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Classification of imbalanced data is a challenging task that has captured considerable interest in numerous scientific fields by
virtue of the great practical value of minority accuracy. Some methods for improving generalization performance have been
developed to address this classification situation. Here, we propose a cost-sensitive ensemble learning method using a support
vector machine as a base learner of AdaBoost for classifying imbalanced data. Considering that the existing methods are not well
studied in terms of how to precisely control the classification accuracy of the minority class, we developed a novel way to rebalance
the weights of AdaBoost, and the weights influence the base learner training. This weighting strategy increases the sample weight
of the misclassified minority while decreasing the sample weight of the misclassified majority until their distributions are even in
each round. Furthermore, we included P-mean as one of the assessment markers and discussed why it is necessary. Experiments
were conducted to compare the proposed and comparison 10 models on 18 datasets in terms of six different metrics. Through
comprehensive experimental findings, the statistical study is performed to verify the efficacy and usability of the proposed model.

1. Introduction

Classification research is an essential field of study in data
science. In balanced data classification, the support vector
machine (SVM) [1] and other classification modeling ap-
proaches have been broadly discussed and used successfully
in a variety of applications [2]. In specific situations where
there are imbalanced datasets, the traditional methods al-
ways reach their limits in the practical application of clas-
sification [3]. They are intended to produce a model that
matches the training data well; in an imbalanced dataset, this
strategy ignores unusual cases. For this reason, standard
classifiers generally perform poorly. With the growth of data
mining and data analysis, imbalanced class learning has
become a hot topic, and many academics have conducted
comprehensive studies on the subject [3, 4]. They defined the
nature of imbalance data categorization along three di-
mensions: concept complexity, training set size, and degree
of imbalance between the two classes. They also show how
imbalanced datasets can invalidate many conventional
classifiers and offer some instances of how to tackle these
difficulties. Ghosh et al. attempted to tackle the problem
using deep learning systems in 2021, and they discovered

that deeper architectures are useful on some data with
specific structures in both artificial and real image datasets
[5]. Thus far, many excellent research results and improved
algorithms have been proposed to solve the problems, such
as covering data streams and big data analytics, in this field.
Imbalance classification problems include binary imbalance
classifications and multiple imbalance classifications that
can be transformed into binary problems for solution. Bi-
nary imbalance classification problems are not only fre-
quently encountered in real life but are also interesting
problems in machine learning (ML). This class of problems
is characterized by the fact that the number of samples from
one side of the dichotomous dataset involved, called the
minority class, is smaller than that of the other side, called
the majority class. This minority class is more interested in
classification tasks such as medical diagnosis [6]. The
identification target detects the people with diseases that
belong to the minority, and the consequences of the mi-
nority being misclassified are more severe than in the reverse
case. The same is valid for detecting images [7], fraud [8],
managing risk [9], classifying text [10], and recognizing faces
[11]. Binary classification problems with imbalanced data are
prevalent compared to other issues in real life. As a basis for
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classification problems, solutions to binary classification
problems can be derived from other classification problems,
such as multiple classification problems. Therefore, it is vital
to study binary classifications in rare class classifications.
In the literature, operating on data or algorithms are the
two leading solutions to the problem of imbalanced datasets
[12]. The analysis of minority class structure involves de-
termining the imbalance rate and whether it is the over-
lapping type of distribution; this is the critical reason why
the study is complicated. The classification of extremely
imbalanced datasets is even more complicated [4].
Resampling techniques for data processing have been
adopted to renew the class distribution, such as sampling less
of the prevalent class, sampling more of the minority, or
more complex techniques [13, 14]. The most popular syn-
thetic minority oversampling technique (SMOTE) is a
simple and effective resampling method, which is also widely
studied and used in combination with algorithms in the
binary imbalance problem. However, resampling may un-
dertake the risk of losing the essential information of the
majority, overfitting the minority, and causing the pre-
processed dataset to be unlike the raw data. Thus, in many
cases, data-level methods are not studied alone but in
combination with algorithm-level methods [15-17]. At the
algorithmic level, they train the classifier through the data
without making distribution changes. Weighting or
thresholding support functions or class likelihood estimates
can produce better results than resampling the data and can
be applied to any conventional classifier [4]. In addition,
cost-sensitive learning and ensemble schemes are popular
algorithms. A series of cost-sensitive versions of SVM are
proposed, for example, cost-sensitive SVM (CS-SVM),
which uses SVM to extend its loss function to achieve the
objective [18]. SVM based on density weight (DSVM) and
improved 2-norm-based density-weighted least squares
SVM (IDLSSVM) for binary class imbalanced learning
problems [19]. Entropy-based fuzzy twin SVM
(EFTWSVM), where fuzzy membership values are assigned
based on the entropy values of samples [20]. Entropy-based
tuzzy least squares SVM (EFLSSVM) and entropy-based
tuzzy least squares twin SVM (EFLSTWSVM) for class
imbalanced datasets [21], and other cost-sensitive algo-
rithms [22-26]. However, an appropriate decision boundary
cannot be found when the minority samples are sparse [27].
Boosting ensemble approaches overcome learning chal-
lenges from imbalanced data classes effectively [28, 29].
AdaBoost [30], the representative boosting strategy, en-
hances the classification performance of a model by mini-
mizing the error probability. AdaBoost follows the output of
the current classifier to modify the sample weight distri-
bution for the next round, and it distinguishes between
instances of correct classification when weights are reduced
and those of misclassification when weights are increased.
However, it does not make further distinctions between
different classes of instances, which results in the weights of
different classes of instances being increased or decreased in
the same way, which is clearly an unsuitable strategy for the
imbalanced classification problem. In an imbalanced
problem, a good strategy of weighting is one that can
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distinguish between different instance categories, with which
more weight can be given to those relevant instances that
have high recognition importance. For this reason, re-
searchers have developed a series of algorithms that try to
adjust the weights of instances according to their category
labels, which are AdaC [31], CSB1, CSB2 [32], and AdaCost
[33].

SVM and other algorithms can be embedded into a
boosting process and have verified exceptional capabilities
[34-36]. Considering the binary classification of the data
imbalance, we propose an SVM-based ensemble method
that increases the focus on minority accuracy. Our approach
is manipulated in two aspects:

(1) Ensure the weights of the misclassified minority and
majority samples will not be changed in the same
way, because we are concerned with whether the
misclassified minority samples can be corrected in
the next round. We propose a novel way to rebalance
the instances’ weights in each boosting processing,
although several methods have been proposed for
implementing weight updating in AdaBoost [37].
Thus, the sums of the weights of the misclassified
minority and majority samples are balanced with
each other.

(2) We use a different approach to vary the parameter C,
a crucial parameter for the SVM algorithm, so that
each sample receives different costs related to the
probability of misclassification, rather than simply
dividing the samples into minority and majority
categories. The key to this operation is to determine
cost items as a function of the weighting of the
AdaBoost framework at each iteration, retraining the
SVM algorithm for the current iteration by changing
the cost for each sample to affect the next iteration
positively. Combining these two aspects establishes a
link between the AdaBoost frame’s weight and the
SVM-based classifier’s cost items. The proposed
method uses the AdaBoost weight-adjustment pro-
cess to solve the data imbalance problem. The
rebalanced weights assign the determination of the
cost items in SVM learners at each iteration. Dif-
ferent SVM-based learners can be generated to
improve the generalization performance based on
the previous self-adjusting weights of the instances
during the boosting process. Additionally, we have
conducted experiments on various UCI ML repos-
itory [38] datasets. Apart from some routine eval-
uation indicators used for binary classification tasks,
we use the P-mean to highlight the accuracy of
minority classification to display the high efficiency
of the presented algorithm.

The remainder of this paper is organized as follows.
Section 2 summarizes the related literature on classifying
imbalanced data in recent years. Section 3 introduces the
background models, including the SVM model, the en-
hanced AdaBoost model, and AdaBoost with SVM-based
and cost-sensitive SVM. Section 4 presents our method and
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procedure. Section 5 presents the results and comparisons
with other methods based on different datasets and metrics.
Section 6 presents the conclusions.

2. Related Works

The topic of imbalanced data classification is a difficulty for
all researchers, and in addition to a number of successful
strategies that have been investigated, researchers are still
attempting to address this obstacle using the most recent
methodologies. The binary imbalanced job, as the corner-
stone of the imbalanced classification problem, arises from
numerous real life applications. Hazarika and Gupta pre-
sented a novel density-weighted twin SVM (DWTWSVM)
for binary imbalance data classification and used density-
weighted least squares twin SVM (DWLSTSVM) to boost
the computational speed; then, the optimization problem is
turned into solving the 2-norm of slack variables and
equality constraints [39]. Additionally, using ensemble
techniques to handle the imbalanced binary classifications
[4]. We intend to address the imbalanced binary classifi-
cation problem by altering the base classifier of the AdaBoost
algorithm, for example, SVM. The SVM algorithm has been
considered as one of the most effective classification
methods since its introduction, and many excellent research
results and improved algorithms have been proposed to
solve the classification problem thus far [40]. Because of the
vast potential, using SVM as component classifiers is not a
new attempt. Many researchers have long focused on
combining SVM and ensemble learning methods. Sun et al.
[2] analyzed the AdaBoost algorithm and developed three
forms of inputting cost terms into the AdaBoost algorithm
framework to achieve cost-sensitive purposes. The costs
marked the uneven importance of identification between
classes and participated in the weight update of AdaBoost.
Based on the research of Sun and Kamel, Tao et al. [41]
employed cost-sensitive SVMs as base classifiers, while the
normal boosting process was modified into a cost-sensitive
classifier by presenting a self-adaptive method for deter-
mining the cost weight sequences of misclassification. This
method allowed for adapting the various contributions of
minority samples in the SVM classifier at each round
according to the previous classifiers obtained. In this way,
different classifiers were generated, thus improving the
generalization performance. Lee et al. [28] introduced a
weight adjustment factor mechanism of weighted SVM,
which was used as a weak learner, and it was proposed for
the imbalance data classification target. Instances were
classified into four categories: bounded support vector
(BSV), support vector (SV), positive noise, and others based
on location. They gave different adjustment factors for BSV,
SV, and positive noisy instances. In the process of learning a
weighted SVM, the weights of instances in the AdaBoost
algorithm were multiplied based on the adjustment factors.
Wang and Sun [42] proposed an alternative method to
improve AdaBoost based on the AD AdaBoost [43] algo-
rithm. The imbalanced ratio of data was a factor and was
defined as b=N,/N,, the majority, and the minority size
ratio. In addition to the implementation of the parameters C

and the weights, there was also the implementation of the
SVM-based ensemble algorithm by changing o. Li et al. [44]
proposed an AdaBoost-SVM method in which the sequence
of trained radial basis function SVM (RBFSVM) component
classifiers was inserted into the AdaBoost framework. The
large o-values at the beginning were reduced as the boosting
iterations proceeded. This allowed a range of RBFSVM
component learners with adaptively different parameters,
which would have better generalization than the AdaBoost
method using SVM component classifiers with fixed
o-values.

Additionally, the SVM ensemble models’ high perfor-
mance has encouraged researchers to develop applications in
different fields. For example, Sun et al. [16] proposed a
dynamic approach that proved the efficiency of financial
distress forecasting with two types of sample imbalances.
This method was a forecasting method that combined the
time-weighted strategy and AdaBoost with both the SVM-
based integration algorithm and an oversampling technique.
The results showed that the embedded integration model
had significant advantages over the simple base classification
model, although both the simple and embedded integration
models improved the identification of rare financially dis-
tressed samples. In recent years, Liu et al. [45] presented an
AdaBoost algorithm that shared SVM with a series of pa-
rameter methods to transfer the source task positive and
unlabeled learning problem knowledge to the target task.
The method combined the weak classifiers into a strong
AdaBoost model for prediction. In addition, they considered
the similarity of fuzzy examples in terms of minority and
majority classes to refine the classifier’s decision boundary.
Yao et al. [46] solved the class imbalance problem in
forecasting corporate credit risk in the supply chain context
using the suggested hybrid model, which combined SVM
and AdaBoost ensemble models with an artificial imbalance
rate model and distinct feature selection approaches. They
claimed that the proposed model mitigated the problem of
class imbalance. This not only enhanced the sample dis-
tribution variety but also made the AdaBoost integration
more stable and generalizable. Wei et al. [47] proposed a
fault diagnosis algorithm to address the problem of poor
accuracy of actuator failure identification under airplane
closed-loop control. The algorithm extracted failure features
using the aggregate experience model decomposition
method and principal component analysis (PCA). Simul-
taneously, an adaptive SVM method was embedded in the
AdaBoost framework to perform classification operations on
them. Additionally, SVM-based ensemble methods have
gained tremendous application in various areas in recent
years [48-52].

3. Background Models

The following is the basic form of the binary classification
model. Suppose a binary classification training dataset is
given in which each sample consists of an instance and label
as S={(x1, y1), (%2, ¥2) »..., (xn» ¥n)} instance x; € XCR,, label
yi€ Y={-1, +1}. X is the instance space, and Y is the label
collection. According to the mathematical representation in



the algorithms’ derivation and implementation, we used
positive and negative classes to refer to minority and ma-
jority classes, respectively.

3.1. SVM Model. The SVM learning strategy maximizes the
interval, which is called the margin. A wider margin
corresponds to a more significant difference between the
two types, making it easier for us to distinguish between
them. Therefore, finding the optimal decision hyperplane
corresponds to the maximum margin between the two
types of samples. The SVM model designs a hyperplane
with dimensions m — 1. The hyperplane can divide the data
of N samples in m dimensions into two categories. For
nonlinearly separable data that can cause problems with the
algorithm, two approaches can solve this issue. The first one
is to enhance the low-dimensional data through a kernel
function and use the SVM model in high dimensions to
find the appropriate decision hyperplane. The second
method introduces slack variables violating the interval
constraints slightly. Soft margin SVM can be converted to
optimize:

L 7
min —w w+C "
w’E 2 Z fz

s.t. yi(wT-xi+b)21_Ei, (1)

£>0,i=1,2,...N.

Equation (1) is generally transformed into its dual
problem and then solved. After the learning problem of
SVM is transformed into convex quadratic programming, it
has a globally optimal solution. Several optimization algo-
rithms exist for the fast implementation of this problem.
Here, we use the sequential minimum optimization (SMO)
algorithm. The essential principle behind this approach is
that if all variable solutions fulfill the Karush-Kuhn-Tucker
(KKT) condition of this optimization issue, the optimization
issue’s solution is attained because KKT is both a necessary
and sufficient condition for it; otherwise, two variables are
selected, additional variables are specified, and a quadratic
programming problem is created for these two variables. The
subproblem has two variables: one violates the KKT con-
dition negatively, while the other is found automatically by
the restrictions. In this approach, the SMO algorithm
constantly decomposes and solves the original issue into
subproblems. Through these, we can build a decision
function using as follows:

f(x)= sign( Z)LiyiK(xi,xj) + b*>. (2)

3.2. Cost-Sensitive Support Vector Machine. Cost-sensitive
classification learning approaches eschew the common
classification strategy of supposing that the cost of all
misclassifications is the same and then design classification
algorithms that minimize the probability of error. However,
in some of the aforementioned cases, this strategy is
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suboptimal; for example, one type of error is costlier than the
others, or examples from different categories occur with
different probabilities. Consequently, it is important to
develop extensions of cost-sensitive techniques. Veropoulos
et al. [53] presented a penalized regularized cost-sensitive
SVM model to reduce the negative overwhelming impact.
According to the class labels of the training data, the samples
are classified into two exact classes: positive S, = {i|(x;, y;) €S,
y;=1, i=1,., N} and negative S_={i|(x;, ;) €S, yi=-1,
i=1,..., N}. As the set S is divided into indices S, and S_, this
model also introduces C, and C_ penalty factors for positive
and negative slack variables. In the optimization process, the
positive samples retained higher penalty values than the
negative samples. It implements the SVM problem as
follows:

1, N N
n’l})l? 7 w+C, Z &+ C Z &
{ily=+1} {iv=-1}
(3)

3.3. Enhanced AdaBoost Model. The accuracy-oriented na-
ture of the AdaBoost algorithm prevents it from achieving
the desired results if it is applied directly to the classification
of imbalanced data. Thus, several researchers have made
various improvements to the AdaBoost framework. The
enhanced AdaBoost model [42] can be improved by adding
the weighted voting parameters «, which are determined by
the overall fault rate and the accuracy of the minority pri-
mary interest. K,,, is the sum of all positive samples’ weights,
and P,, is the sum of the sample weights labeled positive and
predicted to be positive. The ratio of these two is denoted as

Ym-

K, = Z Wpi>
iiy;=1

Pm = Z Wi (4)
iy;=1,G,, (x;)=1
p

TR,

m

After initializing the sample weight D;, we find the base
classifier G,, (x) to minimize the error:

e, = Z W,y (5)

i:G,, (&')*}’i

We repeat the computation of the weak classifier weight
Oyt
1 1-
o, =—ln<|w} +kexp{B(2y,, - 1)} (6)

2 e,

Then, we renormalize w,,,;; until m reaches M, the
previous setting iterations. The parameters k and f in the
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above expression are crucial to ensure that the enhanced
AdaBoost boosts the classifying efficiency of S, and main-
tains a low global error rate. The final output G (x) is a linear
combination of a series of weak classifiers.

3.4. AdaBoost with SVM-Based. In imbalance classification
problems, the generalization performed by the SVM-
based AdaBoost method is superior to that of a single
SVM [44]. In this section, we describe the SVM-based
AdaBoost model. The AdaBoost model is a forward
stepwise additive model consisting of a basic classifier
whose loss function is exponential L (y, f (x)) =exp[-y f
(%)]. fm—1 (x) is the first m — 1 base classifier. The «;, and
G;, that minimize (7) are the «,, and G,, (x) obtained by
the AdaBoost algorithm:

(“m’Gm (x)) = IE)ICI;I Z exp [_yi (fm—l (xi) + (XG(Xi))].
(7)

The algorithm learning model is equivalent to the final
classifier of AdaBoost when the base classifier is G,, (x):

G(x) = Y ,G,, (x). 8)

Because multiple parameters are involved in both
SVM and AdaBoost algorithms, there are various com-
binations of SVM with ensemble learning. These include
the cost-sensitive AdaBoost algorithm [2, 31] and AdaC2,
which have shown good and relatively stable performance
[2]. AdaBoost with a heterogeneous SVM could also work
well [54]. The following is a brief and concise example of
an SVM cost-sensitive ensemble based on adaptive cost
weights [41], a method that adaptively considers the
various contributions of positives to the SVM classifier
during boosting based on the previously obtained clas-
sifiers. This study has done more work on positive class
samples because of their greater importance, giving a
higher cost value to positive instances that are mis-
classified than to all correctly classified positive instances.
This approach has allowed for a great deal of work on
instance placement to be completed, assigning larger cost
values to borderline instances rather than instances far
from the boundary in all cases where it does not matter
whether the positives are classified correctly. By incor-
porating the costs into the updated weights, the weights of
positives with higher costs further increase when they are
misclassified; otherwise, they further decrease. Initialize
D, = C,/Z, for all positive instances, and D, = C_/Z for all
negative instances, Z,= p*C, + n*C_, where p and n are
the number of the positive and negative classes. C_ de-
faults to one. We calculate the weight updating parameter
as follows:

a = lln Zi: =G, (xi)Cm,iwm,i

" 2 Zi: y;i#G,, (x,)Cm,iwm,i .

(9)

5
Further, we update and normalize sample weights:
Cmiwmi eXp \—%y iGm Xi
wm+1)i — p (Z y ( )) , (10)
(e gy T
N > 1 yi =1
Cpi=1 | L+ exp (g1 (%))
C_) lf yl = _]..
(11)

In G,, (x;) =sign(g,,(x;)), where g(x;) is the value
associated with x; calculated by the decision function of SVM
and Z,, represents normalization value, the final classifier is
G(x) = sign (¥ a,,°G,, (x;)).

4. Proposed SVM-Based AdaBoost Ensemble

We use SVM as a fundamental weak learner and extend
the weight design of the AdaBoost framework to cost-
sensitive classification problems. This extension means
rebalancing the sum of positive and negative sample
weights that are misclassified. A cost-sensitive ensemble
classification algorithm is derived in which the weights of
misclassified samples from the positive class are added,
and the weights of misclassified samples classified cor-
rectly from the prevalent class are reduced in our ap-
proach. This guarantees that more weights are cumulated
in the positive class to influence the training. Moreover,
the update of the sample cost vector by the SVM learner is
indirectly determined by the associated weight term.
With this strategy, the SVM classifier can adaptively
consider the different contributions of each instance in
each iteration based on the previous boosting process.
Instead of focusing too much on samples from the
positive class as in other cost-sensitive class algorithms,
our algorithm assigns a higher cost value to all mis-
classified cases during the SVM training process and
further handles misclassified samples from the positive
class in the rebalancing phase. This allows our algorithm
to not only impact significantly on forming the classifi-
cation but also to address the cost-sensitivity problem. In
this section, we detail the two improvements we made to
AdaBoost with SVM and the theoretical justification for
each part, giving the algorithmic description at the end.
Figure 1 shows the procedure of the proposed approach.
The specific procedure and detailed computational
equations for solving our dual problem are shown in
Algorithm 1.

4.1. Cost Weights AdaBoost-SVM Model. One way to combat
the problem of skewed datasets is to work on the penalty
factor, which is to give a larger penalty factor to positive
classes with small sample sizes, indicating that we value this
part of the sample. The penalty factor C is not a variable, and
the whole optimization problem is solved with a value of C
that you must specify beforehand. After specifying this value,
you can obtain a classifier and then evaluate it with the test
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Weights W, e o w

Cost items C C

Classifiers SVM, —— SVM

mi

Final predictor

G (x)

FIGURE 1: The procedure of the proposed approach.

(3) Form=1,2, ..., M.

f(x) = ¥,2,G,, (x)
(5) Output: The final classifier.
G(x) =sign(f (x)) = sign(},,,,G,, (x))

(1) Input: Training samples S={(x1, y1), (X2, ¥2) 5 (5o YN}
(2) Initialize the Dlz(a)u,..., W1jseens wlN) with w1;= l/N, and the Cl :(Cll)"'i C1i>"'> CIN)

(a) Using C,, to obtain an SVM classifier G,, (x) on the training dataset.
(b) Calculating the coefficient a,,, according to equation (15).

(¢) Updating rebalanced D,, ,; using equations (16), (17).

(d) Updating the value of C,,,; using equation (14).

(4) Building linear combinations of basic classifiers.

ALGORITHM 1: Proposed SVM-based ensemble algorithm.

data. If the result is not satisfactory, change the value of C
and repeat the process. This is a parameter search process;
however, it is unlike the optimization problem itself. Here,
we determine C automatically by the updated weight values
for a reason, not by random guessing.

Compared to cost-sensitive SVM, we assign a different cost
to every misclassified instance instead of one in distinct classes.
To solve the problem efficiently and to apply the kernel tech-
nique more conveniently, we convert the primary problem into
its dual problem and then solve it. The Veropoulos model of the
soft margin SVM prototyping [1, 55] is developed as follows:

1
min ~w'w + CT¢,
wE 2

s.t. yi(wT-xi+b)21_fi, (12)

£>0,i=1,2,---N.

C is a column vector, C=[C;, C, ... Cy]™. & denotes a
vector of corresponding slack variables of the training data
E=[&, &, ... £5]T. We take the Gaussian kernel function, and
the dual and kernelized formulation can be derived as
follows:

i

1
min o 3 YAy K(xx;) = Xk
j 1
s.t. ZAiyi = 0) (13)

0<1;<C;i=1,2,---N.

To find the optimal solution A* = (A],A],...,A}), we
choose a positive component 0<A;<C; of A" and compute
b" =y;— Y\ yiK (x; x;) to construct a decision function f (x)
=sign (YA yiK (x; x)) +b").

We divide all the classified samples into three types. In
the collection of the first sample type M1={i|G,, (x;) y;=1},
samples in this set type are all correctly classified and labeled
as ipy. In the collection of the second sample type M2 ={i |
G, (%) =-1, y;=1}, the positive samples are classified in-
correctly as negative, and we label the weight of this type of
sample as i,7,. These samples are concerning, as we consider
positives classified correctly as a superior task, and we need to
rebalance these instances. In the collection of the third sample
type M3 ={i|G,,, (x;) = 1, y;= —1}, the samples in the third set are
classified incorrectly as negative samples into the positive. We
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consider them less important than the second type of mis-
classification; therefore, they would not be weighed again. We
denote these samples as iy;3. M3 and M2 are all misclassified
samples; M1, M2, and M3 are combined into a complete set.
Instead of using a parameter constant C in the standard SVM to
control the maximum hyperplane interval in the objective
function while ensuring the minimum deviation of instances,
we would give a parameter vector C so that each slack variable
&, has a weight C;. We use a different C for each outlier, which
means we value each sample differently. We assign a smaller C
to those samples that are inconsequential compared with those
instances that are not to be misclassified. We update the cost
terms continuously as the weights change during the boosting
process. This cost weights the AdaBoostSVM model we call
Ada-SVM. The cost item of the i-th sample at the (m + 1)-th
round is applied as follows:

C,.i> ifi e M1,
Cm+1,i = {

14
Cmi'(1+N'wm+1,i)> ifi e M2UM3. (14)

4.2. Rebalance Weights Model for Imbalanced Data.
Unlike other cost-sensitive classification algorithms, we con-
struct a new computational rule to assign weights to the in-
stances based on the weight adjustment of the original AdaBoost
framework. Here, G,, (x;) is the category of the i-th sample
predicted by the base learner SVM at the m-th iteration. w,,, is the
coeflicient of the m-th base classifier, and w,,;; is the weight of the
i-th sample at the m-th iteration. (15) is used to calculate «,,

Z{ilMl}wmi

1
a ==In .
Z{i|M2+M3}wmi

(15)

At the (m+ 1)-th iteration, the weight of misclassified
positive and negative instances is formulated as follows:

wmi
w =b. Z M2 exp (=0, Y,Gy (7)) (M >2). (16)

m

m+1,iy,

The weight of other samples is formulated as follows:

., . :
Miydem3

Wit linpoms — Z—exp (_(meiGm (xi))’ (17)
where
. W, :
b:M(Mzz)’ (18)
Z{i\MZ}wmi

Zm = Z b- Wy €XP (_Ocminm ('xi))

{ilm2} (19)
+ Z Wyi €XP (_‘xminm (xi))’
filM2+ M3}
Dy = (wm+1,1’ s Wit wm+1,N)' (20)

Theorem 1. The training error bound for the final classifier of
the rebalancing AdaBoost is as follows:

S YIG) )< Yew (nf )< [1Z @)

i m

The proof is shown in Appendix A.

Theorem 2. The training error bound for the binary clas-
sification problem rebalancing AdaBoost:

1 b\" s
5 ZI(G(xi) #;) < (1 +5> exp (-2My?), (22)
where y=1/2—e,,.

The proof is shown in Appendix B.

5. Experimental

Our cost-sensitive ensemble learning method was driven by
the goal of obtaining all positive samples classified correctly
and dealing effectively with imbalanced datasets. We illustrate
the effectiveness of our method for the imbalanced data
classification problem by using experimental data. The pro-
posed method was compared with ten other approaches in six
metric dimensions on our selected dataset with different
imbalance ratios. Because our method is based on changing
the AdaBoost base classifier to SVM, we compare our method
with the original AdaBoost and SVM algorithms without any
tricks, respectively, to show that combining the two methods
makes our method better than both of them. To compare the
performance with other improved algorithm-level classifi-
cation methods, SVM-based cost-sensitive methods are
chosen, and these included the prorated cost method of using
the inverse of the size of positives and negatives as the penalty
constants for the different classes, CS-SVM, and SMO-
TE + SVM. We also compare our approach with other state-
of-the-art ensemble and data-level resampling strategies,
namely, Easy Ensemble [56], SMOTEBoost [57], and
SMOTEBagging [57]. Ada-SVM is used to prove that the
rebalancing trick is working. The decision tree algorithm was
used as a comparison algorithm to illustrate that our approach
improved the recall for the positive samples and was not
traded off by sacrificing other metrics.

5.1. Description of Datasets. Fourteen datasets with different
numbers of attributes and sample sizes were selected from the
UCT for the test to assess the behavior of the suggested method
in handling classification tasks of imbalanced datasets There
were some missing attribute values in several datasets, and
KNN handled missing attribute value processing. Table 1 lists
a detailed description of the dataset used. All datasets had two
output labels, denoting the positive and negative categories.
The attributes indicate the size of features in datasets. Im-
balanced Ratio (IR) is the ratio of the number of samples in
the negative class to the number of samples in the positive
class. Generally, the larger the IR value is, the more harmful it
is to the performance of traditional classifiers. We selected
some datasets with IR in the range of 1 to 50 for our ex-
periments. We believe that the ratio of the number of samples
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TaBLE 1: Description of the datasets.

Datasets Attributes Instances IR Instances: attributes
Ecoli_cp 7 336 1 48
WDBC 30 569 2 19
Breast cancer 9 699 2 78
Ionosphere 34 351 2 10
Wine3 13 178 3 14
WPBC 33 194 3 6
Ecoli_im 7 336 3 48
Hepatitis 18 154 4 9
SPECT 22 267 4 12
Teaching 5 151 4 30
German credit 24 1000 5 42
Ecoli_pp 7 336 5 48
Segmentation 19 2100 6 111
Glass6 9 214 6 24
Ecoli_imU 7 336 9 48
Ecoli_om 7 336 16 48
Yeast5 8 1484 33 186
Pageblock 10 5473 9 547

to the number of features may also be an influential factor in
the classification of imbalanced data, and we chose datasets
with this ratio in the range of 6 to 547 for our experiments.
The training set was normalized before training by rescaling
each feature to homoskedasticity for SVM-based algorithms,
and the rescaled features that did not distort the original
distribution were used on the testing dataset. Preprocessing
eliminated the numerical difference between each feature X;
further, controlling the size of each column of feature X
within a specific range made the model prediction perfor-
mance more accurate.

5.2. Evaluation Metrics. Specific evaluation metrics to ob-
serve the model’s performance in each category were in-
troduced to evaluate the classifier’s classification
performance.

5.2.1. Confusion Matrix. The confusion matrix in Table 2
shows how the classification model made mistakes when
making predictions. All cases were recorded in the following
four categories: TP, FN, FP, and TN.

5.2.2. Accuracy, Precision, Recall, and Specificity.
Classification accuracy was the index for evaluating the
classifier’s performance. This indicator was suitable for
datasets with balanced categories. For lopsided datasets,
the accuracy became unreliable. If positive examples:
negative examples=1:99, then the classifier would in-
correctly predict all positive examples as negative. An
accuracy rate of 0.99 was possible; however, this model
could not identify positive examples. Precision, recall, and
specificity are metrics generally used for binary classifi-
cation problems.

TaBLE 2: Confusion matrix.

Predicted positive Predicted negative

True positive TP FN
True negative FP N
A 3 TP + TN

Y = TP TN + FN + FP’
. TP
Precision = TP+ FP’
(23)
Recall TP
ecall = ————,
TP + FN
TN
Specificity = ————.
pecificity TN + FP

5.2.3. Receiver Operating Characteristic (ROC) and Area
under the ROC Curve (AUC), G-Mean, F1-Score, and P
-Mean. The ROC curve was a recurrent evaluation index for
the two-class classification problem; it visually compared the
performance of different models on the same dataset. When
comparing the performance of the two models, if the ROC of
one model completely wrapped the ROC of the other, the
former was superior to the latter in terms of classification
performance. The use of the area under the ROC curve
(AUC) can afford a better model. AUC inherited the in-
sensitivity as a scalar of the ROC curve and was often used in
these classifications [58].

In the imbalanced classification problem, it was not
comprehensive to consider any indicator alone; we needed
to combine metrics to measure the model’s efficiency. The G-
mean [7] indicator considered the accuracy of both the
positive and negative samples. It was different from the
overall accuracy and avoided the dominant influence of
negative samples on the classification performance. The F1-
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score value allowed us to focus on small outliers as the
harmonic mean of a set of numbers and was biased toward
the smallest element in the list. We paid attention to positive
samples and metrics biased toward positive samples, such as
the recall of positive samples, when comparing the results
and evaluating an algorithm. F1l-scores were occasionally
unreliable because they were influenced by the minimum
value rather than the maximum value. Hence, we used the P
-mean, and the geometric mean belonged to recall and
precision, which was considered positive and were not so
biased toward the positive as the F1-score [7]. The reason for
using P-mean was to examine how well the algorithm
performed in classifying positive samples; this aspect has not
been widely studied. We considered the P-mean an essential
index to discriminate whether the classification of positive
samples was sufficient. Given the increasing emphasis on
recall, P-mean reconciled the values of precision and recall,
evaluating the model’s performance more comprehensively.

Figure 2 shows that in some circumstances, the usage of
P-mean is required. The Hepatitis dataset is stratified
sampled and divided into two sections, with 80% of the data
serving as the training set and 20% serving as the testing set.
Multiple trials were run with our model and the SMOTE-
Boost model, and the results were displayed as box plots,
with the performance of the two models under the F1-score
and P-mean assessment criteria highlighted in magenta and
blue, respectively. Evidently, the median of our proposed
method is slightly lower than that of SMOTEBoost under the
Fl1-score evaluation criterion but significantly higher than
that of SMOTEBoost under the P-mean evaluation criterion,
and in fact, our method outperforms SMOTEBoost in the
goal of increasing the accuracy of small class samples. Under
all assessment criteria, the data findings provided by our
technique are clearly more focused than those obtained by
the SMOTEBoost method, reflecting the improved stability
of our suggested classification model.

G — mean = qJrecall - specificity,

2 - recall - precision

F1 — score = (24)

recall + precision

P — mean = 4/recall - precision.

5.3. Experimental Settings. All methods were compared with
the proposed approach to produce a comprehensive eval-
uation. The data findings depicted by the icons are all av-
erages of the testing data following a five-fold cross-
validation. To avoid the effect caused by the number of two-
class instances for training and eliminate randomness before
training, we adopted stratified sampling to ensure that the
samples after the five-folds split had the same imbalance
ratio as the entire sample set, and then four-folds are used as
training data with the remaining one-fold as the testing data.
Cross-validation may result in a skewed test set in severe
circumstances of data imbalance, leading to an inaccurate
evaluation [5]. As a result, we also carried out balanced

testing, with all assessments based on five-fold stratified
cross-validation. We consider the data with an IR higher
than or equal to five to be highly imbalanced.

For a more comprehensive comparison of our method
with other methods, we ran two independent groups of tests
[3, 4]: (1) 17 datasets to compare our method with other
methods in terms of inquiry structure of classes and sample-
to-feature ratio, and (2) we derived 12 new datasets, each
with 1000 examples, from a random undersampling in the
Pageblock dataset with different IR , aiming to explore the
effect of IR on our method compared with others while
maintaining the remaining conditions. We examine the
same IR levels with the datasets in the first group and higher
IRs of 36, 40, and 50 at the same data size.

In the proposed SVM-based AdaBoost ensemble, three
parameters had been prespecified: the parameter ¢ for the
Gaussian kernel, the initial penalty vector C for each in-
stance, and T for the number of iterations. We employed
grid-search to predefine the Gaussian width parameters for
the SVM classifier to avoid implications of parameters on the
performance. We use one as the o value for all datasets, and
for others, including the Ecoli, Breast Cancer, Ionosphere,
Teaching, and Pageblock datasets, we use 10.

The optimization problem was solved in such a way that
C was always a fixed value. The cost factor C in cost-sensitive
learning was determined for a specific reason, such as using
the ratio of the number of samples between categories as the
cost, similarly to the prorated cost method. Under some
circumstances, the relevance of distinguishing distinct
samples was described by cost items, and the cost of a
specific sample relied on the properties of the unique sit-
uation. For example, regarding detecting fraud, the cost of
missing a specific fraud case was determined by the amount
of money involved [8]. Herein, we set the initial value to one,
and the adjustment scale was updated by itself according to
the changes in the iteration process.

The experiments of datasets presented in Table 1 were
conducted to investigate the influence of the iteration
parameter T on the performance of the proposed ap-
proach. This was a critical factor for improving classifi-
cation performance. The G-mean, Fl-score, P-mean,
AUC, accuracy, and recall in the panels in Figure 3
demonstrate that the algorithm was convergent and
typically had stability after T reached 25 under settled o.
Therefore, we set the parameter Tfor all ensemble learning
to a constant value of 25.

To ensure consistency across experiments, all classifi-
cation algorithms involving the SVM parts are written in
uniform handwritten code. Decision tree, easy ensemble,
SMOTEBoost, SMOTEBagging, SMOTE + SVM, and Ada-
Boost, which make direct calls to the packages in Python, are
algorithms that use default settings. Because the base clas-
sifier SVM has uncertainties in the selection of support
vectors, the results would be slightly different for each run of
our model. The implementation of the proposed method is
publicly available in a GitHub repository (https://github.
com/PChunyu/SVM-Adaboost-C). The computer configu-
ration used to run all methods in this paper is an Intel (R)
Core (TM) i5-7500 CPU @ 3.40 Hz and 3.40 GHz.
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FI1GURE 2: Comparison between SMOTEBoost and the proposed method for hepatitis classification results on F1-score and P-mean metrics.
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FIGURE 3: The trend of evaluation metrics of the training dataset with T.
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5.4. Experimental Results and Statistical Tests. In this section,
we first show the effectiveness of our proposed rebalancing
strategy and the proposed model. We present the experi-
mental results of two groups in three dimensions: structure
of classes, sample-to-feature ratio, and IR. At last, we per-
formed hypothesis tests on all metrics between the proposed
method and others to illustrate the validity of our model.

To confirm the validity of our proposed rebalancing
weights approach, we compared the classification perfor-
mance of Ada-SVM and proposed, and their differences are
before and after rebalancing weights. Figure 4 shows the
trend for accuracy and recall. Our approach’s performance
was superior to that of Ada-SVM in terms of recall. After
almost 20 iterations, the proposed method stabilized the
recall rate at one, and the accuracy rate was the same or
lower than Ada-SVM. Our approach improved the recall at
the expense of accuracy in some datasets, an inevitable
consequence of enhancing the recall rate. The rebalancing
scheme contributed to the proposed method’s better gen-
eralization performance than that of Ada-SVM in terms of
recall.

The Yeast 5 dataset with multiple feature dimensions was
projected into the two-dimensional space using PCA to
observe the decision boundary and demonstrate the effec-
tiveness of the proposed ensemble. Figure 5 shows a set of
classifications using different methods. Among the classi-
fication boundaries produced by the presented techniques,
the proposed model classifies the best and has the highest
overall accuracy while ensuring a recall value of one. The
decision boundary for simple noncost-sensitive classifiers,
such as no cost SVM, AdaBoost, and SMOTE +SVM, is a
plane with no convergence, and although SMOTE + SVM is
used as a classification method for minority class accuracy,
the cost-insensitive regular SVM classifier is still used after
SMOTE generates new data. These classifiers either perform
better in accuracy alone or in recall only while ignoring total
accuracy. The majority of the ensemble algorithms have
irregularly delineated boundaries, which can more accu-
rately identify regions with minority samples. However,
evidently, the more detailed delineation of the minority by
SMOTEBoost and SMOTEBagging does not guarantee that
they achieve the desired results on the test set data, whereas
Easy Ensemble does. Under normal circumstances, without
any adjustment, the decision boundary of the cost-sensitive
classifier for lopsided data was curved toward positive [55].
CS-SVM and prorated cost panels demonstrated the deci-
sion boundary’s warp toward the positive and were affected
by imbalanced training data, particularly the positives. It was
the reason CS-SVM and prorated cost led to poor gener-
alization performance one testing data. Ada-SVM, No-Cost
SVM, decision tree, SMOTEBoost, SMOTEBagging, and
AdaBoost, regardless of accuracy, do not achieve a high
recall value when compared to other techniques. The rest of
the methods could correctly classify positive samples,
whereas the accuracy was lower than that of the proposed
method. Our method produced decision boundaries that did
not favor the positive as in other cost-sensitive classification
algorithms; it tended to the negative. This is because our
proposed method aggravated the misclassified positive
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samples and improved the base classifier after readjusting
the cost term for all misclassified samples. In general, the
panel of the suggested approach showed the best fit among
all the techniques. The maximum accuracy was achieved
when the positive recall reached one.

5.4.1. First Group Datasets. Table 3 displays the experi-
mental results of the first group; the bolded black values
reflect the best values across all techniques. Except for the
WDBC, Breast Cancer, Ionosphere, and Yeast5 datasets,
where it does not achieve the greatest recall value, our
technique has the highest recall values in all 13 datasets. On
these four datasets, the difference between the recall value
and the greatest recall value of our technique is not sig-
nificant: 0.9297 (0.9576 for Easy Ensemble), 0.9713 (0.9834
for CS-SVM), 0.9603 (0.9923 for CS-SVM), and 0.8194
(0.9750 for Prorated Cost), respectively. It is also worth
noting that our technique obtains a recall of one for both the
Wine3, SPECT, and Ecoli_im datasets, as well as an average
value of one after five-fold cross-validation, which indicates
that the greatest recall value is obtained for each of the five
cross-validation trials, demonstrating the excellent efficiency
of our technique. Some algorithms also showed significant
accuracy-orientedness in the experiments; the more lopsided
the data, the worse the performance of the no cost, decision
tree, and AdaBoost algorithms. As one of the most classic
and simple methods, Easy Ensemble has the best perfor-
mance in every metric on the WDBC dataset and the highest
performance in the G-mean, F1-score, accuracy, and AUC
metrics on the Ecoli_cp and Breast Cancer datasets. These
algorithms in combination with SMOTE have excellent
figures in other aspects except the recall metric. In some
circumstances, CS-SVM obtained very impressive results as
one of the representations of cost-sensitive classifiers at the
algorithm level. CS-SVM, on the other hand, trained the
classifier with fixed positive and negative category costs,
causing it to perform better exclusively on a specific dataset,
and prorated the cost as well. This restricts them to just
marginally improved outcomes on specific datasets.
Although our method achieves the best level among all
methods on the WPBC, Hepatitis, and German datasets, the
recall levels of these datasets are overall low compared to the
other datasets, where the recall values are all close to one.
This has a lot to do with the structure of classes; a good
classification can be obtained even using canonical classifiers
from nonoverlapping distributions [4]. We selected the
Ecoli_pp and German Credit datasets with consistent im-
balance levels and a close sample number to feature number
size ratios, as illustrated in Figure 6. After projecting the
training and test set sample points of these two datasets into
the two-dimensional plane separately, we can find that the
two datasets differ significantly in the distribution of sample
points. Both on the testing set and the training set, the
distribution of positive and negative class samples on the
Ecoli_pp dataset overlaps less, while the opposite is true for
the German Credit dataset, which leads to the fact that all
methods classify Ecoli_pp much better than German Credit
on almost all metrics. Clearly, the lower the sample size to
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FIGURE 4: Trends in accuracy and recall before and after rebalancing.

feature ratio, the more features are relative to the sample size,
and too many features can easily lead to overfitting; addi-
tionally, in some models, when the sample size to feature
ratio is too low, the model’s prediction becomes worse.
However, this is not completely absolute, because it is dif-
ficult to control the other characteristics of the dataset at
exactly the same level when discussing the sample number to
feature number ratio. Hepatitis, for example, has a high
ratio; however, because of structural overlaps, it is more
impacted by the category structure, and even with a high
sample-to-feature ratio, classification scores are still rather
low. By comparing the data results, we found that a sample
number to feature number ratio between 10 and 20 is a
desirable range; for example, for the Wine3 and SPECT
datasets with the highest recall, their sample number to
feature number ratios are 14 and 12.

The most important is that our method obtained a
considerable advantage in the positive recall at various IR.
The performance of the recall results is depicted in Figure 7.
The value on the bar is the sum of the all-dataset’s recall of
the corresponding algorithm. The proposed approach had
the maximum value of recall (15.93), followed by Easy
Ensemble (14.57).

Table 4 displays the Shapiro-Wilk test findings because
not all data followed the normal distribution at 5%. For
statistical analysis, we used the parametric T-test and the
nonparametric Wilcoxon test independently to examine if

there were any obvious differences between the proposed
strategy and the other ways in the experiment.

The recall value of the proposed model does not only
look higher than other methods by visualization; however,
by statistical tests, we found that the recall value of our
method is statistically significantly higher among other
methods, as compared to their respective counterparts. The
results are listed in Table 5. Bold indicated significant values
at the 0.05 level. Statistical results demonstrated that the
proposed SVM-based ensemble learning method performed
better than a single no-cost standard SVM in all metrics
except the AUC and accuracy. The T-test and the Wilcoxon
test results showed that our model was significantly better
than other models in recall performances at the 5% level,
while it is not statistically significantly different from other
models in terms of other metrics. However, it is significantly
different from SMOTEBoost and SMOTEBagging only in
terms of accuracy because our method discards accuracy to
some extent in exchange for higher recall.

5.4.2. Second Group Dataset. To observe how our method
performs under different IRs, Table 6 presents the second
group of experimental findings. They come from a resam-
pling of the same dataset, with only different IRs under the
condition that other features are guaranteed to be the same.
Our method maintains the highest level even at the IR of 36
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Proposed Method Ada-SVM Cost Sensitive SVM
Test Accuracy: 0.9327 Test Accuracy: 0.9731 Test Accuracy: 0.8316
Test Recall: 1.0 Test Recall: 0.5556 Test Recall: 1.0

Prorated Cost SVM No Cost SVM Decision Tree
Test Accuracy: 0.8687 Test Accuracy: 0.6835 Test Accuracy: 0.9764
Test Recall: 1.0 Test Recall: 0.6667 Test Recall: 0.7778

Easy Ensemble SMOTEBoost SMOTEBagging
Test Accuracy: 0.9259 Test Accuracy: 0.963 Test Accuracy: 0.963
Test Recall: 1.0 Test Recall: 0.8889 Test Recall: 0.5556
SMOTE+SVM AdaBoost
Test Accuracy: 0.7153 Test Accuracy: 0.9731
Test Recall: 1.0 Test Recall: 0.2222

FIGURE 5: Demonstration of decision boundaries and test accuracy in all methods.

and 50; however, the recall value only stays at approximately =~ method does not perform as well on the second group
0.9. datasets as first, although with the same IR as first. Overall,

The higher the IR of the dataset, the worse the classi-  the classical Easy Ensemble and SMOTEBagging algorithms
fication performance tends to be for all methods. Our  show a series of better performances on the Pageblock
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Ecoli_pp (train)

FIGURE 6: Comparison structure of classes between Ecoli_pp and German credit on the training and testing sets.
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FIGURE 7: Comparison of different methods’ performance on all datasets in terms of recall.
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TABLE 4: P values of the Shapiro-Wilk test for model performance measures in the first group dataset.

Model G-mean F1-score P-mean AUC Accuracy Recall
Proposed 0.002 0.028 0.036 0.013 0.032 0.001
Ada-SVM 0.025 0.153 0.205 0.018 0.026 0.120
CS-SVM 0.719 0.523 0.716 0.009 0.933 0.102
Prorated cost 0.188 0.109 0.049 0.007 0.185 0.225
No cost 0.142 0.213 0.037 0.140 0.554 0.410
Decision tree 0.073 0.094 0.088 0.060 0.007 0.093
Easy ensemble 0.011 0.040 0.047 0.001 0.005 0.024
SMOTEBoost 0.032 0.167 0.146 0.004 0.022 0.060
SMOTEBagging 0.039 0.047 0.031 0.001 0.013 0.117
SMOTE + SVM 0.275 0.117 0.193 0.033 0.134 0.757
AdaBoost 0.159 0.289 0.290 0.002 0.001 0.419

The bold values represent data that obey normal distribution.

TaBLE 5: P values for all performance measures in the first group datasets.

Ada- CS- Prorated No  Decision Easy

Indicators/Model SVYM  SVM cost cost tree ensemble SMOTEBoost SMOTEBagging SMOTE + SVM AdaBoost
G-mean T 0.834 0.455 0.350  0.035 0.850 0.147 0.293 0.284 0.065 0.905
Wilcox 0.361 0.117 0.278  0.007  0.877 0.134 0.278 0.293 0.008 0.959
Fl-score .T 0906 0.658 0519 0.018  0.430 0.240 0.114 0.057 0.328 0.198
Wilcox 0.796 0.931 0.667 0.029  0.418 0.134 0.088 0.034 0.459 0.134
P-mean T 0.608 0.502 0.407  0.009 0.818 0.378 0.264 0.134 0.496 0.441
Wilcox 0.642 0.718 0.380 0.014 0.770 0.249 0.235 0.095 0.570 0.310
AUC T 0.849 0.715 0.735  0.068 0.094 0.287 0.297 0.276 0.268 0.882
Wilcox 0.931 0.642  0.418  0.052  0.052 0.068 0.134 0.143 0.174 0.438
Accuracy .T 0.094 0.665 0.752 0270  0.028 0.051 0.019 0.006 0.277 0.051
Wilcox 0.270 0.823 0959  0.148 0.060 0.056 0.022 0.005 0.125 0.029
Recall T 0.000 0.001 0.000 0.000 0.000 0.022 0.001 0.001 0.001 0.000
Wilcox 0.000 0.003 0.002 0.000 0.000 0.011 0.000 0.001 0.000 0.000

The bold values represent the parts of the tests that are significant.

TaBLE 6: G-mean, Fl-score, accuracy, AUC, and recall performance comparison of different algorithms on Pageblock.

Datasets IR Methods G-mean Fl-score Accuracy AUC Recall
Proposed 0.8684 0.8644 0.8700 0.9439 0.8320

Ada-SVM 0.8674 0.8658 0.8690 0.9432 0.8480

CS-SVM 0.6823 0.7429 0.7380 0.9407 0.7720

Prorated cost 0.6747 0.6667 0.7290 0.8726 0.7000

No cost 0.4675 0.3610 0.5980 0.8633 0.2340

pal 1 Decision tree 0.9315 0.9314 0.9320 0.9327 0.9260
Easy ensemble 0.9409 0.9412 0.9410 0.9789 0.9440

SMOTEBoost 0.9488 0.9492 0.9490 0.9801 0.9520

SMOTEBagging 0.9486 0.9498 0.9490 0.9878 0.9620

SMOTE + SVM 0.4285 0.4335 0.5180 0.6513 0.4240

AdaBoost 0.9399 0.9399 0.9400 0.9749 0.9380

Proposed 0.9027 0.8626 0.9049 0.9504 0.8971

Ada-SVM 0.8421 0.7975 0.8696 0.9339 0.7735

CS-SVM 0.7523 0.7040 0.8147 0.9614 0.7029

Prorated cost 0.6715 0.5865 0.7745 0.9577 0.6618

No cost 0.5907 0.5378 0.6265 0.6950 0.6059

pa2 2 Decision tree 0.9370 0.9187 0.9461 0.9375 0.9118
Easy ensemble 0.9461 0.9151 0.9402 0.9819 0.9647

SMOTEBoost 0.9365 0.9141 0.9422 0.9767 0.9206

SMOTEBagging 0.9515 0.9297 0.9520 0.9940 0.9500

SMOTE + SVM 0.6435 0.6408 0.6838 0.8086 0.5515

AdaBoost 0.9287 0.9104 0.9412 0.9791 0.8941
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TaBLE 6: Continued.

Datasets IR Methods G-mean F1-score Accuracy AUC Recall

Proposed 0.8545 0.7849 0.8902 0.9440 0.7922

Ada-SVM 0.8131 0.7523 0.8902 0.9383 0.7095

CS-SVM 0.6985 0.5843 0.6814 0.9626 0.8784

Prorated cost 0.6512 0.5482 0.7333 0.9461 0.6902

No cost 0.6393 0.5648 0.8402 0.8787 0.4196

pa3 3 Decision tree 0.9357 0.9080 0.9539 0.9366 0.9020

Easy ensemble 0.9374 0.8732 0.9304 0.9759 0.9529

SMOTEBoost 0.9333 0.8819 0.9382 0.9789 0.9255

SMOTEBagging 0.9465 0.9197 0.9598 0.9912 0.9216

SMOTE + SVM 0.5464 0.5365 0.6275 0.7605 0.4392

AdaBoost 0.9082 0.8698 0.9363 0.9805 0.8588

Proposed 0.7869 0.6927 0.8873 0.9239 0.6776

Ada-SVM 0.7408 0.6567 0.8824 0.8878 0.5794

CS-SVM 0.5781 0.5289 0.6363 0.9310 0.7998

Prorated cost 0.6737 0.5037 0.7824 0.9522 0.6878

No cost 0.5779 0.4492 0.8108 0.8316 0.3773

pa4 4 Decision tree 0.8913 0.8330 0.9333 0.8965 0.8288

Easy ensemble 0.9417 0.8356 0.9225 0.9759 0.9755

SMOTEBoost 0.8939 0.8166 0.9235 0.9659 0.8484

SMOTEBagging 0.9227 0.8631 0.9431 0.9825 0.8920

SMOTE + SVM 0.5572 0.5579 0.6163 0.6974 0.4828

AdaBoost 0.8788 0.8216 0.9304 0.9707 0.8037

Proposed 0.8711 0.8115 0.9400 0.9510 0.7845

Ada-SVM 0.8468 0.7770 0.9290 0.9379 0.7431

CS-SVM 0.8068 0.6097 0.7640 0.9675 0.9214

Prorated cost 0.7045 0.5217 0.8330 0.9664 0.6720

No cost 0.5971 0.4310 0.8220 0.9021 0.4661

pa5 5 Decision tree 0.8909 0.8471 0.9520 0.8966 0.8135

Easy ensemble 0.9509 0.8267 0.9310 0.9858 0.9822

SMOTEBoost 0.9186 0.8357 0.9420 0.9805 0.8859

SMOTEBagging 0.9398 0.8859 0.9610 0.9876 0.9100

SMOTE + SVM 0.5798 0.4998 0.6781 0.8644 0.3828

AdaBoost 0.8925 0.8359 0.9460 0.9719 0.8203

Proposed 0.8883 0.7462 0.9120 0.9463 0.8603

Ada-SVM 0.8244 0.7151 0.9200 0.9613 0.7197

CS-SVM 0.7235 0.5276 0.8050 0.9463 0.7158

Prorated cost 0.7640 0.5348 0.8340 0.9558 0.7867

No cost 0.6683 0.4150 0.6980 0.7337 0.6571

pa6 6 Decision tree 0.8776 0.8207 0.9510 0.8837 0.7897

Easy ensemble 0.9353 0.7947 0.9300 0.9836 0.9441

SMOTEBoost 0.9266 0.8541 0.9570 0.9547 0.8879

SMOTEBagging 0.9096 0.8436 0.9550 0.9797 0.8532

SMOTE + SVM 0.7270 0.7181 0.7404 0.8113 0.6511

AdaBoost 0.8794 0.8301 0.9540 0.9610 0.7901

Proposed 0.8678 0.5990 0.8670 0.9081 0.8800

Ada-SVM 0.7219 0.6043 0.9300 0.9381 0.5400

CS-SVM 0.8292 0.6184 0.8370 0.9441 0.8500

Prorated cost 0.8715 0.6052 0.8880 0.9546 0.8600

No cost 0.5428 0.2467 0.6540 0.6753 0.4900

pad 9 Decision tree 0.9146 0.8585 0.9720 0.9178 0.8500

Easy ensemble 0.9474 0.7797 0.9460 0.9902 0.9500

SMOTEBoost 0.9356 0.8453 0.9670 0.9789 0.9000

SMOTEBagging 0.9273 0.8595 0.9720 0.9796 0.8800

SMOTE + SVM 0.5115 0.5285 0.6011 0.7108 0.5189

AdaBoost 0.9225 0.8819 0.9770 0.9862 0.8600

Proposed 0.9140 0.5916 0.9150 0.9492 0.9152

Ada-SVM 0.8029 0.6881 0.9650 0.9597 0.6606

CS-SVM 0.7527 0.6198 0.9590 0.9687 0.5924

Prorated cost 0.7228 0.5062 0.9330 0.9625 0.5833

No cost 0.7578 0.3637 0.8270 0.8811 0.7379

palé 16 Decision tree 0.8344 0.7576 0.9730 0.8492 0.7091

Easy ensemble 0.9454 0.6876 0.9490 0.9910 0.9455

SMOTEBoost 0.9065 0.7452 0.9660 0.9319 0.8470

SMOTEBagging 0.9029 0.8130 0.9770 0.9912 0.8318

SMOTE + SVM 0.3773 0.4681 0.5446 0.6409 0.5012

AdaBoost 0.8712 0.8034 0.9780 0.9539 0.7758
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TasLE 6: Continued.

Datasets IR Methods G-mean F1-score Accuracy AUC Recall
Proposed 0.8287 0.2537 0.7850 0.8307 0.8933

Ada-SVM 0.6681 0.3863 0.9530 0.8689 0.5133

CS-SVM 0.6654 0.3926 0.8350 0.9409 0.6333

Prorated cost 0.6131 0.3140 0.9370 0.9399 0.4400

No cost 0.6843 0.3137 0.9250 0.9497 0.5200

pa36 36 Decision tree 0.6880 0.5366 0.9760 0.7415 0.4933
Easy ensemble 0.8867 0.3611 0.9180 0.9737 0.8800

SMOTEBoost 0.9007 0.7519 0.9850 0.9341 0.8400

SMOTEBagging 0.7590 0.5822 0.9760 0.9489 0.6000

SMOTE + SVM 0.7446 0.7204 0.7657 0.8861 0.6609

AdaBoost 0.7919 0.6537 0.9830 0.9354 0.6533

Proposed 0.8130 0.4421 0.9540 0.9045 0.7000

Ada-SVM 0.6850 0.4578 0.9700 0.9126 0.4900

CS-SVM 0.5073 0.1274 0.5630 0.8521 0.6400

Prorated cost 0.8231 0.4430 0.9570 0.9505 0.7500

No cost 0.6989 0.2909 0.9370 0.8405 0.5400

pa40 40 Decision tree 0.7079 0.5511 0.9810 0.7609 0.5300
Easy ensemble 0.8688 0.3042 0.9040 0.9608 0.8400

SMOTEBoost 0.7504 0.4129 0.9590 0.8809 0.6000

SMOTEBagging 0.6223 0.4462 0.9760 0.9770 0.4140

SMOTE + SVM 0.6696 0.6396 0.7029 0.7905 0.5237

AdaBoost 0.6286 0.5091 0.9820 0.8368 0.4200

Proposed 0.8744 0.3286 0.9130 0.9388 0.8500

Ada-SVM 0.6705 0.2812 0.9330 0.6749 0.5500

CS-SVM 0.7896 0.3793 0.9070 0.9126 0.7333

Prorated cost 0.4940 0.2819 0.7980 0.9486 0.4500

No cost 0.8095 0.2633 0.8750 0.9403 0.8000

pa50 50 Decision tree 0.7232 0.6276 0.9880 0.7735 0.5500
Easy ensemble 0.8276 0.2396 0.9020 0.9503 0.8000

SMOTEBoost 0.6937 0.4715 0.9790 0.9446 0.5167

SMOTEBagging 0.7603 0.6500 0.9890 0.9579 0.6167

SMOTE + SVM 0.6315 0.5722 0.7202 0.8514 0.4941

AdaBoost 0.7810 0.6595 0.9880 0.9667 0.6333

The bold values represent the parts of the tests that are significant.

TaBLE 7: P values for recall performance measures in the high IR of the Pageblock dataset.

. Ada- CS- Prorated No Decision Easy .
Indicators/Model SVM  SVM cost cost tree ensemble SMOTEBoost SMOTEBagging SMOTE +SVM AdaBoost
Recall T 0.000 0.055 0.016 0.001 0.023 0.110 0.394 0.170 0.000 0.060
Wilcox 0.004 0.097 0.018 0.006 0.030 0.125 0.565 0.250 0.002 0.035

The bold values represent the parts of the tests that are significant.

dataset. This also implies that our approach seems to be
more effective with small datasets. However, we found that
the recall value of the proposed model presented in Table 7 is
significantly better than accuracy-oriented algorithms such
as No-Cost SVM, decision tree, and AdaBoost. It also
outperforms the recall values of cost-sensitive classifiers such
as Ada-SVM, prorated, and SMOTE + SVM. The proposed
model does not have statistically significant differences in
recall values with CS-SVM, Easy Ensemble, SMOTEBoost,
and SMOTEBagging state-of-the-art algorithms.

The proposed, Ada-SVM, CS-SVM, prorated cost, no
cost, decision tree, easy ensemble, SMOTEBoost, SMOTE-
Bagging, SMOTE + SVM, and AdaBoost algorithms used to
classify the Ecoli series dataset take approximately 100s,
100s, 30s, 30s, 5s, 0.03s, 50s, 3s, 3s, 20s, and 1s,

respectively. The time required for the Pageblock dataset of
size 1000 is 17005, 17005, 200, 2005, 40, 655, 160, 75, 7 s,
120s, and 3.

6. Discussion and Conclusion

Unlike other classification methods that only assign different
costs to different categories to achieve cost sensitivity, the
proposed model built a process that enabled SVM to self-
adaptively update the cost value of each sample by inte-
grations. The misclassified positive samples were assigned
higher cost values, while other misclassified negative and
correctly classified instances were given lower cost items to
decrease their effectiveness in training. The optimization of
each base classifier can be reached by these automatically
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updated cost values, which are following the selfadaptively
weight vector that was decided by our new weighting
mechanism.

Through theoretical justifications and empirical
studies, the proposed approach had higher recall than
others, and there were no differences with other classi-
fication measures at the 0.05 level. When dealing with
imbalanced datasets, the findings demonstrated that the
suggested method outperformed alternative methods
statistically significantly. Through extensive experiments
on different IR datasets, our method guarantees good
results on the classification of a few classes on both high
and low IR datasets. In some datasets, the mean recall
metric of the proposed method could be one after five-fold
cross-validation, while a set of other metrics could be
maintained at an average level. We also found that our
model underperformed in terms of overall accuracy
compared with that of some models. This phenomenon
stems from the purpose that we chase, our need is for
higher recall rather than overall accuracy. This is mo-
mentous for the practical issue of reducing the identifi-
cation overhead when working with a small number of
classes. Because our method can achieve a recall value of 1
in some datasets, this good feature can be an effective aid
in practical work, reducing a large amount of burden for
manual work in identifying minorities, such as medical
diagnosis. This is when the overall accuracy becomes less
important than recall.

The advantage of P-mean in assessing the classification
impact of a skewed dataset is not evident in this study; however,
P-mean can be used to appraise the cost-sensitive classifier. It is
worth investigating whether the advantage of this assessment
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metric can be proved in additional experimental instances.
Furthermore, we analyzed and confirmed the results of pre-
vious studies about class structure and imbalance ratio. They
indeed can have a serious impact on classification performance.
The classification effect of all classifiers would be reduced when
the sample overlap is excessively high; however, our method
can also have the best recall performance among many clas-
sifiers. As an important reason for the classification disaster of
the imbalanced dataset, the structure of classes can be studied
in more depth in future work. The high IR would bring a bad
classification performance.

Our model has its limitations. For instance, it works
better on small datasets; this may be attributed to the fact
that SVM, which is the base classifier of our proposed model,
is more suitable for classification problems on small datasets.
As regards the longer time that our algorithm needs for
classification as compared to others, if we continue to update
the program code in the future without changing the model,
the time computational complexity of our method will be
considerably reduced. Substantial research can be conducted
in the future, including parameter evaluation and im-
provement. The impact of kernel functions on imbalanced
classification or imbalanced multiple classification problems
is also worth investigating. Because of its enormous appli-
cation potential, this challenging topic will continue to re-
ceive extensive attention.

Appendix
A. Training Error Bounds for the AdaBoost
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B. Training Error Bounds for the Binary
Classification Problem AdaBoost
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