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Classifcation of imbalanced data is a challenging task that has captured considerable interest in numerous scientifc felds by
virtue of the great practical value of minority accuracy. Some methods for improving generalization performance have been
developed to address this classifcation situation. Here, we propose a cost-sensitive ensemble learning method using a support
vector machine as a base learner of AdaBoost for classifying imbalanced data. Considering that the existing methods are not well
studied in terms of how to precisely control the classifcation accuracy of the minority class, we developed a novel way to rebalance
the weights of AdaBoost, and the weights infuence the base learner training. Tis weighting strategy increases the sample weight
of the misclassifed minority while decreasing the sample weight of the misclassifed majority until their distributions are even in
each round. Furthermore, we included P-mean as one of the assessment markers and discussed why it is necessary. Experiments
were conducted to compare the proposed and comparison 10 models on 18 datasets in terms of six diferent metrics. Trough
comprehensive experimental fndings, the statistical study is performed to verify the efcacy and usability of the proposed model.

1. Introduction

Classifcation research is an essential feld of study in data
science. In balanced data classifcation, the support vector
machine (SVM) [1] and other classifcation modeling ap-
proaches have been broadly discussed and used successfully
in a variety of applications [2]. In specifc situations where
there are imbalanced datasets, the traditional methods al-
ways reach their limits in the practical application of clas-
sifcation [3]. Tey are intended to produce a model that
matches the training data well; in an imbalanced dataset, this
strategy ignores unusual cases. For this reason, standard
classifers generally perform poorly. With the growth of data
mining and data analysis, imbalanced class learning has
become a hot topic, and many academics have conducted
comprehensive studies on the subject [3, 4].Tey defned the
nature of imbalance data categorization along three di-
mensions: concept complexity, training set size, and degree
of imbalance between the two classes. Tey also show how
imbalanced datasets can invalidate many conventional
classifers and ofer some instances of how to tackle these
difculties. Ghosh et al. attempted to tackle the problem
using deep learning systems in 2021, and they discovered

that deeper architectures are useful on some data with
specifc structures in both artifcial and real image datasets
[5]. Tus far, many excellent research results and improved
algorithms have been proposed to solve the problems, such
as covering data streams and big data analytics, in this feld.
Imbalance classifcation problems include binary imbalance
classifcations and multiple imbalance classifcations that
can be transformed into binary problems for solution. Bi-
nary imbalance classifcation problems are not only fre-
quently encountered in real life but are also interesting
problems in machine learning (ML). Tis class of problems
is characterized by the fact that the number of samples from
one side of the dichotomous dataset involved, called the
minority class, is smaller than that of the other side, called
the majority class. Tis minority class is more interested in
classifcation tasks such as medical diagnosis [6]. Te
identifcation target detects the people with diseases that
belong to the minority, and the consequences of the mi-
nority being misclassifed are more severe than in the reverse
case. Te same is valid for detecting images [7], fraud [8],
managing risk [9], classifying text [10], and recognizing faces
[11]. Binary classifcation problems with imbalanced data are
prevalent compared to other issues in real life. As a basis for
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classifcation problems, solutions to binary classifcation
problems can be derived from other classifcation problems,
such as multiple classifcation problems. Terefore, it is vital
to study binary classifcations in rare class classifcations.

In the literature, operating on data or algorithms are the
two leading solutions to the problem of imbalanced datasets
[12]. Te analysis of minority class structure involves de-
termining the imbalance rate and whether it is the over-
lapping type of distribution; this is the critical reason why
the study is complicated. Te classifcation of extremely
imbalanced datasets is even more complicated [4].
Resampling techniques for data processing have been
adopted to renew the class distribution, such as sampling less
of the prevalent class, sampling more of the minority, or
more complex techniques [13, 14]. Te most popular syn-
thetic minority oversampling technique (SMOTE) is a
simple and efective resamplingmethod, which is also widely
studied and used in combination with algorithms in the
binary imbalance problem. However, resampling may un-
dertake the risk of losing the essential information of the
majority, overftting the minority, and causing the pre-
processed dataset to be unlike the raw data. Tus, in many
cases, data-level methods are not studied alone but in
combination with algorithm-level methods [15–17]. At the
algorithmic level, they train the classifer through the data
without making distribution changes. Weighting or
thresholding support functions or class likelihood estimates
can produce better results than resampling the data and can
be applied to any conventional classifer [4]. In addition,
cost-sensitive learning and ensemble schemes are popular
algorithms. A series of cost-sensitive versions of SVM are
proposed, for example, cost-sensitive SVM (CS-SVM),
which uses SVM to extend its loss function to achieve the
objective [18]. SVM based on density weight (DSVM) and
improved 2-norm-based density-weighted least squares
SVM (IDLSSVM) for binary class imbalanced learning
problems [19]. Entropy-based fuzzy twin SVM
(EFTWSVM), where fuzzy membership values are assigned
based on the entropy values of samples [20]. Entropy-based
fuzzy least squares SVM (EFLSSVM) and entropy-based
fuzzy least squares twin SVM (EFLSTWSVM) for class
imbalanced datasets [21], and other cost-sensitive algo-
rithms [22–26]. However, an appropriate decision boundary
cannot be found when the minority samples are sparse [27].
Boosting ensemble approaches overcome learning chal-
lenges from imbalanced data classes efectively [28, 29].
AdaBoost [30], the representative boosting strategy, en-
hances the classifcation performance of a model by mini-
mizing the error probability. AdaBoost follows the output of
the current classifer to modify the sample weight distri-
bution for the next round, and it distinguishes between
instances of correct classifcation when weights are reduced
and those of misclassifcation when weights are increased.
However, it does not make further distinctions between
diferent classes of instances, which results in the weights of
diferent classes of instances being increased or decreased in
the same way, which is clearly an unsuitable strategy for the
imbalanced classifcation problem. In an imbalanced
problem, a good strategy of weighting is one that can

distinguish between diferent instance categories, with which
more weight can be given to those relevant instances that
have high recognition importance. For this reason, re-
searchers have developed a series of algorithms that try to
adjust the weights of instances according to their category
labels, which are AdaC [31], CSB1, CSB2 [32], and AdaCost
[33].

SVM and other algorithms can be embedded into a
boosting process and have verifed exceptional capabilities
[34–36]. Considering the binary classifcation of the data
imbalance, we propose an SVM-based ensemble method
that increases the focus on minority accuracy. Our approach
is manipulated in two aspects:

(1) Ensure the weights of the misclassifed minority and
majority samples will not be changed in the same
way, because we are concerned with whether the
misclassifed minority samples can be corrected in
the next round. We propose a novel way to rebalance
the instances’ weights in each boosting processing,
although several methods have been proposed for
implementing weight updating in AdaBoost [37].
Tus, the sums of the weights of the misclassifed
minority and majority samples are balanced with
each other.

(2) We use a diferent approach to vary the parameter C,
a crucial parameter for the SVM algorithm, so that
each sample receives diferent costs related to the
probability of misclassifcation, rather than simply
dividing the samples into minority and majority
categories. Te key to this operation is to determine
cost items as a function of the weighting of the
AdaBoost framework at each iteration, retraining the
SVM algorithm for the current iteration by changing
the cost for each sample to afect the next iteration
positively. Combining these two aspects establishes a
link between the AdaBoost frame’s weight and the
SVM-based classifer’s cost items. Te proposed
method uses the AdaBoost weight-adjustment pro-
cess to solve the data imbalance problem. Te
rebalanced weights assign the determination of the
cost items in SVM learners at each iteration. Dif-
ferent SVM-based learners can be generated to
improve the generalization performance based on
the previous self-adjusting weights of the instances
during the boosting process. Additionally, we have
conducted experiments on various UCI ML repos-
itory [38] datasets. Apart from some routine eval-
uation indicators used for binary classifcation tasks,
we use the P-mean to highlight the accuracy of
minority classifcation to display the high efciency
of the presented algorithm.

Te remainder of this paper is organized as follows.
Section 2 summarizes the related literature on classifying
imbalanced data in recent years. Section 3 introduces the
background models, including the SVM model, the en-
hanced AdaBoost model, and AdaBoost with SVM-based
and cost-sensitive SVM. Section 4 presents our method and
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procedure. Section 5 presents the results and comparisons
with other methods based on diferent datasets and metrics.
Section 6 presents the conclusions.

2. Related Works

Te topic of imbalanced data classifcation is a difculty for
all researchers, and in addition to a number of successful
strategies that have been investigated, researchers are still
attempting to address this obstacle using the most recent
methodologies. Te binary imbalanced job, as the corner-
stone of the imbalanced classifcation problem, arises from
numerous real life applications. Hazarika and Gupta pre-
sented a novel density-weighted twin SVM (DWTWSVM)
for binary imbalance data classifcation and used density-
weighted least squares twin SVM (DWLSTSVM) to boost
the computational speed; then, the optimization problem is
turned into solving the 2-norm of slack variables and
equality constraints [39]. Additionally, using ensemble
techniques to handle the imbalanced binary classifcations
[4]. We intend to address the imbalanced binary classif-
cation problem by altering the base classifer of the AdaBoost
algorithm, for example, SVM. Te SVM algorithm has been
considered as one of the most efective classifcation
methods since its introduction, and many excellent research
results and improved algorithms have been proposed to
solve the classifcation problem thus far [40]. Because of the
vast potential, using SVM as component classifers is not a
new attempt. Many researchers have long focused on
combining SVM and ensemble learning methods. Sun et al.
[2] analyzed the AdaBoost algorithm and developed three
forms of inputting cost terms into the AdaBoost algorithm
framework to achieve cost-sensitive purposes. Te costs
marked the uneven importance of identifcation between
classes and participated in the weight update of AdaBoost.
Based on the research of Sun and Kamel, Tao et al. [41]
employed cost-sensitive SVMs as base classifers, while the
normal boosting process was modifed into a cost-sensitive
classifer by presenting a self-adaptive method for deter-
mining the cost weight sequences of misclassifcation. Tis
method allowed for adapting the various contributions of
minority samples in the SVM classifer at each round
according to the previous classifers obtained. In this way,
diferent classifers were generated, thus improving the
generalization performance. Lee et al. [28] introduced a
weight adjustment factor mechanism of weighted SVM,
which was used as a weak learner, and it was proposed for
the imbalance data classifcation target. Instances were
classifed into four categories: bounded support vector
(BSV), support vector (SV), positive noise, and others based
on location. Tey gave diferent adjustment factors for BSV,
SV, and positive noisy instances. In the process of learning a
weighted SVM, the weights of instances in the AdaBoost
algorithm were multiplied based on the adjustment factors.
Wang and Sun [42] proposed an alternative method to
improve AdaBoost based on the AD AdaBoost [43] algo-
rithm. Te imbalanced ratio of data was a factor and was
defned as b�Np/Nn, the majority, and the minority size
ratio. In addition to the implementation of the parameters C

and the weights, there was also the implementation of the
SVM-based ensemble algorithm by changing σ. Li et al. [44]
proposed an AdaBoost-SVM method in which the sequence
of trained radial basis function SVM (RBFSVM) component
classifers was inserted into the AdaBoost framework. Te
large σ-values at the beginning were reduced as the boosting
iterations proceeded. Tis allowed a range of RBFSVM
component learners with adaptively diferent parameters,
which would have better generalization than the AdaBoost
method using SVM component classifers with fxed
σ-values.

Additionally, the SVM ensemble models’ high perfor-
mance has encouraged researchers to develop applications in
diferent felds. For example, Sun et al. [16] proposed a
dynamic approach that proved the efciency of fnancial
distress forecasting with two types of sample imbalances.
Tis method was a forecasting method that combined the
time-weighted strategy and AdaBoost with both the SVM-
based integration algorithm and an oversampling technique.
Te results showed that the embedded integration model
had signifcant advantages over the simple base classifcation
model, although both the simple and embedded integration
models improved the identifcation of rare fnancially dis-
tressed samples. In recent years, Liu et al. [45] presented an
AdaBoost algorithm that shared SVM with a series of pa-
rameter methods to transfer the source task positive and
unlabeled learning problem knowledge to the target task.
Te method combined the weak classifers into a strong
AdaBoost model for prediction. In addition, they considered
the similarity of fuzzy examples in terms of minority and
majority classes to refne the classifer’s decision boundary.
Yao et al. [46] solved the class imbalance problem in
forecasting corporate credit risk in the supply chain context
using the suggested hybrid model, which combined SVM
and AdaBoost ensemble models with an artifcial imbalance
rate model and distinct feature selection approaches. Tey
claimed that the proposed model mitigated the problem of
class imbalance. Tis not only enhanced the sample dis-
tribution variety but also made the AdaBoost integration
more stable and generalizable. Wei et al. [47] proposed a
fault diagnosis algorithm to address the problem of poor
accuracy of actuator failure identifcation under airplane
closed-loop control. Te algorithm extracted failure features
using the aggregate experience model decomposition
method and principal component analysis (PCA). Simul-
taneously, an adaptive SVM method was embedded in the
AdaBoost framework to perform classifcation operations on
them. Additionally, SVM-based ensemble methods have
gained tremendous application in various areas in recent
years [48–52].

3. Background Models

Te following is the basic form of the binary classifcation
model. Suppose a binary classifcation training dataset is
given in which each sample consists of an instance and label
as S� {(x1, y1), (x2, y2) ,..., (xN, yN)} instance xi ∈X⊆Rn, label
yi ∈Y� {−1, +1}. X is the instance space, and Y is the label
collection. According to the mathematical representation in
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the algorithms’ derivation and implementation, we used
positive and negative classes to refer to minority and ma-
jority classes, respectively.

3.1. SVMModel. Te SVM learning strategy maximizes the
interval, which is called the margin. A wider margin
corresponds to a more signifcant diference between the
two types, making it easier for us to distinguish between
them. Terefore, fnding the optimal decision hyperplane
corresponds to the maximum margin between the two
types of samples. Te SVM model designs a hyperplane
with dimensions m − 1. Te hyperplane can divide the data
of N samples in m dimensions into two categories. For
nonlinearly separable data that can cause problems with the
algorithm, two approaches can solve this issue.Te frst one
is to enhance the low-dimensional data through a kernel
function and use the SVM model in high dimensions to
fnd the appropriate decision hyperplane. Te second
method introduces slack variables violating the interval
constraints slightly. Soft margin SVM can be converted to
optimize:

min
w,ξ

1
2
w

T
w + C 􏽘

i

ξi,

s.t. yi w
T

· xi + b􏼐 􏼑≥ 1 − ξi ,

ξi ≥ 0, i � 1, 2, . . . N.

(1)

Equation (1) is generally transformed into its dual
problem and then solved. After the learning problem of
SVM is transformed into convex quadratic programming, it
has a globally optimal solution. Several optimization algo-
rithms exist for the fast implementation of this problem.
Here, we use the sequential minimum optimization (SMO)
algorithm. Te essential principle behind this approach is
that if all variable solutions fulfll the Karush-Kuhn-Tucker
(KKT) condition of this optimization issue, the optimization
issue’s solution is attained because KKT is both a necessary
and sufcient condition for it; otherwise, two variables are
selected, additional variables are specifed, and a quadratic
programming problem is created for these two variables.Te
subproblem has two variables: one violates the KKT con-
dition negatively, while the other is found automatically by
the restrictions. In this approach, the SMO algorithm
constantly decomposes and solves the original issue into
subproblems. Trough these, we can build a decision
function using as follows:

f(x) � sign 􏽘
i

λiyiK xi, xj􏼐 􏼑 + b
∗⎛⎝ ⎞⎠. (2)

3.2. Cost-Sensitive Support Vector Machine. Cost-sensitive
classifcation learning approaches eschew the common
classifcation strategy of supposing that the cost of all
misclassifcations is the same and then design classifcation
algorithms that minimize the probability of error. However,
in some of the aforementioned cases, this strategy is

suboptimal; for example, one type of error is costlier than the
others, or examples from diferent categories occur with
diferent probabilities. Consequently, it is important to
develop extensions of cost-sensitive techniques. Veropoulos
et al. [53] presented a penalized regularized cost-sensitive
SVM model to reduce the negative overwhelming impact.
According to the class labels of the training data, the samples
are classifed into two exact classes: positive S+= {i|(xi, yi) ∈ S,
yi= 1, i= 1,..., N} and negative S−= {i|(xi, yi) ∈ S, yi=−1,
i= 1,..., N}. As the set S is divided into indices S+ and S−, this
model also introduces C+ and C− penalty factors for positive
and negative slack variables. In the optimization process, the
positive samples retained higher penalty values than the
negative samples. It implements the SVM problem as
follows:

min
w,ξ

1
2
w

T
w + C+ 􏽘

N

i|yi�+1{ }

ξi + C− 􏽘

N

i|yi�−1{ }

ξi,

s.t. yi w
T

· xi + b􏼐 􏼑≥ 1 − ξi ,

ξi ≥ 0, i � 1, 2, . . . N.

(3)

3.3. Enhanced AdaBoost Model. Te accuracy-oriented na-
ture of the AdaBoost algorithm prevents it from achieving
the desired results if it is applied directly to the classifcation
of imbalanced data. Tus, several researchers have made
various improvements to the AdaBoost framework. Te
enhanced AdaBoost model [42] can be improved by adding
the weighted voting parameters α, which are determined by
the overall fault rate and the accuracy of the minority pri-
mary interest. Km is the sum of all positive samples’ weights,
and Pm is the sum of the sample weights labeled positive and
predicted to be positive. Te ratio of these two is denoted as
cm.

Km � 􏽘
i:yi�1

ωmi,

Pm � 􏽘

i:yi�1,Gm xi( )�1

ωmi,

cm �
Pm

Km

.

(4)

After initializing the sample weight D1, we fnd the base
classifer Gm (x) to minimize the error:

em � 􏽘

i: Gm xi( )≠yi

ωmi. (5)

We repeat the computation of the weak classifer weight
αm:

αm �
1
2
ln

1 − em( 􏼁

em

􏼨 􏼩 + k exp β 2cm − 1( 􏼁􏼈 􏼉. (6)

Ten, we renormalize ωm+1,i until m reaches M, the
previous setting iterations. Te parameters k and β in the
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above expression are crucial to ensure that the enhanced
AdaBoost boosts the classifying efciency of S+ and main-
tains a low global error rate. Te fnal output G (x) is a linear
combination of a series of weak classifers.

3.4. AdaBoost with SVM-Based. In imbalance classifcation
problems, the generalization performed by the SVM-
based AdaBoost method is superior to that of a single
SVM [44]. In this section, we describe the SVM-based
AdaBoost model. Te AdaBoost model is a forward
stepwise additive model consisting of a basic classifer
whose loss function is exponential L (y, f (x)) = exp[−y f
(x)]. fm − 1 (x) is the frst m − 1 base classifer. Te α∗m and
G∗m that minimize (7) are the αm and Gm (x) obtained by
the AdaBoost algorithm:

αm, Gm(x)( 􏼁 � min
α,G

􏽘
i

exp −yi fm−1 xi( 􏼁 + αG xi( 􏼁( 􏼁􏼂 􏼃.

(7)

Te algorithm learning model is equivalent to the fnal
classifer of AdaBoost when the base classifer is Gm (x):

G(x) � 􏽘
m

αmGm(x). (8)

Because multiple parameters are involved in both
SVM and AdaBoost algorithms, there are various com-
binations of SVM with ensemble learning. Tese include
the cost-sensitive AdaBoost algorithm [2, 31] and AdaC2,
which have shown good and relatively stable performance
[2]. AdaBoost with a heterogeneous SVM could also work
well [54]. Te following is a brief and concise example of
an SVM cost-sensitive ensemble based on adaptive cost
weights [41], a method that adaptively considers the
various contributions of positives to the SVM classifer
during boosting based on the previously obtained clas-
sifers. Tis study has done more work on positive class
samples because of their greater importance, giving a
higher cost value to positive instances that are mis-
classifed than to all correctly classifed positive instances.
Tis approach has allowed for a great deal of work on
instance placement to be completed, assigning larger cost
values to borderline instances rather than instances far
from the boundary in all cases where it does not matter
whether the positives are classifed correctly. By incor-
porating the costs into the updated weights, the weights of
positives with higher costs further increase when they are
misclassifed; otherwise, they further decrease. Initialize
D1 =C+/Z0 for all positive instances, and D1 =C−/Z0 for all
negative instances, Z0 = p∗C+ + n∗C−, where p and n are
the number of the positive and negative classes. C− de-
faults to one. We calculate the weight updating parameter
as follows:

αm �
1
2
ln

􏽐i: yi�Gm xi( )Cm,iωm,i

􏽐i: yi ≠Gm xi( )Cm,iωm,i

. (9)

Further, we update and normalize sample weights:

ωm+1,i �
Cmiωmi exp −αmyiGm xi( 􏼁( 􏼁

Zm

, (10)

Cmi �
C+ · 1 +

1
1 + exp gm−1 xi( 􏼁( 􏼁

􏼠 􏼡, if yi � 1,

C−, if yi � −1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

In Gm(xi) � sign(gm(xi)), where g(xi) is the value
associated with xi calculated by the decision function of SVM
and Zm represents normalization value, the fnal classifer is
G(x) � sign(􏽐 αm∙Gm(xi)).

4. Proposed SVM-Based AdaBoost Ensemble

We use SVM as a fundamental weak learner and extend
the weight design of the AdaBoost framework to cost-
sensitive classifcation problems. Tis extension means
rebalancing the sum of positive and negative sample
weights that are misclassifed. A cost-sensitive ensemble
classifcation algorithm is derived in which the weights of
misclassifed samples from the positive class are added,
and the weights of misclassifed samples classifed cor-
rectly from the prevalent class are reduced in our ap-
proach. Tis guarantees that more weights are cumulated
in the positive class to infuence the training. Moreover,
the update of the sample cost vector by the SVM learner is
indirectly determined by the associated weight term.
With this strategy, the SVM classifer can adaptively
consider the diferent contributions of each instance in
each iteration based on the previous boosting process.
Instead of focusing too much on samples from the
positive class as in other cost-sensitive class algorithms,
our algorithm assigns a higher cost value to all mis-
classifed cases during the SVM training process and
further handles misclassifed samples from the positive
class in the rebalancing phase. Tis allows our algorithm
to not only impact signifcantly on forming the classif-
cation but also to address the cost-sensitivity problem. In
this section, we detail the two improvements we made to
AdaBoost with SVM and the theoretical justifcation for
each part, giving the algorithmic description at the end.
Figure 1 shows the procedure of the proposed approach.
Te specifc procedure and detailed computational
equations for solving our dual problem are shown in
Algorithm 1.

4.1. CostWeightsAdaBoost-SVMModel. One way to combat
the problem of skewed datasets is to work on the penalty
factor, which is to give a larger penalty factor to positive
classes with small sample sizes, indicating that we value this
part of the sample. Te penalty factor C is not a variable, and
the whole optimization problem is solved with a value of C
that youmust specify beforehand. After specifying this value,
you can obtain a classifer and then evaluate it with the test
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data. If the result is not satisfactory, change the value of C
and repeat the process. Tis is a parameter search process;
however, it is unlike the optimization problem itself. Here,
we determine C automatically by the updated weight values
for a reason, not by random guessing.

Compared to cost-sensitive SVM, we assign a diferent cost
to every misclassifed instance instead of one in distinct classes.
To solve the problem efciently and to apply the kernel tech-
nique more conveniently, we convert the primary problem into
its dual problem and then solve it. Te Veropoulos model of the
soft margin SVM prototyping [1, 55] is developed as follows:

min
w,ξ

1
2
w

T
w + C

Tξ,

s.t. yi w
T

· xi + b􏼐 􏼑≥ 1 − ξi ,

ξi ≥ 0, i � 1, 2, · · · N.

(12)

C is a column vector, C= [C1, C2 ... CN]T. ξ denotes a
vector of corresponding slack variables of the training data
ξ = [ξ1, ξ2 ... ξN]T. We take the Gaussian kernel function, and
the dual and kernelized formulation can be derived as
follows:

min
λ

1
2

􏽘
i

􏽘
j

λiλjyiyjK xi, xj􏼐 􏼑 − 􏽘
i

λi,

s.t. 􏽘
i

λiyi � 0,

0≤ λi ≤Ci, i � 1, 2, · · · N .

(13)

To fnd the optimal solution λ∗ � (λ∗1 , λ∗2 , . . . , λ∗N), we
choose a positive component 0≤ λj≤Cj of λ∗ and compute
b∗= yj − 􏽐λ∗i yiK (xi, xj) to construct a decision function f (x)
= sign (􏽐λ∗i yiK (xi, xj)+ b∗).

We divide all the classifed samples into three types. In
the collection of the frst sample type M1= {i|Gm (xi) yi= 1},
samples in this set type are all correctly classifed and labeled
as iM1. In the collection of the second sample type M2 = { i |
Gm (xi) = -1, yi= 1}, the positive samples are classifed in-
correctly as negative, and we label the weight of this type of
sample as iM2. Tese samples are concerning, as we consider
positives classifed correctly as a superior task, and we need to
rebalance these instances. In the collection of the third sample
typeM3= {i|Gm (xi) = 1, yi=−1}, the samples in the third set are
classifed incorrectly as negative samples into the positive. We

Weights

Cost items

Classifiers

Final predictor

ω1i ω2i

C1i C2i

SVM1 SVM2

...

... SVMm

Cmi

ωmi

G (x)

Figure 1: Te procedure of the proposed approach.

(1) Input: Training samples S� {(x1, y1), (x2, y2) ,..., (xN, yN)}.
(2) Initialize the D1 � (ω11,..., ω1i,..., ω1N) with ω1i � 1/N, and the C1 � (C11,..., C1i,..., C1N).
(3) For m� 1, 2, . . ., M.

(a) Using Cm to obtain an SVM classifer Gm (x) on the training dataset.
(b) Calculating the coefcient αm according to equation (15).
(c) Updating rebalanced Dm+ 1 using equations (16), (17).
(d) Updating the value of Cm+ 1 using equation (14).

(4) Building linear combinations of basic classifers.

f(x) � 􏽐mαmGm(x)

(5) Output: Te fnal classifer.

G(x) � sign(f(x)) � sign(􏽐mαmGm(x))

ALGORITHM 1: Proposed SVM-based ensemble algorithm.
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consider them less important than the second type of mis-
classifcation; therefore, they would not be weighed again. We
denote these samples as iM3. M3 and M2 are all misclassifed
samples; M1, M2, and M3 are combined into a complete set.
Instead of using a parameter constantC in the standard SVM to
control the maximum hyperplane interval in the objective
function while ensuring the minimum deviation of instances,
we would give a parameter vector C so that each slack variable
ξi has a weight Ci. We use a diferent C for each outlier, which
means we value each sample diferently. We assign a smaller C
to those samples that are inconsequential compared with those
instances that are not to be misclassifed. We update the cost
terms continuously as the weights change during the boosting
process. Tis cost weights the AdaBoostSVM model we call
Ada-SVM. Te cost item of the i-th sample at the (m+1)-th
round is applied as follows:

Cm+1,i �
Cmi, if i ∈M1,

Cmi · 1 + N · ωm+1,i􏼐 􏼑, if i ∈M2∪M3.

⎧⎨

⎩ (14)

4.2. Rebalance Weights Model for Imbalanced Data.
Unlike other cost-sensitive classifcation algorithms, we con-
struct a new computational rule to assign weights to the in-
stances based on the weight adjustment of the original AdaBoost
framework. Here, Gm (xi) is the category of the i-th sample
predicted by the base learner SVMat them-th iteration.αm is the
coefcient of them-th base classifer, andωmi is the weight of the
i-th sample at the m-th iteration. (15) is used to calculate αm.

αm �
1
2
ln

􏽐 i|M1{ }ωmi

􏽐 i|M2+M3{ }ωmi

. (15)

At the (m+ 1)-th iteration, the weight of misclassifed
positive and negative instances is formulated as follows:

ωm+1,iM2
� b ·

ωmiM2

Zm

exp −αmyiGm xi( 􏼁( 􏼁(m≥ 2). (16)

Te weight of other samples is formulated as follows:

ωm+1,iM2+M3
�
ωmiM2+M3

Zm

exp −αmyiGm xi( 􏼁( 􏼁, (17)

where

b �
􏽐 i|M3{ }ωmi

􏽐 i|M2{ }ωmi

(m≥ 2), (18)

Zm � 􏽘
i|M2{ }

b · ωmi exp −αmyiGm xi( 􏼁( 􏼁

+ 􏽘
i|M2+M3{ }

ωmi exp −αmyiGm xi( 􏼁( 􏼁,
(19)

Dm+1 � ωm+1,1, · · · ,ωm+1,i, · · · ,ωm+1,N􏼐 􏼑. (20)

Theorem 1. Te training error bound for the fnal classifer of
the rebalancing AdaBoost is as follows:

1
N

􏽘
i

I G xi( 􏼁≠yi( 􏼁≤
1
N

􏽘
i

exp −yif xi( 􏼁( 􏼁≤􏽙
m

Zm. (21)

Te proof is shown in Appendix A.

Theorem  . Te training error bound for the binary clas-
sifcation problem rebalancing AdaBoost:

1
N

􏽘
i

I G xi( 􏼁≠yi( 􏼁≤ 1 +
b

2
􏼠 􏼡

M

exp −2Mc
2

􏼐 􏼑, (22)

where c � 1/2− em.

Te proof is shown in Appendix B.

5. Experimental

Our cost-sensitive ensemble learning method was driven by
the goal of obtaining all positive samples classifed correctly
and dealing efectively with imbalanced datasets. We illustrate
the efectiveness of our method for the imbalanced data
classifcation problem by using experimental data. Te pro-
posed method was compared with ten other approaches in six
metric dimensions on our selected dataset with diferent
imbalance ratios. Because our method is based on changing
the AdaBoost base classifer to SVM, we compare our method
with the original AdaBoost and SVM algorithms without any
tricks, respectively, to show that combining the two methods
makes our method better than both of them. To compare the
performance with other improved algorithm-level classif-
cation methods, SVM-based cost-sensitive methods are
chosen, and these included the prorated cost method of using
the inverse of the size of positives and negatives as the penalty
constants for the diferent classes, CS-SVM, and SMO-
TE+ SVM. We also compare our approach with other state-
of-the-art ensemble and data-level resampling strategies,
namely, Easy Ensemble [56], SMOTEBoost [57], and
SMOTEBagging [57]. Ada-SVM is used to prove that the
rebalancing trick is working. Te decision tree algorithm was
used as a comparison algorithm to illustrate that our approach
improved the recall for the positive samples and was not
traded of by sacrifcing other metrics.

5.1. Description of Datasets. Fourteen datasets with diferent
numbers of attributes and sample sizes were selected from the
UCI for the test to assess the behavior of the suggestedmethod
in handling classifcation tasks of imbalanced datasets Tere
were some missing attribute values in several datasets, and
KNN handled missing attribute value processing. Table 1 lists
a detailed description of the dataset used. All datasets had two
output labels, denoting the positive and negative categories.
Te attributes indicate the size of features in datasets. Im-
balanced Ratio (IR) is the ratio of the number of samples in
the negative class to the number of samples in the positive
class. Generally, the larger the IR value is, the more harmful it
is to the performance of traditional classifers. We selected
some datasets with IR in the range of 1 to 50 for our ex-
periments. We believe that the ratio of the number of samples

Computational Intelligence and Neuroscience 7



to the number of features may also be an infuential factor in
the classifcation of imbalanced data, and we chose datasets
with this ratio in the range of 6 to 547 for our experiments.
Te training set was normalized before training by rescaling
each feature to homoskedasticity for SVM-based algorithms,
and the rescaled features that did not distort the original
distribution were used on the testing dataset. Preprocessing
eliminated the numerical diference between each feature X;
further, controlling the size of each column of feature X
within a specifc range made the model prediction perfor-
mance more accurate.

5.2. Evaluation Metrics. Specifc evaluation metrics to ob-
serve the model’s performance in each category were in-
troduced to evaluate the classifer’s classifcation
performance.

5.2.1. Confusion Matrix. Te confusion matrix in Table 2
shows how the classifcation model made mistakes when
making predictions. All cases were recorded in the following
four categories: TP, FN, FP, and TN.

5.2.2. Accuracy, Precision, Recall, and Specifcity.
Classifcation accuracy was the index for evaluating the
classifer’s performance. Tis indicator was suitable for
datasets with balanced categories. For lopsided datasets,
the accuracy became unreliable. If positive examples:
negative examples � 1 : 99, then the classifer would in-
correctly predict all positive examples as negative. An
accuracy rate of 0.99 was possible; however, this model
could not identify positive examples. Precision, recall, and
specifcity are metrics generally used for binary classif-
cation problems.

Accuracy �
TP + TN

TP + TN + FN + FP
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

Specificity �
TN

TN + FP
.

(23)

5.2.3. Receiver Operating Characteristic (ROC) and Area
under the ROC Curve (AUC), G-Mean, F1-Score, and P

-Mean. Te ROC curve was a recurrent evaluation index for
the two-class classifcation problem; it visually compared the
performance of diferent models on the same dataset. When
comparing the performance of the twomodels, if the ROC of
one model completely wrapped the ROC of the other, the
former was superior to the latter in terms of classifcation
performance. Te use of the area under the ROC curve
(AUC) can aford a better model. AUC inherited the in-
sensitivity as a scalar of the ROC curve and was often used in
these classifcations [58].

In the imbalanced classifcation problem, it was not
comprehensive to consider any indicator alone; we needed
to combinemetrics to measure themodel’s efciency.TeG-
mean [7] indicator considered the accuracy of both the
positive and negative samples. It was diferent from the
overall accuracy and avoided the dominant infuence of
negative samples on the classifcation performance. Te F1-

Table 1: Description of the datasets.

Datasets Attributes Instances IR Instances: attributes
Ecoli_cp 7 336 1 48
WDBC 30 569 2 19
Breast cancer 9 699 2 78
Ionosphere 34 351 2 10
Wine3 13 178 3 14
WPBC 33 194 3 6
Ecoli_im 7 336 3 48
Hepatitis 18 154 4 9
SPECT 22 267 4 12
Teaching 5 151 4 30
German credit 24 1000 5 42
Ecoli_pp 7 336 5 48
Segmentation 19 2100 6 111
Glass6 9 214 6 24
Ecoli_imU 7 336 9 48
Ecoli_om 7 336 16 48
Yeast5 8 1484 33 186
Pageblock 10 5473 9 547

Table 2: Confusion matrix.

Predicted positive Predicted negative
True positive TP FN
True negative FP TN
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score value allowed us to focus on small outliers as the
harmonic mean of a set of numbers and was biased toward
the smallest element in the list. We paid attention to positive
samples and metrics biased toward positive samples, such as
the recall of positive samples, when comparing the results
and evaluating an algorithm. F1-scores were occasionally
unreliable because they were infuenced by the minimum
value rather than the maximum value. Hence, we used the P

-mean, and the geometric mean belonged to recall and
precision, which was considered positive and were not so
biased toward the positive as the F1-score [7].Te reason for
using P-mean was to examine how well the algorithm
performed in classifying positive samples; this aspect has not
been widely studied. We considered the P-mean an essential
index to discriminate whether the classifcation of positive
samples was sufcient. Given the increasing emphasis on
recall, P-mean reconciled the values of precision and recall,
evaluating the model’s performance more comprehensively.

Figure 2 shows that in some circumstances, the usage of
P-mean is required. Te Hepatitis dataset is stratifed
sampled and divided into two sections, with 80% of the data
serving as the training set and 20% serving as the testing set.
Multiple trials were run with our model and the SMOTE-
Boost model, and the results were displayed as box plots,
with the performance of the two models under the F1-score
and P-mean assessment criteria highlighted in magenta and
blue, respectively. Evidently, the median of our proposed
method is slightly lower than that of SMOTEBoost under the
F1-score evaluation criterion but signifcantly higher than
that of SMOTEBoost under the P-mean evaluation criterion,
and in fact, our method outperforms SMOTEBoost in the
goal of increasing the accuracy of small class samples. Under
all assessment criteria, the data fndings provided by our
technique are clearly more focused than those obtained by
the SMOTEBoost method, refecting the improved stability
of our suggested classifcation model.

G − mean �

��������������

recall · specificity
􏽱

,

F1 − score �
2 · recall · precision
recall + precision

,

P − mean �

��������������

recall · precision
􏽱

.

(24)

5.3. Experimental Settings. All methods were compared with
the proposed approach to produce a comprehensive eval-
uation. Te data fndings depicted by the icons are all av-
erages of the testing data following a fve-fold cross-
validation. To avoid the efect caused by the number of two-
class instances for training and eliminate randomness before
training, we adopted stratifed sampling to ensure that the
samples after the fve-folds split had the same imbalance
ratio as the entire sample set, and then four-folds are used as
training data with the remaining one-fold as the testing data.
Cross-validation may result in a skewed test set in severe
circumstances of data imbalance, leading to an inaccurate
evaluation [5]. As a result, we also carried out balanced

testing, with all assessments based on fve-fold stratifed
cross-validation. We consider the data with an IR higher
than or equal to fve to be highly imbalanced.

For a more comprehensive comparison of our method
with other methods, we ran two independent groups of tests
[3, 4]: (1) 17 datasets to compare our method with other
methods in terms of inquiry structure of classes and sample-
to-feature ratio, and (2) we derived 12 new datasets, each
with 1000 examples, from a random undersampling in the
Pageblock dataset with diferent IR , aiming to explore the
efect of IR on our method compared with others while
maintaining the remaining conditions. We examine the
same IR levels with the datasets in the frst group and higher
IRs of 36, 40, and 50 at the same data size.

In the proposed SVM-based AdaBoost ensemble, three
parameters had been prespecifed: the parameter σ for the
Gaussian kernel, the initial penalty vector C for each in-
stance, and T for the number of iterations. We employed
grid-search to predefne the Gaussian width parameters for
the SVM classifer to avoid implications of parameters on the
performance. We use one as the σ value for all datasets, and
for others, including the Ecoli, Breast Cancer, Ionosphere,
Teaching, and Pageblock datasets, we use 10.

Te optimization problem was solved in such a way that
C was always a fxed value.Te cost factor C in cost-sensitive
learning was determined for a specifc reason, such as using
the ratio of the number of samples between categories as the
cost, similarly to the prorated cost method. Under some
circumstances, the relevance of distinguishing distinct
samples was described by cost items, and the cost of a
specifc sample relied on the properties of the unique sit-
uation. For example, regarding detecting fraud, the cost of
missing a specifc fraud case was determined by the amount
of money involved [8]. Herein, we set the initial value to one,
and the adjustment scale was updated by itself according to
the changes in the iteration process.

Te experiments of datasets presented in Table 1 were
conducted to investigate the infuence of the iteration
parameter T on the performance of the proposed ap-
proach. Tis was a critical factor for improving classif-
cation performance. Te G-mean, F1-score, P-mean,
AUC, accuracy, and recall in the panels in Figure 3
demonstrate that the algorithm was convergent and
typically had stability after T reached 25 under settled σ.
Terefore, we set the parameter T for all ensemble learning
to a constant value of 25.

To ensure consistency across experiments, all classif-
cation algorithms involving the SVM parts are written in
uniform handwritten code. Decision tree, easy ensemble,
SMOTEBoost, SMOTEBagging, SMOTE+ SVM, and Ada-
Boost, which make direct calls to the packages in Python, are
algorithms that use default settings. Because the base clas-
sifer SVM has uncertainties in the selection of support
vectors, the results would be slightly diferent for each run of
our model. Te implementation of the proposed method is
publicly available in a GitHub repository (https://github.
com/PChunyu/SVM-Adaboost-C). Te computer confgu-
ration used to run all methods in this paper is an Intel (R)
Core (TM) i5-7500 CPU @ 3.40Hz and 3.40GHz.
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Figure 2: Comparison between SMOTEBoost and the proposed method for hepatitis classifcation results on F1-score and P-mean metrics.
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Figure 3: Te trend of evaluation metrics of the training dataset with T.
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5.4. ExperimentalResults andStatistical Tests. In this section,
we frst show the efectiveness of our proposed rebalancing
strategy and the proposed model. We present the experi-
mental results of two groups in three dimensions: structure
of classes, sample-to-feature ratio, and IR. At last, we per-
formed hypothesis tests on all metrics between the proposed
method and others to illustrate the validity of our model.

To confrm the validity of our proposed rebalancing
weights approach, we compared the classifcation perfor-
mance of Ada-SVM and proposed, and their diferences are
before and after rebalancing weights. Figure 4 shows the
trend for accuracy and recall. Our approach’s performance
was superior to that of Ada-SVM in terms of recall. After
almost 20 iterations, the proposed method stabilized the
recall rate at one, and the accuracy rate was the same or
lower than Ada-SVM. Our approach improved the recall at
the expense of accuracy in some datasets, an inevitable
consequence of enhancing the recall rate. Te rebalancing
scheme contributed to the proposed method’s better gen-
eralization performance than that of Ada-SVM in terms of
recall.

Te Yeast 5 dataset with multiple feature dimensions was
projected into the two-dimensional space using PCA to
observe the decision boundary and demonstrate the efec-
tiveness of the proposed ensemble. Figure 5 shows a set of
classifcations using diferent methods. Among the classi-
fcation boundaries produced by the presented techniques,
the proposed model classifes the best and has the highest
overall accuracy while ensuring a recall value of one. Te
decision boundary for simple noncost-sensitive classifers,
such as no cost SVM, AdaBoost, and SMOTE+ SVM, is a
plane with no convergence, and although SMOTE+ SVM is
used as a classifcation method for minority class accuracy,
the cost-insensitive regular SVM classifer is still used after
SMOTE generates new data. Tese classifers either perform
better in accuracy alone or in recall only while ignoring total
accuracy. Te majority of the ensemble algorithms have
irregularly delineated boundaries, which can more accu-
rately identify regions with minority samples. However,
evidently, the more detailed delineation of the minority by
SMOTEBoost and SMOTEBagging does not guarantee that
they achieve the desired results on the test set data, whereas
Easy Ensemble does. Under normal circumstances, without
any adjustment, the decision boundary of the cost-sensitive
classifer for lopsided data was curved toward positive [55].
CS-SVM and prorated cost panels demonstrated the deci-
sion boundary’s warp toward the positive and were afected
by imbalanced training data, particularly the positives. It was
the reason CS-SVM and prorated cost led to poor gener-
alization performance one testing data. Ada-SVM, No-Cost
SVM, decision tree, SMOTEBoost, SMOTEBagging, and
AdaBoost, regardless of accuracy, do not achieve a high
recall value when compared to other techniques. Te rest of
the methods could correctly classify positive samples,
whereas the accuracy was lower than that of the proposed
method. Our method produced decision boundaries that did
not favor the positive as in other cost-sensitive classifcation
algorithms; it tended to the negative. Tis is because our
proposed method aggravated the misclassifed positive

samples and improved the base classifer after readjusting
the cost term for all misclassifed samples. In general, the
panel of the suggested approach showed the best ft among
all the techniques. Te maximum accuracy was achieved
when the positive recall reached one.

5.4.1. First Group Datasets. Table 3 displays the experi-
mental results of the frst group; the bolded black values
refect the best values across all techniques. Except for the
WDBC, Breast Cancer, Ionosphere, and Yeast5 datasets,
where it does not achieve the greatest recall value, our
technique has the highest recall values in all 13 datasets. On
these four datasets, the diference between the recall value
and the greatest recall value of our technique is not sig-
nifcant: 0.9297 (0.9576 for Easy Ensemble), 0.9713 (0.9834
for CS-SVM), 0.9603 (0.9923 for CS-SVM), and 0.8194
(0.9750 for Prorated Cost), respectively. It is also worth
noting that our technique obtains a recall of one for both the
Wine3, SPECT, and Ecoli_im datasets, as well as an average
value of one after fve-fold cross-validation, which indicates
that the greatest recall value is obtained for each of the fve
cross-validation trials, demonstrating the excellent efciency
of our technique. Some algorithms also showed signifcant
accuracy-orientedness in the experiments; the more lopsided
the data, the worse the performance of the no cost, decision
tree, and AdaBoost algorithms. As one of the most classic
and simple methods, Easy Ensemble has the best perfor-
mance in every metric on the WDBC dataset and the highest
performance in the G-mean, F1-score, accuracy, and AUC
metrics on the Ecoli_cp and Breast Cancer datasets. Tese
algorithms in combination with SMOTE have excellent
fgures in other aspects except the recall metric. In some
circumstances, CS-SVM obtained very impressive results as
one of the representations of cost-sensitive classifers at the
algorithm level. CS-SVM, on the other hand, trained the
classifer with fxed positive and negative category costs,
causing it to perform better exclusively on a specifc dataset,
and prorated the cost as well. Tis restricts them to just
marginally improved outcomes on specifc datasets.

Although our method achieves the best level among all
methods on the WPBC, Hepatitis, and German datasets, the
recall levels of these datasets are overall low compared to the
other datasets, where the recall values are all close to one.
Tis has a lot to do with the structure of classes; a good
classifcation can be obtained even using canonical classifers
from nonoverlapping distributions [4]. We selected the
Ecoli_pp and German Credit datasets with consistent im-
balance levels and a close sample number to feature number
size ratios, as illustrated in Figure 6. After projecting the
training and test set sample points of these two datasets into
the two-dimensional plane separately, we can fnd that the
two datasets difer signifcantly in the distribution of sample
points. Both on the testing set and the training set, the
distribution of positive and negative class samples on the
Ecoli_pp dataset overlaps less, while the opposite is true for
the German Credit dataset, which leads to the fact that all
methods classify Ecoli_pp much better than German Credit
on almost all metrics. Clearly, the lower the sample size to
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feature ratio, themore features are relative to the sample size,
and too many features can easily lead to overftting; addi-
tionally, in some models, when the sample size to feature
ratio is too low, the model’s prediction becomes worse.
However, this is not completely absolute, because it is dif-
fcult to control the other characteristics of the dataset at
exactly the same level when discussing the sample number to
feature number ratio. Hepatitis, for example, has a high
ratio; however, because of structural overlaps, it is more
impacted by the category structure, and even with a high
sample-to-feature ratio, classifcation scores are still rather
low. By comparing the data results, we found that a sample
number to feature number ratio between 10 and 20 is a
desirable range; for example, for the Wine3 and SPECT
datasets with the highest recall, their sample number to
feature number ratios are 14 and 12.

Te most important is that our method obtained a
considerable advantage in the positive recall at various IR.
Te performance of the recall results is depicted in Figure 7.
Te value on the bar is the sum of the all-dataset’s recall of
the corresponding algorithm. Te proposed approach had
the maximum value of recall (15.93), followed by Easy
Ensemble (14.57).

Table 4 displays the Shapiro-Wilk test fndings because
not all data followed the normal distribution at 5%. For
statistical analysis, we used the parametric T-test and the
nonparametric Wilcoxon test independently to examine if

there were any obvious diferences between the proposed
strategy and the other ways in the experiment.

Te recall value of the proposed model does not only
look higher than other methods by visualization; however,
by statistical tests, we found that the recall value of our
method is statistically signifcantly higher among other
methods, as compared to their respective counterparts. Te
results are listed in Table 5. Bold indicated signifcant values
at the 0.05 level. Statistical results demonstrated that the
proposed SVM-based ensemble learning method performed
better than a single no-cost standard SVM in all metrics
except the AUC and accuracy. Te T-test and the Wilcoxon
test results showed that our model was signifcantly better
than other models in recall performances at the 5% level,
while it is not statistically signifcantly diferent from other
models in terms of other metrics. However, it is signifcantly
diferent from SMOTEBoost and SMOTEBagging only in
terms of accuracy because our method discards accuracy to
some extent in exchange for higher recall.

5.4.2. Second Group Dataset. To observe how our method
performs under diferent IRs, Table 6 presents the second
group of experimental fndings. Tey come from a resam-
pling of the same dataset, with only diferent IRs under the
condition that other features are guaranteed to be the same.
Our method maintains the highest level even at the IR of 36
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Figure 4: Trends in accuracy and recall before and after rebalancing.
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and 50; however, the recall value only stays at approximately
0.9.

Te higher the IR of the dataset, the worse the classi-
fcation performance tends to be for all methods. Our

method does not perform as well on the second group
datasets as frst, although with the same IR as frst. Overall,
the classical Easy Ensemble and SMOTEBagging algorithms
show a series of better performances on the Pageblock

Proposed Method
Test Accuracy: 0.9327

Test Recall: 1.0

Prorated Cost SVM
Test Accuracy: 0.8687

Test Recall: 1.0

Easy Ensemble
Test Accuracy: 0.9259

Test Recall: 1.0

SMOTE+SVM
Test Accuracy: 0.7153

Test Recall: 1.0

AdaBoost
Test Accuracy: 0.9731

Test Recall: 0.2222

SMOTEBoost
Test Accuracy: 0.963
Test Recall: 0.8889

SMOTEBagging
Test Accuracy: 0.963
Test Recall: 0.5556

No Cost SVM
Test Accuracy: 0.6835

Test Recall: 0.6667

Decision Tree
Test Accuracy: 0.9764

Test Recall: 0.7778

Ada-SVM
Test Accuracy: 0.9731

Test Recall: 0.5556

Cost Sensitive SVM
Test Accuracy: 0.8316

Test Recall: 1.0

Figure 5: Demonstration of decision boundaries and test accuracy in all methods.
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Figure 7: Comparison of diferent methods’ performance on all datasets in terms of recall.
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Table 4: P values of the Shapiro-Wilk test for model performance measures in the frst group dataset.

Model G-mean F1-score P-mean AUC Accuracy Recall
Proposed 0.00 0.0 8 0.036 0.013 0.03 0.001
Ada-SVM 0.0 5 0.153 0. 05 0.018 0.0 6 0.120
CS-SVM 0.719 0.523 0.716 0.009 0.933 0.102
Prorated cost 0.188 0.109 0.049 0.007 0.185 0.225
No cost 0.142 0.213 0.037 0.140 0.554 0.410
Decision tree 0.073 0.094 0.088 0.060 0.007 0.093
Easy ensemble 0.011 0.040 0.047 0.001 0.005 0.0 4
SMOTEBoost 0.03 0.167 0.146 0.004 0.0  0.060
SMOTEBagging 0.039 0.047 0.031 0.001 0.013 0.117
SMOTE+ SVM 0.275 0.117 0.193 0.033 0.134 0.757
AdaBoost 0.159 0.289 0.290 0.00 0.001 0.419
Te bold values represent data that obey normal distribution.

Table 5: P values for all performance measures in the frst group datasets.

Indicators/Model Ada-
SVM

CS-
SVM

Prorated
cost

No
cost

Decision
tree

Easy
ensemble SMOTEBoost SMOTEBagging SMOTE+ SVM AdaBoost

G-mean T 0.834 0.455 0.350 0.035 0.850 0.147 0.293 0.284 0.065 0.905
Wilcox 0.361 0.117 0.278 0.007 0.877 0.134 0.278 0.293 0.008 0.959

F1-score T 0.906 0.658 0.519 0.018 0.430 0.240 0.114 0.057 0.328 0.198
Wilcox 0.796 0.931 0.667 0.0 9 0.418 0.134 0.088 0.034 0.459 0.134

P-mean T 0.608 0.502 0.407 0.009 0.818 0.378 0.264 0.134 0.496 0.441
Wilcox 0.642 0.718 0.380 0.014 0.770 0.249 0.235 0.095 0.570 0.310

AUC T 0.849 0.715 0.735 0.068 0.094 0.287 0.297 0.276 0.268 0.882
Wilcox 0.931 0.642 0.418 0.052 0.052 0.068 0.134 0.143 0.174 0.438

Accuracy T 0.094 0.665 0.752 0.270 0.0 8 0.051 0.019 0.006 0.277 0.051
Wilcox 0.270 0.823 0.959 0.148 0.060 0.056 0.0  0.005 0.125 0.029

Recall T 0.000 0.001 0.000 0.000 0.000 0.0  0.001 0.001 0.001 0.000
Wilcox 0.000 0.003 0.00 0.000 0.000 0.011 0.000 0.001 0.000 0.000

Te bold values represent the parts of the tests that are signifcant.

Table 6: G-mean, F1-score, accuracy, AUC, and recall performance comparison of diferent algorithms on Pageblock.

Datasets IR Methods G-mean F1-score Accuracy AUC Recall

pa1 1

Proposed 0.8684 0.8644 0.8700 0.9439 0.8320
Ada-SVM 0.8674 0.8658 0.8690 0.9432 0.8480
CS-SVM 0.6823 0.7429 0.7380 0.9407 0.7720

Prorated cost 0.6747 0.6667 0.7290 0.8726 0.7000
No cost 0.4675 0.3610 0.5980 0.8633 0.2340

Decision tree 0.9315 0.9314 0.9320 0.9327 0.9260
Easy ensemble 0.9409 0.9412 0.9410 0.9789 0.9440
SMOTEBoost 0.9488 0.949 0.9490 0.9801 0.9520
SMOTEBagging 0.9486 0.9498 0.9490 0.9878 0.96 0
SMOTE+ SVM 0.4285 0.4335 0.5180 0.6513 0.4240

AdaBoost 0.9399 0.9399 0.9400 0.9749 0.9380

pa2 2

Proposed 0.9027 0.8626 0.9049 0.9504 0.8971
Ada-SVM 0.8421 0.7975 0.8696 0.9339 0.7735
CS-SVM 0.7523 0.7040 0.8147 0.9614 0.7029

Prorated cost 0.6715 0.5865 0.7745 0.9577 0.6618
No cost 0.5907 0.5378 0.6265 0.6950 0.6059

Decision tree 0.9370 0.9187 0.9461 0.9375 0.9118
Easy ensemble 0.9461 0.9151 0.9402 0.9819 0.9647
SMOTEBoost 0.9365 0.9141 0.9422 0.9767 0.9206
SMOTEBagging 0.9515 0.9 97 0.95 0 0.9940 0.9500
SMOTE+ SVM 0.6435 0.6408 0.6838 0.8086 0.5515

AdaBoost 0.9287 0.9104 0.9412 0.9791 0.8941
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Table 6: Continued.

Datasets IR Methods G-mean F1-score Accuracy AUC Recall

pa3 3

Proposed 0.8545 0.7849 0.8902 0.9440 0.7922
Ada-SVM 0.8131 0.7523 0.8902 0.9383 0.7095
CS-SVM 0.6985 0.5843 0.6814 0.9626 0.8784

Prorated cost 0.6512 0.5482 0.7333 0.9461 0.6902
No cost 0.6393 0.5648 0.8402 0.8787 0.4196

Decision tree 0.9357 0.9080 0.9539 0.9366 0.9020
Easy ensemble 0.9374 0.8732 0.9304 0.9759 0.95 9
SMOTEBoost 0.9333 0.8819 0.9382 0.9789 0.9255
SMOTEBagging 0.9465 0.9197 0.9598 0.991 0.9216
SMOTE+ SVM 0.5464 0.5365 0.6275 0.7605 0.4392

AdaBoost 0.9082 0.8698 0.9363 0.9805 0.8588

pa4 4

Proposed 0.7869 0.6927 0.8873 0.9239 0.6776
Ada-SVM 0.7408 0.6567 0.8824 0.8878 0.5794
CS-SVM 0.5781 0.5289 0.6363 0.9310 0.7998

Prorated cost 0.6737 0.5037 0.7824 0.9522 0.6878
No cost 0.5779 0.4492 0.8108 0.8316 0.3773

Decision tree 0.8913 0.8330 0.9333 0.8965 0.8288
Easy ensemble 0.9417 0.8356 0.9225 0.9759 0.9755
SMOTEBoost 0.8939 0.8166 0.9235 0.9659 0.8484
SMOTEBagging 0.9227 0.8631 0.9431 0.98 5 0.8920
SMOTE+ SVM 0.5572 0.5579 0.6163 0.6974 0.4828

AdaBoost 0.8788 0.8216 0.9304 0.9707 0.8037

pa5 5

Proposed 0.8711 0.8115 0.9400 0.9510 0.7845
Ada-SVM 0.8468 0.7770 0.9290 0.9379 0.7431
CS-SVM 0.8068 0.6097 0.7640 0.9675 0.9214

Prorated cost 0.7045 0.5217 0.8330 0.9664 0.6720
No cost 0.5971 0.4310 0.8220 0.9021 0.4661

Decision tree 0.8909 0.8471 0.9520 0.8966 0.8135
Easy ensemble 0.9509 0.8267 0.9310 0.9858 0.98  
SMOTEBoost 0.9186 0.8357 0.9420 0.9805 0.8859
SMOTEBagging 0.9398 0.8859 0.9610 0.9876 0.9100
SMOTE+ SVM 0.5798 0.4998 0.6781 0.8644 0.3828

AdaBoost 0.8925 0.8359 0.9460 0.9719 0.8203

pa6 6

Proposed 0.8883 0.7462 0.9120 0.9463 0.8603
Ada-SVM 0.8244 0.7151 0.9200 0.9613 0.7197
CS-SVM 0.7235 0.5276 0.8050 0.9463 0.7158

Prorated cost 0.7640 0.5348 0.8340 0.9558 0.7867
No cost 0.6683 0.4150 0.6980 0.7337 0.6571

Decision tree 0.8776 0.8207 0.9510 0.8837 0.7897
Easy ensemble 0.9353 0.7947 0.9300 0.9836 0.9441
SMOTEBoost 0.9266 0.8541 0.9570 0.9547 0.8879
SMOTEBagging 0.9096 0.8436 0.9550 0.9797 0.8532
SMOTE+ SVM 0.7270 0.7181 0.7404 0.8113 0.6511

AdaBoost 0.8794 0.8301 0.9540 0.9610 0.7901

pa9 9

Proposed 0.8678 0.5990 0.8670 0.9081 0.8800
Ada-SVM 0.7219 0.6043 0.9300 0.9381 0.5400
CS-SVM 0.8292 0.6184 0.8370 0.9441 0.8500

Prorated cost 0.8715 0.6052 0.8880 0.9546 0.8600
No cost 0.5428 0.2467 0.6540 0.6753 0.4900

Decision tree 0.9146 0.8585 0.9720 0.9178 0.8500
Easy ensemble 0.9474 0.7797 0.9460 0.990 0.9500
SMOTEBoost 0.9356 0.8453 0.9670 0.9789 0.9000
SMOTEBagging 0.9273 0.8595 0.9720 0.9796 0.8800
SMOTE+ SVM 0.5115 0.5285 0.6011 0.7108 0.5189

AdaBoost 0.9225 0.8819 0.9770 0.9862 0.8600

pa16 16

Proposed 0.9140 0.5916 0.9150 0.9492 0.9152
Ada-SVM 0.8029 0.6881 0.9650 0.9597 0.6606
CS-SVM 0.7527 0.6198 0.9590 0.9687 0.5924

Prorated cost 0.7228 0.5062 0.9330 0.9625 0.5833
No cost 0.7578 0.3637 0.8270 0.8811 0.7379

Decision tree 0.8344 0.7576 0.9730 0.8492 0.7091
Easy ensemble 0.9454 0.6876 0.9490 0.9910 0.9455
SMOTEBoost 0.9065 0.7452 0.9660 0.9319 0.8470
SMOTEBagging 0.9029 0.8130 0.9770 0.991 0.8318
SMOTE+ SVM 0.3773 0.4681 0.5446 0.6409 0.5012

AdaBoost 0.8712 0.8034 0.9780 0.9539 0.7758
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dataset. Tis also implies that our approach seems to be
more efective with small datasets. However, we found that
the recall value of the proposed model presented in Table 7 is
signifcantly better than accuracy-oriented algorithms such
as No-Cost SVM, decision tree, and AdaBoost. It also
outperforms the recall values of cost-sensitive classifers such
as Ada-SVM, prorated, and SMOTE+ SVM. Te proposed
model does not have statistically signifcant diferences in
recall values with CS-SVM, Easy Ensemble, SMOTEBoost,
and SMOTEBagging state-of-the-art algorithms.

Te proposed, Ada-SVM, CS-SVM, prorated cost, no
cost, decision tree, easy ensemble, SMOTEBoost, SMOTE-
Bagging, SMOTE+ SVM, and AdaBoost algorithms used to
classify the Ecoli series dataset take approximately 100 s,
100 s, 30 s, 30 s, 5 s, 0.03 s, 50 s, 3 s, 3 s, 20 s, and 1 s,

respectively. Te time required for the Pageblock dataset of
size 1000 is 1700 s, 1700 s, 200 s, 200 s, 40 s, 6 s, 160 s, 7 s, 7 s,
120 s, and 3 s.

6. Discussion and Conclusion

Unlike other classifcationmethods that only assign diferent
costs to diferent categories to achieve cost sensitivity, the
proposed model built a process that enabled SVM to self-
adaptively update the cost value of each sample by inte-
grations. Te misclassifed positive samples were assigned
higher cost values, while other misclassifed negative and
correctly classifed instances were given lower cost items to
decrease their efectiveness in training. Te optimization of
each base classifer can be reached by these automatically

Table 7: P values for recall performance measures in the high IR of the Pageblock dataset.

Indicators/Model Ada-
SVM

CS-
SVM

Prorated
cost

No
cost

Decision
tree

Easy
ensemble SMOTEBoost SMOTEBagging SMOTE+ SVM AdaBoost

Recall T 0.000 0.055 0.016 0.001 0.0 3 0.110 0.394 0.170 0.000 0.060
Wilcox 0.004 0.097 0.018 0.006 0.030 0.125 0.565 0.250 0.00 0.035

Te bold values represent the parts of the tests that are signifcant.

Table 6: Continued.

Datasets IR Methods G-mean F1-score Accuracy AUC Recall

pa36 36

Proposed 0.8287 0.2537 0.7850 0.8307 0.8933
Ada-SVM 0.6681 0.3863 0.9530 0.8689 0.5133
CS-SVM 0.6654 0.3926 0.8350 0.9409 0.6333

Prorated cost 0.6131 0.3140 0.9370 0.9399 0.4400
No cost 0.6843 0.3137 0.9250 0.9497 0.5200

Decision tree 0.6880 0.5366 0.9760 0.7415 0.4933
Easy ensemble 0.8867 0.3611 0.9180 0.9737 0.8800
SMOTEBoost 0.9007 0.7519 0.9850 0.9341 0.8400
SMOTEBagging 0.7590 0.5822 0.9760 0.9489 0.6000
SMOTE+ SVM 0.7446 0.7204 0.7657 0.8861 0.6609

AdaBoost 0.7919 0.6537 0.9830 0.9354 0.6533

pa40 40

Proposed 0.8130 0.4421 0.9540 0.9045 0.7000
Ada-SVM 0.6850 0.4578 0.9700 0.9126 0.4900
CS-SVM 0.5073 0.1274 0.5630 0.8521 0.6400

Prorated cost 0.8231 0.4430 0.9570 0.9505 0.7500
No cost 0.6989 0.2909 0.9370 0.8405 0.5400

Decision tree 0.7079 0.5511 0.9810 0.7609 0.5300
Easy ensemble 0.8688 0.3042 0.9040 0.9608 0.8400
SMOTEBoost 0.7504 0.4129 0.9590 0.8809 0.6000
SMOTEBagging 0.6223 0.4462 0.9760 0.9770 0.4140
SMOTE+ SVM 0.6696 0.6396 0.7029 0.7905 0.5237

AdaBoost 0.6286 0.5091 0.98 0 0.8368 0.4200

pa50 50

Proposed 0.8744 0.3286 0.9130 0.9388 0.8500
Ada-SVM 0.6705 0.2812 0.9330 0.6749 0.5500
CS-SVM 0.7896 0.3793 0.9070 0.9126 0.7333

Prorated cost 0.4940 0.2819 0.7980 0.9486 0.4500
No cost 0.8095 0.2633 0.8750 0.9403 0.8000

Decision tree 0.7232 0.6276 0.9880 0.7735 0.5500
Easy ensemble 0.8276 0.2396 0.9020 0.9503 0.8000
SMOTEBoost 0.6937 0.4715 0.9790 0.9446 0.5167
SMOTEBagging 0.7603 0.6500 0.9890 0.9579 0.6167
SMOTE+ SVM 0.6315 0.5722 0.7202 0.8514 0.4941

AdaBoost 0.7810 0.6595 0.9880 0.9667 0.6333

Te bold values represent the parts of the tests that are signifcant.
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updated cost values, which are following the selfadaptively
weight vector that was decided by our new weighting
mechanism.

Trough theoretical justifcations and empirical
studies, the proposed approach had higher recall than
others, and there were no diferences with other classi-
fcation measures at the 0.05 level. When dealing with
imbalanced datasets, the fndings demonstrated that the
suggested method outperformed alternative methods
statistically signifcantly. Trough extensive experiments
on diferent IR datasets, our method guarantees good
results on the classifcation of a few classes on both high
and low IR datasets. In some datasets, the mean recall
metric of the proposed method could be one after fve-fold
cross-validation, while a set of other metrics could be
maintained at an average level. We also found that our
model underperformed in terms of overall accuracy
compared with that of some models. Tis phenomenon
stems from the purpose that we chase, our need is for
higher recall rather than overall accuracy. Tis is mo-
mentous for the practical issue of reducing the identif-
cation overhead when working with a small number of
classes. Because our method can achieve a recall value of 1
in some datasets, this good feature can be an efective aid
in practical work, reducing a large amount of burden for
manual work in identifying minorities, such as medical
diagnosis. Tis is when the overall accuracy becomes less
important than recall.

Te advantage of P-mean in assessing the classifcation
impact of a skewed dataset is not evident in this study; however,
P-mean can be used to appraise the cost-sensitive classifer. It is
worth investigating whether the advantage of this assessment

metric can be proved in additional experimental instances.
Furthermore, we analyzed and confrmed the results of pre-
vious studies about class structure and imbalance ratio. Tey
indeed can have a serious impact on classifcation performance.
Te classifcation efect of all classifers would be reduced when
the sample overlap is excessively high; however, our method
can also have the best recall performance among many clas-
sifers. As an important reason for the classifcation disaster of
the imbalanced dataset, the structure of classes can be studied
in more depth in future work. Te high IR would bring a bad
classifcation performance.

Our model has its limitations. For instance, it works
better on small datasets; this may be attributed to the fact
that SVM, which is the base classifer of our proposed model,
is more suitable for classifcation problems on small datasets.
As regards the longer time that our algorithm needs for
classifcation as compared to others, if we continue to update
the program code in the future without changing the model,
the time computational complexity of our method will be
considerably reduced. Substantial research can be conducted
in the future, including parameter evaluation and im-
provement. Te impact of kernel functions on imbalanced
classifcation or imbalanced multiple classifcation problems
is also worth investigating. Because of its enormous appli-
cation potential, this challenging topic will continue to re-
ceive extensive attention.
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B. Training Error Bounds for the Binary
Classification Problem AdaBoost
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