different

atoms in the causal law. The robot then executes the action corresponding to this sampled instance

multiple times, and collects statistics (e.g., counts) of the number of times each possible outcome

(i.e., value) is obtained. The robot also collects information about the amount of time taken to

execute each such action.

As an example, consider a ground instance of the non-deterministic causal law for move∗,

considering grid cell locations in a particular room:

move∗(rob1, c2) causes loc∗(R) = {c1, c2, c3}

where rob1 in cell c1 can end up in one of three possible cells when it tries to move to c2. In ten

attempts to move to c2, assume that rob1 remains in c1 in one trial, reaches c2 in eight trials, and

reaches c3 in one trial. The maximum likelihood estimates of the probabilities of these outcomes

are then 0.1, 0.8 and 0.1 respectively—the probability of rob1 moving to other cells is zero. Similar

statistics are collected for other ground instances of this causal law, and averaged to compute the

statistics for the fluent loc for rob1. The same approach is used to collect statistics for other causal

laws and fluents, including those related to knowledge actions and basic knowledge fluents. For

instance, assume that the collected statistics indicate that testing for the presence of a textbook in

a cell requires twice as much computational time (and thus effort) as testing for the presence of a

129

SRIDHARAN, GELFOND, ZHANG, & WYATT

cup. This information, and the relative accuracy of recognizing textbooks and cups, will be used to

determine the relative value of executing the corresponding test actions. The collected statistics are

thus used to define the probabilities of two different types of transitions in DLR.

Definition 11. [Learned transition probabilities]

The learned state transition probabilities P (δx, a, δy) are of two types depending on the type of

transition between states δx and δy of DLR:

1. Physical state transition probability, where δx and δy differ in a literal formed of a non-

knowledge fluent term, e.g., when we consider the probability of the robot’s location changing

from loc∗(rob1) = c1 to loc∗(rob1) = c2 after executing move∗(rob1, c2).

2. Knowledge state transition probabilities, where δx and δy differ in a literal formed of a

knowledge fluent term, e.g., when we consider the probability of observedloc∗(rob1, cup1, c2)
changing its value from undet in δx to true in δy.

N

There are some important caveats about collecting statistics and computing probabilities.

• First, we only consider the direct effects of an action while collecting statistics. Also, since

transitions in our domain only differ in a literal formed of one knowledge or non-knowledge

fluent term, we explore the change in the value of one basic fluent at a time, e.g., while

collecting statistics of a robot’s move from one cell to another, we do not consider whether the

robot is holding a book in hand. It is a common practice in robotics to compute probabilities

of the direct effects of an action, and to consider one causal law at a time. It simplifies

the collection of statistics and the computed probabilities can be reused across robots and

scenarios. If any action had multiple direct effects, we would consider them together while

collecting statistics. However, states can comprise multiple fluents, actions can have multiple

direct and indirect effects, and the value of one fluent may constrain the value of other fluents.

As discussed later, we ensure that impossible scenarios are not considered, and compute the

probabilities of valid states by suitably combining the individual probabilities. For instance,

if a robot is holding a book, having the robot and the book in different locations does not

constitute a valid state.

• Second, the collection of statistics depends on the availability of relevant ground truth in-

formation, e.g., we need the actual location of robot rob1 after executing move∗(rob1, c2).
This ground truth information is often provided by an external high-fidelity sensor during the

initial training phase, or by a human observer.

• Third, although we do not do so in our experiments, it is possible to use heuristics to model the

computational effort, and to update the statistics incrementally over time, e.g., the execution

time of a knowledge-producing action can be computed as a function of the size of the input

image. If any heuristic functions are to be used, the designer has to make them available to

automate subsequent steps of our control loop.

• Fourth, considering all ground instances of one causal law at a time can require a lot of

training in complex domains, but this is often unnecessary. For instance, it is often the case

130

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

that the statistics of moving from a cell to one of its neighbors is the same for cells in a

room and any given robot. In a similar manner, if the robot and an object are (are not) in the

same cell, the probability of the robot observing (not observing) the object is often the same

for any cell. The designer thus only considers representative samples of the distinct cases to

collect statistics, e.g., statistics corresponding to moving between cells will be collected in

two different rooms only if these statistics are expected to be different.

There is an extensive literature on estimation of such statistical models for robots. Types of models

learned from data in cognitive robotics are sensor models and robot motion models (Thrun, Bur-

gard, & Fox, 2005), motion models for manipulated objects (Kopicki, Zurek, Stolkin, Moerwald, &

Wyatt, 2017), and success-failure models for actions (e.g., grasping) (Lu, Chenna, Sundaralingam,

& Hermans, 2017). In particular, robot motion models for standard mobile platforms are available

for use in the robotics community without need for re-learning. In addition, rigid body physics

engines can be used as a source of data for learning (Haidu, Kohlsdorf, & Beetz, 2015). The learned

models can be used on physical robots if the simulator has a realistic representation of the robot and

the application domain—such a transfer of knowledge learned in simulation to physical robots is an

open research problem. In other work, we have explored incremental learning of statistics (Zhang

et al., 2015) and domain knowledge (Sridharan & Meadows, 2018), but these topics are beyond the

scope of this article.

Even after the desired probabilities of transitions in DLR are computed, reasoning with DP
LR (as

described earlier) will be computationally infeasible for complex domains. Our architecture ad-

dresses this problem by automatically zooming to the part ofDLR relevant to each coarse resolution

transition T under consideration (as described below), and then reasoning probabilistically over this

zoomed system description DLR(T) using POMDPs (see Section 8.2).

7.3 Zoom

Reasoning probabilistically about the entire randomized fine-resolution system description can be-

come computationally intractable. For any given transition T = 〈σ1, a
H , σ2〉 ∈ τH , this intractabil-

ity could be offset by limiting fine-resolution probabilistic reasoning to the part of transition dia-

gram τLR whose states are pertinent to T . For instance, for the state transition corresponding to

a robot moving from the office to the kitchen in Example 5, i.e., aH = move(rob1, kitchen),
we could only consider states of τLR in which the robot’s location is a cell in the office or the

kitchen. However, these states would still contain fluents and actions not relevant to the execution

of aH , e.g., locations of domain objects, and the grasp action. What we need is a fine-resolution

transition diagram τLR(T) whose states contain no information unrelated to the execution of aH ,

while its actions are limited to those which may be useful for such an execution. In the case of

aH = move(rob1, kitchen), for instance, states of τLR(T) should not contain any information

about domain objects. In the proposed architecture, the controller constructs such a zoomed fine-

resolution system descriptionDLR(T) in two steps. First, a new action description is constructed by

focusing on the transition T , creating a system description DH(T) that consists of ground instances

ofDH built from object constants of ΣH relevant to T . In the second step, the refinement ofDH(T)
is extracted fromDLR to obtainDLR(T). We first consider the requirements of the zoom operation.

Definition 12. [Requirements of zoom operation]

The following are the requirements the zoom operation should satisfy:

131

SRIDHARAN, GELFOND, ZHANG, & WYATT

1. Every path in the transition diagram obtained after zooming should correspond to a path in

the transition diagram before zooming. In other words, for every path P z of τLR(T) between

states δz1 ⊆ δ1 and δz2 ⊆ δ2, where δ1 and δ2 are refinements of σ1 and σ2 respectively, there

is a path P between states δ1 and δ2 in τLR.

2. Every path in the transition diagram before zooming should correspond to a path in the

zoomed transition diagram. In other words, for every path P of τLR, formed by actions

of τLR(T), between states δ1 and δ2 that are refinements of σ1 and σ2 respectively, there is a

path P z of τLR(T) between states δz1 ⊆ δ1 and δz2 ⊆ δ2.

3. Paths in transition diagram τLR(T) should be of sufficiently high probability for the proba-

bilistic solver to find them.

N

To construct such a zoomed system descriptionDLR(T) defining transition diagram τLR(T), we be-

gin by defining relObConH(T), the collection of object constants of signature ΣH of DH relevant

to transition T .

Definition 13. [Constants relevant to a transition]

For any given (ground) transition T = 〈σ1, a
H , σ2〉 of τH , by relObConH(T) we denote the mini-

mal set of object constants of signature ΣH of DH closed under the following rules:

1. Object constants occurring in aH are in relObConH(T);

2. If f(x1, . . . , xn) = y belongs to σ1 or σ2, but not both, then x1, . . . , xn, y are in relObConH(T);

3. If body B of an executability condition of aH contains an occurrence of a term f(x1, . . . , xn)
and f(x1, . . . , xn) = y ∈ σ1 then x1, . . . , xn, y are in relObConH(T).

Constants from relObConH(T) are said to be relevant to T . N

In Example 5, consider transition T = 〈σ1, grasp(rob1, cup1), σ2〉 such that loc(rob1) = kitchen

and loc(cup1) = kitchen are in σ1. Then, relObConH(T) consists of rob1 of sort robot and cup1
of sort object (based on the first rule above), and kitchen of sort place (based on the third rule

above and fourth axiom in Statement 43 in Example 5). For more details, see Example 8.

Now we are ready for the first step of the construction ofDLR(T). Object constants of the signature

ΣH(T) of the new system description DH(T) are those of relObConH(T). Basic sorts of ΣH(T)
are non-empty intersections of basic sorts of ΣH with relObConH(T). The domain attributes and

actions of ΣH(T) are those of ΣH restricted to the basic sorts of ΣH(T), and the axioms of DH(T)
are restrictions of axioms of DH to ΣH(T). It is easy to show that the system descriptions DH

and DH(T) satisfy the following requirement—for any transition T = 〈σ1, a
H , σ2〉 of transition

diagram τH corresponding to system description DH , there exists a transition 〈σ1(T), a
H , σ2(T)〉

in transition diagram τH(T) corresponding to system description DH(T), where σ1(T) and σ2(T)
are obtained by restricting σ1 and σ2 (respectively) to the signature ΣH(T).

In the second step, the zoomed system descriptionDLR(T) is constructed by refining the system

descriptionDH(T). Unlike the description of refinement in Section 7.1, which requires the designer

to supply domain-specific information, no additional input is needed from the designer for refining

132

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

DH(T) and the zoom operation can be automated. We now provide a formal definition of the

zoomed system description.

Definition 14. [Zoomed system description]

For a coarse-resolution transition T , system description DLR(T) with signature ΣLR(T) is said to

be the zoomed fine-resolution system description if:

1. Basic sorts of ΣLR(T) are those of DLR that are components of the basic sorts of DH(T).

2. Functions of ΣLR(T) are those of DLR restricted to the basic sorts of ΣLR(T).

3. Actions of ΣLR(T) are those of DLR restricted to the basic sorts of ΣLR(T).

4. Axioms of DLR(T) are those of DLR restricted to the signature ΣLR(T).

N

Consider the transition T = 〈σ1,move(rob1, kitchen), σ2〉 such that loc(rob1) = office ∈ σ1.

The basic sorts of ΣLR(T) include robotzL = {rob1}, place
z
L = {office, kitchen} and place∗zL =

{ci : ci ∈ kitchen ∪ office}. Functions of ΣLR(T) include loc∗(rob1) taking values from

place∗zL , loc(rob1) taking values from placezL, defined fluent range(loc∗(rob1), place
∗z
L), the statics

next to∗(place∗zL , place∗zL), next to(placezL, place
z
L), and properly restricted functions related to

testing the values of fluent terms. The actions include move∗(rob1, ci) and testloc∗(rob1, rob1, ci),
where ci are individual elements of place∗zL . Finally, restricting the axioms of DLR to the signature

ΣLR(T) removes causal laws for grasp and put down, and the state constraint encoded by State-

ment 42(a) in DLR. Furthermore, in the causal law and executability condition for move∗, we only

consider cells in the kitchen or the office.

Based on Definition 10 and Proposition 4, it is easy to show that the system descriptions DH(T)
and DLR(T) satisfy the following requirement—for any transition 〈σ1(T), a

H , σ2(T)〉 in transition

diagram τH(T) of system description DH(T), where σ1(T) and σ2(T) are obtained by restricting

states σ1 and σ2 (respectively) of DH to signature ΣH(T), there exists a path in τLR(T) between

every refinement δz1 of σ1(T) and a refinement δz2 of σ2(T). We now provide two examples of con-

structing the zoomed system description. In Example 7, the coarse-resolution action corresponds to

a robot grasping a cup. In Example 8, we consider the coarse-resolution action of the robot moving

from one room to another, and demonstrate the benefits of zooming when additional functions are

included in the system description.

Example 7. [First example of zoom operation]

As an illustrative example of zooming, consider the transition T = 〈σ1, grasp(rob1, cup1), σ2〉 such

that (loc(rob1) = kitchen) ∈ σ1. Based on Definition 13, relObConH(T) consists of rob1 of sort

robot and cup1 of sort cup, and kitchen of sort place—basic sorts of ΣH(T) are intersections of

these sorts with those of ΣH . The domain attributes and actions of ΣH(T) are restricted to these

basic sorts, and axioms ofDH(T) are those ofDH restricted to ΣH(T). Now, the signature ΣLR(T)
of the zoomed system description DLR(T) has the following:

• Basic sorts robotzL = {rob1}, place
z
L = {kitchen}, place∗zL = {ci : ci ∈ kitchen}, and

objectzL = {cup1}.

133

SRIDHARAN, GELFOND, ZHANG, & WYATT

• Functions that include (a) basic non-knowledge fluents loc∗(robotzL) and loc∗(objectzL) that

take values from place∗zL , loc(robotzL) and loc(objectzL) that take values from placezL, and flu-

ent term in hand(robotzL, object
z
L); (b) defined fluent term range(loc∗(robotzL), place

∗z
L);

(c) statics such as next to∗(place∗zL , place∗zL) and next to(placezL, place
z
L); and (d) knowl-

edge fluents restricted to the basic sorts and fluents.

• Actions that include physical actions, e.g., move∗(robotzL, place
∗z
L), grasp(robotzL, object

z
L),

and putdown(robotzL, object
z
L); and actions such as testloc∗(robot

z
L, robot

z
L, place

∗z
L) and

testloc∗(robot
z
L, object

z
L, place

∗z
L) that are knowledge-producing.

The axioms ofDLR(T) are those ofDLR restricted to the signature ΣLR(T). These axioms include:

move∗(rob1, cj) causes loc∗(rob1) = {C : range(loc∗(rob1), C)}

grasp(rob1, cup1) causes in hand(rob1, cup1) = {true, false}

testloc∗(rob1, rob1, cj) causes observedloc∗(rob1, rob1, cj) = {true, false} if loc∗(rob1) = cj

testloc∗(rob1, cup1, cj) causes observedloc∗(rob1, cup1, cj) = {true, false} if loc∗(cup1) = cj

impossible move∗(rob1, cj) if loc∗(rob1) = ci, ¬next to
∗(cj , ci)

impossible grasp(rob1, cup1) if loc∗(rob1) = ci, loc
∗(cup1) = cj , ci 6= cj

where range(loc∗(rob1), C) may hold for C ∈ {ci, cj , ck}, cells within the range of the robot’s

current location (ci) and elements of sort place∗zL . The states of τLR(T) include atoms such as

loc∗(rob1) = ci and loc∗(cup1) = cj , where ci, cj ∈ place∗zL , in hand(rob1, cup1), next to
∗(ci, cj),

and observedloc∗(rob1, rob1, ci) = true. Actions include move∗(rob1, ci), grasp(rob1, cup1),
putdown(rob1, cup1), testloc∗(rob1, rob1, ci) and testloc∗(rob1, cup1, ci). �

Example 8. [Second example of zoom operation]

Consider the transition T = 〈σ1,move(rob1, kitchen), σ2〉 such that loc(rob1) = office ∈ σ1.

In addition to the description in Example 5, assume that the coarse-resolution description of the

logician includes (a) boolean fluent broken(robot); and (b) fluent color(robot) taking a value from

a set of colors—there is also an executability condition:

impossible move(Rb, P l) if broken(Rb)

Intuitively, color(Rb) and broken(Rb), where Rb 6= rob1, are not relevant to aH , but broken(rob1)
is relevant. Specifically, based on Definition 13, relObConH(T) consists of rob1 of sort robot, and

{kitchen, office} of sort place—basic sorts of ΣH(T) are intersections of these sorts with those

of ΣH . Similar to Example 7, the domain attributes and actions of signature ΣH(T) are restricted

to these basic sorts, and axioms of DH(T) are those of DH restricted to ΣH(T), e.g., they only

include suitably ground instances of Statement 41(a), Statement 42(b), and Statement 43(a-c). The

signature ΣLR(T) of DLR(T) has the following:

• The domain’s basic sorts robotzL = {rob1}, place
z
L = {office, kitchen} and place∗zL = {ci :

ci ∈ kitchen ∪ office}.

• Functions that include (a) fluents loc(robotzL) and loc∗(robotzL) that take values from placezL
and place∗zL respectively, and defined fluent term range(loc∗(robotzL), place

∗z
L); (b) statics

such as next to∗(place∗zL , place∗zL) and next to(placezL, place
z
L); (c) fluent broken(robotzL);

and (d) observedloc∗(robot
z
L, robot

z
L, place

z
L) and other relevant knowledge fluents.

134

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

• Actions that include (a) move∗(robotzL, place
∗z
L); and (b) testloc∗(robot

z
L, robot

z
L, place

∗z
L).

The axioms of DLR(T) are those of DLR restricted to ΣLR(T), e.g., they include:

move∗(rob1, cj) causes loc∗(rob1) = {C : range(loc∗(rob1), C)}

testloc∗(rob1, rob1, cj) causes observedloc∗(rob1, rob1, cj) = {true, false} if loc∗(rob1) = cj

impossible move∗(rob1, cj) if loc∗(rob1) = ci, ¬next to
∗(cj , ci)

impossible move∗(rob1, cj) if broken(rob1)

where range(loc∗(rob1), C) may hold for C ∈ {ci, cj , ck}, which are within the range of the robot’s

current location (ci), and are elements of place∗zL . Assuming the robot is not broken, each state of

τLR(T) thus includes an atom of the form loc∗(rob1) = ci, where ci is a cell in the kitchen or the

office, ¬broken(rob1), direct observations of this atom, e.g., observedloc∗(rob1, rob1, ci) = true,

and statics such as next to∗(ci, cj). Particular actions under consideration include move∗(rob1, ci)
and testloc∗(rob1, rob1, ci).

As an extension to this example, if robot rob1 is holding textbook tb1 before executing the action

aH = move(rob1, kitchen), i.e., in hand(rob1, tb1) ∈ σ1, then ΣH(T) also includes tb1 of sort

textbook, and ΣLR(T) includes objectzL = {tb1}. The functions of DLR(T) include basic fluent

in hand(robotzL, object
z
L) and the corresponding knowledge fluents, and the actions and axioms

are suitably restricted. �

In Examples 7 and 8, probabilities are assigned to the outcomes of actions based on the statistics col-

lected earlier (see Definition 11 in Section 7.2). For instance, if action move(rob1, c1) is executed,

the probabilities of the possible outcomes of this action may be:

P (loc∗(rob1) = c1) = 0.85

P (loc∗(rob1) = Cl | range(loc∗(rob1), Cl), Cl 6= c1) =
0.15

|Cl|

Similarly, if the robot has to search for a textbook cup1 once it reaches the kitchen, and if a test

action is executed to determine the location of a textbook cup1 in cell ci in the kitchen, the proba-

bilities of the outcomes may be:

P
(

observedloc∗(rob1, cup1, ci) = true
∣

∣

∣
loc∗(cup1) = ci

)

= 0.9

P
(

observedloc∗(rob1, cup1, ci) = false
∣

∣

∣
loc∗(cup1) = ci

)

= 0.1

Also, when the execution of an action changes the value of a fluent that is its indirect consequence,

the probabilities are computed by marginalizing the related fluents. For instance, the probability of

a cup being in a particular cell is computed by considering the probability of the robot being in the

cell and holding the cup, and the probability of the cup being in the cell but not in the robot’s grasp.

Given DLR(T) and the probabilistic information, the robot now has to execute a sequence of

concrete actions that implement the desired transition T = 〈σ1, a
H , σ2〉. For instance, a robot

searching for cup1 in the kitchen can check cells in the kitchen for cup1 until either the cell lo-

cation of cup1 is determined with high probability (e.g., ≥ 0.9), or all cells are examined without

135

SRIDHARAN, GELFOND, ZHANG, & WYATT

locating cup1. In the former case, the probabilistic belief can be elevated to a fully certain state-

ment, and the robot reasons about the action outcome and observations to infer that cup1 is in the

kitchen, whereas the robot infers that cup1 is not in the kitchen in the latter case. Such a proba-

bilistic implementation of an abstract action as a sequence of concrete actions is accomplished by

constructing and solving a POMDP, and repeatedly invoking the corresponding policy to choose

actions until termination, as described below.

8. POMDP Construction and Probabilistic Execution

In this section, we describe the construction of a POMDP Po(T) as a representation of the zoomed

system description DLR(T) and the learned probabilities of action outcomes (Section 7.2), and the

use of Po(T) for the fine-resolution implementation of transition T = 〈σ1, a
H , σ2〉 of τH . First,

Section 8.1 summarizes the use of a POMDP to compute a policy for selecting one or more concrete

actions that implement any given abstract action aH . Section 8.2 then describes the steps of the

POMDP construction in more detail.

8.1 POMDP Overview

A POMDP is described by a tuple Po = 〈AP , SP , bP0 , Z
P , TP , OP , RP 〉 for specific goal state(s).

This formulation of a POMDP builds on the standard formulation (Kaelbling et al., 1998). Since

the states and observations of a POMDP are different from the definitions of these terms as used in

this article, we begin by introducing some terminology.

We refer to each state represented by the POMDP as a p-state. Recall that each state δx of

the fine-resolution system description DLR(T) contains atoms formed of statics, non-knowledge

fluent terms and knowledge fluent terms. There is a many-to-one correspondence between states of

DLR(T), and the p-states and observations of the POMDP Po(T) constructed from DLR(T). We

provide the following definition of this correspondence.

Definition 15. [P-states and observations of POMDP Po(T)]
Let Po(T) be a POMDP constructed from the zoomed fine-resolution system description DLR(T).

• Each p-state s of Po(T) is a projection of states of DLR(T) on the set of atoms of the form

f(t) = y, where f(t) is a basic non-knowledge fine-resolution fluent term, or a special p-state

called the terminal p-state.

• Each observation z of Po(T) is a projection of states of DLR(T) on the set of atoms of basic

knowledge fluent terms corresponding to the robot’s observation of the possible values of fine-

resolution fluent terms such as observedf∗(robot, x, y) = outcome, where y is a possible

value of the fluent term f∗(x). For simplicity, we use the observation none to replace all

instances that have undet as the outcome.

In other words, the p-states (observations) of Po(T) are obtained by dropping the atoms formed of

knowledge (non-knowledge) fluent terms and statics in the states of DLR(T). N

We can now define the elements of a POMDP tuple:

• AP : set of concrete, fine-resolution actions available to the robot.

136

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

• SP : set of p-states to be considered for probabilistic implementation of aH .

• bP0 : initial belief state, where a belief state is a probability distribution over SP .

• ZP : set of observations.

• TP : SP × AP × SP → [0, 1], the transition function, which defines the probability of each

transition from one p-state to another when particular actions are executed. As described later,

impossible state transitions are not included in TP .

• OP : SP × AP × ZP → [0, 1], the observation function, which defines the probability of

obtaining particular observations when particular actions are executed in particular p-states.

As described later, one valid state-action-observation combinations are included in OP .

• RP : SP × AP × SP → ℜ, the reward specification, which encodes the relative immediate

reward (i.e., numerical value) of taking specific actions in specific p-states.

The p-states are considered to be partially observable because they cannot be observed with com-

plete certainty, and the POMDP reasons with probability distributions over the p-states, called belief

states. In this formulation, the belief state is a sufficient statistic that implicitly captures all the in-

formation in the history of observations and actions.

The use of a POMDP has two phases (1) policy computation; and (2) policy execution. The first

phase computes policy πP : BP → AP that maps belief states to actions, using an algorithm that

maximizes the utility (i.e., expected cumulative discounted reward) over a planning horizon—we

use a point-based approximate solver that only computes beliefs at a few samples points in the belief

space (Ong et al., 2010). In the second phase, the computed policy is used to repeatedly choose an

action in the current belief state, updating the belief state after executing the action and receiving an

observation. This belief revision is based on Bayesian updates:

bPt+1(s
P
t+1) ∝ OP (sPt+1, a

P
t+1, o

P
t+1)

∑

sPt

{TP (sPt , a
P
t+1, s

P
t+1) · b

P
t (s

P
t)} (68)

where bPt+1, st+1, at+1 and ot+1 are the belief state, p-state, action and observation (respectively) at

time t + 1. Equation 68 says that bPt+1 is proportional to the product of the terms on the right hand

side. The belief update continues until policy execution is terminated. In our case, policy execution

terminates when doing so has a higher (expected) utility than continuing to execute the policy. This

happens when either the belief in a specific p-state is very high (e.g., ≥ 0.8), or none of the p-states

have a high probability associated with them after invoking the policy several times—the latter case

is interpreted as a failure to execute the coarse-resolution action under consideration.

8.2 POMDP Construction

Next, we describe the construction of POMDP Po(T) for the fine-resolution probabilistic imple-

mentation of coarse-resolution transition T = 〈σ1, a
H , σ2〉 ∈ τH , using DLR(T) and the statistics

collected in the training phase as described in Section 7.2. We illustrate these steps using examples

based on the domain described in Example 1, including the example described in Appendix E.

Actions: the set AP of actions of Po(T) consists of concrete actions from the signature of DLR(T)
and new terminal actions that terminate policy execution. We use a single terminal action—if AP is

137

SRIDHARAN, GELFOND, ZHANG, & WYATT

to include domain-specific terminal actions, it is the designer’s responsibility to specify them. For

the discussion below, it will be useful to partition AP into three subsets (1) AP
1 , actions that cause a

transition between p-states; (2) AP
2 , knowledge-producing actions for testing the values of fluents;

and (3) AP
3 , terminal actions that terminate policy execution. The example in Appendix E includes

(a) actions from AP
1 that move the robot to specific cells, e.g., move-0 and move-1 cause robot to

move to cell 0 and 1 respectively, and the action grasp(rob1, tb1); (b) testloc∗ actions from AP
2 to

check if the robot or target object (tb1) are in specific cells; and (c) action finish from AP
3 that

terminates policy execution.

P-states, observations, and initial belief state: the following steps are used to construct the set of

p-states (SP), set of observations (ZP), and the initial belief state (bP0).

1. Construct ASP program Πc(DLR(T)) ∪ Q. Here, Πc(DLR(T)) is constructed as described

in Definition 2 (Section 5.1), and Q is a collection of (a) atoms formed by statics; and (b)

disjunctions of atoms formed by basic fluent terms. Each disjunction is of the form {f(t) =
y1 ∨ . . . ∨ f(t) = yn}, where {y1, . . . , yn} are possible values of basic fluent term

f(t). Observe that if AQ is an answer set of Q, then there is a state δ of DLR(T) such that

AQ = δnd; also, for every state δ of DLR(T), there is an answer set AQ of Q such that

AQ = δnd. It can be shown that AS is an answer set of Πc(DLR(T)) ∪Q iff it is an answer

set of Πc(DLR(T)) ∪ AQ where AQ is an answer set of Q. This statement follows from the

definition of answer set and the splitting set theorem (Balduccini, 2009).

2. Compute answer set(s) of ASP program Πc(DLR(T))∪Q. Based on the observation in Step-1

above, and the well-foundedness of DLR(T), it is easy to show that each answer set is unique

and is a state of DLR(T).

3. From each answer set, extract all atoms of the form f(t) = y, where f(t) is a basic non-

knowledge fine-resolution fluent term, to obtain an element of SP . Basic fluent terms cor-

responding to a coarse-resolution domain attribute, e.g., room location of the robot, are not

represented probabilistically and thus not included in SP . We refer to such a projection of a

state δ of DLR(T) as the p-state defined by δ. Also include in SP an “absorbing” terminal

p-state absb that is reached when a terminal action from AP
3 is executed.

4. From each answer set, extract all atoms such as directly observed(rob1, f(t), y) = outcome,

which are formed by basic knowledge fluent terms corresponding to the robot sensing a fine-

resolution fluent term’s value, to obtain elements of ZP . We refer to such a projection of

a state δ of DLR(T) as an observation defined by δ. As described earlier, for simplicity,

observation none replaces all instances in ZP that have undet as the outcome.

5. In general, the initial belief state bP0 is a uniform distribution, i.e., all p-states are considered

to be equally likely. This does not prevent the designer from using other priors, but these

priors would have to be derived from sources of knowledge external to our architecture.

In the example in Appendix E, abstract action grasp(rob1, tb1) has to be executed in the office. To

do so, the robot has to move and find tb1 in the office. Example 7 above contains the corresponding

DLR(T). Here, Q includes (a) atoms formed by statics, e.g., next to∗(c1, c2) where c1 and c2 are

neighboring cells in the office; and (b) disjunctions such as {loc∗(rob1) = c1 ∨ . . . ∨ loc∗(rob1) =
cn} and {loc∗(tb1) = c1 ∨ . . . ∨ loc∗(tb1) = cn}, where {c1, . . . , cn} ∈ office. In Step-3, p-states

138

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

such as {loc∗(rob1) = c1, loc∗(tb1) = c1, ¬in hand(rob1, tb1)} are extracted from the answer

sets. In Step-4, observations such as observedloc∗(rob1, rob1, c1) = true of the location of rob1,

and observedloc∗(rob1, tb1, c1) = false of the location of tb1 are extracted from the answer sets.

Finally, the initial belief state bP0 is set as a uniform distribution (Step 5).

Transition function and observation function: next, we consider the construction of TP and OP

from DLR(T) and the statistics collected in the initial training phase (see Section 7.2).

A transition between p-states of Po(T) is defined as 〈si, a, sj〉 ∈ TP iff there is an action

a ∈ AP
1 and a transition 〈δx, a, δy〉 of DLR(T) such that si and sj are p-states defined by δx and

δy respectively. The probability of 〈si, a, sj〉 ∈ TP equals that of 〈δx, a, δy〉. In a similar manner,

〈si, a, zj〉 ∈ OP iff there is an action a ∈ AP
2 and a transition 〈δx, a, δy〉 of DLR(T) such that

si and zj are a p-state and an observation defined by δx and δy respectively. The probability of

〈si, a, zj〉 ∈ OP is that of 〈δx, a, δy〉.

First, we augment DLR(T) with causal laws for proper termination:

finish causes absb

impossible AP if absb

Next, we note that actions in AP
1 cause p-state transitions but provide no observations, while ac-

tions in AP
2 do not cause p-state changes but provide observations, and terminal actions in AP

3

cause transition to the absorbing state and provide no observations. To use state of the art POMDP

solvers, we need to represent TP and OP as a collection of tables, one for each action. Specifically,

TP
a [si, sj] = p iff 〈si, a, sj〉 ∈ TP and its probability is p. Also, OP

a [si, zj] = p iff 〈si, a, zj〉 ∈ OP

and its probability is p. Algorithm 1 describes the construction of TP and OP .

Some specific steps of Algorithm 1 are elaborated below.

• After initialization, Lines 3–12 of Algorithm 1 handle special cases, e.g., any terminal action

will cause a transition to the terminal p-state and provide no observations (Lines 4-5).

• An ASP program of the form Π(DLR(T), si, Disj(A)) (Lines 14, 17 of Algorithm 1) is

defined as Π(DLR(T)) ∪ val(si, 0) ∪Disj(A). Here, Disj(A) is a disjunction of the form

{occurs(a1, 0) ∨ . . . ∨ occurs(an, 0)}, where {a1, . . . , an} ∈ A. Lines 14-16 construct and

compute answer sets of such a program to identify all possible p-state transitions as a result

of actions in AP
1 . Then, Lines 17-19 construct and compute answer set of such a program to

identify possible observations as a result of actions in AP
2 .

• Line 16 extracts a statement of the form occurs(ak ∈ AP
1 , 0), and p-state sj ∈ SP , from each

answer set AS, to obtain p-state transition 〈si, ak, sj〉. As stated earlier, a p-state is extracted

from an answer set by extracting atoms formed by basic non-knowledge fluent terms.

• Line 19 extracts a statement of the form occurs(aj ∈ AP
2 , 0), and observation zj ∈ ZP ,

from each answer set AS, to obtain triple 〈si, ak, zj〉. As described earlier, an observation is

extracted from an answer set by extracting atoms formed by basic knowledge fluent terms.

• Probabilities of p-state transitions are set (Line 16) based on the corresponding physical state

transition probabilities (first type of transition in Definition 11 in Section 7.2). Probabilities

of observations are set (Line 19) based on the knowledge state transition probabilities (second

type of transition in Definition 11 in Section 7.2).

139

SRIDHARAN, GELFOND, ZHANG, & WYATT

Algorithm 1: Constructing POMDP transition function TP and observation function OP

Input: SP , AP , ZP , DLR(T); transition probabilities for actions ∈ AP
1 ; observation

probabilities for actions ∈ AP
2 .

Output: POMDP transition function TP and observation function OP .

1 Initialize TP as |SP | × |SP | identity matrix for each action.

2 Initialize OP as |SP | × |ZP | matrix of zeros for each action.

// Handle special cases

3 for each aj ∈ AP
3 do

4 TP
aj
(∗, absb) = 1

5 OP
aj
(∗, none) = 1

6 end

7 for each action aj ∈ AP
1 do

8 OP
aj
(∗, none) = 1

9 end

10 for each aj ∈ AP do

11 OP
aj
(absb, none) = 1

12 end

// Handle normal transitions

13 for each p-state si ∈ SP do

// Construct and set probabilities of p-state transitions

14 Construct ASP program Π(DLR(T), si, Disj(AP
1)).

15 Compute answer sets AS of ASP program.

16 From each AS ∈ AS, extract p-state transition 〈si, ak, sj〉, and set the probability of

TP
ak
[si, sj].

// Construct and set probabilities of observations

17 Construct ASP program Π(DLR(T), si, Disj(AP
2)).

18 Compute answer sets AS of ASP program.

19 From each AS ∈ AS, extract triple 〈si, ak, zj〉, and set value of OP
ak
[si, zj].

20 end

21 return TP and OP .

In the example in Appendix E, a robot in the office has to pick up textbook tb1 that is believed

to be in the office. This example assumes that a move action from one cell to a neighboring cell

succeeds with probability 0.95—the remaining probability of 0.05 the robot remains in its current

cell. It is also assumed that with probability 0.95 the robot observes (does not observe) the textbook

when it exists (does not exist) in the cell the robot is currently in. The corresponding TP and OP ,

constructed for this example, are shown in Appendix E.

The correctness of the approach used to extract p-state transitions and observations, in Lines 16, 19

of Algorithm 1, is based on the following propositions.

Proposition 5. [Extracting p-state transitions from answer sets]

140

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Algorithm 2: Construction of POMDP reward function RP

Input: SP , AP , and TP ; statistics regarding accuracy and time taken to execute non-terminal

actions.

Output: Reward function RP .

// Consider each possible p-state transition

1 for each (s, a, s′) ∈ SP ×AP × SP with TP (s, a, s′) 6= 0 do

// Consider terminal actions first

2 if a ∈ AP
3 then

3 if s′ is a goal p-state then

4 RP (s, a, s′) = large positive value.

5 else

6 RP (s, a, s′) = large negative value.

7 end

// Rewards are costs for non-terminal actions

8 else

9 Set RP (s, a, s′) based on relative computational effort and accuracy.

10 end

11 end

12 return RP

• If 〈si, a, sj〉 ∈ TP then there is an answer set AS of program Π(DLR(T), si, Disj(AP
1))

such that sj = {f(x̄) = y : f(x̄) = y ∈ AS and f is basic}.

• For every answer set AS of program Π(DLR(T), si, Disj(AP
1)) and sj = {f(x̄) = y :

f(x̄) = y ∈ AS and f is basic}, 〈si, a, sj〉 ∈ TP .

⋆

Proposition 6. [Extracting observations from answer sets]

• If 〈si, a, zj〉 ∈ OP then there is an answer set AS of program Π(DLR(T), si, Disj(AP
2))

such that zj = {f(x̄) = y : f(x̄) = y ∈ AS and f is basic}.

• For every answer set AS of program Π(DLR(T), si, Disj(AP
1)) and zj = {f(x̄) = y :

f(x̄) = y ∈ AS and f is basic}, 〈si, a, zj〉 ∈ OP .

⋆

Proposition 5 says that a p-state transition is in Po(T) iff a matching transition is in DLR(T),
and that for any state transition in DLR(T) a matching p-state transition is in Po(T). Proposition 6

makes a similar statement about observations ofPo(T). These propositions are true by construction,

and help establish that every state transition inDLR(T), the zoomed and randomized fine-resolution

system description relevant to the coarse-resolution transition T , is achieved by a sequence of ac-

tions (executed) and observations (obtained) in Po(T).

141

SRIDHARAN, GELFOND, ZHANG, & WYATT

Reward specification: the reward function RP assigns a real-valued relative utility to each p-state

transition, as described in Algorithm 2. Specifically, for any state transition with a non-zero proba-

bility in TP :

1. If it corresponds to a terminal action from AP
3 , the reward is a large positive (negative) value

if this action is chosen after (before) achieving the goal p-state.

2. If it corresponds to a non-terminal action, reward is a real-valued cost (i.e., negative reward)

of executing the action.

Here, any p-state s ∈ SP defined by state δ of DLR(T) that is a refinement of σ2 in transition T =
〈σ1, a

H , σ2〉 is a goal p-state. In Appendix E, we assign large positive reward (100) for executing

finish when textbook tb1 is in the robot’s grasp, and large negative reward (−100) for terminating

before tb1 has been grasped (Lines 3-7, Algorithm 2). We assign a fixed cost (−1) for all other (i.e.,

non-terminal) actions (Line 9). When necessary, this cost can be a heuristic function of relative

computational effort and accuracy, using domain expertise and statistics collected experimentally,

e.g., we can set RP (∗, shape, ∗) = −1 and RP (∗, color, ∗) = −2 because statistics indicate that

the knowledge-producing action that determines an object’s color takes twice as much time as the

action that determines the object’s shape. Although we do not do so in our example, it is also

possible to assign high cost (i.e., large negative reward) to transitions that should be avoided or are

dangerous, e.g., actions that take a wheeled robot near a flight of stairs. The reward function, in

turn, influences the (a) rate of convergence during policy computation; and (b) accuracy of results

during policy execution. Appendix E describes the reward function for a particular example.

Computational complexity and efficiency: Let us consider the complexity of solving POMDPs

and or our approach to construct the POMDPs. For exact algorithms (i.e., algorithms that solve

POMDPs optimally), the complexity class of infinite-horizon stochastic-transition POMDPs with

boolean rewards is known to be EXPTIME; for polynomial time-bounded POMDPs, the complexity

class improves to PSPACE (Littman, 1996). Approximate belief-point approaches, which we em-

ploy here, are more efficient. In these the complexity of one backup, i.e., one step of belief update

process, across all belief points is given by (Shani, Pineau, & Kaplow, 2013):

O(|AP | × |ZP | × |V P | × |SP |2 + |BP | × |AP | × |SP | × |ZP |) (69)

where BP is the set of belief points. This compares favorably with the complexity of one backup

across all α-vectors9 for exact algorithms, which is (Shani et al., 2013):

O(|AP | × |ZP | × |V P | × |SP |2 + |AP | × |SP | × |V P ||Z
P |) (70)

where V P is the set of α-vectors. For more details about the complexity of POMDP solvers, please

see (Shani et al., 2013).

Even the (approximate) belief point algorithms are susceptible to problem size, with the best

solvers able to tackle problems with a few hundred p-states (i.e., |SP | ≃ 100) if both the transition

and observation functions are stochastic, as they are here10. Thus, there is an advantage in reducing

9. The α-vectors are hyperplanes computed in belief space—these vectors are used to select the appropriate action to

be executed in any given belief state.

10. There are solvers, such as POMCP, which work on very large state spaces, but which have not had demonstrable

results on problems that show scaling with both stochastic transitions and observations (Silver & Veness, 2010).

142

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

the problem to be tackled by the solver. In a POMDP created from a relational representation,

such as employed here, this is particularly critical. In general, if we have m fluents, each with an

average of k values, |SP | = km. In our approach, domain knowledge and prior information (e.g.,

defaults encoded in ASP program at coarse-resolution) remove a proportion of atoms formed of

fluent literals from consideration during zooming. If we model the remaining proportion of fluent

literals as 0 < β < 1, then clearly |SP | = kβm. As indicated by Equation 69, this reduction can

provide significant computational benefits, especially in more complex domains where many more

fluents are likely to be irrelevant to any given transition, e.g., if only two out of a 100 atoms are

relevant, |SP | = k0.02m.

For specific tasks such as path planning, it may also be possible to use specific heuristic or prob-

abilistic algorithms that are more computationally efficient than a POMDP. However, POMDPs

provide a (a) principled and quantifiable trade-off between accuracy and computational efficiency

in the presence of uncertainty in both sensing and actuation; and (b) near-optimal solution if the

POMDP’s components are modeled correctly. The computational efficiency of POMDPs can also

be improved by incorporating hierarchical decompositions, or by dividing the state estimation prob-

lem into sub-problems that model actions and observations influencing one fluent independent of

those influencing other fluents—we have pursued such options in other work (Zhang, Sridharan,

& Washington, 2013). These approaches are not always possible, e.g., when a robot is holding a

textbook in hand, the robot’s location and the textbook’s location are not independent. Instead, in

our architecture, we preserve such constraints and construct a POMDP for the relevant part of the

domain to significantly reduce the computational complexity of solving the POMDP. Furthermore,

many of the POMDPs required for a given domain can be precomputed, solved and reused. For

instance, if the robot has constructed a POMDP for locating a textbook in a room, the POMDP for

locating a different book (or even a different object) in the same room may only differ in the values

of some transition probabilities, observation probabilities, and rewards. This similarity between

tasks may not hold in non-stationary domains, in which the elements of the POMDP tuple (e.g., set

of p-states) and the collected statistics (e.g., transition probabilities and observation probabilities)

may need to be revised over time.

Our algorithms for constructing the POMDP Po(T) for a specific coarse-resolution transition

have two key steps: (1) construction of matrices that represent the functions for transition, observa-

tion and reward; and (2) computing answer sets of specific ASP programs to identify valid transi-

tions, observations etc. The first step is polynomial in the size of SP and ZP (|SP | is usually bigger

than |ZP |). The second step, which involves grounding the domain attributes and then computing

possible answer sets, can (in the worst case) be exponential in the size of (ground) atoms (Gebser,

Kaminski, Kaufmann, & Schaub, 2012)11. Recall that we only consider object constants relevant

to the transition under consideration (see Section 7.3 on zooming). This, in conjunction with the

fact that we reuse POMDPs when possible (as described above), makes the construction of Po(T)
computationally efficient.

Computational error: Although the outcomes of POMDP policy execution are non-deterministic,

following an optimal policy produced by an exact POMDP solver is most likely (among all such

possible policies) to take the robot to a goal p-state if the following conditions hold:

• The coarse-resolution transition diagram τH of the domain has been constructed correctly;

11. In many modern ASP solvers based on SAT algorithms, the exponential factor is a small number greater than 1. We

can also use solvers that do incremental grounding (Gebser et al., 2015).

143

SRIDHARAN, GELFOND, ZHANG, & WYATT

Controller

Logician

abstract state
transition T

1. collect statistics of action outcomes

2. perform refinement and zoom for T,
construct POMDP and compute policy

in initial training phase

abstract state transition (T)

POMDP and policy

to be executed,

uses non−monotonic logical inference

to compute next abstract action to execute

in current state to achieve the goal

perform probabilistic belief update

select and execute concrete actions,

until policy termination

success or failure
of abstract action,
observations

Statistician

system description, goal,

history

Figure 4: The proposed architecture can be viewed as a logician and a statistician communicating

through a controller. The architecture combines the complementary strengths of declara-

tive programming and probabilistic models.

• The statistics collected in the training phase (Section 7.2) correctly model the domain dynam-

ics; and

• The reward function is constructed to suitably reward desired behavior.

This statement is based on existing literature (Kaelbling et al., 1998; Littman, 1996; Sondik, 1971).

We use an approximate POMDP solver for computational efficiency, and an exact belief update

(Equation 68), which provides a bound on the regret (i.e., loss in value) achieved by following the

computed policy in comparison with the optimal policy (Ong et al., 2010). We can thus only claim

that the outcomes of executing of our policy are approximately correct with high probability. We

can also provide a bound on the margin of error (Ong et al., 2010), i.e. the probability that at least

one incorrect commitment is made to the history. For instance, if the posterior probability associ-

ated with a statement observedf (R,X, Y) in the fine-resolution representation is p, the probability

of error in the corresponding commitment made to the historyH (in the coarse-resolution represen-

tation) based on this statement is (1 − p). If a series of statements with probabilities pi are used

to arrive at a conclusion that is committed to H, (1 −
∏

i pi) is the corresponding probability that

at least one erroneous commitment has been made. If a later commitment j is based on a prior

belief influenced by previous commitment i then pj is a conditional probability, conditioned on that

previous commitment.

9. Reasoning System and Control Loop of REBA

Recall that the fifth step of the design methodology (see Section 4) is to:

144

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

5. Provide the components described above, together with any desired goal, to a reasoning

system that directs the robot towards achieving this goal.

Algorithm 3: Control loop of REBA

Input: coarse-resolution system description DH and historyH; its randomized refinement

DLR; coarse-resolution description of goal G; coarse-resolution initial state σ.

Output: Return success/true, indicating that with high probability the robot is in a state

satisfying G; return failure/false, indicating that with high probability achieving G

is impossible.

1 Function Main()

2 done := false

3 currState := σ

4 while ¬ done do

5 Logician extracts a plan of abstract actions aH1 , . . . , aHn for G from the answer set of

Plan := Πn(DH ,H) ∪ Classical plan ∪DPC (see Proposition 2)

6 if no plan found then

7 return failure

8 end

9 done := Implement(aH1 , . . . , aHn , currState,H)

10 end

11 return success

// Function below implements plan of abstract actions; records

successful execution of action and observations in H and

sets currState to current state of the system; returns

true/success if entire sequence is implemented, otherwise

returns false/failure

12 Function Implement(aH1 , . . . , aHn , currState,H)

13 i := 1

14 executable := true

15 while (i ≤ n) ∧ executable do

16 currAction := aHi
17 executable := Implement(currState, currAction,H)

18 if executable then

19 i := i+1

20 end

21 end

22 return executable

Algorithm 3 describes the reasoning system and overall control loop of REBA, our architecture for

building intelligent robots. For this description, we (once again) view a robot as consisting of a

logician and a statistician, who communicate through a controller, as described in Section 1 and

shown in Figure 4. For any given goal G, the logician takes as input the system description DH

that corresponds to a coarse-resolution transition diagram τH , recorded history H with initial state

145

SRIDHARAN, GELFOND, ZHANG, & WYATT

// Implement particular coarse-resolution action at

fine-resolution; return failure/false if action cannot be

executed in current state, or if the fine-resolution execution

terminates without implementing this action; otherwise, update

coarse-resolution state currState and history H, and return

success/true

23 Function Implement(currState, currAction,H)

24 Controller extracts T = 〈currState, currAction, σ′〉 from answer set of

Π(DH , currAction, currState)

// Exit if the coarse-resolution action can no longer be

executed

25 if no answer set then

26 return failure

27 end

// Zoom, construct and solve POMDP relevant to T

28 Controller zooms to DLR(T), the part of DLR relevant to transition T and constructs a

POMDP Po(T).
29 Controller solves Po(T) to compute a policy.

// Execute POMDP policy until termination

30 executed := false

31 while ¬ executed do

32 Statistician selects action using policy, executes action, obtains observation, and

updates belief state

33 if terminal action executed then

34 Statistician communicates observations to the controller

35 executed := true

36 end

37 end

// Fine-resolution inference, update H and currState

38 Controller performs fine-resolution inference, adds coarse-resolution outcomes and

observations toH
39 currState := current coarse-resolution state

40 if currState 6= σ′ then

41 return failure

42 return success

defaults (see Example 2), and the current coarse-resolution state σ. Diagnostics and planning to

achieve G are reduced to computing answer sets of the corresponding CR-Prolog program Plan =
Πn(DH ,H) ∪ Classical plan ∪ DPC (Line 5, also see Proposition 2). If no such answer set

is found, the control loop terminates reporting failure (Lines 6-8). If a plan exists, each coarse-

resolution action aHi , i ∈ [1, n] in the plan is implemented one after the other until either one of the

146

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

actions can no longer be executed, or the entire sequence is implemented successfully (Lines 12-22,

Algorithm 3).

To implement a given coarse-resolution action aHi in current state currState, the controller

first checks whether the corresponding transition is feasible (Line 24). If not, the implementation

of this action, and thus the entire coarse-resolution plan, is terminated early (Lines 25-27). If the

transition is feasible, the controller zooms to the relevant part of the randomized, fine-resolution

system description DLR(T), constructs the corresponding POMDP Po(T), and solves it to obtain a

policy (Lines 28-29). The statistician repeatedly invokes this policy to select an action, execute the

action, obtain an observation, and update the belief state, until a terminal action is executed (Lines

31-37). The action outcomes are communicated to the controller, which performs fine-resolution

inference, updates coarse-resolution history H, and updates currState to be the current coarse-

resolution state. Note that the fine-resolution implementation of a coarse-resolution action succeeds

iff the desired coarse-resolution transition is achieved (Lines 40-42).

Notice that executing Algorithm 3 involves:

1. Applying the planning and diagnostics algorithm from Section 5.3 for planning at the coarse

resolution with τH andH;

2. For any given coarse-resolution transition T , automatically constructing DLR(T) by zoom-

ing, as described in Section 7; and

3. Constructing a POMDP from DLR(T), solving it, and using the corresponding policy to

execute a sequence of fine-resolution actions implementing T until termination, as discussed

in Section 8.

It is not difficult to show that the algorithm satisfies the specifications. Consider the algorithm’s

behavior when it receives the appropriate input and there is a state satisfying the assigned goal. In

this case, when the control loop is completed, with high probability (or equivalently, with a low

margin of error) the robot will be in a state satisfying the goal. Also, if the goal cannot be achieved,

the robot will (with high probability) report failure in achieving this goal. The control loop thus

results in correct behavior of the robot.

The execution of fine-resolution actions based on probabilistic models of uncertainty in percep-

tion and actuation (e.g., Line 32, Algorithm 3) is supported by probabilistic state estimation algo-

rithms that process inputs from sensors and actuators. For instance, the robot builds a map of the

domain and estimates its position in the map using a Particle Filter algorithm for Simultaneous Lo-

calization and Mapping (SLAM) (Thrun et al., 2005). This algorithm represents the true underlying

probability distribution over the possible states using samples drawn from a proposal distribution.

Samples more likely to represent the true state, determined based on the degree of match between

the expected and actual sensor observations of domain landmarks, are assigned higher (relative)

weights and re-sampled to incrementally converge to the true distribution. Implementations of the

particle filtering algorithm are used widely in the robotics literature to track multiple hypotheses of

system state. A similar algorithm is used to estimate the pose of the robot’s arm. On the physical

robot, other algorithms used to process specific sensor inputs. For instance, we use existing imple-

mentations of algorithms to process camera images, which are the primary source of information

to identify specific domain objects. The robot also uses an existing implementation of a SLAM

algorithm to build a domain map and localize itself in the map. These algorithms are summarized

in Section 10, when we discuss experiments on physical robots.

147

SRIDHARAN, GELFOND, ZHANG, & WYATT

10. Experimental Setup and Results

This section describes the experimental setup and results of evaluating REBA’s capabilities.

10.1 Experimental Setup

The proposed architecture was evaluated in simulation and on a physical robot. As stated in Sec-

tion 8, statistics of action execution, e.g., observed outcomes of all actions and computation time

for knowledge producing actions, are collected in an initial training phase. These statistics are used

by the controller to compute the relative utility of different actions, and the probabilities of obtain-

ing different action outcomes and observations. The simulator uses these statistics to simulate the

robot’s movement and perception. In addition, the simulator represents objects using probabilistic

functions of features extracted from images, with the corresponding models being acquired in an

initial training phase—see (Zhang et al., 2013) for more details about such models.

In each experimental trial, the robot’s goal was to find and move specific objects to specific

places—the robot’s location, the target object, and locations of domain objects were chosen ran-

domly. An action sequence extracted from an answer set of the ASP program provides a plan

comprising abstract actions, each of which is executed probabilistically. Our refinement-based

architecture “REBA” was compared with: (1) POMDP-1, which constructs a POMDP from the

fine-resolution description (and computed statistics), computes the policy, and uses this policy to

implement the desired abstract action; and (2) POMDP-2, which revises POMDP-1 by assigning

specific probability values to default statements to bias the initial belief. The performance measures

were: (a) success, the fraction (or %) of trials in which the robot achieved the assigned goals; (b)

planning time, the time taken to compute a plan to achieve the assigned goal; and (c) the average

number of actions that were executed to achieve the desired goal. We experimentally evaluate the

following three key hypotheses:

H1 REBA simplifies design in comparison with architectures based on purely probabilistic rea-

soning and increases confidence in the correctness of the robot’s behavior;

H2 REBA achieves the assigned goals more reliably and efficiently than POMDP-1; and

H3 Our representation for defaults improves reliability and efficiency in comparison with not

using defaults or assigning specific probability values to defaults.

We examine the first hypothesis qualitatively in the context of some execution traces grounded in

the illustrative domain described in Example 1 (Section 10.2). We then discuss the quantitative

results corresponding to the experimental evaluation of the other two hypotheses in simulation and

on physical robots (Section 10.3).

10.2 Execution Traces

The following (example) execution traces illustrate some of the key capabilities of the proposed

architecture.

Execution Example 1. [Planning with default knowledge]

Consider the scenario in which a robot is assisting with a meeting in the office, i.e., loc(rob1) =
office, and is assigned a goal state that contains:

loc(cup1) = office

148

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

which implies that the robot has to find and move the cup1 to the office.

• The plan of abstract actions, as created by the logician, is:

move(rob1, kitchen), grasp(rob1, cup1)

move(rob1, office), putdown(rob1, cup1)

This plan uses initial state default knowledge that kitchenware are usually found in the

kitchen. Each abstract action in this plan is executed by computing and executing an appro-

priate sequence of concrete actions.

• To implement move(rob1, kitchen), the controller constructsDLR(T) by zooming to the part

of DLR relevant to the coarse-resolution transition. For instance, only cells in the kitchen

and the office are possible locations of rob1, and move is the only action that can change the

physical state, in the fine-resolution representation.

• DLR(T) is used to construct and solve a POMDP to obtain an action selection policy, which

is provided to the statistician. The statistician repeatedly invokes this policy to select actions

that are executed by the robot until a terminal action is selected. Outcomes (i.e., observations

and beliefs) associated with high probability are elevated to fully certain statements. In the

context of Figure 3(b), assume that the robot moved from cell c1 ∈ office to c5 ∈ kitchen

(through cell c2 ∈ office) with high probability.

• The direct observation from the POMDP, observedloc∗(rob1, rob1, c5) = true, is used by the

controller for inference inDLR(T) andDL, e.g., to produce observedloc(rob1, rob1, kitchen).
The controller adds this information to the coarse-resolution history H of the logician, e.g.,

obs(rob1, loc(rob1) = kitchen, 1). Since the first abstract action has had the expected out-

come, the logician sends the next abstract action in the plan, grasp(rob1, cup1) to the con-

troller for implementation.

• A similar sequence of steps is performed for each abstract action in the plan, e.g., to grasp

cup1, the robot locates the coffee cup in the kitchen and then picks it up. Subsequent actions

cause rob1 to move cup1 to the office, and put cup1 down to achieve the assigned goal.

Execution Example 2. [Planning with unexpected failure]

Consider the scenario in which a robot in the office is assigned the goal of fetching textbook tb1,

i.e., the initial state includes loc(rob1) = office, and the goal state includes:

loc(tb1) = office

The DH and coarse-resolution historyH, along with the goal, are passed on to the logician.

• The plan of abstract actions, as created by the logician, is:

move(rob1,main library), grasp(rob1, tb1)

move(rob1, office), putdown(rob1, tb1)

This plan uses default knowledge, i.e., that textbooks are typically in the main library

(Statement 27). Each abstract action in this plan is executed by computing a POMDP policy

that is invoked to execute a sequence of concrete actions.

149

SRIDHARAN, GELFOND, ZHANG, & WYATT

• Assume that loc(rob1) = main library, i.e., that the robot is in the main library after

successfully executing the first abstract action. To execute the grasp(rob1, tb1) action, the

controller constructs DLR(T) by zooming to the part of DLR relevant to this action. For

instance, only cells in the main library are possible locations of rob1 and tb1 in the fine-

resolution representation.

• DLR(T) is used to construct and solve a POMDP to obtain an action selection policy, which

is provided to the statistician. The statistician repeatedly invokes this policy to select actions

that are executed by the robot until a terminal action is selected. In the context of Figure 3(b),

if r2 is the main library, the robot may move to and search for tb1 in each cell in r2, starting

from its current location.

• The robot unfortunately does not find tb1 in any cell of the main library in the second

step. These observations from the POMDP, i.e., observedloc∗(rob1, tb1, ci) = false for each

ci ∈ main library, are used by the controller for inference in DLR(T) and DL. This infer-

ence produces observations such as observedloc(rob1, tb1,main library) = false, which

(in turn) results in suitable statements being added by the controller to the coarse-resolution

historyH, e.g., obs(rob1, loc(tb1) 6= main library, 2).

• The inconsistency caused by the observation is resolved by the logician using a CR rule, and

the new plan is created based on the second initial state default that a textbook not in the

main library is typically in the aux library (Statement 28):

move(rob1, aux library), grasp(rob1, tb1)

move(rob1, office), putdown(rob1, tb1)

• This time, the robot is able to successfully execute each abstract action in the plan, i.e., it is

able to move to the aux library, find tb1 and grasp it, move back to the office, and put tb1
down to achieve the assigned goal.

Both these examples illustrate key advantages provided by the formal definitions, e.g., of the differ-

ent system descriptions and the tight coupling between them, which are part of our architecture:

1. Once the designer has provided the domain-specific information, e.g., for refinement or for

computing the probabilities of action outcomes, planning, diagnostics, and execution of a

plan computed for any given goal can be automated.

2. Attention is automatically directed to the relevant knowledge at the appropriate resolution.

For instance, reasoning by the logician (statistician) is restricted to a coarse-resolution (zoomed

fine-resolution) system description. It is thus easier to understand, and to fix errors in, the ob-

served behavior, in comparison with architectures that consider all the available knowledge

or only support probabilistic reasoning.

3. There is smooth transfer of control and relevant knowledge between components of the ar-

chitecture, and confidence in the correctness of the robot’s behavior. Also, the proposed

methodology supports the use of this architecture on different robots in different domains,

e.g., Section 10.3 describes the use of this architecture on physical robots in two different

indoor domains.

150

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Number of cells

5 10 15 20 25 30 35

S
u
c
c
e
s
s
 (

%
)

0.85

0.9

0.95

1

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

10

20

30

40

success (%): PA

success (%): POMDP-1

actions: PA

actions: POMDP-1

REBA

REBAREBA

Figure 5: Ability to successfully achieve the assigned goal, and the number of actions executed

before termination, as a function of the number of cells in the domain. REBA signif-

icantly increases accuracy and reduces the number of actions executed, in comparison

with POMDP-1, as the number of cells in the domain increases.

Next, we describe the experimental evaluation of hypotheses H2 and H3 in simulation and on a

mobile robot.

10.3 Experimental Results

To evaluate hypothesis H2, we first compared REBA with POMDP-1 in a set of trials in which the

robot’s initial position is known but the position of the object to be moved is unknown. The solver

used in POMDP-1 was evaluated with different fixed amounts of time for computing action policies.

Figure 5 summarizes the results; each point is the average of 1000 trials, and we set (for ease of

interpretation) each room to have four cells. The brown-colored plots in Figure 5 represent the

ability to successfully achieve the assigned goal (y-axis on the left), as a function of the number of

cells in the domain. The blue-colored plots show the number of actions executed before termination.

For the plots corresponding to POMDP-1, the number of actions the robot is allowed to execute

before it has to terminate is set to 50. We note that REBA significantly improves the robot’s ability

to achieve the assigned goal in comparison with POMDP-1. As the number of cells (i.e., size of the

domain) increases, it becomes computationally difficult to generate good policies with POMDP-1.

The robot needs a greater number of actions to achieve the goal and there is a loss in accuracy if

the limit on the number of actions the robot can execute before termination is reduced. While using

POMDP-1, any incorrect observations (e.g., incorrect sightings of objects) significantly impacts the

ability to complete the trials. REBA, on the other hand, directs the robot’s attention to relevant

regions of the domain (e.g., particular rooms), and it is able to recover elegantly from errors and

operate efficiently.

Next, we evaluated the time taken by REBA to generate a plan as the size of the domain in-

creases. We characterize domain size based on the number of rooms and the number of objects

in the domain. We conducted three sets of experiments in which the robot reasons with: (1) all

available knowledge of domain objects and rooms; (2) only knowledge relevant to the assigned

goal—e.g., if the robot knows an object’s default location, it need not reason about other objects

and rooms in the domain to locate this object; and (3) relevant knowledge and knowledge of an

151

SRIDHARAN, GELFOND, ZHANG, & WYATT

100

Rooms

80
60

All knowledge

40
2020

40

Objects

60
80

400

200

0

P
la

n
n

in
g

 t
im

e
0 100 200 300 400

(a) Using all knowledge

100

Rooms

80

Relevant knowledge

60
40

20
20

40

Objects

60
80

10

5

0

P
la

n
n

in
g

 t
im

e

0 2 4 6 8

(b) Using relevant knowledge

100

Rooms

80
60

20% knowledge

40
20

20
40

Objects

60
80

20

10

0

P
la

n
n

in
g

 t
im

e

0 5 10 15 20

(c) Using some knowledge

Figure 6: Planning time as a function of the number of rooms and the number of objects in the

domain—REBA only uses relevant knowledge for reasoning, and is thus able to scale to

larger number of rooms and objects.

10 20 30 40 50 60 70 80 90
0

50

100

150

Number of rooms

A
v

er
ag

e
n

o
.

o
f

ac
ti

o
n

s

 PA*

 PA

REBA*

REBA

REBA*

REBA

Figure 7: Effect of using default knowledge—principled representation of defaults significantly re-

duces the number of actions (and thus time) for achieving assigned goal.

additional 20% of randomly selected domain objects and rooms. Figures 6(a)-6(c) summarize these

results. We observe that using just the knowledge relevant to the goal to be accomplished signifi-

cantly reduces the planning time. REBA supports the identification of such knowledge based on the

refinement and zooming operations described in Section 7. As a result, robots equipped with REBA

will be able to generate appropriate plans for domains with a large number of rooms and objects.

Furthermore, if we only use a probabilistic approach (POMDP-1), it soon becomes computationally

intractable to generate a plan for domains with many objects and rooms. These results are not shown

in Figure 6, but they are documented in prior papers evaluating just the probabilistic component of

the proposed architecture (Sridharan, Wyatt, & Dearden, 2010; Zhang et al., 2013).

To evaluate hypothesis H3, i.e., to evaluate the effect of our representation and use of default

knowledge on reliability and computational efficiency of decision making, we first conducted trials

in which REBA was compared with REBA∗, a version that does not include any default knowledge,

e.g., when the robot is asked to fetch a textbook, there is no prior knowledge regarding the location

of textbooks, and the robot explores the closest location first. Figure 7 summarizes the average

152

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Probability assigned to default statements

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
u
c
c
e
s
s
 (

%
)

0.6

0.7

0.8

0.9

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

4

6

8

10

12

14

16

Success (%)

Number of actions

Figure 8: Ability to achieve goals, and number of actions executed, using only POMDPs, when dif-

ferent probability values are assigned to default statements and the ground truth locations

of objects perfectly matches the default locations. The number of actions decreases and

success (%) increases as the probability value increases.

Probability assigned to default statements

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
u
c
c
e
s
s
 (

%
)

0.5

0.6

0.7

0.8

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

10

12

14

16

Success (%)

Number of actions

Figure 9: Ability to achieve goals, and number of actions executed, using only POMDPs, when

different probability values are assigned to default statements and the ground truth loca-

tions of objects never matches the default locations. The number of actions increases and

success (%) decreases as the probability value increases.

number of actions executed per trial as a function of the number of rooms in the domain—each

sample point in this figure is the average of 10000 trials. The goal in each trial is (as before) to

move a specific object to a specific place. We observe that our (proposed) representation and use of

default knowledge significantly reduces the number of actions (and thus time) required to achieve

the assigned goal.

Next REBA was compared with POMDP-2, a version of POMDP-1 that assigns specific prob-

ability values to default knowledge (e.g., “textbooks are in the library with probability 0.9”) and

suitably revises the initial belief state. The goal (once again) was to find and move objects to spe-

cific locations, and we measured the ability to successfully achieve the assigned goal and the number

of actions executed before termination. Figures 8-9 summarize the corresponding results under two

extreme cases representing a perfect match (mismatch) between the default locations and ground

truth locations of objects. In Figure 8, the ground truth locations of target objects (unknown to the

robot) match the default locations of the objects, i.e., there are no exceptions to the default state-

ments. We observe that as the probability assigned to the default statement increases, the number of

153

SRIDHARAN, GELFOND, ZHANG, & WYATT

actions executed by the robot decreases and the fraction of trials completed successfully increases.

However, for larger values along the x-axis, the difference in the robot’s performance for two dif-

ferent values of the probability (assigned to defaults) is not that significant. In Figure 8, the ground

truth locations of the target objects never match the default locations of the objects, i.e., unknown

to the robot, all trials correspond to exceptions to the default knowledge. In this case, the robot

executes many more actions before termination and succeeds in a smaller fraction of trials as the

probability value assigned to default statements increases. We also repeated these experimental

trials after varying the extent to which the ground truth locations of objects matched their default

locations. We noticed that when the probability assigned to default statements accurately reflects

the ground truth, the number of trials in which the robot successfully achieves the goal increases and

approaches the performance obtained with REBA. However, recall that computing the probabilities

of default statements accurately takes a lot of time and effort. Also, these probabilities may change

over time and the robot’s ability to achieve the assigned goals may be sensitive to these changes,

making it difficult to predict the robot’s behavior with confidence. In addition, it is all the more

challenging to accurately represent and efficiently use probabilistic information about prioritized

defaults (e.g., Example 2). In general, we observed that the effect of assigning a probability value to

defaults is arbitrary depending on factors such as (a) the numerical value chosen; and (b) the degree

of match between ground truth and the default information. For instance, if a large probability is

assigned to the default that books are typically in the library, but the book the robot has to move is

an exception to the default (e.g., a cookbook), it takes significantly longer for POMDP-2 to recover

from the initial belief. REBA, on the other hand, supports elegant representation of, and reasoning

with, defaults and exceptions to these defaults.

Robot Experiments: In addition to the trials in simulated domains, we implemented and eval-

uated REBA with POMDP-1 on physical robots using the Robot Operating System (ROS). We

conducted experimental trials with two robot platforms (see Figure 1) in variants of the domain

described in Example 1. Visual object recognition is based on learned object models that consist of

appearance-based and contextual visual cues (Li & Sridharan, 2013). Since, in each trial, the robot’s

initial location and the target object(s) are chosen randomly, it is difficult to compute a meaningful

estimate of variance, and statistical significance is established through paired trials. In each paired

trial, for each approach being compared (e.g., REBA or POMDP-1), the target object(s), the robot’s

initial location, and the location of domain objects are the same, and the robot has the same initial

domain knowledge.

First, we conducted 50 trials on two floors of our Computer Science department building. This

domain includes places in addition to those included in our illustrative example, e.g., Figure 1(a)

shows a subset of the domain map of the third floor of the building, and Figure 1(b) shows the

Peoplebot wheeled robot platform used in these trials. The robot is equipped with a stereo camera,

laser range finder, microphone, speaker, and a laptop running Ubuntu Linux that performs all the

processing. The domain maps are learned and revised by the robot using laser range finder data and

the existing ROS implementation of a SLAM algorithm (Dissanayake, Newman, & Clark, 2001).

This robot has a manipulator arm that can be moved to reachable 3D locations relative to the robot.

However, since robot manipulation is not a focus of this work, once the robot is next to the desired

object, it extends its gripper and asks for the object to be placed in it. For experimental trials on the

third floor, we considered 15 rooms, which includes faculty offices, research labs, common areas

and a corridor. To make it feasible to use POMDP-1 in such large domains, we used our prior

154

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

work on a hierarchical decomposition of POMDPs for visual sensing and information processing

that supports automatic belief propagation across the levels of the hierarchy and model generation

in each level of the hierarchy (Sridharan et al., 2010; Zhang et al., 2013). The experiments included

paired trials, e.g., over 15 trials (each), POMDP-1 takes 1.64 as much time as REBA (on average)

to move specific objects to specific places. For these paired trials, this 39% reduction in execution

time provided by REBA is statistically significant: p-value = 0.0023 at the 95% significance level.

Consider a trial in which the robot’s objective is to bring a particular textbook to the study corner.

The robot uses default knowledge to create a plan of abstract actions that causes the robot to move

to and search for the textbook in the main library. When the robot does not find this textbook in

the main library after searching using a suitable POMDP policy, replanning by the logician causes

the robot to investigate the aux library. The robot finds the desired textbook in the aux library

and moves it to the target location. A video of such an experimental trial can be viewed online at

http://youtu.be/8zL4R8te6wg

To explore the applicability of REBA in different domains, we also conducted 40 experimental

trials using the Turtlebot wheeled robot platform in Figure 1(c) in a variant of the illustrative domain

in Example 1. This domain had three rooms in the Electrical Engineering department building

arranged to mimic a robot operating as a robot butler, with additional objects (e.g., tables, chairs,

food items etc). The robot was equipped with a Kinect (RGB-D) sensor, a laser range finder, and a

laptop running Ubuntu Linux that performs all the processing. As before, the robot used the ROS

implementation of a SLAM algorithm, and a hierarchical decomposition of POMDPs for POMDP-

1. This robot did not have a manipulator arm—once it reached a location next to the location of

the desired object, it asks for the object to be placed on it. The experiments included paired trials,

e.g., in 15 paired trials, POMDP-1 takes 2.3 as much time as REBA (on average) to move specific

objects to specific places—this reduction in execution time by REBA is statistically significant at

the 95% significance level.

Consider a trial in which the robot’s goal was to fetch a bag of crisps for a human. The robot

uses default knowledge about the location of the bag of crisps (e.g., that they are usually in the

kitchen), to create a plan of abstract actions to achieve this goal. Execution of this plan causes

the robot to first move to the kitchen and search for the bag of crisps. The robot finds the bag of

crisps, asks for the bag to be placed on it (since it has no manipulator), and moves back to table1 in

lab1 (the location of the human who wanted the crisps), only to be told that it has brought a bag of

chocolates instead. The robot diagnoses the cause for this unexpected observation as human error

(i.e., that it was given incorrect bag in the kitchen by a human). The robot then computes and

executes a plan that has it go back and fetch the correct bag (of crisps) this time. A video of this

trial can be viewed online at https://vimeo.com/136990534

11. Conclusions and Future Work

This article described REBA, a refinement-based knowledge representation and reasoning archi-

tecture that combines the complementary strengths of declarative programming and probabilistic

graphical models. The architecture is based on tightly-coupled transition diagrams that represent

domain knowledge, and the robot’s abilities and beliefs, at two levels of granularity. The architec-

ture makes the following contributions:

1. Action languageALd is extended to support non-Boolean fluents and non-deterministic causal

laws, and is used to describe the coarse-resolution and fine-resolution transition diagrams.

155

SRIDHARAN, GELFOND, ZHANG, & WYATT

2. The notion of a history of a dynamic domain is extended to include default knowledge in the

initial state, and a model of this history is defined. These definitions are used to define a notion

of explanation of unexpected observations, and to provide an algorithm for coarse-resolution

planning and diagnostics that translates history into a program of CR-Prolog, computes an-

swer set of this program, and extracts plan and explanation (if needed) from the answer set.

3. A formal definition is provided of one transition diagram being a weak refinement of an-

other transition diagram, and a fine-resolution diagram is defined as a weak refinement of the

domain’s coarse-resolution transition diagram.

4. A theory of observations is introduced and a formal definition is provided of one transition

diagram being a strong refinement of another transition diagram. An approach is provided

for combining an implementation of the theory of observations with the weakly-refined fine-

resolution transition diagram to obtain a fine-resolution transition diagram that is a strong

refinement of the coarse-resolution transition diagram.

5. The randomization of the fine-resolution transition diagram is defined, and an approach is

described for experimental collection of statistics. These statistics are used to compute the

probabilities of action outcomes and observations at the fine-resolution.

6. A formal definition is provided for zooming to a part of the randomized fine-resolution di-

agram relevant to any given coarse-resolution (abstract) transition. This definition is used

to automate the zoom operation that is invoked during the implementation of each abstract

transition in the coarse-resolution plan.

7. An algorithm is provided for automatically constructing data structures appropriate for the

fine-resolution probabilistic implementation of any given abstract action. This algorithm uses

probabilistic models of the uncertainty in sensing and actuation, and the zoomed part of the

fine-resolution transition diagram. The outcomes of the fine-resolution execution update the

coarse-resolution history for subsequent reasoning.

8. Finally, and possibly one of the major contributions, is a general methodology for the design

of software components of robots that are re-taskable and robust. This design methodology

is based on Dijkstra’s view of step-wise refinement of the specification of a program.

In this article, the domain representation for coarse-resolution non-monotonic logical reasoning is

translated to a CR-Prolog program, and the representation for probabilistic reasoning is translated

to a POMDP. The key advantages of using REBA are:

• It substantially simplifies the design process and increases confidence in the correctness of

the robot’s behavior. In particular:

– Step-wise refinement leads to clear separation of concerns and supports early testing of

the different components of the architecture.

– The formal (i.e., mathematical) descriptions of the different components, and of the

flow of control and information between the components, helps characterize the robot’s

behavior accurately and prove correctness of the algorithms.

156

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

– The domain-independent representations of part of the commonsense knowledge used

by the robot, e.g., theory of observations, weak refinement and strong refinement, allow

for the reuse of these representations on other robots and application domains.

– There is a single framework for inference, planning, diagnostics, and for a quantifiable

trade off between accuracy and computational efficiency in the presence of probabilistic

models of uncertainty in sensing and actuation.

• It significantly improves the computational efficiency and reliability of planning and execu-

tion of the robot’s actions. In particular:

– REBA supports reliable and efficient reasoning with hierarchically-organized knowl-

edge and beliefs at different resolutions.

– The tight coupling between representation and reasoning at different resolutions, estab-

lished by formally defining concepts such as refinement and zooming, supports precise

reasoning while demonstrating the potential to scale to complex domains by directing

attention to the relevant knowledge and observations.

– Experimental results in simulation and on physical robots in different domains indicate

the ability to reason at the sensorimotor level and the cognitive level, with violation of

defaults, noisy observations, and unreliable actions.

REBA opens up many directions for further research, including those that relax the constraints

imposed during the design of our current architecture, as described below:

• REBA supports reasoning with incomplete domain knowledge, but a robot operating in a

dynamic domain needs the ability to revise its existing knowledge. One direction for fur-

ther research is to enable interactive and cumulative learning of previously unknown domain

knowledge. An approach that enables such learning of domain actions and axioms has been

developed by exploiting the complementary strengths of relational reinforcement learning,

inductive learning, and reasoning with commonsense knowledge—this approach uses sensor

inputs and verbal cues (from humans) obtained through active exploration and reactive action

execution (Sridharan & Meadows, 2017; Sridharan et al., 2017; Sridharan & Meadows, 2018).

We seek to further explore this direction of work in the future, especially in non-stationary

domains in which the learned models will need to be revised over time.

• In dynamic domains, a robot frequently encounters unexpected outcomes, e.g., the robot go-

ing to the library to pick up a book may find the book in the office (on the way), or not find the

book in the library. Responding to such outcomes by reasoning about all observations of do-

main objects and events becomes computationally unfeasible in complex domains, even with

ASP-based reasoning at the coarse resolution of REBA. In future work, we will address this

problem by enabling a robot to automatically identify and reason with observations relevant

to the current action and the goal during planning and plan execution (Gomez, Sridharan, &

Riley, 2018). This approach will build on the zooming capability included in REBA.

• REBA currently uses POMDPs for probabilistic reasoning at the fine resolution. In com-

plex domains, constructing and solving POMDPs can be computationally expensive despite

zooming. In the future, we will explore ASP-based non-monotonic logical reasoning with

157

SRIDHARAN, GELFOND, ZHANG, & WYATT

the zoomed fine-resolution diagram, using probabilistic models of the uncertainty in sensing

and actuation during the execution of each concrete action. Initial work in this direction indi-

cates that such an approach can result in more efficient fine-resolution reasoning (Colaco &

Sridharan, 2015; Gomez et al., 2018).

• REBA uses a relational representation of knowledge and beliefs at two different resolutions.

This representation can be expanded to additional resolutions, while still maintaining a tight

coupling between the corresponding transition diagrams. A recent approach manually con-

structing such an expanded representation, and enabled a robot equipped with this representa-

tion to describe its decisions, the underlying knowledge and beliefs, and the experiences that

informed these beliefs, at the desired level of abstraction, verbosity and specificity (Sridharan

& Meadows, 2019). We will explore this idea further in future work.

• Although we have used REBA on robots in different domains, our architecture has (so far)

focused on the representation and reasoning tasks of a single robot in the domain. Another

direction for further research is to extend the architecture to enable collaboration between

a team of robots working towards a common goal. It is theoretically possible to use our

current architecture on multiple robots, but it will open up challenging questions and choices

regarding communication and propagation of beliefs between members of the team, some of

whom may not have worked together before.

The long-term objective is to better understand the coupling between non-monotonic logical reason-

ing and probabilistic reasoning, and to use this understanding to develop architectures that enable

robots to collaborate with humans in complex domains.

Acknowledgments

This work was supported in part by the U.S. Office of Naval Research Science of Autonomy Awards

N00014-13-1-0766 (Mohan Sridharan, Shiqi Zhang) and N00014-17-1-2434 (Mohan Sridharan),

the Asian Office of Aerospace Research and Development award FA2386-16-1-4071 (Mohan Srid-

haran), and the EC-funded Strands project FP7-IST-600623 (Jeremy Wyatt). Opinions and conclu-

sions in this article are those of the authors.

158

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Appendix A. CR-Prolog and Proof of Proposition 1

In this section, we describe the syntax and semantics of CR-Prolog, and prove Proposition 1.

A.1 Syntax and Semantics of CR-Prolog

A program of CR-Prolog consists of regular rules of ASP and rules of the form:

l
+
← body (71)

referred to as consistency-restoring (CR) rules. Intuitively, Statement 71 says that if the reasoner is

in a state in which program believes the rule’s body, it may possibly believe the rule’s head; however,

this possibility may be used only if there is no way to obtain a consistent set of beliefs by using only

the regular rules of the program. This intuition is formalized by the following terminology.

Let R be a set of CR-rules. By α(R) we denote the set of regular ASP rules obtained by

replacing
+
← by ← in rules of R. Let Π be a program of CR-Prolog. By Πreg we denote the

set of all regular rules of Π. A cardinality-minimal set of CR-rules of Π such that ASP program

Π(R) =def Πreg ∪ α(R) is consistent, i.e. has an answer set, is called an abductive support of Π.

A is an answer set of Π if it is an answer set of program Π(R) for some abductive support R of

Π. Note that this is a special case of a more general definition from (Gelfond & Kahl, 2014) where

minimality of R is determined by an arbitrary preference relation. Finally, recall that if σ is a state

of a transition diagram, σnd is obtained from σ by removing all atoms formed by defined fluents.

A.2 Proof of Proposition 1

Proposition 1 in Section 5.2 states that:

IfD is a well-founded system description andH is its recorded history, then every sequence induced

by an answer set of Π(D,H) is a model ofH.

To prove this proposition, we begin with some notation. Let σ be a collection of literals, αk =
〈a0, . . . , ak〉 be a (possibly empty) sequence of actions, occurs(αk) = {occurs(ai, i) : 0 ≤ i ≤ k}
and Π(D, σ, αk) =def Πk+1(D) ∪ val(σ, 0) ∪ occurs(αk).

Lemma 1. Let A be an answer set of Π(D,H). Then there exists a state σ0 of τ(D) and a sequence

of actions αk = 〈a0, . . . , ak〉 such that the set B obtained from A by removing literals formed by

obs, hpd, prefer, ab and defined by default is an answer set of Π(D, σ0, αk). �

Proof of Lemma 1. Let A be an answer set of Π =def Π(D,H). By the CR-Prolog definition of

answer sets:

(1) A is an answer set of an ASP program Π(R) = Πreg ∪ α(R) for some abductive support R

of Π.

Clearly, α(R) is (a possibly empty) collection of rules of the form: ab(d(x̄))← val(body(d(x̄)), 0).
We will prove the existence of σ0 and αk by construction. Let:

(2) σ0 = {f(x̄) = y : val(f(x̄), y, 0) ∈ A or f(x̄) = y ∈ A}

159

SRIDHARAN, GELFOND, ZHANG, & WYATT

We will show that σ0 is a state of τ(D), i.e., that:

(a) σ0 is an interpretation, i.e. for every f(x̄) there is unique y such that f(x̄) = y ∈ σ0; and

(b) σ0 is the unique answer set of program Πc(D) ∪ σnd
0 .

To show (a) consider first an arbitrary basic fluent f(x̄). Based on (2), for every y, f(x̄) = y ∈ σ0
iff val(f(x̄), y, 0) ∈ A. Hence, we need to show that there is y such that val(f(x̄), y, 0) ∈ A.

There are two cases depending on whether or not the body of Statement 37 is satisfied by A. In the

former case the existence of y such that val(f, y, 0) ∈ A is guaranteed by Statement 31; otherwise

it follows from Statement 38. If f(x̄) is static, we have that there is y such that f(x̄) = y ∈ A

by Statement 19 of Π(D). If f(x̄) is a defined fluent, its boolean value is included in A by the

axioms for the defined fluents (Statement 17). Uniqueness of the value assigned to f(x̄) follows

from Statement 22 and consistency of A.

To show (b) it suffices to notice that since A satisfies rules such as Statement 16 in Π(R), σ0 satisfies

rules such as Statement 8 in Πc(D), and hence Πc(D)∪σ
nd
0 has an answer set. By (a), σ0 is complete

and consistent and hence, by the definition of well-foundedness, this answer set is unique.

Next, let:

(3) αk = 〈a0, . . . , ak〉 where ai = {ej : occurs(ej , i) ∈ A}.

and let S0 be a set of literals formed by obs and hpd. Note that S0 is a splitting set of program

Π(R). From (1) and the splitting set theorem (Balduccini, 2009) we have:

(4) A0, obtained from A by removing literals formed by obs and hpd, is an answer set of program

Π0(R) obtained from Π(R) by:

• removing all atoms formed by obs and hpd;

• removing all rules whose bodies contain atoms formed of obs(∗, ∗, ∗)12 or hpd(∗, ∗)
that are not in A; and

• removing all occurrence of atoms obs(∗, ∗, ∗) or hpd(∗, ∗) from the remaining rules.

Note that the only rules changed by this transformation belong to the encoding ofH.

Next, if ΠH
0 (R) denotes the program obtained from Π0(R) by removing all atoms formed by occurs

and all rules of Πk+1(D), then from (4) and the definition of ΠH
0 (R) we have that:

(5) A0 is an answer set of Π0(R) = Πk+1(D) ∪ΠH
0 (R) ∪ {occurs(a, i) : occurs(a, i) ∈ A}.

Now let S1 be the set of atoms formed by statics, prefer, ab, defined by default, and val(∗, ∗, 0).
It is not difficult to check that S1 is a splitting set of Π0(R). It divides the program into two parts:

• Program Bot consisting of ΠH
0 (R) combined with the set Zero of instances of axioms en-

coded in Statements 16, 17, 19 and 22 from Πk+1(D) with the time-step variable set to

0.

• Program Top = (Πk+1(D) \ Zero) ∪ {occurs(a, i) : occurs(a, i) ∈ A}

12. Recall that the “*” denotes a wild-card character.

160

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

So, by the splitting set theorem, we now have:

(6) A0 is an answer set of program B0 ∪ Top where B0 is an answer set of Bot.

Next, observe that:

(7) B0 can be partitioned into B1 and B2, with B1 consisting of the atoms of A0 formed by

prefer, ab, and defined by default, and B2 consisting of the atoms of A0 formed by statics

and val(∗, ∗, 0).

Using the definition of answer sets for ASP program, it can be proved that for any two programs Π1

and Π2 whose signatures Σ1 and Σ2 are disjoint, X is an answer set of a program Π1 ∪Π2 iff X|Σ1

and X|Σ2
are answer sets of Π1 and Π2 respectively. Hence, we have that:

(8) B = A0 \B1 is an answer set of B2 ∪ Top.

From (4), (7) and (8) above, we have that B is obtained from A by removing literals formed by obs,

hpd, prefer, ab and defined by default.

To show that B is an answer set of Π(D, σ0, αk) we first demonstrate that:

(9) B is an answer set of Π∗
1 =def B2 ∪Πk+1(D) ∪ {occurs(a, i) : occurs(a, i) ∈ A}.

By construction, we have that:

(10) Π∗
1 = B2 ∪ Top ∪ Zero.

To prove (9), we will show that B is an answer set of the reduct, (Π∗
1)

B of Π∗
1 with respect to B

(note that this is the definition of answer set). Based on the definition of the reduct and (10), we

have:

(11) (Π∗
1)

B = B2 ∪ ZeroB ∪ TopB .

From (8) and the definition of answer set, we have that B is a ⊆-minimal set satisfying B2 ∪Top
B .

Then, based on (6)-(8), we have that B2 (and hence B) also satisfies ZeroB , and thus (9) holds.

Then, based on (2), (6) and (7), we have that val(σ0, 0) = B2 which, together with (9), implies that:

(12) B is an answer set of Πk+1(D, σ0, αk).

This completes the proof of Lemma 1.

Lemma 2. Let B be an answer set of Π(D, σ0, αk), Bk be obtained from B by removing all literals

containing time-step k + 1, and Πk+1
k (D, σk, ak) be Π(D, σk, ak) with time-steps 0 and 1 replaced

by k and k + 1 respectively. Then:

• Bk is an answer set of Π(D, σ0, αk−1).
• B = Bk ∪ U where U is an answer set of Πk+1

k (D, σk, ak).
�

Proof of Lemma 2. Let S be a set of literals of Π(D, σ0, αk) not containing time step k + 1. It is

easy to check that S is a splitting set of this program, which divides it into two parts:

161

SRIDHARAN, GELFOND, ZHANG, & WYATT

(1) Bot = Π(D, σ0, αk−1) and Top = Π(D, σ0, αk) \Bot.

By the splitting set theorem and definition of Bk, we have:

(2) Bk is an answer set of Bot = Π(D, σ0, αk−1).

and:

(3) B is an answer set of the program Bk ∪ Top.

By definition, σk = {f(x̄) = y : val(f(x̄), y, k) ∈ B} ∪ {f(x̄) = y : f(x̄) = y ∈ B}, and hence,

val(σk, k) is a subset of B and of Bk. Thus, we have:

(4) Bk ∪ Top = Bk ∪ val(σ, k) ∪ Top = Bk ∪Πk+1
k (D, σk, ak).

Now let:

(5) Bk = B′
k ∪B′′

k

where B′
k consists of atoms of Bk containing time-steps smaller than k and B′′

k = Bk \ B
′
k. Note

that B′′
k consists of atoms of Bk formed by statics and of those containing time-step k. From (4), (5),

and the definition of σk, we then have:

(6) Bk ∪ Top = B′
k ∪Πk+1

k (D, σk, ak).

Based on (3) and (6), we have:

(7) B is an answer set of B′
k ∪Πk+1

k (D, σk, ak).

Since, by construction, the signatures of B′
k and Πk+1

k (D, σk, ak) are disjoint, from (7), we have:

(8) B = Bk ∪ U where U is an answer set of Πk+1
k (D, σk, ak).

This completes the proof of Lemma 2.

Proof of Proposition 1. Let D and H be as in the proposition, A be an answer set of CR-Prolog

program Π(D,H), and M = 〈σ0, a0, σ1, . . . , σn, an, σn+1〉 be a sequence induced by A. We will

show that M is a model ofH, i.e. M is a path of transition diagram τ(D) (definition 6).

The proposition will be an immediate consequence of a more general statement:

(1) for every 0 ≤ k ≤ n+ 1 Mk = 〈σ0, a0, σ1, . . . , σk〉 is a path in τ(D).

Before proceeding with inductive proof of (1), let us notice that, by Lemma 1:

(2) M is induced by an answer set B of an ASP program Π(D, σ0, αn) where σ0 is a state and B is

obtained from A by removing atoms formed by obs, hpd, prefer, ab and defined by default.

We use induction on k. The base case is: k = 0, i.e. Mk = 〈σ0〉. Then (1) follows immediately

from (2).

Nex, consider the inductive step: let k > 0 and Mk = 〈σ0, a0, σ1, . . . , σk−1, ak−1, σk〉. By induc-

tive hypothesis:

162

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

(3) Mk = 〈σ0, a0, σ1, . . . , σk−1〉 is a path in τ(D).

We need to show that L = 〈σk−1, ak−1, σk〉 is a transition of τ(D). By Lemma 2, we have:

(4) L is induced by an answer set U0 of Πk+1
k (D, σk, ak).

Let U be obtained from U0 by replacing time-steps k and k + 1 by 0 and 1 respectively. From (4)

and the definition of Πk+1
k (D, σk, ak), we have that:

(5) L is induced by an answer set U of Π(D, σk, ak).

From (3) we have that:

(6) σk is a state.

To prove that σk+1 is a state we first show that σk+1 is an interpretation, i.e. for every f(x̄) there

is unique y such that val(f(x̄), y, 1) ∈ U . From (5) and (6), we have that, for every f(x̄) there is

unique y1 such that val(f(x̄), y, 0) ∈ U . If the body of the inertia axiom for f(x̄) is satisfied by

U then val(f(x̄), y1, 1) ∈ U . Otherwise, the inertia axiom is defeated by Statement 22 and hence

val(f(x̄), y2, 1) ∈ U . Thus, we have that:

(7) σk+1 is an interpretation.

The last step is to show that:

(8) σk+1 is the unique answer set of program Πc(D) ∪ σnd
k+1.

To do that it suffices to notice that, since U satisfies rules such as Statements 17 and 16 in Π(D, σk, ak),
σk+1 satisfies rules such as Statements 8 and 9 in Πc(D), and hence Πc(D) ∪ σnd

k+1 has an answer

set. Based on (7), σk+1 is complete and consistent and hence, by the definition of well-foundedness,

this answer set is unique; this proves (8). Then, based on (7) and (8), and the definition of state, we

have:

(9) σk+1 is a state.

Thus, based on (5), (6), (9) and Definition 4, we have that:

(10) L is a transition.

Next, based on (3), the definition of L, and (10):

(11) Mk is a path in τ(D).

This completes the proof of statement (1). Based on the definition of Mk, M = Mn+1, and based

on (1), M is a path in τ(D). Since M is induced by A, based on Definition 6, it is a model of H.

This completes the proof of Proposition 1.

163

SRIDHARAN, GELFOND, ZHANG, & WYATT

Appendix B. Proof of Proposition 2

In this section, we examine Proposition 2, which states that:

Let P = (D,H, h,G) be a planning problem with a well-founded, deterministic system description

D. A sequence 〈a0, . . . , ak−1〉 where k < h is a solution of P iff there is an answer set A of Plan

such that:

1. For any n < i ≤ n+ k, occurs(ai, i− 1) ∈ A,

2. A contains no other atoms of the form occur(∗, i) with i ≥ n.

We begin by introducing some notation. Let Π be an arbitrary CR-Prolog program and R be a

collection of CR-rules from Π. Similar to the terminology in (Gelfond & Kahl, 2014), we use

Πreg to denote the collection of regular rules of Π and α(R) to denote the set of regular ASP rules

obtained by replacing
+
← by← in CR-rules of R. For completeness, recall that for any program Π,

we have Π(R) = Πreg ∪ α(R). Also recall, from Section 5.3, that:

Plan = Diag ∪ Classical plan ∪ {DPC}

Diag =def Πn(D,H)

Classical plan = Π[n..n+h](D) ∪ goal(I)← val(f(x̄), y, I) ∪ PM

← Y = count{X : ab(X)}, Y > m % DPC

where n is the current step of H, m is the size of the abductive support of Diag, and PM is the

planning module. We will also need the following Lemma to prove Proposition 2.

Lemma 3. For any set R of CR-rules of Diag, A is an answer set of ASP program Plan(R) iff

A = A0 ∪ B0 where A0 is an answer set of Diag(R) satisfying DPC and B0 is an answer set of

Shifted plan =def {val(f(x̄), y, n) : val(f(x̄), y, n) ∈ A0} ∪ Classical plan. �

Proof of Lemma 3. Let S0 be the set of literals of Plan(R) not containing atoms with time steps

greater than n or atoms of the form occurs(∗, n) and hpd(∗, n). It is easy to check that S0 is a

splitting set of Plan(R) which splits the program into two parts, Bot = Diag(R) ∪ {DPC} and

Top = Classical plan. By the splitting set theorem, A is an answer set of Plan(R) iff A is an

answer set of A0∪Top where A0 is an answer set of Bot. Clearly, A0∪Top = A0∪Shifted plan.

Since A0 is a collection of atoms, from the definition of answer set we have that A = A0∪B0 where

B0 is an answer set of Shifted plan.

Next, we turn to proving Proposition 2.

Proof of Proposition 2. Let P and Plan be as in the proposition, σ be a state and 〈a0, . . . , ak−1〉
with k < h be a sequence of actions of D.

Based on Definition 8:

(1) 〈a0, . . . , ak−1〉 is a solution of P iff:

(a) there is a state σ that is the current state of some model M ofH; and

164

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

(b) 〈a0, . . . , ak−1〉 is a solution of classical planning problem Pc = (D, σ,G) with horizon

h.

Based on Definition 6 and the well-foundedness of D, Statement (1)(a) holds iff:

(2) M is induced by some answer set A0 of Diag, n is the current step of history from P , and:

σ = {f(x̄) = y : val(f(x̄), y, n) ∈ A0}

By the CR-Prolog definition of answer sets, Statement (2) holds iff:

(3) A0 is an answer set of Diag(R) for some abductive support R of Diag and σ = {f(x̄) = y :
val(f(x̄), y, n) ∈ A0} (since A0 is an answer set of Diag it satisfies DPC).

Based on Proposition 9.1.1 from (Gelfond & Kahl, 2014), Statement (1)(b) holds iff:

(4) There is an answer set S of ASP program plan(Pc, h) such that:

(a) For any 0 < i ≤ k, occurs(ai, i− 1) ∈ S; and

(b) S contains no other atoms formed by occurs.

Consider an ASP program:

Shifted plan =def {val(f(x̄), y, n) : val(f(x̄), y, n) ∈ A0} ∪ Classical plan

It is easy to see that this program differs from plan(Pc, h) only in the domain of its time-step

variables. In the former case, such variables range over [n, n + h] while in the latter the range is

[0, h]. The programs are isomorphic and hence Statement (4) holds for S iff:

(5) B0 obtained from S by increasing all occurrences of time steps in atoms from S by n + 1 is

an answer set of Shifted plan. Also:

(a) For any n < i ≤ n+ k, occurs(ai, i− 1) ∈ B0; and

(b) B0 contains no other atoms of the form occurs(∗, i) where i ≥ n.

Now we have that:

(6) Statement (1) is true iff Statement (3) and Statement (5) are true.

Let A = A0 ∪B0. Then, based on Lemma 3, we have:

(7) Statements (3) and (5) are true iff A is an answer set of Plan(R).

Based on (7), we have:

(8) Statement (1) is true iff A is an answer set of Plan(R).

However, since every answer set of Plan must satisfy DPC, Plan(R) has an answer set iff R is

an abductive support of Plan. Hence:

(9) A is an answer set of Plan(R) iff A is an answer set of Plan.

From the construction of A, Statement (5), and the fact that A0 contains no atoms of the form

occurs(∗, i) where i ≥ n, we have that A satisfies the conditions of the proposition. This completes

the proof of Proposition 2.

165

SRIDHARAN, GELFOND, ZHANG, & WYATT

Appendix C. Proof of Proposition 3

In this section, we prove Proposition 3, which states that:

Let DH and DL,nobs be coarse and fine resolution system descriptions from our running example.

Then τL is a weak refinement of τH .

Proof of Proposition 3. Definitions in DH and DL,nobs contain no dependency between defined do-

main functions and their negations. Both system descriptions are therefore weakly-acyclic and thus

well-founded, which justifies the use of the following property in the proof. Let D over signature Σ
be a well-founded system description defining transition diagram τ . Then, an interpretation δ of Σ
is a state of τH iff:

• δ satisfies constraints of D; and

• For every defined fluent f of Σ, f(ū) ∈ δ iff there is a rule from the definition of f(ū) whose

body is satisfied by the interpretation δ.

For readability, we also repeat Definition 9 of weak refinement of a transition diagram. A transition

diagram τL,nobs over ΣL,nobs is called a weak refinement of τH if:

1. For every state σ⋄ of τL,nobs, the collection σ⋄|ΣH
of atoms of σ⋄ formed by symbols from

ΣH is a state of τH .

2. For every state σ of τH , there is a state σ⋄ of τL,nobs such that σ⋄ is an extension of σ.

3. For every transition T = 〈σ1, a
H , σ2〉 of τH , if σ⋄

1 and σ⋄
2 are extensions of σ1 and σ2 respec-

tively, then there is a path P in τL,nobs from σ⋄
1 to σ⋄

2 such that:

• actions of P are concrete, i.e., directly executable by robots; and

• P is pertinent to T , i.e., all states of P are extensions of σ1 or σ2.

To prove the first clause of Definition 9, let σ⋄ and σ = σ⋄|ΣH
be as in the first clause. To prove

that σ is a state of DH , we show that it satisfies the clauses of the property above. We start with the

constraint in Statement 42(a) for a particular object ob:

loc(ob) = P if loc(rob1) = P, in hand(rob1, ob)

Let:

(i) (loc(rob1) = P) ∈ σ; and

(ii) in hand(rob1, ob) ∈ σ.

To show that (loc(ob) = P) ∈ σ let c1 be the value of loc∗(rob1) in σdiamond, i.e:

(iii) (loc∗(rob1) = c1) ∈ σ⋄

Based on the bridge axiom in Statement 48(a):

loc(rob1) = P if loc∗(rob1) = C, component(C,P)

of DL,nobs and conditions (i) and (iii), we have:

166

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

(iv) component(c1, P)

Suppose this is not the case. Then, based on the definition of place∗, there is some place P2 in

the domain such that component(c1, P2) ∈ σ⋄. This statement, together with (iii) and the bridge

axiom in Statement 48(a) will entail (loc(rob) = P2), which contradicts condition (i) above.

Next, the state constraint in Statement 45(a):

loc∗(ob) = P if loc∗(rob1) = P, in hand(rob1, ob)

of DL,nobs, together with (ii) and (iii) imply:

(v) (loc∗(ob) = c1) ∈ σ⋄

Then, the bridge axiom in Statement 48(a), together with (iv) and (v) imply that (loc(ob) = P) ∈ σ

and hence σ satisfies the first constraint of DH .

Next, consider the definition of the static next to(P1, P2) in DH . It our example domain with four

rooms (see Figure 3(b)), DH consists of statements such as:

next to(r1, r2)

next to(r1, r3)

next to(r2, r4)

next to(r3, r4)

and the constraint:

next to(P1, P2) if next to(P2, P1)

In the fine-resolution system description DL,nobs, these statements are replaced by a collection of

statements of the form next to∗(ci, cj), state constraint in Statement 45(b):

next to∗(C1, C2) if next to∗(C2, C1)

and a bridge axiom as described by Statement 48(b):

next to(P1, P2) if next to∗(C1, C2), component(C1, P1), component(C1, P2)

The last axiom implies that next to(ri, rj) ∈ σ iff σ⋄ indicates that there are two adjacent cells in

the domain such that one of them is in ri and another is in rj . This is the situation in our example

domain, as shown in Figure 3(b). This concludes the proof of the first clause of Definition 9.

To prove clause 2 of Definition 9, consider a state σ of τH and expand it to a state σ⋄ of τL,nobs,

and show that σ⋄ is a state of τL,obs. We do so by construction by interpreting the fine-resolution

domain functions of DL,nobs such that it satisfies the bridge axioms, constraints and definitions of

DL,nobs. In our example domain, it is sufficient to map loc∗(thing) to a cell c of room r such that:

• if loc∗(th) = c and component(c, rm) are in σ⋄ then loc(th) = rm ∈ σ

• if in hand(rob1, ob) ∈ σ then the same cell is assigned to rob1 and ob.

167

SRIDHARAN, GELFOND, ZHANG, & WYATT

The definition of static next to∗ is the same for every state. It is symmetric and satisfies State-

ment 48(b) describing the bridge axiom for next to. In other words, all state constraints and defi-

nitions of DL,nobs are satisfied by σ⋄, which is thus a state of τL,nobs.

To prove the last clause of Definition 9, consider a transition T = 〈σ1,move(rob, r2), σ2〉 of τH and

let σ⋄
1 and σ⋄

2 be states of τL,nobs expanding σ1 and σ2 respectively. Assume that the robot is in cell

c1 of room r1 and that the robot’s desired position in σ⋄
2 is c2. The required path P then will consist

of a sequence of moves of the form move∗(rob1, ci) which starts with robot being at c1 and ends

with it being at c2. Due to executability condition encoded in Statement 43(b) for move(rob1, r2)
rooms r1 and ri are next to each other. Since our definition of next to∗ is such that the robot can

always move to a neighboring cell and every two cells in rooms r1 and r2 are connected by paths

which do not leave these rooms, clause 3 of Definition 9 is satisfied. Thus, τL,nobs in our running

example is a weak refinement of τH .

Appendix D. Proof of Proposition 4

In this section, we prove Proposition 4, which states that:

Let DH and DL be coarse and fine resolution system descriptions from our running example. Then

τL is a strong refinement of τH .

Proof of Proposition 4. For readability, we repeat the Definition 10 of a strong refinement of a tran-

sition diagram. A transition diagram τL over ΣL is called a strong refinement of τH if:

1. For every state σ⋄ of τL, the collection σ⋄|ΣH
of atoms of σ⋄ formed by symbols from ΣH is

a state of τH .

2. For every state σ of τH , there is a state σ⋄ of τL such that σ⋄ is an extension of σ.

3. For every transition T = 〈σ1, a
H , σ2〉 of τH , if σ⋄

1 is an extension of σ1, then for every

observable fluent f such that observablef (rob1, x̄, y) ∈ σ2, there is a path P in τL from σ⋄
1

to an extension σ⋄
2 of σ2 such that:

• P is pertinent to T , i.e., all states of P are extensions of σ1 or σ2;

• actions of P are concrete, i.e., directly executable by robots; and

• observedf (rob1, x, y) = true ∈ σ⋄
2 iff (f(x) = y) ∈ σ⋄

2 , and observedf (rob1, x, y) =
false ∈ σ⋄

2 iff (f(x) = y1) ∈ σ⋄
2 and y1 6= y.

The first two clauses of Definition 10 follow immediately from the following observations:

• The states of τL,nobs and τL differ only by the knowledge functions. This follows immediately

from the definition of a state and an application of the splitting set theorem.

• Both conditions are satisfied by the states of τL,nobs; this follows from Proposition 3.

To prove the third clause of Definition 10, consider a transition T = 〈σ1, a
H , σ2〉 ∈ τH . There

are two fluents loc and in hand that are observable in τH . We start with the case in which the

observable fluent is of the form:

loc(th) = rm

168

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Based on the third condition of the third clause of the proposition:

(1) observableloc(rob1, th, rm) ∈ σ2

Based on the definition of observableloc for our example, this can happen only if:

(2) loc(rob1) = rm ∈ σ2

Let δ⋄0 be a state of τL containing σ2. Then:

(3) loc(rob1) = rm ∈ δ⋄0

The value of loc(th) in δ⋄0 is determined by the bridge axiom in Statement 48(a) and hence State-

ment (3) holds iff for some cell c1 of rm:

(4) loc∗(rob1) = c1 ∈ δ⋄0

Since by the definition of strong refinement, τL is also a weak refinement of τH , Proposition 3

implies that there is a path P1 of concrete action pertinent to T from extension σ⋄
1 of σ1 to δ⋄0 .

There can be two possible cases:

(i) loc(th) = rm ∈ σ2

(ii) loc(th) = rm 6∈ σ2

In case (i), an argument similar to the one described above shows that there is a state δ⋄1 of τL
containing σ2 such that for some cell c2 of room rm:

(5) loc∗(th) = c2 ∈ δ⋄1

Now, let P2 be the shortest sequence of the robot’s moves from cell c1 to cell c2. Let δ⋄2 be the last

state of this path. If at δ⋄0 the robot was already holding the thing th, then P2 is empty. If the robot

is not holding th, the moves of the robot do not change the location of th. Hence, we have:

(6) loc∗(thing) = c2 ∈ δ⋄2

(7) loc∗(rob) = c2 ∈ δ⋄2

Statements (6) and (7), together with the definition of can be observedloc∗ imply that:

(8) can be observedloc∗(rob, thing, c2) ∈ δ⋄2

The robot can now execute the knowledge-producing action testloc∗(rob1, th, c2), which moves the

system into the state σ⋄
2 . Since this action does not change the values of physical fluents, locations

of the robot and the thing remain unchanged. Now observedloc(rob1, th, rm) ∈ σ⋄
2 follows from

Statements 50 and 54(a). Notice that actions in the path P defined as the concatenation of P1, P2

and 〈δ⋄2 , testloc∗(rob1, th, c2), σ
⋄
2〉 are concrete and relevant to T , and satisfies the conditions of the

third clause of Definition 10.

In case (ii), i.e., with loc(th) = rm 6∈ σ2, let P1 be as before (i.e., a path of concrete action relevant

to T from σ⋄
1 to δ⋄0), c1, . . . , cn, c1 be a sequence visiting all the cells of rm, and P be the concate-

nation of P1 and the path P2 of the form 〈δ⋄i ,move(rob1, ci+1), testloc∗(rob1, th, ci+1), δ
⋄
i+1〉.

169

SRIDHARAN, GELFOND, ZHANG, & WYATT

Since every thing is assumed to have a location, th is in some room, say rm1 different from

rm. Since loc(th) in determined by the bridge axiom in Statement 48(a) and no grid cell can

belong to two different rooms, there is some cell c different from c1, . . . , cn such that loc(th) =
c. Note that initially observedloc(rob1, th, rm) and observedloc∗(rob1, th, c) are undet for ev-

ery c in rm. Since the thing th is not in any cell of rm, testloc∗(rob1, th, c) will return false

for every c ∈ rm. This means that Statement 54(b) is not applicable, and Statement 54(c) im-

plies that may be trueloc(rob, thing, rm) holds only until the robot reaches location c1 and per-

forms testloc∗(rob1, th, c1). In the resulting state, σ⋄
2 , there is no component c of rm in which

observedloc∗(rob1, th, c) is undet. The value of the defined fluent may be trueloc(rob, thing, rm)
is therefore false in σ⋄

2 . Based on Statement 54(d), we conclude that observedloc(rob1, th, rm) =
false is in σ⋄

2 . Hence, the concatenation of P1 and P2 satisfies the conditions of the third clause of

Definition 10.

To complete the proof of Proposition 4, it only remains to notice that the desired path P (of concrete

actions relevant to T) corresponding to the observation of a fluent in hand(rob1, th) consists of

just one action that tests if in hand(rob1, th) = true; testing of a single value is sufficient due to

Statement 54(e).

Appendix E. POMDP Construction Example

In this section, we illustrate the construction of a POMDP Po(T) for a specific coarse-resolution

transition T that needs to be implemented as a sequence of concrete actions whose effects are

modeled probabilistically.

Example 9. [Example of POMDP construction]

Consider abstract action aH = grasp(rob1, tb1), with the robot and textbook in the office, in the

context of Example 5. The corresponding zoomed system description DLR(T) is in Example 7.

For ease of explanation, assume the following description of the transition function, observation

function, and reward specification—these values would typically be computed by the robot in the

initial training phase (Section 7.2):

• Any move from a cell to a neighboring cell succeeds with probability 0.85. Since there are

only two cells in this room, the robot remains in the same cell if move does not succeed.

• The grasp action succeeds with probability 0.95; otherwise it fails.

• If the thing being searched for in a cell exists in the cell, 0.95 is the probability of successfully

finding it.

• All non-terminal actions have unit cost. A correct answer receives a large positive reward

(100), whereas an incorrect answer receives a large negative reward (−100).

The elements of the corresponding POMDP are described (below) in the format of the approximate

POMDP solver used in our experiments (Ong et al., 2010). As described in Section 8.2, please note

that:

• Executing a terminal action causes a transition to a terminal state.

• Actions that change the p-state do not provide any observations.

170

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

• Knowledge-producing actions do not change the p-state.

• In any matrix corresponding to the transition function or observation function, the row and

column entries (e.g., p-states or observations) are assumed to be in the order in which they

appear at the top of the file.

�

discount: 0.99

values: reward

% States, actions and observations as enumerated lists

states: robot-0-object-0-inhand robot-1-object-1-inhand

robot-0-object-0-not-inhand robot-0-object-1-not-inhand

robot-1-object-0-not-inhand robot-1-object-1-not-inhand absb

actions: move-0 move-1 grasp test-robot-0 test-robot-1 test-object-0

test-object-1 test-inhand finish

observations: robot-found robot-not-found

object-found object-not-found

inhand not-inhand none

% Transition function format.

% T : action : S x S’ -> [0, 1]

% Probability of transition from first element of S to that of S’ is

% in the top left corner of each matrix

T: move-0

1 0 0 0 0 0 0

0.85 0.15 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0.85 0 0.15 0 0

0 0 0 0.85 0 0.15 0

0 0 0 0 0 0 1

T: move-1

0.15 0.85 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0.15 0 0.85 0 0

0 0 0 0.15 0 0.85 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

171

SRIDHARAN, GELFOND, ZHANG, & WYATT

T: grasp

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0.95 0 0.05 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0.95 0 0 0 0.05 0

0 0 0 0 0 0 1

T: test-robot-0

identity

T: test-robot-1

identity

T: test-object-0

identity

T: test-object-1

identity

T: test-inhand

identity

T: finish

uniform

% Observation function format(s)

% O : action : s_i : z_i -> [0, 1] (or)

% : S x Z -> [0, 1]

% In each matrix, first row provides probability of each possible

% observation in the first p-state in S

O: move-0 : * : none 1

O: move-1 : * : none 1

O: grasp : * : none 1

O: test-robot-0

0.95 0.05 0 0 0 0 0

0.05 0.95 0 0 0 0 0

0.95 0.05 0 0 0 0 0

0.95 0.05 0 0 0 0 0

0.05 0.95 0 0 0 0 0

0.05 0.95 0 0 0 0 0

0 0 0 0 0 0 1

172

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

O: test-robot-1

0.05 0.95 0 0 0 0 0

0.95 0.05 0 0 0 0 0

0.05 0.95 0 0 0 0 0

0.05 0.95 0 0 0 0 0

0.95 0.05 0 0 0 0 0

0.95 0.05 0 0 0 0 0

0 0 0 0 0 0 1

O: test-object-0

0 0 0.95 0.05 0 0 0

0 0 0.05 0.95 0 0 0

0 0 0.95 0.05 0 0 0

0 0 0.05 0.95 0 0 0

0 0 0.95 0.05 0 0 0

0 0 0.05 0.95 0 0 0

0 0 0 0 0 0 1

O: test-object-1

0 0 0.05 0.95 0 0 0

0 0 0.95 0.05 0 0 0

0 0 0.05 0.95 0 0 0

0 0 0.95 0.05 0 0 0

0 0 0.05 0.95 0 0 0

0 0 0.95 0.05 0 0 0

0 0 0 0 0 0 1

O: test-inhand

0 0 0 0 0.95 0.05 0

0 0 0 0 0.95 0.05 0

0 0 0 0 0.05 0.95 0

0 0 0 0 0.05 0.95 0

0 0 0 0 0.05 0.95 0

0 0 0 0 0.05 0.95 0

0 0 0 0 0 0 1

O: finish : * : none 1

% Reward function format

% R : action : s_i : s_i’ : real value

R: finish : robot-0-object-0-inhand : * : -100

R: finish : robot-1-object-1-inhand : * : 100

R: finish : robot-0-object-0-not-inhand : * : -100

173

SRIDHARAN, GELFOND, ZHANG, & WYATT

R: finish : robot-0-object-1-not-inhand : * : -100

R: finish : robot-1-object-0-not-inhand : * : -100

R: finish : robot-1-object-1-not-inhand : * : -100

R: move-0 : * : * : -1

R: move-1 : * : * : -1

R: grasp : * : * : -1

R: test-robot-0 : * : * : -1

R: test-robot-1 : * : * : -1

R: test-object-0: * : * : -1

R: test-object-1: * : * : -1

R: test-inhand : * : * : -1

174

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

References

Bai, H., Hsu, D., & Lee, W. S. (2014). Integrated Perception and Planning in the Continuous Space:

A POMDP Approach. International Journal of Robotics Research, 33(8).

Balai, E., Gelfond, M., & Zhang, Y. (2013). Towards Answer Set Programming with Sorts. In

International Conference on Logic Programming and Nonmonotonic Reasoning, Corunna,

Spain.

Balduccini, M. (2009). Splitting a CR-Prolog Program. In International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR), Potsdam, Germany.

Balduccini, M., & Gelfond, M. (2003a). Diagnostic Reasoning with A-Prolog. Theory and Practice

of Logic Programming, 3(4-5), 425–461.

Balduccini, M., & Gelfond, M. (2003b). Logic Programs with Consistency-Restoring Rules. In

AAAI Spring Symposium on Logical Formalization of Commonsense Reasoning, pp. 9–18.

Balduccini, M., Regli, W. C., & Nguyen, D. N. (2014). Towards an ASP-Based Architecture for Au-

tonomous UAVs in Dynamic Environments (Extended Abstract). In International Conference

on Logic Programming (ICLP), Vienna, Austria.

Banihashemi, B., Giacomo, G. D., & Lesperance, Y. (2017). Abstractions in Situation Calculus Ac-

tion Theories. In AAAI Conference on Artificial Intelligence, pp. 1048–1055, San Francisco,

USA.

Banihashemi, B., Giacomo, G. D., & Lesperance, Y. (2018). Abstraction of Agents Executing On-

line and their Abilities in Situation Calculus. In International Joint Conference on Artificial

Intelligence, Stockholm, Sweden.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press.

Baral, C., Gelfond, M., & Rushton, N. (2009). Probabilistic Reasoning with Answer Sets. Theory

and Practice of Logic Programming, 9(1), 57–144.

Brenner, M., & Nebel, B. (2009). Continual Planning and Acting in Dynamic Multiagent Environ-

ments. Autonomous Agents and Multiagent Systems, 19(3), 297–331.

Chen, X., Xie, J., Ji, J., & Sui, Z. (2012). Toward Open Knowledge Enabling for Human-Robot

Interaction. Human-Robot Interaction, 1(2), 100–117.

Colaco, Z., & Sridharan, M. (2015). What Happened and Why? A Mixed Architecture for Plan-

ning and Explanation Generation in Robotics. In Australasian Conference on Robotics and

Automation (ACRA), Canberra, Australia.

Dimopoulos, Y., Koehler, J., & Nebel, B. (1997). Encoding Planning Problems in Nonmonotonic

Logic Programs. In 4th European Conference on Planning, pp. 169–181, Toulouse, France.

Dissanayake, G., Newman, P., & Clark, S. (2001). A Solution to the Simultaneous Localization

and Map Building (SLAM) Problem. IEEE Transactions on Robotics and Automation, 17(3),

229–241.

Erdem, E., Aker, E., & Patoglu, V. (2012). Answer Set Programming for Collaborative House-

keeping Robotics: Representation, Reasoning, and Execution. Intelligent Service Robotics,

5(4).

175

SRIDHARAN, GELFOND, ZHANG, & WYATT

Erdem, E., Gelfond, M., & Leone, N. (2016). Applications of Answer Set Programming. AI Maga-

zine, 37(3), 53–68.

Erdem, E., & Patoglu, V. (2012). Applications of Action Languages to Cognitive Robotics. In

Correct Reasoning, pp. 229–246. Springer-Verlag, Heidelberg, Berlin.

Erdem, E., & Patoglu, V. (2018). Applications of ASP in Robotics. Kunstliche Intelligenz, 32(2-3),

143–149.

Fierens, D., Broeck, G. V. D., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G., &

Raedt, L. D. (2015). Inference and Learning in Probabilistic Logic Programs using Weighted

Boolean Formulas. Theory and Practice of Logic Programming, 15(3), 358–401.

Freeman, T., & Pfenning, F. (1991). Refinement Types for ML. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 268–277, Toronto, Canada.

Gebser, M., Janhunen, T., Jost, H., Kaminski, R., & Schaub, T. (2015). ASP Solving for Expanding

Universes. In International Conference on Logic Programming and Nonmonotonic Reason-

ing, Lexington, USA.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving in Practice,

Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan Claypool Pub-

lishers.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo = ASP + Control: Prelimi-

nary Report. Tech. rep..

Gelfond, M., & Inclezan, D. (2009). Yet Another Modular Action Language. In International

Workshop on Software Engineering for Answer Set Programming, pp. 64–78.

Gelfond, M., & Inclezan, D. (2013). Some Properties of System Descriptions of ALd. Journal of

Applied Non-Classical Logics, Special Issue on Equilibrium Logic and Answer Set Program-

ming, 23(1-2), 105–120.

Gelfond, M., & Kahl, Y. (2014). Knowledge Representation, Reasoning and the Design of Intelligent

Agents. Cambridge University Press.

Gelfond, M., & Zhang, Y. (2014). Vicious Circle Principle and Logic Programs with Aggregates.

Theory and Practice of Logic Programming, 14(4-5), 587–601.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice. Morgan

Kaufmann, San Francisco, USA.

Göbelbecker, M., Gretton, C., & Dearden, R. (2011). A Switching Planner for Combined Task and

Observation Planning. In National Conference on Artificial Intelligence (AAAI).

Gomez, R., Sridharan, M., & Riley, H. (2018). Representing and Reasoning with Intentional Actions

on a Robot. In ICAPS Workshop on Planning and Robotics (PlanRob), Delft, Netherlands.

Gorlin, A., Ramakrishnan, C. R., & Smolka, S. A. (2012). Model Checking with Probabilistic

Tabled Logic Programming. Theory and Practice of Logic Programming, 12(4-5), 681–700.

Haidu, A., Kohlsdorf, D., & Beetz, M. (2015). Learning Action Failure Models from Interactive

Physics-based Simulations. In IEEE International Conference on Intelligent Robotics and

Systems, pp. 5370–5375.

Halpern, J. (2003). Reasoning about Uncertainty. MIT Press.

176

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Hanheide, M., Gobelbecker, M., Horn, G., Pronobis, A., Sjoo, K., Jensfelt, P., Gretton, C., Dearden,

R., Janicek, M., Zender, H., Kruijff, G.-J., Hawes, N., & Wyatt, J. (2017). Robot Task Plan-

ning and Explanation in Open and Uncertain Worlds. Artificial Intelligence, 247, 119–150.

Hanheide, M., Gretton, C., Dearden, R., Hawes, N., Wyatt, J., Pronobis, A., Aydemir, A., Gob-

elbecker, M., & Zender, H. (2011). Exploiting Probabilistic Knowledge under Uncertain

Sensing for Efficient Robot Behaviour. In International Joint Conference on Artificial Intel-

ligence.

Hoey, J., Poupart, P., Bertoldi, A., Craig, T., Boutilier, C., & Mihailidis, A. (2010). Automated

Handwashing Assistance for Persons with Dementia using Video and a Partially Observable

Markov Decision Process. Computer Vision and Image Understanding, 114(5), 503–519.

Inclezan, D., & Gelfond, M. (2016). Modular Action Language ALM. Theory and Practice of

Logic Programming, 16(2), 189–235.

Juba, B. (2016). Integrated Common Sense Learning and Planning in POMDPs. Journal of Machine

Learning Research, 17(96), 1–37.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and Acting in Partially Observable

Stochastic Domains. Artificial Intelligence, 101, 99–134.

Kaelbling, L., & Lozano-Perez, T. (2013). Integrated Task and Motion Planning in Belief Space.

International Journal of Robotics Research, 32(9-10).

Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V., & Stone, P. (2014). Planning in Action Lan-

guage BC while Learning Action Costs for Mobile Robots. In International Conference on

Automated Planning and Scheduling (ICAPS), Portsmouth, USA.

Kopicki, M., Zurek, S., Stolkin, R., Moerwald, T., & Wyatt, J. L. (2017). Learning Modular and

Transferable Forward Models of the Motions of Push Manipulated Objects. Autonomous

Robots, 41(5), 1061–1082.

Laird, J. E. (2008). Extending the Soar Cognitive Architecture. In International Conference on

Artificial General Intelligence, Memphis, USA.

Langley, P., & Choi, D. (2006). An Unified Cognitive Architecture for Physical Agents. In The

Twenty-first National Conference on Artificial Intelligence (AAAI).

Lee, J., Lifschitz, V., & Yang, F. (2013). Action Language BC: Preliminary Report. In International

Joint Conference on Artificial Intelligence (IJCAI), Beijing, China.

Lee, J., & Yang, Z. (2017). LPMLN Weak Constraints and P-log. In AAAI Conference on Artificial

Intelligence, pp. 1170–1177, San Francisco, USA.

Lee, J., & Wang, Y. (2016). Weighted Rules under the Stable Model Semantics. In International

Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 145–

154, Cape Town, South Africa.

Leonetti, M., Iocchi, L., & Stone, P. (2016). A Synthesis of Automated Planning and Reinforcement

Learning for Efficient, Robust Decision-making. Artificial Intelligence, 241, 103–130.

Li, X., & Sridharan, M. (2013). Move and the Robot will Learn: Vision-based Autonomous Learn-

ing of Object Models. In International Conference on Advanced Robotics.

177

SRIDHARAN, GELFOND, ZHANG, & WYATT

Littman, M. (1996). Algorithms for Sequential Decision Making. Ph.D. thesis, Brown University,

Department of Computer Science, Providence, USA.

Lovas, W. (2010). Refinement Types for Logical Frameworks. Ph.D. thesis, School of Computer

Science, Carnegie Mellon University, CMU-CS-10-138.

Lovas, W., & Pfenning, F. (2010). Refinement Types for Logical Frameworks and their Interpreta-

tion as Proof Irrelevance. Logical Methods in Computer Science, 6(4).

Lu, Q., Chenna, K., Sundaralingam, B., & Hermans, T. (2017). Planning Multi-Fingered Grasps as

Probabilistic Inference in a Learned Deep Network. In International Symposium on Robotics

Research (ISRR).

Mellies, P.-A., & Zeilberger, N. (2015). Functors are Type Refinement Systems. In ACM SIGPLAN-

SIGACT Symsposium on Principles of Programming, pp. 3–16, Mumbai, India.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L., & Kolobov, A. (2006). BLOG: Proba-

bilistic Models with Unknown Objects. In Statistical Relational Learning. MIT Press.

Ong, S. C., Png, S. W., Hsu, D., & Lee, W. S. (2010). Planning under Uncertainty for Robotic Tasks

with Mixed Observability. IJRR, 29(8), 1053–1068.

Poole, D. (2000). Abducing through Negation as Failure: Stable Models within the Independent

Choice Logic. Journal of Logic Programming, 44(1-3), 5–35.

Raedt, L. D., & Kimmig, A. (2015). Probabilistic Logic Programming Concepts. Machine Learning,

100(1), 5–47.

Reiter, R. (2014). Knowledge in Action: Logical Foundations for Specifying and Implementing

Dynamical Systems. MIT Press.

Richardson, M., & Domingos, P. (2006). Markov Logic Networks. Machine learning, 62(1).

Rosenthal, S., Veloso, M., & Dey, A. (2011). Learning Accuracy and Availability of Humans who

Help Mobile Robots. In National Conference on Artificial Intelligence, San Francisco.

Sanner, S., & Kersting, K. (2010). Symbolic Dynamic Programming for First-order POMDPs. In

National Conference on Artificial Intelligence (AAAI).

Saribatur, Z., Patoglu, V., & Erdem, E. (2019). Finding Optimal Feasible Global Plans for Multi-

ple Teams of Heterogeneous Robots using Hybrid Reasoning: An Application to Cognitive

Factories. Autonomous Robots, 43(1), 213–238.

Saribatur, Z. G., Erdem, E., & Patoglu, V. (2014). Cognitive Factories with Multiple Teams of Het-

erogeneous Robots: Hybrid Reasoning for Optimal Feasible Global Plans. In International

Conference on Intelligent Robots and Systems (IROS), Chicago, USA.

Shani, G., Pineau, J., & Kaplow, R. (2013). A Survey of Point-based POMDP Solvers. Autonomous

Agents and Multi-Agent Systems, 27(1), 1–51.

Silver, D., & Veness, J. (2010). Monte-Carlo Planning in Large POMDPs. In Advances in Neural

Information Processing Systems (NIPS), Vancouver, Canada.

Sondik, E. J. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D. thesis,

Stanford University.

178

REFINEMENT-BASED KRR ARCHITECTURE FOR ROBOTS

Sridharan, M., & Gelfond, M. (2016). Using Knowledge Representation and Reasoning Tools in the

Design of Robots. In IJCAI Workshop on Knowledge-based Techniques for Problem Solving

and Reasoning (KnowProS), New York, USA.

Sridharan, M., & Meadows, B. (2017). A Combined Architecture for Discovering Affordances,

Causal Laws, and Executability Conditions. In International Conference on Advances in

Cognitive Systems (ACS), Troy, USA.

Sridharan, M., & Meadows, B. (2018). Knowledge Representation and Interactive Learning of

Domain Knowledge for Human-Robot Collaboration. Advances in Cognitive Systems, 7, 77–

96.

Sridharan, M., & Meadows, B. (2019). Theory of Explanations for Human-Robot Collaboration. In

AAAI Spring Symposium on Story-Enabled Intelligence, Stanford, USA.

Sridharan, M., Meadows, B., & Gomez, R. (2017). What can I not do? Towards an Architecture

for Reasoning about and Learning Affordances. In International Conference on Automated

Planning and Scheduling, Pittsburgh, USA.

Sridharan, M., Wyatt, J., & Dearden, R. (2010). Planning to See: A Hierarchical Aprroach to

Planning Visual Actions on a Robot using POMDPs. Artificial Intelligence, 174, 704–725.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel, P. (2014). Combined Task and

Motion Planning through an Extensible Planner-Independent Interface Layer. In International

Conference on Robotics and Automation (ICRA), pp. 639–646, Hong Kong, China.

Srivastava, S., Riano, L., Russell, S., & Abbeel, P. (2013). Using Classical Planners for Tasks with

Continuous Operators in Robotics. In International Conference on Automated Planning and

Scheduling (ICAPS), Rome, Italy.

Subrahmanian, V. S., & Zaniolo, C. (1995). Relating Stable Models and AI Planning Domains. In

International Conference on Logic Programming, pp. 233–247, Tokyo, Japan.

Talamadupula, K., Benton, J., Kambhampati, S., Schermerhorn, P., & Scheutz, M. (2010). Planning

for Human-Robot Teaming in Open Worlds. ACM Transactions on Intelligent Systems and

Technology, 1(2), 14:1–14:24.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press, USA.

Tu, P. H., Son, T. C., Gelfond, M., & Morales, R. (2011). Approximation of Action Theories and

its Application to Conformant Planning. Artificial Intelligence, 175(1), 79–119.

Yang, F., Lyu, D., Liu, B., & Gustafson, S. (2018). PEORL: Integrating Symbolic Planning and

Hierarchical Reinforcement Learning for Robust Decision-making. In International Joint

Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden.

Zhang, S., Khandelwal, P., & Stone, P. (2017). Dynamically Constructed (PO)MDPs for Adaptive

Robot Planning. In AAAI Conference on Artificial Intelligence, San Francisco, USA.

Zhang, S., Sridharan, M., & Bao, F. S. (2012). ASP+POMDP: Integrating Non-Monotonic Logic

Programming and Probabilistic Planning on Robots. In International Conference on Devel-

opment and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1–7, San Diego, USA.

Zhang, S., Sridharan, M., Gelfond, M., & Wyatt, J. (2014). Towards An Architecture for Knowledge

Representation and Reasoning in Robotics. In International Conference on Social Robotics

(ICSR), Sydney, Australia.

179

SRIDHARAN, GELFOND, ZHANG, & WYATT

Zhang, S., Sridharan, M., & Washington, C. (2013). Active Visual Planning for Mobile Robot

Teams using Hierarchical POMDPs. IEEE Transactions on Robotics, 29(4).

Zhang, S., Sridharan, M., & Wyatt, J. (2015). Mixed Logical Inference and Probabilistic Planning

for Robots in Unreliable Worlds. IEEE Transactions on Robotics, 31(3), 699–713.

Zhang, S., & Stone, P. (2015). CORPP: Commonsense Reasoning and Probabilistic Planning, as

Applied to Dialog with a Mobile Robot. In AAAI Conference on Artificial Intelligence, pp.

1394–1400, Austin, USA.

180

