
A&A 537, A128 (2012)
DOI: 10.1051/0004-6361/201118085
c© ESO 2012

Astronomy
&

Astrophysics

REBOUND: an open-source multi-purpose N-body code
for collisional dynamics

H. Rein1 and S.-F. Liu2,3

1 Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
e-mail: rein@ias.edu

2 Kavli Institute for Astronomy and Astrophysics, Peking University, 100871 Beijing, PR China
3 Department of Astronomy, Peking University, 100871 Beijing, PR China

e-mail: liushangfei@pku.edu.cn

Received 13 September 2011 / Accepted 6 November 2011

ABSTRACT

REBOUND is a new multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional
dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily
to work on a wide variety of different problems in astrophysics and beyond.
REBOUND comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping
(WH). It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-
gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain
decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also
implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is
much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles.
In this work, we discuss the different algorithms implemented in REBOUND, the philosophy behind the code’s structure as well as
implementation specific details of the different modules. We present results of accuracy and scaling tests which show that the code
can run efficiently on both desktop machines and large computing clusters.

Key words. methods: numerical – planets and satellites: rings – protoplanetary disks

1. Introduction

REBOUND is a new open-source collisional N-body code. This
code, and precursors of it, have already been used in wide vari-
ety of publications (Rein & Papaloizou 2010; Crida et al. 2010;
Rein et al. 2010; Rein & Liu, in prep.; Rein & Latter, in prep.).
We believe that REBOUND can be of great use for many different
problems and have a wide reach in astrophysics and other disci-
plines. To our knowledge, there is currently no publicly available
code for collisional dynamics capable of solving the problems
described in this paper. This is why we decided to make it freely
available under the open-source license GPLv31.

Collisional N-body simulations are extensively used in as-
trophysics. A classical application are planetary rings (see
e.g. Wisdom & Tremaine 1988; Salo 1991; Richardson 1994;
Lewis & Stewart 2009; Rein & Papaloizou 2010; Michikoshi &
Kokubo 2011, and references therein) which have often a colli-
sion time-scale that is much shorter than or at least comparable
to an orbital time-scale. Self-gravity plays an important role, es-
pecially in the dense parts of Saturn’s rings (Schmidt et al. 2009).
These simulations are usually done in the shearing sheet approx-
imation (Hill 1878).

Collisions are also important during planetesimal formation
(Johansen et al. 2007; Rein et al. 2010; Johansen et al., in prep.).

1 The full license is distributed together with REBOUND. It can also be
downloaded from http://www.gnu.org/licenses/gpl.html.

Collisions provide the dissipative mechanism to form a planetes-
imal out of a gravitationally bound swarm of boulders.
REBOUND can also be used with little modification in situa-

tions where only a statistical measure of the collision frequency
is required such as in transitional and debris discs. In such sys-
tems, individual collisions between particles are not modeled ex-
actly, but approximated by the use of super-particles (Stark &
Kuchner 2009; Lithwick & Chiang 2007).

Furthermore, REBOUND can be used to simulate classical
N-body problems involving entirely collision-less systems. A
symplectic and mixed variable integrator can be used to follow
the trajectories of both test-particles and massive particles.

We describe the general structure of the code, how to ob-
tain, compile and run it in Sect. 2. The time-stepping scheme
and our implementation of symplectic integrators are described
in Sect. 3. The modules for gravity are described in Sect. 4. The
algorithms for collision detection are discussed in Sect. 5. In
Sect. 6, we present results of accuracy tests for different mod-
ules. We discuss the efficiency of the parallelization with the help
of scaling tests in Sect. 7. We finally summarize in Sect. 8.

2. Overview of the code structure

REBOUND is written entirely in C and conforms to the ISO C99
standard. It compiles and runs on any modern computer platform
which supports the POSIX standard such as Linux, Unix and

Article published by EDP Sciences A128, page 1 of 10

http://dx.doi.org/10.1051/0004-6361/201118085
http://www.aanda.org
http://www.gnu.org/licenses/gpl.html
http://www.edpsciences.org

A&A 537, A128 (2012)

Mac OSX. In its simplest form, REBOUND requires no external
libraries to compile.

Users are encouraged to install the OpenGL and GLUT li-
braries which enable real-time and interactive 3D visualizations.
LIBPNG is required to automatically save screen-shots. The
code uses OpenMP for parallelization on shared memory sys-
tems. Support for OpenMP is built-in to modern compilers and
requires no libraries (for example gcc ≥4.2). An MPI library
must be installed for parallelization on distributed memory sys-
tems. REBOUND also supports hybrid parallelization using both
OpenMP and MPI simultaneously.

2.1. Downloading and compiling the code

The source code is hosted on the github platform and can be
downloaded at http://github.com/hannorein/rebound/.
A snapshot of the current repository is provided as tar and zip-
files. However, users are encouraged to clone the entire reposi-
tory with the revision control system git. The latter allows one
to keep up-to-date with future updates. Contributions from users
to the public repository are welcome. Once downloaded and ex-
tracted, one finds five main directories.

The entire source code can be found in the src/ directory.
In the vast majority of cases, nothing in this directory needs to
be modified.

Many examples are provided in the examples/ directory.
Each example comes with a problem file, named problem.c,
and a makefile named Makefile. To compile one of the exam-
ples, one has to run the make command in the corresponding di-
rectory. The code compilation is then performed in the following
steps:

1. The makefile sets up environment variables which control
various options such as the choice of compiler, code opti-
mization, real time visualization and parallelization.

2. It sets symbolic links, specifying the modules chosen for this
problem (see below).

3. It calls the makefile in the src/ directory which compiles
and links all source files.

4. The binary file is copied to the problem directory, from
where it can be executed.

Documentation of the source code can be generated in the doc/
directory with doxygen. There is no static documentation avail-
able because the code structure depends crucially on the modules
currently selected. To update the documentation with the current
module selection, one can simply run make doc in any directory
with a makefile.

In the directory tests/ one finds tests for accuracy and scal-
ing as well as simple unit tests. The source code of the tests pre-
sented in Sects. 6 and 7 is included as well.

The problem/ directory is the place to create new problems.
It contains a template for that. Any of the examples can also be
used as a starting point for new problems.

2.2. Modules

REBOUND is extremely modular. The user has the choice between
different gravity, collision, boundary and integration modules.
It is also possible to implement completely new modules with
minimal effort.

Modules are chosen by setting symbolic links. Thus, there is
no need to execute a configuration script prior to compiling the
code. For example, there is one link gravity.cwhich points to

one of the gravity modules gravity_*.c. The symbolic links
are set in each problem makefile. Only this makefile has to be
changed when a different module is used. Pre-compiler macros
are set automatically for situations in which different modules
need to know about each other.

This setup allows the user to work on multiple projects at
the same time using different modules. When switching to an-
other problem, nothing has to be set-up and the problem can by
compiled by simply typing make in the corresponding directory.

To implement a new module, one can just copy an existing
module to the problem directory, modify it and change the link in
the makefile accordingly. Because no file in the src/ directory
needs to be changed, one can easily keep REBOUND in sync with
new versions2.

2.3. Computational domain and boundary conditions

In REBOUND, the computational domain consists of a collection
of cubic boxes. Any integer number of boxes can be used in each
direction. This allows elongated boxes to be constructed out of
cubic boxes. The cubic root boxes are also used for static domain
decomposition when MPI is enabled. In that case, the number
of root boxes has to be an integer multiple of the number of
MPI nodes. When a tree is used for either gravity or collision
detection, there is one tree structure per root box (see Sect. 4.2).
REBOUND comes with three different boundary conditions.

Open boundaries (boundaries_open.c) remove every parti-
cle from the simulation that leaves the computational domain.
Periodic boundary conditions (boundaries_periodic.c) are
implemented with ghost boxes. Any number of ghost boxes can
be used in each direction. Shear-periodic boundary conditions
(boundaries_shear.c) can be used to simulate a shearing
sheet.

3. Integrators

Several different integrators have been implemented in
REBOUND. Although all of these integrators are second order ac-
curate and symplectic, their symplectic nature is formally lost
as soon as self-gravity or collisions are approximated or when
velocity dependent forces are included.

All integrators follow the commonly used Drift-Kick-Drift
(DKD) scheme3 but implement the three sub-steps differently.
We describe the particles’ evolution in terms of a Hamiltonian
H which can often be written as the sum of two Hamiltonians
H = H1 + H2. How the Hamiltonian is split into two parts de-
pends on the integrator. Usually, one identifies H1(p) as the ki-
netic part and H2(q) as the potential part, where p and q are
the canonical momenta and coordinates. During the first drift
sub-step, the particles evolve under the Hamiltonian H1 for half
a time-step dt/2. Then, during the kick sub-step, the particles
evolve under the Hamiltonian H2 for a full time-step dt. Finally,
the particles evolve again for half a time-step under H1. Note
that the positions and velocities are synchronized in time only at
the end of the DKD time-steps. We refer the reader to Saha &
Tremaine (1992) and references therein for a detailed discussion
on symplectic integrators.
REBOUND uses the same time-step for all particles. By de-

fault, the time-step does not change during the simulation

2 On how to do that, see for example http://gitref.org/ for an
introduction to git.
3 We could have also chosen a KDK scheme but found that a DKD
scheme performs slightly better.

A128, page 2 of 10

http://github.com/hannorein/rebound/
http://gitref.org/

H. Rein and S.-F. Liu: REBOUND: an open-source multi-purpose N-body code for collisional dynamics

because in all the examples that come with REBOUND, the time-
step can be naturally defined as a small fraction of the dynamical
time of the system. However, it is straight forward to implement
a variable time-step. This implementation depends strongly on
the problem studied. Note that in general variable time-steps also
break the symplectic nature of an integrator.
REBOUND does not choose the time-step automatically. It is

up to the user to ensure that the time-step is small enough to not
affect the results. This is especially important for highly colli-
sional systems in which multiple collisions per time-step might
occur and in situations where the curvature of particle trajecto-
ries is large. The easiest way to ensure numerical convergence
is to run the same simulation with different time-steps. We en-
courage users to do that whenever a new parameter regime is
studied.

3.1. Leap-frog

Leap-frog is a second-order accurate and symplectic integrator
for non-rotating frames. Here, the Hamiltonian is split into the
kinetic part H1 =

1
2 p2 and the potential part H2 = Φ(x). Both

the drift and kick sub-steps are simple Euler steps. First the posi-
tions of all particles are advanced for half a time-step while keep-
ing the velocities fixed. Then the velocities are advanced for one
time-step while keeping the positions fixed. In the last sub-step
the velocities are again advanced for half a time-step. Leap-frog
is implemented in the module integrator_leapfrog.c.

3.2. Wisdom-Holman mapping

A symplectic Wisdom-Holman mapping (WH, Wisdom
& Holman 1991) is implemented as a module in
integrator_wh.c. The implementation follows closely
that by the SWIFT code4. The WH mapping is a mixed variable
integrator that calculates the Keplerian motion of two bodies
orbiting each other exactly up to machine precision during the
drift sub-step. Thus, it is very accurate for problems in which
the particle motion is dominated by a central 1/r potential and
perturbations added in the kick sub-step are small. However,
the WH integrator is substantially slower than the leap-frog
integrator because Kepler’s equation is solved iteratively every
time-step for every particle.

The integrator assumes that the central object has the index 0
in the particle array, that it is located at the origin and that it does
not move. The coordinates of all particles are assumed to be the
heliocentric frame. During the sub-time-steps the coordinates are
converted to Jacobi coordinates (and back) according to their
index. The particle with index 1 has the first Jacobi index, and
so on. This works best if the particles are sorted according to
their semi-major axis. Note that this is not done automatically.

3.3. Symplectic epicycle integrator

The symplectic epicycle integrator (SEI, Rein & Tremaine
2011) for Hill’s approximation (Hill 1878) is implemented in
integrator_sei.c. When shear-periodic boundary conditions
(boundaries_shear.c) are used, the Hill approximation is
know as a shearing sheet.

SEI has similar properties to the Wisdom-Holman mapping
in the case of the Kepler potential but works in a rotating frame
and is as fast as a standard non-symplectic integrator. The error
after one time-step scales as the third power of the time-step

4 http://www.boulder.swri.edu/~hal/swift.html

times the ratio of the gravitational force over the Coriolis force
(see Rein & Tremaine 2011, for more details on the performance
of SEI).

The epicyclic frequency Ω and the vertical epicyclic fre-
quency Ωz can be specified individually. This can be used to
enhance the particle density in the mid-plane of a planetary ring
and thus simulate the effect of self-gravity (see e.g. Schmidt et al.
2001).

4. Gravity

REBOUND is currently equipped with two (self)-gravity modules.
A gravity module calculates exactly or approximately the ac-
celeration onto each particle. For a particle with index i this is
given by

ai =

Nactive−1∑

j= 0

Gm j(
r2

ji + b2
)3/2 r̂ ji, (1)

where G is the gravitational constant, m j the mass of particle j
and r ji the relative distance between particles j and i. The grav-
itational softening parameter b defaults to zero but can be set to
a finite value in simulations where physical collisions between
particles are not resolved and close encounters might lead to
large unphysical accelerations. The variable Nactive specifies the
number of massive particles in the simulation. Particles with an
index equal or larger than Nactive are treated as test-particles. By
default, all particles are assumed to have mass and contribute to
the sum in Eq. (1).

4.1. Direct summation

The direct summation module is implemented in
gravity_direct.c and computes Eq. (1) directly. If there are
Nactive massive particles and N particles in total, the performance
scales as O(N · Nactive). Direct summation is only efficient with
few active particles; typically Nactive � 102.

4.2. Octree

Barnes & Hut (1986, BH hereafter) proposed an algorithm to
approximate Eq. (1), which can reduce the computation time
drastically from O(N2) to O(N log N). The idea is straightfor-
ward: distant particles contribute to the gravitational force less
than those nearby. By grouping particles hierarchically, one can
separate particles in being far or near from any one particle. The
total mass and the center of mass of a group of particles which
are far away can then be used as an approximation when cal-
culating the long-range gravitational force. Contributions from
individual particles are only considered when they are nearby.

We implement the BH algorithm in the module
gravity_tree.c. The hierarchical structure is realized
using a three-dimensional tree, called an octree. Each node
represents a cubic cell which might have up to eight sub-cells
with half the size. The root node of the tree contains all the
particles, while the leaf nodes contain exactly one particle. The
BH tree is initially constructed by adding particles one at a
time to the root box, going down the tree recursively to smaller
boxes until one reaches an empty leaf node to which the particle
is then added. If the leaf node already contains a particle it is
divided into eight sub-cells.

Every time the particles move, the tree needs to be updated
using a tree reconstruction algorithm. We therefore keep track

A128, page 3 of 10

http://www.boulder.swri.edu/~hal/swift.html

A&A 537, A128 (2012)

root 3

root 0 root 1 root 2

root 5

root 8root 7root 6

root 4

Fig. 1. Illustration of the essential trees needed by root box 4. The dif-
ferent levels of the tree structure which need to be copied depend on the
distance to the nearest boundary of root box 4 and the opening angle θ.
See text for details.

of any particle crossing the boundaries of the cell it is currently
in. If it has moved outside, then the corresponding leaf node is
destroyed and the particle is re-added to the tree as described
above. After initialization and reconstruction, we walk through
the tree to update the total mass and the center of mass for each
cell from the bottom-up.

To calculate the gravitational forces on a given particle, one
starts at the root node and descends into sub-cells as long as the
cells are considered to be close to the particle. Let us define the
opening angle as θ = w/R, where w is the width of the cell and
R is the distance from the cell’s center of mass to the particle.
If the opening angle is smaller than a critical angle θcrit > θ, the
total mass and center of mass of the cell are used to calculate
the contribution to the gravitational force. Otherwise, the sub-
cells are opened until the criterion is met. One has to choose θcrit
appropriately to achieve a balance between accuracy and speed.
REBOUND can also include the quadrupole tensor of each

cell in the gravity calculation by setting the pre-compiler flag
QUADRUPOLE. The quadrupole expansion (Hernquist 1987) is
more accurate but also more time consuming for a fixed θcrit .
We discuss how the critical opening angle and the quadrupole
expansion affect the accuracy in Sect. 6.1.

With REBOUND, a static domain decomposition is used for
parallelizing the tree algorithm on distributed memory systems.
Each MPI node contains one or more root boxes (see also
Sect. 2.3) and all particles within these boxes belong to that
node. The number of root boxes NRB has to be a multiple of
the number of MPI nodes NMPI. For example, the setup illus-
trated in Fig. 1 uses 9 root boxes allowing 1, 3 or 9 MPI nodes.
By default, the domain decomposition is done first along the z di-
rection, then along the y and x direction. If one uses 3 MPI nodes
in the above example, the boxes 0−2 are on on node 0, the boxes
3−5 on node 1 and the remaining boxes on node 2. When a par-
ticle moves across a root box boundary during the simulation, it
is send to the corresponding node and removed form the local
tree.

Fig. 2. Different collision detection algorithms. Left: curved particle tra-
jectories are approximated by straight lines. Right: trajectories are not
approximated, particles only collide when they are overlapping. See text
for details.

Because of the long-range nature of gravity, every node
needs information from any other node during the force calcu-
lation. We distribute this information before the force calcula-
tion using an essential tree (Salmon et al. 1990) and an all-to-all
communication pattern. The essential tree contains only those
cells of the local tree that might be accessed by the remote
node during the force calculation. Each node prepares a total of
NRB−NRB/NMPI different essential trees. The cells that constitute
the essential tree are copied into a buffer array and the daughter
cell references therein are updated accordingly. The center of
mass and quadrupole tensors (if enabled) are stored in the cell
structure and automatically copied when a cell is copied. For
that reason only the tree structure needs to be distributed, not in-
dividual particles. The buffer array is then sent to the other nodes
using non-blocking MPI calls.

For example, suppose 9 MPI nodes are used, each node us-
ing exactly one tree in its domain. For that scenario the essential
trees prepared for root box 4 are illustrated in Fig. 1. The essen-
tial trees include all cells which are close enough to the bound-
ary of root box 4 so that they might be opened during the force
calculation of a particle in root box 4 according to the opening
angle criteria.

In Sect. 7 we show that this parallelization is very efficient
when the particle distribution is homogeneous and there are
more than a few thousand particles on every node. When the
number of particles per node is small, communication between
nodes dominates the total runtime.

5. Collisions

REBOUND supports several different modules for collision de-
tection which are described in detail below. All of these meth-
ods search for collisions only approximately, might miss some
of the collisions or detect a collision where there is no col-
lision. This is because either curved particle trajectories are
approximated by straight lines (collisions_sweep.c and
collisions_sweepphi.c) or particles have to be overlapping
to collide (collisions_direct.cand collisions_tree.c).
This is also illustrated in Fig. 2.

In all modules, the order of the collisions is randomized. This
ensures that there is no preferred ordering which might lead to
spurious correlations when one particles collides with multiple
particles during one time-step. Note that REBOUND uses a fixed
time-step for all particles. Therefore one has to ensure that the
time-step is chosen small enough so that one particle does collide
with no more than one other particle during one time-step, at
least on average. See also the discussion in Sect. 3.

A free-slip, hard-sphere collision model is used. Individual
collisions are resolved using momentum and energy conser-
vation. A constant or an arbitrary velocity dependent normal

A128, page 4 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=2

H. Rein and S.-F. Liu: REBOUND: an open-source multi-purpose N-body code for collisional dynamics

coefficient of restitution ε can be specified to model inelastic col-
lisions. The relative velocity after one collision is then given by

v′n = −ε vn
v′t = vt,

(2)

where vn and vt are the relative normal and tangential velocities
before the collision. Particle spin is currently not supported.

5.1. Direct nearest neighbor search

A direct nearest neighbor collisions search is the sim-
plest collision module in REBOUND. It is implemented in
collisions_direct.c,

In this module, a collision is detected whenever two particles
are overlapping at the end of the DKD time-step, i.e. the middle
of the drift sub-step, where positions and velocities are synchro-
nized in time (see Sect. 3). This is illustrated in the right panel of
Fig. 2. Then, the collision is added to a collision queue. When all
collisions have been detected, the collision queue is shuffled ran-
domly. Each individual collision is then resolved after checking
that the particles are approaching each other.

Every pair of particles is checked once per time-step, mak-
ing the method scale as O(N2). Similar to the direct summation
method for gravity, this is only useful for a small number of par-
ticles. For most cases, the nearest neighbor search using a tree is
much faster (see next section).

5.2. Octree

The octree described in Sect. 4.2 can also be used to search
for nearest neighbors. The module collisions_tree.c imple-
ments such a nearest neighbor search. It is parallelized with both
OpenMP and MPI. It can be used in conjunction with any grav-
ity module, but when both tree modules gravity_tree.c and
collisions_tree.c are used simultaneously, only one tree
structure is needed. When collisions_tree.c is the only tree
module, center of mass and octopole tensors are not calculated
in tree cells.

To find overlapping particles for particle i, one starts at the
root of the tree and descents into daughter cells as long as the
distance of the particle to the cell center ric is smaller than a
critical value:

ric < Ri + Rmax +

√
3

2
wc, (3)

where Ri is the size of the particle, Rmax is the maximum size of a
particle in the simulation and wc is the width of the current cell.
When two particles are found to be overlapping, a collision is
added to the collision queue and resolved later in the same way
as above.

If MPI is used, each node prepares the tree and particle struc-
tures that are close to the domain boundaries as these might be
needed by other nodes (see Fig. 1). This essential tree is send
to other nodes and temporarily added to the local tree structure.
The nearest neighbor search can then be performed in the same
way as in the serial version. The essential tree and particles are
never modified on a remote node.

This essential tree is different from the essential tree used for
the gravity calculation in two ways. First, this tree is needed at
the end of the time-step, whereas the gravity tree is needed at the
beginning of the kick sub time-step. Second, the criteria for cell
opening, Eq. (3), is different.

7

1

2

3

4

6

9

5

8

7

3

4

6

9

5

8

Fig. 3. Illustration of the plane-sweep algorithm. The plane is intersect-
ing the trajectories of particles 5 and 7. See text for details.

A nearest neighbor search using the octree takes on average
O(log(N)) operations for one particle and therefore O(N log(N))
operations for all N particles.

5.3. Plane-sweep algorithm

We further implement two collision detection modules based
on a plane-sweep algorithm in collisions_sweep.c and
collisions_sweepphi.c. The plane-sweep algorithm makes
use of a conceptual plane that is moved along one dimension.

The original algorithm described by Bentley & Ottmann
(1979) maintains a binary search tree in the orthogonal dimen-
sions and keeps track of line crossings. In our implementa-
tion, we assume the dimension normal to the plane is much
longer than the other dimensions. This allows us to simplify the
Bentley-Ottmann algorithm and get rid of the binary search tree
which further speeds up the calculation.

In REBOUND the sweep is either performed along the
x-direction or along the azimuthal angle φ (measured in the
xy-plane from the origin). The sweep in the x direction can also
be used in the shearing sheet. The sweep in the φ direction is
useful for (narrow) rings in global simulations. Here, we only
discuss the plane-sweep algorithm in the Cartesian case (along
the x-direction) in detail. The φ sweep implementation is almost
identical except of the difference in periodicity and the need to
calculate the angle and angular frequency for every particle at
the beginning of the collision search.

Our plane-sweep algorithm can be described as follows (see
also Fig. 3):

1. If a tree is not used to calculate self-gravity, the particles are
sorted according to their x coordinate5. During the first time-
step, quicksort is used as the particles are most likely not pre-
sorted. In subsequent time-steps, the adaptive sort algorithm
insertionsort is used. It can make use of the pre-sorted array
from the previous time-step and has an average performance
of O(N) as long as particles do not completely randomize
their positions in one time-step.

2. The x coordinate of every particle before and after the drift
step is inserted into an array SWEEPX. The trajectory is ap-
proximated by a line (see left panel of Fig. 2). In general, the
real particle trajectories will be curved. In that case the posi-
tions are only approximately the start and end points of the
particle trajectory. The particle radius is subtracted/added to
the minimum/maximum x coordinate. The array contains 2N
elements when all particles have been added.

3. If a tree is not used, the array SWEEPX is sorted with the x
position as a key using the insertionsort algorithm. Because

5 Each tree cell keeps a reference to the particle it contains. This ref-
erence has to be updated every time a particle is moved in the particle
array which would lead to larger overhead.

A128, page 5 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=3

A&A 537, A128 (2012)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

av
er

ag
e

re
la

tiv
e

ac
ce

le
ra

tio
n

er
ro

r

opening angle

monopole
quadrupole

(a) Force accuracy as a function of the opening angle θcrit.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1

av
er

ag
e

re
la

tiv
e

ac
ce

le
ra

tio
n

er
ro

r

computation time [s]

monopole
quadrupole

(b) Force accuracy as a function of the computation time.

Fig. 4. Comparison of the monopole and quadrupole expansion.

the particle array is pre-sorted, insertionsort runs in approxi-
mately O(N) operations. If a tree is used, the array is sorted
with quicksort.

4. A conceptual plane with its normal vector in the x direction
is inserted at the left side of the box. While going through the
array SWEEPX, we move the plane towards the right one step
at a time according to the x coordinate of the current element
in the array. We thus move the plane to the other side of the
box in a total of 2N stops.

5. The plane is intersecting particle trajectories. We keep
track of these intersection using a separate array SWEEPL.
Whenever a particle appears for the first time in the array
SWEEPX the particle is added to the SWEEPL array. The par-
ticle is removed from the array SWEEPL when it appears in
the array SWEEPX for the second time. In Fig. 3, the plane is
between stop 10 and 11, intersecting the trajectories of par-
ticles 5 and 7.

6. When a new particle is inserted into the array SWEEPL, we
check for collisions of this particle with any other parti-
cle in SWEEPL during the current time-step. The collision
is recorded and resolved later. In Fig. 3 the array SWEEPL
has two entries, particles 5 and 7. Those will be checked for
collisions.

The time needed to search for a collision at each stop of the
plane is O(NSWEEPL), where NSWEEPL is the number of elements in
the array SWEEPL. This could be reduced with a binary search
tree to O(log(NSWEEPL)) as in the original algorithm by Bentley &
Ottmann (1979). However tests have shown that there is little to
no performance gain for the problems studied with REBOUND be-
cause a more complicated data structure has to be maintained.
One entire time-step with the plane-sweep algorithm is com-
pleted in O(N · NSWEEPL). It is then easy to see that this method
can only be efficient when NSWEEPL � log(N), as a tree code is
more efficient otherwise.

Indeed, experiments have shown (see Sect. 7.4) that the
plane-sweep algorithm is more efficient than a nearest neigh-
bor search with an octree by many orders of magnitude for low
dimensional systems in which NSWEEPL is small.

6. Test problems

We present several tests in this section which verify the imple-
mentation of all modules. First, we measure the accuracy of the
tree code. Then we check for energy and momentum conserva-
tion. We use a long term integration of the outer solar system
as a test of the symplectic WH integrator. Finally, we measure
the viscosity in a planetary ring which is a comprehensive test of
both self-gravity and collisions.

6.1. Force accuracy

We measure the accuracy of the tree module gravity_tree.c
by comparing the force onto each particle to the exact result ob-
tained by direct summation (Eq. (1)). We set up 1000 randomly
distributed particles with different masses in a box. We do not
use any ghost boxes and particles do not evolve.

We sum up the absolute value of the acceleration error for
each particle and normalize it with respect to the total accelera-
tion (see Hernquist 1987, for more details).

This quantity is plotted as a function of the critical opening
angle θcrit in Fig. 4a. One can see that the force quickly converges
towards the correct value for small θcrit. The quadrupole expan-
sion performs one order of magnitude better then the monopole
expansion for θcrit ∼ 0.5 and two orders of magnitude better for
θcrit ∼ 0.1.

In Fig. 4b we plot the errors of the same simulations as a
function of the computation time. The quadrupole expansion re-
quires more CPU time than the monopole expansion for fixed
θcrit. However, the quadrupole expansion is faster when θcrit � 1
for a fixed accuracy. Note that including the quadrupole tensor
also increases communication costs between MPI nodes.

6.2. Energy and momentum conservation in collisions

In a non-rotating simulation box with periodic boundaries and
non-gravitating collisional particles, we test both momentum
and energy conservation. Using a coefficient of restitution of
unity (perfectly elastic collisions), the total momentum and

A128, page 6 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=4

H. Rein and S.-F. Liu: REBOUND: an open-source multi-purpose N-body code for collisional dynamics

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5e+07 1e+08 1.5e+08 2e+08

pe
rih

el
io

n
of

 P
lu

to
 ω

 [r
ad

]

time t [yrs]

Fig. 5. Libration pattern of Pluto with two distinct frequencies of
3.8 Myr and 34 Myr.

energy is conserved up to machine precision for all collision de-
tection algorithms.

6.3. Long term integration of Solar System

To test the long-term behavior of our implementation of the
Wisdom-Holman Mapping, we integrate the outer Solar System
for 200 million years. We use the initial conditions given by
Applegate et al. (1986) with 4 massive planets and Pluto as a
test particle. The direct summation module has been used to cal-
culate self-gravity. With a 40 day time-step and an integration
time of 200 Myr, the total runtime on one CPU was less then
2 h.

In Fig. 5, we plot the perihelion of Pluto as a function of
time. One can clearly see two distinct libration frequencies with
3.8 Myr and 34 Myr time-scales respectively. This is in perfect
agreement with Applegate et al. (1986).

6.4. Viscosity in planetary rings

Daisaka et al. (2001) calculate the viscosity in a planetary ring
using numerical simulations. We repeat their analysis as this is
an excellent code test as the results depend on both self-gravity
and collisions. The quasi-equilibrium state is dominated by ei-
ther self-gravity or collisions, depending on the ratio of the Hill
radius over the physical particle radius, r�h .

In this simulation we use the octree implementation for grav-
ity and the plane-sweep algorithm for collisions. The geometric
optical depth is τ = 0.5 and we use a constant coefficient of
restitution of ε = 0.5. The separate parts of the viscosity are cal-
culated directly as defined by Daisaka et al. (2001) for various
r�h and plotted in dimensionless units in Fig. 6.

The results are in good agreement with previous results. At
large r�h , the collisional part of the viscosity is slightly higher
in our simulations when permanent particle clumps form. This
is most likely due to the the different treatment of collisions
and some ambiguity in defining the collisional viscosity when
particles are constantly touching each other (Daisaka, private
comm.).

 0.001

 0.01

 0.1

 1

 10

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

vi
sc

os
ity

particle radius rh
*

translational
collisional

gravitational

Fig. 6. Individual components of the viscosity as a function of the non-
dimensional particle radius.

7. Scaling

Using the shearing sheet configuration with the tree modules
gravity_tree.c and collisions_tree.c, we measure the
scaling of REBOUND and the efficiency of the parallelization. The
simulation parameters have been chosen to resemble those of a
typical simulation of Saturn’s A-ring with an optical depth of
order unity and a collision time-scale being much less than one
orbit. The opening angle is θcrit = 0.7. The problem.c files for
this and all other tests can be found in the test/ directory.

All scaling tests have been performed on the IAS aurora
cluster. Each node has dual quad-core 64-bit AMD Opteron
Barcelona processors and 16 GB RAM. The nodes are intercon-
nected with 4x DDR Infiniband.

7.1. Strong scaling

In the strong scaling test the average time to compute one time-
step is measured as a function of the number of processors for a
fixed total problem size (e.g. fixed total number of particles). We
use only the MPI parallelization option.

The results for simulations using N = 12.5k, 50k, 200k and
800k particles are plotted in Fig. 7a. One can see that for a small
number of processors the scaling is linear for all problems. When
the number of particles per processor is below a critical value,
Npp ∼ 2000, the performance drops. Below the critical value,
a large fraction of the tree constitutes the essential tree which
needs to be copied to neighboring nodes every time-step. This
leads to an increase in communication.

The results show that we can completely utilize 64 proces-
sors cores with one million particles.

7.2. Weak scaling

In the weak scaling test we measure the average time to compute
one time-step as a function of the number of processors for a
fixed number of particles per processor. Again, we only use the
MPI parallelization option.

The results for simulations using Npp = 25k, 50k and 100k
particles per processor are plotted in Fig. 7b. One can easily
confirm that the runtime for a simulation using k processors is

A128, page 7 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=6

A&A 537, A128 (2012)

 0.1

 1

 10

 1 10 100

tim
es

te
ps

 p
er

 s
ec

on
d

number of nodes

MPI, 12.5k particles
MPI, 50k particles

MPI, 200k particles
MPI, 800k particles

linear scaling

(a) Strong scaling test: constant problem size, varying number of
nodes.

 0.1

 1

 1 10 100

tim
es

te
ps

 p
er

 s
ec

on
d

number of nodes

MPI, 25k particles per node
MPI, 50k particles per node

MPI, 100k particles per node
1/log(k)

(b) Weak scaling test: constant problem size per node.

Fig. 7. Strong and weak scaling tests using a shearing sheet configuration with the gravity_tree.c and collisions_tree.c modules.

 1

 10

 100

1 2 4 8

64 32 16 8

tim
es

te
ps

 p
er

 s
ec

on
d

number of OMP processes per MPI node

number of MPI nodes

OMP+MPI, 64 processes in total, 10k particles
OMP+MPI, 64 processes in total, 50k particles

OMP+MPI, 64 processes in total, 200k particles
OMP+MPI, 64 processes in total, 500k particles

Fig. 8. Comparison between OpenMP and MPI. Each run uses 64 CPU
cores. A shearing sheet configuration the with gravity_tree.c and
collisions_tree.c modules is used.

O(Npp log(Npp k)), as expected. By increasing the problem size,
the communication per processor does not increase for the col-
lision detection algorithm as only direct neighbors need to be
evaluated on each node. The runtime and communication for the
gravity calculation is increasing logarithmically with the total
number of particles (which is proportional to the number of pro-
cessors in this case).

These results shows that REBOUND’s scaling is as good as
it can possibly get with a tree code. The problem size is only
limited by the total number of available processors.

7.3. OpenMP/MPI trade-off

The previous results use only MPI for parallelization. REBOUND
also supports parallelization with OpenMP for shared memory
systems.

OpenMP has the advantage over MPI that no communication
is needed. On one node, different processes share the same mem-
ory and work on the same tree and particle structures. However,
the tree building and reconstruction routines are not parallelized.
These routines can only be parallelized efficiently when a do-
main decomposition is used (as used for MPI, see above).

Results of hybrid simulations using both OpenMP and MPI
at the same time are shown in Fig. 8. We plot the average time to
compute one time-step as a function of the number of OpenMP
processes per MPI node. The total number of particles and pro-
cessors (64) is kept fixed.

One can see that OpenMP does indeed perform better than
MPI when the particle number per node is small and the run-
time is dominated by communication (see also Sect. 7.1). For
large particle numbers, the difference between OpenMP and MPI
is smaller, as the sequential tree reconstruction outweighs the
gains. Eventually, for very large simulations (Npp � 5000) the
parallelization with MPI is faster.

Thus, in practice OpenMP can be used to accelerate MPI
runs which are bound by communication. It is also an easy way
to accelerate simulations on desktop computer which have mul-
tiple CPU cores.

7.4. Comparison of collision detection algorithms

The collision modules described in Sect. 5 have very differ-
ent scaling behaviors and are optimized for different situations.
Here, we illustrate their scalings using two shearing sheet con-
figurations with no self-gravity. We plot the average number of
time-steps per second as a function of the problem size in Fig. 9
for the plane-sweep algorithm and both the octree and direct
nearest neighbor collision search.

In simulations used in Fig. 9a, we vary both the azimuthal
size, Ly, and radial size, Lx, of the computational domain. The
aspect ratio of the simulation box is kept constant. For the
plane-sweep algorithm, the number of particle trajectories in-
tersecting the plane6 scales as NSWEEPL ∼ Ly ∼

√
N. Thus, the

6 Note that a disk is effectively a two dimensional system. In three
dimensions NSWEEPL ∼ LyLz ∼ N2/3.

A128, page 8 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=8

H. Rein and S.-F. Liu: REBOUND: an open-source multi-purpose N-body code for collisional dynamics

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07

tim
es

te
ps

 p
er

 s
ec

on
d

number of particles N

plane-sweep algorithm
1/N1.5

direct collision search
1/N2

nearest neighbor search with tree
1/(N log(N))

(a) Varying the size of the simulation box and keeping a constant as-
pect ratio.

 10

 100

 1000

 10000

 100000

 10 100 1000 10000

tim
es

te
ps

 p
er

 s
ec

on
d

number of particles N

plane-sweep algorithm
1/N

direct collision search
nearest neighbor search with tree

1/N2

(b) Varying the radial size of the simulation box and keeping a con-
stant azimuthal width.

Fig. 9. Scalings of the plane-sweep algorithm, the octree and direct nearest neighbor search as a function of particle number. A shearing sheet
configuration without self-gravity is used.

overall scaling of the plane-sweep method is O(N1.5), which can
be verified in Fig. 9a. Both the tree and direct detection methods
scale unsurprisingly as O(N log(N)) and O(N2), respectively.

For simulations used in Fig. 9b, we vary the radial size of
the computational domain and keep the azimuthal size fixed at
20 particle radii. Thus, the aspect ratio changes and the box be-
comes very elongated for large particle numbers. If a tree is used
in REBOUND, an elongated box is implemented as many indepen-
dent trees, each being a cubic root box (see Sect. 2.3). Because
each tree needs to be accessed at least one during the colli-
sion search, this makes the tree code scale as O(N2) for large
N, effectively becoming a direct nearest neighbor search. The
plane-sweep algorithm on the other hand scales as O(N), as the
number of particle trajectories intersecting the plane is constant,
Nsweep ∼ Ly = const. Again, the direct nearest neighbor search
scales unsurprisingly as O(N2).

From these test cases, it is obvious that the choice of collision
detection algorithm strongly depends on the problem. Also note
that if the gravity module is using a tree, the collision search
using the same tree comes at only a small additional cost.

The plane-sweep module can be faster for non-self-
gravitating simulations by many orders of magnitude, especially
if the problem size is varied only in one dimension.

8. Summary

In this paper, we presented REBOUND, a new open-source multi-
purpose N-body code for collisional dynamics. REBOUND is
available for download at http://github.com/hannorein/
rebound and can be redistributed freely under the GPLv3
license.

The code is written in a modular way, allowing users
to choose between different numerical integrators, boundary
conditions, self-gravity solvers and collision detection algo-
rithms. With minimal effort, one can also implement completely
new modules.

The octree self-gravity and collision detection modules are
fully parallelized with MPI and OpenMP. We showed that both

run efficiently on multi-core desktop machines as well as on
large clusters. Results from a weak scaling test show that there
is no practical limit on the maximum number of particles that
REBOUND can handle efficiently except by the number of avail-
able CPUs. We will use this in future work to conduct extremely
elongated simulations that can span the entire circumference of
Saturn’s rings.

Two new collision detection methods based on a plane-
sweep algorithm are implemented in REBOUND. We showed that
the plane-sweep algorithm scales linearly with the number of
particles for effectively low dimensional systems and is there-
for superior to a nearest neighbor search with a tree. Examples
of effectively low dimensional systems include very elongated
simulation domains and narrow rings. Furthermore, the simpler
data-structure of the plane-sweep algorithm makes it also supe-
rior for quasi-two dimensional simulations with less than about
one million particles.

Three different integrators have been implemented, for ro-
tating and non-rotating frames. All of these integrators are sym-
plectic. Exact long-term orbit integrations can be performed with
a Wisdom-Holman mapping.

Given the already implemented features as well as the open
and modular nature of REBOUND, we expect that this code will
find many applications both in the astrophysics community and
beyond. For example, molecular dynamics and granular flows
are subject areas where the methods implemented in REBOUND
can be readily applied. We strongly encourage users to contribute
new algorithms and modules to REBOUND.

Acknowledgements. We would like to thank the referee John Chambers for help-
ful comments and suggestions. We would also like to thank Scott Tremaine,
Hiroshi Daisaka and Douglas Lin for their feedback during various stages
of this project. H.R. was supported by the Institute for Advanced Study and
the NSF grant AST-0807444. S.-F.L. acknowledges the support of the NSFC
grant 11073002. H.R. and S.-F.L. would further like to thank the organizers of
ISIMA 2011 and the Kavli Institute for Astronomy and Astrophysics in Beijing
for their hospitality.

A128, page 9 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118085&pdf_id=9
http://github.com/hannorein/rebound
http://github.com/hannorein/rebound

A&A 537, A128 (2012)

References
Applegate, J. H., Douglas, M. R., Gursel, Y., Sussman, G. J., & Wisdom, J. 1986,

AJ, 92, 176
Barnes, J., & Hut, P. 1986, Nature, 324, 446
Bentley, J., & Ottmann, T. 1979, Computers, IEEE Transactions on, C-28, 643
Crida, A., Papaloizou, J., Rein, H., Charnoz, S., & Salmon, J. 2010, AJ,

submitted
Daisaka, H., Tanaka, H., & Ida, S. 2001, Icarus, 154, 296
Hernquist, L. 1987, ApJS, 64, 715
Hill, G. W. 1878, Astron. Nachr., 91, 251
Johansen, A., Oishi, J. S., Low, M.-M. M., et al. 2007, Nature, 448, 1022
Lewis, M. C., & Stewart, G. R. 2009, Icarus, 199, 387
Lithwick, Y., & Chiang, E. 2007, ApJ, 656, 524
Michikoshi, S., & Kokubo, E. 2011, ApJ, 732, L23

Rein, H., & Papaloizou, J. C. B. 2010, A&A, 524, A22
Rein, H., & Tremaine, S. 2011, MNRAS, 415, 3168
Rein, H., Lesur, G., & Leinhardt, Z. M. 2010, A&A, 511, A69
Richardson, D. C. 1994, MNRAS, 269, 493
Saha, P., & Tremaine, S. 1992, AJ, 104, 1633
Salmon, J., Quinn, P. J., & Warren, M. 1990, Using parallel computers for very

large N-body simulations (Dynamics and Interactions of Galaxies), 216
Salo, H. 1991, Icarus, 90, 254
Schmidt, J., Salo, H., Spahn, F., & Petzschmann, O. 2001, Icarus, 153, 316
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., & Spahn, F. 2009, Dynamics

of Saturn’s Dense Rings (Springer), 413
Stark, C. C., & Kuchner, M. J. 2009, ApJ, 707, 543
Wisdom, J., & Holman, M. 1991, AJ, 102, 1528
Wisdom, J., & Tremaine, S. 1988, AJ, 95, 925

A128, page 10 of 10

	Introduction
	Overview of the code structure
	Downloading and compiling the code
	Modules
	Computational domain and boundary conditions

	Integrators
	Leap-frog
	Wisdom-Holman mapping
	Symplectic epicycle integrator

	Gravity
	Direct summation
	Octree

	Collisions
	Direct nearest neighbor search
	Octree
	Plane-sweep algorithm

	Test problems
	Force accuracy
	Energy and momentum conservation in collisions
	Long term integration of Solar System
	Viscosity in planetary rings

	Scaling
	Strong scaling
	Weak scaling
	OpenMP/MPI trade-off
	Comparison of collision detection algorithms

	Summary
	References

