
Rebound Attacks on the
Reduced Grøstl Hash Function?

Florian Mendel1, Christian Rechberger2, Martin Schläffer1, and
Søren S. Thomsen3

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

2 Dept. of Electrical Engineering ESAT/COSIC, K.U.Leuven,
and Interdisciplinary Institute for BroadBand Technology (IBBT),

Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium.
3 Department of Mathematics, Technical University of Denmark

Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark
martin.schlaeffer@iaik.tugraz.at

Abstract. Grøstl is one of 14 second round candidates of the NIST
SHA-3 competition. Cryptanalytic results on the wide-pipe compression
function of Grøstl-256 have already been published. However, little is
known about the hash function, arguably a much more interesting crypt-
analytic setting. Also, Grøstl-512 has not been analyzed yet. In this pa-
per, we show the first cryptanalytic attacks on reduced-round versions
of the Grøstl hash functions. These results are obtained by several ex-
tensions of the rebound attack. We present a collision attack on 4/10
rounds of the Grøstl-256 hash function and 5/14 rounds of the Grøstl-
512 hash functions. Additionally, we give the best collision attack for
reduced-round (7/10 and 7/14) versions of the compression function of
Grøstl-256 and Grøstl-512.

Keywords: hash function, cryptanalysis, collisions, rebound attack

1 Introduction

In the last few years the cryptanalysis of hash functions has become an impor-
tant topic within the cryptographic community. The attacks on the MD4 family
of hash functions (e.g., MD5 [12, 15], SHA-1 [2, 14]) have especially weakened
the confidence in the security of this design strategy. Many new and interesting
hash function designs have been proposed as part of the NIST SHA-3 compe-
tition [11]. Most submissions are constructed using specific underlying building

? This work was supported in part by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II and the fourth author is
supported by a grant from the Villum Kann Rasmussen Foundation. Parts of this
work were carried out while the third author was visiting Technical University of
Denmark, supported by a grant from DCAMM International Graduate Research
School, Danish Center for Applied Mathematics and Mechanics.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 350–365, 2010.
The original publication is available at http://www.springerlink.com/content/p016144684v473r6/
c© Springer-Verlag Berlin Heidelberg 2010

http://www.springerlink.com/content/p016144684v473r6/

blocks like permutations, explicit compression functions, or block ciphers. Some-
times, proofs are devised to show that some desirable properties of the hash
function (like collision resistance) can be reduced to a property of an underlying
building block.

In turn, many cryptanalytic results have been published which consider these
building blocks. Often, the resulting attacks are not applicable to the hash func-
tion itself. While these results are important to analyze the security of a specific
design, it is very difficult to compare the results of different hash function propos-
als. How can we measure and compare the security margin of different designs?
In addition to the (reduced) security parameter that is used for the best attack,
a number of other issues heavily influence the answer: Is the design wide-pipe,
is it based on the sponge model, or does it use an MD-style iteration? Is the
hash function based on an ideal block cipher or a random permutation? All
these considerations can be bypassed if we compare cryptanalytic results of the
complete hash function instead of different underlying building blocks. Thus, a
comparison of different designs is made easier.

In this paper we analyze the hash function Grøstl [4], which is one of the
remaining 2nd-round candidates of the NIST SHA-3 competition. Grøstl has
very competitive hardware implementation characteristics (see e.g., Tillich et
al. [13] for a comparison), is the fastest among the remaining AES-like designs
on most platforms, and naturally deserves cryptanalytic attention.

Grøstl is based on a wide-pipe compression function that is iterated in an
MD-style manner. Since the wide-pipe compression function of Grøstl is known
to be non-random, many distinguishers exist and the hash function has been
designed with this fact in mind. With ` denoting the output size of the com-
pression function, even collision attacks in 2`/3 time or 2`/4 permutation queries,
memoryless preimage attacks in time 2`/2, and very efficient distinguishers (only
two calls) are known [4]. Hence a strong output transformation with truncation
is an important part of the design.

Shortcut collision attacks on round-reduced versions of the compression func-
tion of Grøstl-256 have been presented in a series of papers [5,8,9]. As discussed
above, additional distinguishers on the compression function are meaningless.
However, showing non-random properties of the underlying permutations or the
output transformation can have some significance. See e.g., Mendel et al. [8] for
results along those lines, where among others, a distinguisher for 7 rounds of the
output transformation with complexity 256 is given.

However, little is known about the hash function, which is arguably a more
interesting cryptanalytic setting. Only half of the degrees of freedom are avail-
able to an attacker for direct manipulation compared to a compression function
attack. Also, Grøstl-512 has not been considered yet. In this paper, we first
improve the rebound attack as originally applied to the Grøstl-256 compres-
sion function [9]. Using the rebound attack, we give results for the Grøstl-512
compression function and present the first analysis of the reduced Grøstl hash
functions. Our results and the best previously known results are summarized in
Table 1.

351

Table 1: Summary of rebound analysis for the round-reduced Grøstl hash and com-
pression functions.

Target Hash Size Rounds Time Memory Type Reference

hash 224,256 4/10 264 264 collision Sect. 5.1

function 384,512 5/14 2176 264 collision Sect. 5.2

256 6/10 2120 264 semi-free-start collision [9]

compression 224,256 6/10 264 264 semi-free-start collision [8]

function 256 7/10 2120 264 semi-free-start collision Sect. 5.3, [5]

384,512 7/14 2152 264 semi-free-start collision Sect. 5.4

We start the paper by recalling the relevant parts of the Grøstl specification
in Section 2 and give the basics of the rebound attack in Section 3. The new ideas
and improvements which are the basis for our results are presented in Section 4.
The results for the hash function and compression function for both Grøstl-256
and Grøstl-512 are given in Section 5. Finally, we conclude in Section 6.

2 Description of Grøstl

The hash function Grøstl was designed by Gauravaram et al. as a candidate for
the SHA-3 competition [4]. It is an iterated hash function with a compression
function built from two distinct permutations P and Q, which are based on
the same principles as the AES round transformation [10]. Grøstl is a wide
pipe design with security proofs for the collision and preimage resistance of the
compression function [3]. In the following, we describe the Grøstl hash function
and the permutations of Grøstl-256 and Grøstl-512 in more detail.

2.1 The Grøstl Hash Function

The input message M is padded and split into blocks M1, M2, . . . ,Mt of ` bits
with ` = 512 for Grøstl-256 and ` = 1024 for Grøstl-512. The initial value H0,
the intermediate hash values Hi, and the permutations P and Q are of size ` as
well. The message blocks are processed via the compression function f , which
accepts two inputs of size ` bits and outputs an `-bit value. The compression
function f is defined via the permutations P and Q as follows:

f(H,M) = P (H ⊕M)⊕Q(M)⊕H.

The compression function is iterated in the usual way with H0 = IV and
Hi ← f(Hi−1, Mi) for 1 ≤ i ≤ t. The output Ht of the last call of the
compression function is processed by an output transformation g defined as
g(x) = truncn(P (x) ⊕ x), where n is the output size of the hash function and
truncn(x) discards all but the least significant n bits of x. Hence, the digest of
the message M is defined as h(M) = g(Ht).

352

2.2 The Grøstl-256 Permutations

As mentioned above, two permutations P and Q are defined for Grøstl-256. The
permutations differ only in the used constants. Both permutations operate on a
512-bit state, which can be viewed as an 8×8 matrix of bytes. Each permutation
of Grøstl-256 consists of 10 rounds, where the following four AES-like [10] round
transformations are applied to the state in the given order:

– AddRoundConstant (AC) XORs a constant to one byte of the state. The
constant changes in every round and is different for P and Q.

– SubBytes (SB) applies the AES S-box to each byte of the state.
– ShiftBytes (SH) cyclically rotates the bytes of row i to the left by i positions.
– MixBytes (MB) is a linear diffusion layer, which multiplies each column

with a constant 8× 8 circulant MDS matrix.

For details on the round transformations we refer to the Grøstl specification [4].
Note that AddRoundConstant is the only transformation that distinguishes P
from Q. The properties of the round transformations which are used in the
following attacks are similar to those of the AES (see Section 3 for more details).

2.3 The Grøstl-512 Permutations

The permutations used in Grøstl-512 are of size ` = 1024 bits and the state
is viewed as an 8 × 16 matrix of bytes. The permutations use the same round
transformations as in Grøstl-256 except for ShiftBytes: Since the permutations
are larger, row j is cyclically shifted j positions to the left for 0 ≤ j ≤ 6 and row
7 is shifted 11 positions to the left. The number of rounds is increased to 14.

3 The Rebound Attack on Grøstl

The rebound attack was published by Mendel et al. in [9] and is a new tool for
the cryptanalysis of hash functions. It can be applied to both block cipher based
and permutation based constructions. The idea of the rebound attack is to divide
an attack into two phases, an inbound and outbound phase. The inbound phase
is an efficient meet-in-the-middle phase, which exploits the available degrees of
freedom in the middle of a (truncated) differential path to guarantee that the
expensive part of a differential path holds. In the (mainly) probabilistic outbound
phase the solutions of the inbound phase are computed backwards and forwards
to obtain an attack on the hash or compression function. In the following, we
explain the rebound attack using the 6 round semi-free-start collision attack on
Grøstl-256. For a more detailed description, we refer to the original paper [9].

3.1 The Truncated Differential Path

The rebound attack on 6 rounds of the Grøstl-256 compression function uses
a truncated differential path with a high number of active bytes in the middle

353

and a low number of active bytes at the input and output of each permutation.
Due to the wide-trail design strategy, such a path can easily be constructed for
Grøstl-256. For the attack on 6 rounds, a full active state is placed in the middle
of each permutation. The detailed path is given in Fig. 1 and the sequence of
active bytes between each round ri is as follows:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64

By using the same truncated differential path in both permutations P and Q, we
can construct a semi-free-start collision for the compression function of Grøstl-
256 reduced to 6 rounds. In the following, we will show how to find input pairs
for P and Q that follow the 6-round differential trail given above by applying a
rebound attack.

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Mi r
1

r
2

r
3

r
4

r
5

r
6

P
0

P
1

P
2

P
3

P
4

P
5

P
6

Hi-1 Hir
1

r
2

r
3

r
4

r
5

r
6

inbound
outbound outbound

+ +

Fig. 1: Overview of the rebound attack on 6 rounds of the Grøstl-256 compression
function. Black bytes are active.

3.2 The Inbound Phase

We start the rebound attack with the inbound phase in round r3 and r4 and
deterministically propagate to the full active SubBytes layer in the middle. Hence,
we search for differences and values conforming to the truncated differential
path shown in Fig. 2. We first choose random differences for the 8 active bytes
in P4. These differences are linearly propagated backward to 64 active bytes
at the output of the previous SubBytes layer (PSB

4). Then, we choose random
differences for each active byte prior to the MixBytes transformation in PSH

3 and
linearly propagate forward to the full active input of SubBytes (PSB

4). Note that
we can compute each column independently. Next, we need to check whether
the input/output differential of all 64 active S-boxes are possible.

For a single S-box, the probability that a random S-box differential exists is
about one half, which can be verified by computing the difference distribution
table (DDT) of the AES S-box (see [9] for more details). For each valid S-box
differential, we get at least two (in some cases 4) possible byte values such that

354

… …SH MB SB SH MB SB

P
3
SH P

3 P
4
SB P

4
SH P

4

outbound inbound 8-bit matches inbound outbound
(S-box)

Fig. 2: The inbound phase of the attack on the Grøstl-256 compression function using
8-bit S-box matches. The input and output of one S-box is highlighted.

the differential holds. For each column, we try all 28 non-zero differences of the
according byte in PSH

3 and thus, expect one valid differential for all 8 S-boxes
of that column. With two independent solutions for each S-box, we get at least
28 pairs for one column. Hence, the average complexity to find a valid pair is 1.
We repeat this for all 8 active bytes of PSH

3 and get about 264 solutions for the
inbound phase.

Note that we can choose from about 264 differences for the active bytes in P4.
Hence, we can construct up to 2128 pairs that follow the truncated differential
path of the inbound phase between state PSH

3 and P4.

3.3 The Outbound Phase

In the outbound phase, we probabilistically propagate the pairs of the inbound
phase outwards, to match the differences at the input and output of the per-
mutations. The probability for the propagation from 8 to 1 active byte through
the MixBytes transformation in round r2 is 2−56. Hence, we can construct one
pair conforming to the truncated differential path for each of P and Q with a
complexity of 256.

To get a semi-free-start collision, the differences at the input and output
of P and Q need to be equal. Note that we can construct pairs for P and Q
independently. Hence, we can do a standard birthday attack to match the 8-byte
difference at the input, and the 8-byte difference at the output before MixBytes
with a complexity of 264. Since MixBytes is the same linear transformation in
both P and Q, the 64 active bytes at the output will match if the differences
at the input of MixBytes are equal. Hence, the total complexity for the semi-
free-start collision on 6 rounds of the compression function of Grøstl-256 is 2120

compression function evaluations and 264 memory due to the birthday attack.

4 Extending the Rebound Attack

In this section, we describe three improvements for the rebound attack on Grøstl.
The first improvements uses 64-bit SuperBoxes [1] instead of 8-bit S-boxes to
match the differences in the inbound phase. This idea has already been applied in

355

the improved attack on the Whirlpool hash function in Lamberger et al. [7, Ap-
pendix A] and was independently observed in Gilbert and Peyrin [5]. This allows
us to extend the inbound phase of the compression function attack on 6 rounds
of Grøstl-256 by one round. The second idea is to apply the rebound attack
to the Grøstl hash function by using a common inbound phase at the input
of both P and Q. The third contribution addresses Grøstl-512. We have con-
structed new truncated differential paths and apply the rebound attack to the
hash and compression function of Grøstl-512.

4.1 Improving the Inbound Phase using SuperBoxes

In the standard inbound phase, the differences are computed inwards through
MixBytes to the input and output of the intermediate SubBytes layer. Then, each
S-box is checked for a valid differential (see Fig. 2). If we consider SuperBoxes
instead of S-boxes we can extend the inbound phase by one full active state and
get the following sequence of active bytes (instead of 8→ 64→ 8):

8→ 64→ 64→ 8

A SuperBox of Grøstl is defined similar to the SuperBox of the AES [1]. For
Grøstl, the SuperBox consists of 8 parallel S-boxes, followed by one MixBytes
transformation and another 8 parallel S-boxes: SB - MB - SB . Note that the
SubBytes and ShiftBytes transformations can be interchanged. Hence, a Super-
Box behaves like a non-linear 64-bit S-box. Unfortunately, the differential dis-
tribution table (DDT) of the SuperBox has 2128 entries which is too much for a
collision attack on Grøstl-256. However, if the input and output differences of
the SuperBox are fixed, we can iterate through all 264 input values to check if a
given differential holds.

… …SH MB SB SH MB SB SH MB SB

P
3
SH P

3 P
4
SB P

4
SH P

4 P
5
SB P

5
SH P

5

outbound inbound 64-bit matches (SuperBox) inbound outbound

Fig. 3: The inbound phase on the Grøstl-256 compression function using 64-bit matches
with one SuperBox being highlighted.

In the following, we show how we can still find one solution (pair) for the
extended inbound phase with an average complexity of one. We start the inbound
phase at state PSH

3 and P5 (see Fig. 3) and proceed as follows:

1. Start with all 264 differences in state PSH
3 , compute forwards through MixBytes

to state P3, and store the resulting differences in list L1.
2. Choose a random difference for state P5 and compute backward through

MixBytes and ShiftBytes to state PSB
5 .

356

3. Connect the output differences of the 8 parallel SuperBoxes (state PSB
5)

with the corresponding input differences of the SuperBoxes (state P3):
(a) For each SuperBox (column) at state PSB

5 , take all 264 possible values
and compute both values and differences backward to state P3.

(b) We get 264 input differences for each SuperBox in state P3 and store the
resulting differences and values in list L2.

(c) To find a solution for the inbound phase, we need to match the 8-byte
differences in list L2 with the corresponding differences of list L1. Since
both lists have 264 entries and we have a condition on 64 bits, we get
264 × 264 × 2−64 = 264 solutions (differences and values) and update L1

accordingly.
(d) Repeat this for every SuperBox (column) of state PSB

5 and in each case
we get 264 solutions again.

4. For the whole inbound phase, we expect 264 solutions with a complexity of
264 in time and memory.

All in all, we can find one solution for the inbound phase with an average com-
plexity of one. Note that we can still choose from 264 differences for state P5.
Hence, we can find up to 2128 pairs according to the truncated differential path
of the extended inbound phase. In other words, in the inbound phase we can
construct up to 2128 starting points for the probabilistic outbound phase of the
attack.

4.2 Rebound Attack on the Grøstl Hash Function

The main idea of the rebound attack on the Grøstl hash function is to do one
half of the inbound phase in each P and Q. We then need to match the differences
over the input of the two permutations in the inbound phase (see Fig. 4). The
truncated differential path used is similar to the one of the previous section, but
“wraps around” the input of P and Q. In this case, the chaining input or IV can
be a predefined constant and only the message input (values and differences) is
defined by the attack. Note that we use two full active states in each of P and
Q since the first ShiftBytes in P and Q cancel out when going around. Hence,
the columns of almost two rounds can be solved independently in the inbound
phase.

The technique is very similar to the previous section, since we can use in-
dependent 64-bit matches again. These two consecutive SuperBoxes (in both P
and in Q) are completely independent between state QSB

2 and PSB
2 . Again, we

can find one solution (pair) for the inbound phase with an average complexity of
one. We start the inbound phase with a random difference for state P2 and com-
pute backward to state PSB

2 . Next. we take all 264 nonzero differences in state
Q2, compute backwards to state QSB

2 and store the resulting differences in list
L1. Similar as in Section 4.1, we connect the output difference of the 8 parallel
SuperBoxes of P (state PSB

2) with the corresponding output differences of the
SuperBoxes of Q (state QSB

2) by merging lists of size 264. We get 264 solutions
with a complexity of 264 in time and memory. Again, we can repeat the inbound

357

…SB SH MB SB SH MB SB

IV …SB SH MB SB SH MB SB

Q
0 Q

1
SB Q

1
SH Q

1 Q
2
SB Q

2
SH Q

2

M
1

64-bit matches (2x SuperBox) inbound outbound

P
0 P

1
SB P

1
SH P

1 P
2
SB P

2
SH P

2

+

Fig. 4: The inbound phase of the attack on the hash function Grøstl-256 with one
64-bit match (two SuperBoxes) being highlighted.

phase about 264 times with other starting differences in P2. Hence, we can con-
struct up to 2128 starting points for the subsequent probabilistic outbound phase
of the attack.

4.3 Constructing Truncated Differential Paths for Grøstl-512

The difficult part of the rebound attack on Grøstl-512 is to find a “good” trun-
cated differential path. However, using a match-in-the-middle on the SuperBox,
we can construct a path with similar properties as for Grøstl-256. The complex-
ity of the rebound attack is determined by the outbound phase. Hence, we need
a truncated differential path with as few active bytes in the outbound phase
as possible. Similar to Grøstl-256, a straightforward truncated differential path
starts with (a minimum of) 8 active bytes at both ends of the inbound phase.
In the following, we show how the inbound phase of such a path works for the
hash function, and how to get a valid truncated differential path for the inbound
phase of the compression function as well.

The Hash Function. For the rebound attack on the Grøstl-512 hash function,
the truncated differential path of the inbound phase is given in Fig. 5. Due to
the symmetry of the ShiftBytes transformations in P and Q, we can again do
the 64-bit matches over each two SuperBoxes independently (see Section 4.2).
Contrary to the Grøstl-256 case, some output differences of the SuperBoxes in
state PSB

2 and QSB
2 are zero. However, the list L1 still contains 264 entries and we

also generate 264 differences for the list L2 by iterating through all values of each
SuperBox. Again, we have a condition on 64 bits (including zero differences) and
thus, still expect 264 solutions with a complexity of 264. Since we can choose from
264 differences for both PSB

2 and QSB
2 , we again expect to find 2128 solutions for

the inbound phase.

The Compression Function. For the Grøstl-512 compression function, a
differential path with 8 active bytes at each end of the inbound phase does

358

not work (see Fig. 6). Although we use a SuperBox in the inbound phase this
results in an impossible truncated differential path. For most columns of the
MixBytes transition in the middle, the sum of active bytes at input and output
is below 9, which is not possible according to the MDS property of MixBytes.
With only 8 active bytes in state PSH

3 and P5, we do not get enough active
bytes for a valid MixBytes transformation in round r4. Also rotating the position
of active bytes in state PSH

3 or P5 does not give a valid truncated differential
path. However, we can add a second active column at the output of the inbound
phase (see Fig. 7). This results in an almost full active state in round r4 and
the truncated differential path is valid. Again, we can apply the same technique
as in the previous section and expect 264 solutions of the inbound phase with a
complexity of 264 by merging lists of size 264. Note that with 24 active bytes in
PSH

3 and P5, we can get up to 2192 solutions (starting points in the outbound
phase) in the inbound phase.

5 Results of Rebound Attacks on Reduced Grøstl

In this section, we apply the improved inbound techniques of the previous section
to the round-reduced Grøstl hash functions and compression functions.

5.1 Collisions for 4 Rounds of Grøstl-256

The complete truncated differential path for the collision attack on 4 rounds of
the Grøstl-256 hash function is given in Fig. 8. The sequence of active bytes in
each round for both, P and Q are given as follows:

64 r1−→ 64 r2−→ 8 r3−→ 8 r4−→ 64

The details for the inbound phase of the attack are given in Section 4.2. Remem-
ber that we get 264 pairs with a complexity of 264 conforming to the truncated
differential path up to round r2. In the outbound phase, each of these pairs prop-
agate to the output of the permutations according to the truncated differential
path given in Fig. 8 with a probability of one. To get a zero output difference of
the hash function, the 8-byte differences prior to the last MixBytes need to be
the same (see Section 3.3). Since we have 264 solutions for the inbound phase,
and we have a 64-bit condition in the outbound phase, we expect to get one
pair which results in a collision. The complexity of this collision attack on the
Grøstl-256 hash function is thus, 264 in both time and memory.

Note that using the previous techniques a collision attack on 5 rounds ac-
cording to the following truncated differential path for both, P and Q is not
possible:

64 r1−→ 64 r2−→ 8 r3−→ 1 r4−→ 8 r5−→ 64

Each of the two 8→ 1 transitions of MixBytes in round r3 have a probability of
2−56. Together with the probabilistic match on 64 bits at the end of the path,
the total complexity is 256+56+64 = 2176 which exceeds the generic complexity
for a collision attack on Grøstl-256.

359

y

y

y

y

y

y

y

…
S

B
S

H
M

B

y
y

y
y

y
y

y

y

S

B

y
y

y
y

y
y

y

y

S

H
y

M
B

S
H

y
y

y
y

y
y

y

y

y
y

y
y

y
y

y

y

y

y

y

y
y

y
y

y
y

y

y

y
y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y
y

y

y

y
y

y

y

y
y

y
y

y
y

y

y

y
y

y
y

y

y

y

y

y

y

y

y

…
S

B
S

H
M

B

y
y

y
y

y
y

y

y

S

B

y
y

y
y

y
y

y

y

S

H
y

M
B

S
H

y
y

y
y

y
y

y

y

y
y

y
y

y
y

y

y

y

y

y

y
y

y
y

y
y

y

y

y
y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y
y

y

y

y
y

y

y

y
y

y
y

y
y

y

y

y
y

y
y

y

Q
0

Q
1 S

B
Q
1 S

H
Q
1

Q
2 S

B
Q
2 S

H
Q
2

0 M
20

64-bit m
atches (2x S

uperbox)
inbound

outbound

P
0

P
1 S

B
P
1 S

H
P
1

P
2 S

B
P
2 S

H
P
2

H
1

+

F
ig

.5
:

In
b

o
u
n
d

p
h
a
se

o
f

th
e

a
tta

ck
o
n

th
e
G
r
ø
s
t
l
-5

1
2

h
a
sh

fu
n
ctio

n
w

ith
o
n
e

6
4
-b

it
m

a
tch

(tw
o

S
u
p

erB
ox

es)
b

ein
g

h
ig

h
lig

h
ted

.

y

y

y

y

…

y

y

y

…
S

H
M

B
S

B
S

H
M

B

y
y

y
y

y
y

y

y

S

B

y
y

y
y

y
y

y

y

S

H

M
B

y

S
B

y
y

y
y

y
y

y

y

y
y

y
y

y
y

y

y

y

y

y

y
y

y
y

y
y

y

y

y
y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y
y

y

y

y
y

y

y

y
y

y
y

y
y

y

y

y
y

y
y

y

P
2 S

H
P
2

P
3 S

B
P
3 S

H
P
3

P
4 S

B
P
4 S

H
P
4

outbound
inbound

im
possible M

ixB
ytes transform

ation
inbound

outbound

F
ig

.6
:

Im
p

o
ssib

le
in

b
o
u
n
d

p
h
a
se

o
f

th
e

a
tta

ck
o
n

th
e
G
r
ø
s
t
l
-5

1
2

co
m

p
ressio

n
fu

n
ctio

n
.

y

y

y

y

…
y

y
y

y

y
y

y
y

y

y
y

y
y

y

y
y

y
y

y

y
y

y

y

y

…
S

H
M

B
S

B
S

H
M

B
y

y
y

y

y
y

y
y

y
y

y

y
S

B
y

y
y

y

y
y

y
y

y
y

y

y
S

H

M

B

y

y

S

B
y

y
y

y
y

y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y

y

y

y

y
y

y
y

y
y

y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y

y

y

y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y

y
y

y
y

y
y

y

y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y
y

y

y
y

y
y

y

y
y

y

y

P
2 S

H
P
2

P
3 S

B
P
3 S

H
P
3

P
4 S

B
P
4 S

H
P
4

outbound
inbound

64-bit m
atches (SuperB

ox)
inbound

outbound

F
ig

.7
:

In
b

o
u
n
d

p
h
a
se

o
f

th
e

a
tta

ck
o
n

th
e
G
r
ø
s
t
l
-5

1
2

co
m

p
ressio

n
fu

n
ctio

n
w

ith
o
n
e

6
4
-b

it
m

a
tch

(S
u
p

erB
ox

)
b

ein
g

h
ig

h
lig

h
ted

.

360

IV

Q
0

Q
1

Q
2

Q
3

Q
4

M1 r1 r2 r3 r4

P
0

P
1

P
2

P
3

P
4

H1r1 r2 r3 r4+ +

Fig. 8: Truncated differential path for the collision attack on 4 rounds of the Grøstl-256
hash function.

5.2 Collisions for 5 Rounds of Grøstl-512

Contrary to the collision attack on Grøstl-256 we can extend the truncated
differential path for Grøstl-512 to 5 rounds, with the following number of active
bytes in each, P and Q:

128 r1−→ 64 r2−→ 8 r3−→ 1 r4−→ 8 r5−→ 64

The complexity of the outbound phase is given by the two probabilistic 8 → 1
transitions of MixBytes in round r3 of P and Q, and the match of the 64-bit
differences prior to the last MixBytes transformation in round r5. Hence, the total
complexity of the attack is 256+56+64 = 2176 compression function evaluations.
Note that we need to construct 2176 solutions in the inbound phase for the attack
to succeed. However, as shown in Section 4.3, we can only find up to 2128 pairs
for the inbound phase.

y y y

 y y

 y y y

 y y y y y y y y y y

 y y y y y y y y y y

y y y y y y y y y y

 y y y y y y y y y

y y y y y y y y y y

y y y

 y y

 y y y

 y y y y y y y y y y

 y y y y y y y y y y

y y y y y y y y y y

 y y y y y y y y y

y y y y y y y y y y

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

0M20 r
1

r
2

r
3

r
4

r
5

P
0

P
1

P
2

P
3

P
4

P
5

H1 H2r
1

r
2

r
3

r
4

r
5

+ +

Fig. 9: Truncated differential path for the collision attack on 5 rounds of the Grøstl-
512 hash function. An additional first block is used to generate enough freedom for the
attack to succeed.

We can get the needed additional freedom for a 5 round collision attack by
prepending a first message block. The collision attack works as follows. First we
choose an arbitrary first message block. Then, we repeat the inbound phase for
all 2128 possible starting points to get 2128 solutions. Since the probability of the
outbound phase is 2−176 we need to repeat the inbound phase with 248 different

361

first message blocks to find a collision for 5 rounds. The total complexity of
the attack is about 264+56+56 = 2176 compression function evaluations and 264

memory.

5.3 Semi-Free-Start Collision for 7 Rounds of Grøstl-256

The improved inbound phase using the SuperBox allows to extend the 6-round
semi-free-start collision attack on Grøstl-256 by one round. The truncated dif-
ferential path is given in Fig. 10. The sequence of active bytes in each round for
both, P and Q are given as follows:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 64 r5−→ 8 r6−→ 8 r7−→ 64

The details of the inbound phase of the attack are given in Section 4.1 and we
can get one pair with an average complexity of one. The solutions of the inbound
phase are propagated outwards as in the attack on 6 rounds (see Section 3.3).
We have one 8→ 1 MixBytes transition in round r2 with probability 2−56, and a
birthday match on 2·64 bits at the input and output with complexity 264. Hence,
the total complexity of the attack is 2120 compression function evaluations and
264 memory.

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Mi r
1

r
2

r
3

r
4

r
5

r
6

r
7

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

Hi-1 Hir
1

r
2

r
3

r
4

r
5

r
6

r
7

++

Fig. 10: The truncated differential path for the semi-free-start collision on 7 rounds of
the compression function of Grøstl-256.

Note that it seems to be difficult to extend this attack to 8 rounds. Adding
one more 8 → 1 transition in the outbound phase, increases the complexity of
the attack to be above 2128. If we extend the truncated differential path at the
beginning or end of the permutation, we need to match a full active state which
has a birthday complexity of at least 2256. By adding a third full active state in
the middle, the columns in the match-in-the-middle phase are not independent
anymore and we would need to match the differences of a full active state.

5.4 Semi-Free-Start Collision for 7 Rounds of Grøstl-512

The truncated differential path for the inbound phase of the rebound attack on
the Grøstl-512 compression function has 8 active bytes in round r3 and 16 active

362

bytes in round r5. The resulting 7-round truncated differential path is similar to
the Grøstl-256 case (see Fig. 11) and the sequence of active bytes is given as
follows:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 110 r5−→ 16 r6−→ 16 r7−→ 110

In the inbound phase, we connect the differences between the input of SubBytes
of round r4 and the output of SubBytes of round r5 by using the SuperBox again.
We get one solution with an average complexity of one.

The complexity of the attack is determined by the outbound phase. We have
one probabilistic 8 → 1 MixBytes transition in round r2, and do a birthday
match in 8 active bytes at the beginning and 16 active bytes at the end of
the path. Hence, the total complexity for the collision attack on 7 rounds is
256+32+64 = 2152 with memory requirements of 264 due to the inbound phase
and birthday match.

 y

y

 y

.. y

 y

 y

 y

 y

 y y y y

 y y y y

..
y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y

 y y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y y

 y

y

 y

.. y

 y

 y

 y

 y

 y y y y

 y y y y

..
y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y

 y y y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y y

Q
0

Q
1

Q
2

Q
3

0Mi0 r
1

r
2

r
3

r
4

Q
4

Q
5

Q
6

Q
7

r
4

r
5

r
6

r
7

P
0

P
1

P
2

P
3

Hi-1 r
1

r
2

r
3

r
4

P
4

P
5

P
6

P
7

Hir
4

r
5

r
6

r
7

+

+

Fig. 11: Truncated differential path for the semi-free-start collision on 7 rounds of
Grøstl-512.

Although we could construct an 8-round truncated differential path with the
following number of active bytes, we cannot find enough pairs for a collision
attack on the compression function:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 110 r5−→ 16 r6−→ 2 r7−→ 8 r8−→ 64

The path is constructed by carefully placing the positions of active bytes in round
r6 such that the two active bytes are shifted into the same column in round r7.
With three 8→ 1 MixBytes transitions and a birthday match on 2 ·64 bits at the
input and output, we would get a total complexity of 23·56+2·32 = 2232. Note that
we get only 23·64 = 2192 solutions for the inbound phase (see Section 4.3). After
the three probabilistic MixBytes transitions, we get only 2192−3·56 = 224 valid

363

pairs for each permutation. Contrary to the Grøstl-512 hash function, we cannot
use the freedom of a previous message block in the middle of the compression
function. Hence, this attack on 8-rounds of Grøstl-512 compression function
does not work.

6 Conclusion

In this work, we have presented a variety of new results on the SHA-3 candidate
Grøstl. We improve the rebound attack on the compression function of Grøstl-
256 by one round and provide the first results for Grøstl-512. Most importantly,
we give the first cryptanalytic results for the Grøstl hash function and achieve
4 out of 10 rounds for Grøstl-256, and 5 out of 14 rounds for Grøstl-512. This
allows to reason about the security margin of Grøstl and compare it with other
hash functions based on different building blocks. However, for many candidates,
only results on their underlying compression function, permutation or block ci-
pher are known at this point.

The given results allow for the first time a high-level comparison between
permutation based and block-cipher based hashing from a cryptanalytic per-
spective. The block-cipher based Whirlpool hash function and the permutation
based Grøstl hash function share a number of similarities: 8-bit S-boxes ar-
ranged in an 8x8 geometry and AES-like round transformations. The S-boxes
are different, but their exact specification does not make a difference with re-
spect to the attacks we consider here. Whereas the rebound attack can break
up to 8 rounds of the Whirlpool hash function [6,7] with complexity below 2128,
it can only break 4 rounds of the Grøstl hash function with complexity below
2128. The main reason is the fact that in most block-cipher designs round keys
are added at several places during the computation, also in the block cipher at
the core of Whirlpool. Used in an unkeyed setting, this mixing of inputs during
the computation gives an attacker easier access for manipulating internal state
variables, and in turn allows more efficient attacks.

The ideas presented in this paper are also applicable to other AES-based
hash functions like ECHO, SHAvite-3, LANE, and Cheetah. Additionally, future
work will include the application of the rebound idea to other hash function
constructions. This may require more sophisticated tools to obtain appropriate
(truncated) differential paths first, whereas for the so far considered AES-based
constructions, good differentials are easily obtainable “by hand”.

References

1. Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In:
Prisco, R.D., Yung, M. (eds.) Security and Cryptography for Networks 2006, Pro-
ceedings. LNCS, vol. 4116, pp. 78–94. Springer (2006)

2. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer (2006)

364

3. Fouque, P.A., Stern, J., Zimmer, S.: Cryptanalysis of Tweaked Versions of SMASH
and Reparation. In: Avanzi, R., Keliher, L., Sica, F. (eds.) Selected Areas in Cryp-
tography 2008, Proceedings. LNCS, vol. 5381, pp. 136–150. Springer (2009)

4. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008), available online at http://www.groestl.info.

5. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-
like permutations. Cryptology ePrint Archive, Report 2009/531 (2009), http://
eprint.iacr.org/

6. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Cryptanal-
ysis of the Whirlpool Hash Function, manuscript.

7. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009, Proceedings. LNCS, vol. 5912, pp. 126–143. Springer
(2009)

8. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block
Cipher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas
in Cryptography 2009, Proceedings. LNCS, vol. 5867, pp. 16–35. Springer (2009)

9. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) Fast
Software Encryption 2009, Proceedings. LNCS, vol. 5665, pp. 260–276. Springer
(2009)

10. National Institute of Standards and Technology: FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (November 2001)

11. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register Notice (November 2007), http://csrc.nist.gov

12. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: EUROCRYPT 2007. pp.
1–22. Springer (2007)

13. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.:
High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, Cube-
Hash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD,
and Skein. Cryptology ePrint Archive, Report 2009/510 (2009), http://eprint.
iacr.org/

14. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005, Proceedings. LNCS, vol. 3621, pp. 17–36. Springer (2005)

15. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R. (ed.) EUROCRYPT 2005, Proceedings. LNCS, vol. 3494, pp. 19–35. Springer
(2005)

365

http://www.groestl.info
http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov
http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Description of Grøstl
	The Grøstl Hash Function
	The Grøstl-256 Permutations
	The Grøstl-512 Permutations

	The Rebound Attack on Grøstl
	The Truncated Differential Path
	The Inbound Phase
	The Outbound Phase

	Extending the Rebound Attack
	Improving the Inbound Phase using SuperBoxes
	Rebound Attack on the Grøstl Hash Function
	Constructing Truncated Differential Paths for Grøstl-512

	Results of Rebound Attacks on Reduced Grøstl
	Collisions for 4 Rounds of Grøstl-256
	Collisions for 5 Rounds of Grøstl-512
	Semi-Free-Start Collision for 7 Rounds of Grøstl-256
	Semi-Free-Start Collision for 7 Rounds of Grøstl-512

	Conclusion

