
Rebound Distinguishers: Results on the Full
Whirlpool Compression Function

Mario Lamberger1, Florian Mendel1, Christian Rechberger1,
Vincent Rijmen1,2,3, and Martin Schläffer1

1 Institute for Applied Information Processing and Communications
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria.

2 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium.

3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
mario.lamberger@iaik.tugraz.at

Abstract. Whirlpool is a hash function based on a block cipher that
can be seen as a scaled up variant of the AES. The main difference is the
(compared to AES) extremely conservative key schedule. In this work,
we present a distinguishing attack on the full compression function of
Whirlpool. We obtain this result by improving the rebound attack on
reduced Whirlpool with two new techniques. First, the inbound phase of
the rebound attack is extended by up to two rounds using the available
degrees of freedom of the key schedule. This results in a near-collision
attack on 9.5 rounds of the compression function of Whirlpool with a
complexity of 2176 and negligible memory requirements. Second, we show
how to turn this near-collision attack into a distinguishing attack for the
full 10 round compression function of Whirlpool. This is the first result
on the full Whirlpool compression function.

Keywords: hash functions, cryptanalysis, near-collision, distinguisher

1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. Especially the collision attacks on the
MD4 family of hash functions (MD4, MD5, SHA-1) have weakened the security
assumptions of these commonly used hash functions [6, 7, 17, 24–26]. Still, most
of the existing cryptanalytic work has been published for this particular family
of hash functions. Therefore, the analysis of alternative hash functions is of great
interest. In this article, we will present a security analysis of the Whirlpool hash
function with respect to collision resistance.

Whirlpool is the only hash function standardized by ISO/IEC 10118-3:2004
(since 2000) that does not follow the MD4 design strategy. Furthermore, it has
been evaluated and approved by NESSIE [20]. Whirlpool is commonly considered
to be a conservative block-cipher based design with an extremely conservative
key schedule and follows the wide-trail design strategy [4, 5]. Since its proposal
in 2000, only a few results have been published.

Table 1. Summary of results for Whirlpool. Complexities are given in compression
function evaluations, a memory unit refers to a state (512 bits). The complexities in
brackets refer to modified attacks using a precomputed table taking 2128 time/memory
to set up.

target rounds
complexity

type source
runtime/memory

block cipher W 6 2120/2120 distinguisher Knudsen [11]

hash function 4.5 2120/27 collision
hash function 6.5 2128/27 near-collision Mendel et al.

compression function 5.5 2120/27 collision FSE 2009 [16]
compression function 7.5 2128/27 near-collision

hash function 5.5 2120+s/264−s collision Appendix A
hash function 7.5 2128+s/264−s near-collision Appendix A

compression function 7.5 2184/28 (2120/2128) collision Sect. 4
compression function 9.5 2176/28 (2112/2128) near-collision Sect. 4
compression function 10 2188/28 (2121/2128) distinguisher Sect. 5

Related Work. At FSE 2009, Mendel et al. proposed a new technique for
the analysis of hash functions: the rebound attack [16]. It can be applied to both
block cipher based and permutation based constructions. The idea of the rebound
attack is to divide an attack into two phases, an inbound and an outbound phase.
In the inbound phase, degrees of freedom are used, such that in the outbound
phase several rounds can be bypassed in both forward- and backwards direction.
This led to successful attacks on round-reduced Whirlpool for up to 7.5 (out of
10) rounds. The results are summarized in Table 1.

For the block cipher W that is implicitly used in the Whirlpool compression
function, Knudsen described an integral distinguisher for 6 out of 10 rounds [11].
Furthermore, it is assumed that this property may extend also to 7 rounds. Note
that in [12] similar techniques were used to obtain known-key distinguishers for
7-rounds of the AES.

Our Contribution. The main contribution of this paper is a distinguishing
attack on the full compression function of Whirlpool which is achieved by im-
proving upon the work of Mendel et al. in [16] in several ways.

We start with a description of the hash function Whirlpool. Then, in Sect. 3,
we give an overview of the rebound attack and show how it is applied to reduced
versions of Whirlpool. In Sect. 4, we describe our improvement of the rebound
attack on Whirlpool in detail. This technique enables us to add two rounds in
the inbound phase of the attack and thus gives a collision and near-collision
attack on the Whirlpool compression function reduced to 7.5 and 9.5 rounds,
respectively. Based on this, we describe in Sect. 5 a new generic attack and show
how to distinguish the full (all 10 rounds) compression function of Whirlpool
from a random function by turning the near-collision attack for 9.5 rounds into
a distinguishing attack for 10 rounds. To the best of our knowledge this is the

2

first result on the full Whirlpool compression function. Table 1 summarizes the
previous results on Whirlpool as well as the contributions of this paper.

2 Description of Whirlpool

Whirlpool is a cryptographic hash function designed by Barreto and Rijmen in
2000 [1]. It is an iterative hash function based on the Merkle-Damg̊ard design
principle (cf. [18]). It processes 512-bit message blocks and produces a 512-bit
hash value. If the message length is not a multiple of 512, an unambiguous
padding method is applied. For the description of the padding method we refer
to [1]. Let M = M1‖M2‖ · · · ‖Mt be a t-block message (after padding). The hash
value h = H(M) is computed as follows:

H0 = IV (1)
Hj = W (Hj−1,Mj)⊕Hj−1 ⊕Mj for 0 < j ≤ t (2)
h = Ht (3)

where IV is a predefined initial value and W is a 512 bit block cipher used in
the Miyaguchi-Preneel mode [18]. The block cipher W used by Whirlpool is very
similar to the Advanced Encryption Standard (AES) [19].

The state update transformation and the key schedule update an 8× 8 state
S and K of 64 bytes in 10 rounds. In one round, the state is updated by the
round transformation ri as follows:

ri ≡ AK ◦MR ◦ SC ◦ SB.

The round transformations are briefly described here:

– the non-linear layer SubBytes (SB) applies an S-Box to each byte of the state
independently.

– the cyclical permutation ShiftColumns (SC) rotates the bytes of column j
downwards by j positions.

– the linear diffusion layer MixRows (MR) is a right-multiplication by the 8×8
circulant MDS matrix cir(1, 1, 4, 1, 8, 5, 2, 9).

– the key addition AddRoundKey (AK) adds the round key Ki to the 8×8 state,
and AddConstant (AC) adds the round constant Ci to the 8× 8 state of the
key schedule.

After the last round of the state update transformation, the initial value or
previous chaining value Hj−1, the message block Mj , and the output value of
the last round are combined (xored), resulting in the output of one iteration. A
detailed description of the hash function is given in [1].

We denote the resulting state of round transformation ri by Si and the
intermediate states after SubBytes by SSB

i , after ShiftColumns by SSC
i and af-

ter MixRows by SMR
i . The initial state prior to the first round is denoted by

S0 = Mj ⊕K0. The same notation is used for the key schedule with round keys
Ki with K0 = Hj−1.

3

3 The Rebound Attack

The rebound attack is a new tool for the cryptanalysis of hash functions and
was published by Mendel et al. in [16]. It is a differential attack. The main
idea is to use the available degrees of freedom in a collision attack to efficiently
fulfill the low probability parts in the middle of a differential trail. The rebound
attack consists of an inbound phase with a meet-in-the-middle part in order to
exploit the available degrees of freedom, and a subsequent probabilistic outbound
phase. AES based hash functions are a natural target for this attack, since their
construction principle allows a simple application of the idea.

3.1 Basic Attack Strategy

In the rebound attack, the compression function, internal block cipher or permu-
tation of a hash function is split into three sub-parts. Let W be a block cipher,
then W = Wfw ◦Win ◦Wbw.

Wbw Win Wfw

inbound
outbound outbound

Fig. 1. A schematic view of the rebound attack. The attack consists of an inbound and
two outbound phases.

The rebound attack can be described by two phases (see Fig. 1):

– Inbound phase: Is a meet-in-the-middle phase in Win, which is aided by
the degrees of freedom that are available to a hash function cryptanalyst.
This very efficient combination of meet-in-the-middle techniques with the
exploitation of available degrees of freedom is called the match-in-the-
middle approach.

– Outbound phase: In the second phase, the matches of the inbound phase
are computed in both forward- and backward direction through Wfw and
Wbw to obtain desired collisions or near-collisions. If the differential trail
through Wfw and Wbw has a low probability, one has to repeat the inbound
phase to obtain more starting points for the outbound phase.

3.2 Preliminaries for the Rebound Attack on Whirlpool

In the following, we want to briefly summarize some well known facts that will
be frequently used in the subsequent sections.

4

– Truncated differentials: Knudsen [10] proposed truncated differentials as a
tool in block cipher cryptanalysis. In a standard differential attack (cf. [2]),
the full difference between two inputs/outputs is considered whereas in the
case of truncated differentials, the differences is only partially determined,
i.e. for every byte, we only check if there is a difference or not. A byte having
a non-zero difference is called active.

– Difference Propagation in MixRows: Since the MixRows operation is a linear
transformation, standard differences propagate through MixRows in a deter-
ministic way whereas truncated differences behave in a probabilistic way.
The MDS property of the MixRows transformation ensures that the sum of
the number of active input and output bytes is at least 9 (cf. [1]). In general,
the probability of any x→ y transition with 1 ≤ x, y ≤ 8 satisfying x+y ≥ 9
is approximately 2(y−8)·8. For a detailed description of the propagation of
truncated differences in MixRows we refer to [16], see also [21].

– Differential Properties of SubBytes: Let a, b ∈ {0, 1}8. For the Whirlpool
S-box, we are interested in the number of solutions to the equation

S(x)⊕ S(x⊕ a) = b. (4)

Exhaustively counting over all 216 differentials shows that the number of
solutions to (4) can only be 0, 2, 4, 6, 8 and 256, which occur with frequency
39655, 20018, 5043, 740, 79 and 1, respectively. The task to return all solu-
tions x to (4) for a given differential (a, b) is best solved by setting up a
precomputed table of size 256× 256 which stores the solutions (if there are
any) for each (a, b).
However, it is easy to see that for any permutation S (to be more precise, for
any injective map) the expected number of solutions to (4) is always 1. We
get that 2−16

∑
a

∑
b #{x |S(x⊕ a)⊕ S(x) = b} = 2−16

∑
a 28 = 1, because

for a fixed a, every solution x belongs to a unique b. Since the inputs to all
the S-boxes are independent, the same reasoning is valid for the full SubBytes
transformation.

3.3 Application to Round-Reduced Whirlpool

In this section, we will briefly describe the application of the rebound attack
to the hash function Whirlpool. A detailed description of the attack is given
in [16]. For a good understanding of our results, it is recommended to study
these previous results on Whirlpool very carefully.

The rebound attack on Whirlpool is a differential attack which uses a differ-
ential trail with the minimum number of active S-boxes according to the wide
trail design strategy. The core of the rebound attack on Whirlpool is a 4 round
differential trail, where the fully active state is placed in the middle:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 1

In the rebound attack, one first splits the block cipher W into three sub-
ciphers W = Wfw ◦Win ◦Wbw, such that the most expensive part of the dif-
ferential trail is covered by the inbound phase Win. In the inbound phase, the

5

available degrees of freedom (in terms of actual values of the state) are used to
guarantee that the differential trail in Win holds. The differential trail in the out-
bound phase (Wfw, Wbw) is supposed to have a relatively high probability. While
standard XOR differences are used in the inbound phase, truncated differentials
are used in the outbound phase of the attack.

In the following, we briefly describe the inbound and outbound phase of the
rebound attack on 4 rounds of Whirlpool. For a more detailed description, we
refer to the original paper [16].

S0 S1 SSC
2 S2 SSB

2 SMR
3 S3 S4

AK
MR
SC
SB

r1

K1

SC
SB

r2
AK
MR

r2

K2

SB
r3

MR
SC

r3

AK
r3

K3

AK
MR
SC
SB

r4

K4

inbound phaseoutbound phase outbound phase

Fig. 2. A schematic view of the rebound attack on 4 rounds of Whirlpool with round
key inputs. Black state bytes are active.

Inbound Phase. In the first step of the inbound phase, we choose a random
difference with 8 active bytes at the input of MixRows of round r2 (SSC

2). Note
that we need an active byte in each row of the state (see Fig. 2) to get a fully
active state after the MixRows transformation. Since AddRoundKey does not
change the difference, we get a fully active state at the input of SubBytes of
round r3 (S2). Then, we start with another difference in 8 active bytes at the
output of MixRows of round r3 (SMR

3) and propagate backwards. Again, since
we have an active byte in each row, we get a fully active state at the output of
SubBytes of round r3.

In the second step of the inbound phase, the match-in-the-middle step, we
look for a matching input/output difference of the SubBytes layer of round r3.
This is done as described in Sect. 3.2 with a precomputed 256 × 256 lookup
table. Note that we can repeat the inbound phase at most about 2128 times. As
indicated in Sect. 3.2, we expect one solution per trial, that is, we can produce
at most 2128 actual values that follow the differential trail in the inbound phase.

Outbound Phase. In contrast to the inbound phase, we use truncated dif-
ferentials in the outbound phase of the attack. By propagating the matching
differences and state values through the next SubBytes layer outwards, we get a
truncated differential in 8 active bytes in both backward and forward direction.
These truncated differentials need to propagate from 8 to 1 active byte through
the MixRows transformation, both in the backward and forward direction (see
Fig. 2). The propagation of truncated differentials through the MixRows trans-
formation can be modelled in a probabilistic way, see Sect. 3.2. Since we need
to fulfill one 8→ 1 transitions in the backward and forward direction, the prob-
ability of the outbound phase is 2−2·56 = 2−112. In other words, we have to

6

repeat the inbound phase about 2112 times to generate 2112 starting points for
the outbound phase of the attack.

3.4 Previous Results on Round-Reduced Whirlpool

Extending the 4 round trail in both, the inbound and outbound phase, leads
to attacks on round reduced Whirlpool for up to 7.5 (out of 10) rounds (where
0.5 rounds consist only of SubBytes and ShiftColumns). To be more precise, by
extending the outbound phase of the attack by 0.5 and 2.5 rounds, one can con-
struct a collision and near-collision for the Whirlpool hash function reduced to
4.5 and 6.5 rounds, respectively. The collision attack has a complexity of about
2120 and the near-collision attack has a complexity of about 2128. Furthermore,
by additionally extending the inbound phase of the attack by 1 round, one can
find a collision and a near-collision for the compression function of Whirlpool
reduced to 5.5 and 7.5 rounds with a complexity of 2120 and 2128, respectively.
Note that adding this round in the inbound phase is possible, since in a com-
pression function attack, one can use the degrees of freedom of the key schedule
(chaining value) to guarantee that the trail in the inbound phase holds. All re-
sults are summarized in Table 1 and for more details on these results we refer
to [16].

4 Improved Rebound Attack on the Whirlpool
Compression Function

In this section, we improve the inbound phase of the original rebound attack on
Whirlpool. By using a new differential trail and extensively using the available
degrees of freedom of the key schedule, we can add 2 additional rounds to the
inbound phase of the attacks. The basic idea is to have two instead of one inbound
phase (match-in-the-middle step) and connect them using the available degrees
of freedom from the key schedule. The outbound phase of the attacks is identical
as in the previous attacks on 5.5 and 7.5 rounds for the compression function of
Whirlpool. As a result, we obtain a collision and a near-collision attack for the
compression function of Whirlpool reduced 7.5 and 9.5 rounds, respectively.

4.1 Inbound Phase

In this section, we describe the improved inbound phase of the attack in detail.
We use the following sequence of active bytes:

8 r1−→ 64 r2−→ 8 r3−→ 8 r4−→ 64 r5−→ 8

In order to find inputs following the differential of the inbound phase, we
split it into two parts. In the first part, we apply the match-in-the-middle step
with active bytes 8 → 64 → 8 twice in rounds 1-2 and 4-5. In the second part,
we need to connect the resulting 8 active bytes and 64 (byte) values of the state
between round 2 and 4 using the degrees of freedom we have in the choice of the
round key values (see Fig. 3).

7

SSC
1 S1 SSB

2 S2 SSB
4 S4 SSB

5 SMR
5

AK
MR

r1

SB
r2 AK

MR
SC

r2 SB
AK
MR
SC
SB

r3, r4

AK
MR
SC

r4

SB
r5

MR
SC

r5

K1 K2 K3 K4

inbound part 1 inbound part 1
inbound part 2

Fig. 3. The inbound phase of the attack.

Inbound Part 1. In this part of the inbound phase, we apply the match-in-the-
middle step twice for rounds 1-2 and 4-5 (see Fig. 3), which can be summarized
as follows:

1. Precomputation: For the S-box, compute a 256 × 256 lookup table as de-
scribed in Sect. 3.2.

2. Match-in-the-middle (rounds 1-2):
(a) Start with 8 active bytes at the output of AddRoundKey in round r2 (S2)

and propagate backward to the output of SubBytes in round r2 (SSB
2).

(b) Start with 8 active bytes at the input of MixRows in round r1 (SSC
1)

and propagate forward to the input of SubBytes in round r2 (S1). Note
that we can compute forward and solve the following step for each row
independently.

(c) Connect the input and output of the S-boxes of round r2 by choosing
the actual values of the state S1, respectively SSB

2 , using the lookup
table generated in the precomputation step. After repeating step (b)
for each row about 28 times we expect to find a match for the 8 S-
boxes and thus 28 actual values (see Sect. 3.2). Since we do this for all
rows independently, we get about 264 actual values for the full state S1,
respectively SSB

2 , such that the trail holds.
3. Match-in-the-middle (rounds 4-5): Do the same as in Step 2.

Hence, we get 264 candidates for SSB
2 and 264 candidates for S4 after the first

part of the inbound phase of the attack with a complexity of about 29 round
transformations.

Inbound Part 2. In the second part of the inbound phase, we have to connect
the 8 active bytes (64 (bit) conditions) as well as the actual values (512 (bit)
conditions) of SSB

2 and S4 by choosing the subkeys K2, K3 and K4 accordingly.
Therefore, we have to solve the following equation:

MR(SC(SB(MR(SC(SB(MR(SC(SSB
2))⊕K2)))⊕K3)))⊕K4 = S4 (5)

with
K3 = MR(SC(SB(K2)))⊕ C3

K4 = MR(SC(SB(K3)))⊕ C4.
(6)

Since we have 264 candidates for SSB
2 , 264 candidates for S4 and 2512 candidates

for the 3 subkeys K2, K3, K4 (because of (6)), we expect to find 264 solutions.

8

Since SMR
2 = MR(SC(SSB

2)), we can rewrite the above equation as follows:

MR(SC(SB(MR(SC(SB(SMR
2 ⊕K2)))⊕K3)))⊕K4 = S4 (7)

Note that one can always change the order of SC and SB in the Whirlpool
block cipher without affecting the output of one round. In order to make the
subsequent description of the attack easier, we do this here and get the following
equation.

MR(SC(SB(MR(SB(SC(SMR
2 ⊕K2)))⊕K3)))⊕K4 = S4 (8)

Furthermore, MR and SC are linear transformations and hence we can rewrite
the above equation as follows:

SB(MR(SB(S∗2 ⊕K∗2))⊕K3)⊕KSB
4 = X (9)

with S∗2 = SC(SMR
2), K∗2 = SC(K2), KSB

4 = SB(K3), X = SC−1(MR−1(S4⊕C4)).
In the following, this equivalent description is used to connect the values and

differences of the two states SMR
2 and S4.

S∗
2 S2 SSC

3 SMR
3 S3 SSB

4 X

K∗
2 K2 KSC

3 KMR
3 K3 KSB

4 KSB
4

SB
r3

MR
r3

SB
r4

SB
r3

MR
r3

SB
r4

K∗
2

C3

K3 KSB
4

Fig. 4. The second part of the inbound phase. Black state bytes are active.

Remember that the two 8-byte differences of S∗2 and X have already been
fixed due to the previous steps. Furthermore, we can choose from 264 values for
each of the states S∗2 and X. Now, we use equation (9) to determine the subkey
K∗2 such that we get a solution for the inbound phase of the attack. Note that
we can solve (9) for each row of the equation independently (see Fig. 4). It can
be summarized as follows.

1. Compute the 8-byte difference and the 264 values of the state S∗2 from SSB
2 ,

and compute the 8-byte difference and the 264 values of the state X from
S4. Note that we can compute and store the values of S∗2 and X row-by-row
and independently. Hence, both the complexity and memory requirements
for this step are 28 instead of 264.

2. Repeat the following steps for all 264 values of the first row of S2 to get 264

matches for S∗2 to S4:
(a) For the chosen value of the first row of S2, forward compute the differ-

ences and values to the first row of S3.
(b) Choose the first row of the key K3 such that the differential of the S-box

between S3 and SSB
4 holds.

9

(c) Compute the first row of K∗2 , S∗2 , KSB
4 and X. Since we have 264 values

for the first row of S∗2 and 264 values for the first row of X, we expect to
find a match on both sides. In other words, we have now connected the
values and differences of the first row.

(d) Next, we connect the values of rows 2-8 independently by a simple brute-
force search over all 264 corresponding key values of K∗2 . Since we have
to connect 64 bit values and we test 264 key values we expect to always
find a solution.

In total, we get 264 matches connecting state S∗2 to state X with a complexity
of 2128 and memory requirements of 28. In other words, with the values of S∗2 ,
X and the corresponding key K∗2 , we get 264 starting points for the outbound
phase of the attack. Hence, the average complexity to find one starting point for
the outbound phase is 264. It is important to note that one can construct a total
of 2192 starting points in the inbound phase to be used in the outbound phase
of the attack.

Note that step 2 (d) can be implemented using a precomputed lookup table
of size 2128. In this lookup table each row of the key K2 (64 bits) is saved for the
corresponding two rows of S∗2 and X (64 bits each). Using this lookup table, we
can find one starting point for the outbound phase with an average complexity
of 1. However, the complexity to generate this lookup table is 2128.

4.2 Outbound Phase

In the outbound phase of the attack, we further extend the differential path
backward and forward. By propagating the matching differences and state values
through the next SubBytes layer, we get a truncated differential in 8 active bytes
for each direction. These truncated differentials need to follow a specific active
byte pattern to result in a collision on 7.5 rounds and a near-collision on 9.5
rounds, respectively. In the following, we will describe the outbound phase for
the collision and near-collision attack in detail.

Collision for 7.5 Rounds. By adding 1 round in the beginning and 1.5 rounds
at the end of the trail, we get a collision for 7.5 rounds for the compression
function of Whirlpool. In the attack, we use the following sequence of active
bytes:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 1 r7.5−−→ 1

As described in Sect. 3.2, the propagation of truncated differentials through
the MixRows transformation is modelled in a probabilistic way. For the differ-
ential trail to hold, we need that the truncated differentials in the outbound
phase propagate from 8 to 1 active byte through the MixRows transformation,
both in the backward and forward direction (see Fig. 5). Since the transition
from 8 active bytes to 1 active byte through the MixRows transformation has a
probability of about 2−56, the probability of this part of the outbound phase is

10

Mt S0 S1 S6 S7 SSC
8 Ht

AK

K0

AK
MR
SC
SB

r1

K1

AK
MR
SC
SB

r7

K7

SC
SB

r8

inbound phase

round 2-6

outbound phase outbound phase

Fig. 5. Differential trail for collision attack on 7.5 rounds.

2−2·56 = 2−112. Furthermore, to construct a collision at the output (after the
feed-forward), the exact value of the input and output difference has to match.
Since only one byte is active (see Fig. 5), this can be fulfilled with a probability
of 2−8. Hence, the probability of the outbound phase is 2−112 · 2−8 = 2−120. In
other, words, we have to generate 2120 starting points (for the outbound phase)
in the inbound phase of the attack to find a collision for the compression function
of Whirlpool reduced to 7.5 rounds.

Since we can find one starting point with an average complexity of about
264 and memory requirements of 28, we can find a collision with a complexity
of about 2120+64 = 2184. The complexity of the attack can be further improved
on the cost of higher memory requirements. By using a lookup table with 2128

entries (generated in a precomputation step), we can find one starting point for
the inbound phase with an average complexity of 1. In other words, we can find
a collision for the compression function reduced to 7.5 rounds with a complexity
of about 2120. However, the precomputation step (constructing the lookup table)
has a complexity of about 2128.

Near-Collision for 9.5 Rounds. The collision attack on 7.5 rounds for the
compression function can be further extended by adding one round at the begin-
ning and one round at the end of the trail in the outbound phase. The result is
a near-collision attack on 9.5 rounds for the compression function of Whirlpool
with the following sequence of active bytes:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64 r7−→ 8 r8−→ 1 r9−→ 8 r9.5−−→ 8

Since the 1-byte difference at the beginning and end of the 7.5 round trail will
always result in 8 active bytes after one MixRows transformation (see Sect. 3.2),
we can go backward 1 round and forward 1 round with no additional cost.
Using the feed-forward, the position of two active S-boxes match and cancel
each other with a probability of 2−16. Hence, we get a collision in 50 and 52
bytes for the compression function of Whirlpool with a complexity of about 2176

and 2176+16 = 2192, respectively. With a precomputation step with complexity
of 2128 and similar memory requirement, one can find a near-collision for the
compression function of Whirlpool with a complexity of about 2112 (collision in
50 bytes) and 2128 (collision in 52 bytes), respectively.

11

Mt S0 S1 S2 S7 S8 S9 SSC
10 Ht

AK

K0

AK
MR
SC
SB

r1

K1

AK
MR
SC
SB

r2

K2

AK
MR
SC
SB

r8

K8

AK
MR
SC
SB

r9

K9

SC
SB

r10

inbound phase

round 3-7

outbound phase outbound phase

Fig. 6. In the attack on 9.5 rounds we extend the trail one more round at the beginning
and at the end of the outbound phase to get a near-collision of Whirlpool.

5 A Subspace Distinguisher for 10 Rounds

In this section, we present the first cryptanalytic result on the full Whirlpool
compression function. The method for extending the previous result on 9.5
rounds is extended to full 10 rounds of the compression function by defining
a different attack scenario. Instead of aiming for a near-collision, we are in-
terested in distinguishing the Whirlpool compression function from a random
function. For this, we will introduce a new kind of distinguishing attack, a so
called subspace distinguisher. In the following, F2 = GF (2) always denotes the
finite field of order 2.

For the subspace distinguishing attack, we consider the following problem:

Problem 1 Given a function f mapping to FN2 , try to find t input pairs such
that the corresponding output differences belong to a vector space of dimension
at most n for some n ≤ N .

Remark. We define Problem 1 in this generic way in order to make it more
generally applicable. This will be shown in the extended version of this paper.

5.1 Solving Problem 1 for the Whirlpool Compression Function

In this section, we show how the compression function attack described in Sect. 4
can be used to distinguish the full Whirlpool compression function from a ran-
dom function.

Obviously, the difference between two Whirlpool states can be seen as a vector
in the vector space of dimension N = 512 over F2. The crucial observation is
that the attack of Sect. 4 can be interpreted as an algorithm that can find t
difference vectors in F512

2 (output differences of the compression function) that
form a vector space of dimension n ≤ 128.

To see this, observe that by extending the differential trail from 9.5 to 10
rounds, the 8 active bytes in SSC

10 will always result in a fully active state S10

due to the properties of the MixRows transformation. Thus the near-collision is
destroyed. However, if we look again at Fig. 6, the differences in Mt and the
differences in SSC

10 can be seen as (difference) vectors belonging to subspaces of
F512

2 of dimension at most 64.
Even though after the application of MixRows and AddRoundKey the state

S10 is fully active in terms of truncated differentials, the differences in S10 still
belong to a subspace of F512

2 of dimension at most 64 due to the properties of

12

MixRows. Therefore, after the feed-forward, we can conclude that the differences
at the output of the compression function form a subspace of F512

2 of dimension
n ≤ 128.

Hence, we can use the attack of Sect. 4 to find t difference vectors forming a
vector space of dimension n ≤ 128 with a complexity of t · 2176 or t · 2112 using
a precomputation step with complexity 2128. Note that t ≤ 2192−112 = 280 due
to the remaining degrees of freedom in the inbound phase of the attack.

Now the main question is for which values of t our attack is more efficient
than a generic attack. In other words, how do we have to choose t such that we
can distinguish the compression function of Whirlpool from a random function.
Therefore, we first have to bound the complexity of the generic attack. This is
described in the next section.

5.2 Solving Problem 1 for a Random Function

Remarks on the Security Model. In order to discuss generic attack sce-
narios, we will have to choose a security model. We will adopt the black box
model introduced by Shannon [23]. In this model, a block cipher can be seen
as a family of functions parameterized by the secret key k ∈ K, that is, E :
{0, 1}|k| × {0, 1}N 7→ {0, 1}N , where for each k ∈ K, Ek is seen as a uniformly
chosen random permutation on {0, 1}N .

In [3] it was shown, that an ideal block cipher based hash function in the
Miyaguchi-Preneel mode is collision resistant and non-invertible. Based on this,
we model our compression function f as black box oracle to which only forward
queries are admissible. We also want to note that in all of the following, when
we are talking about complexity, we are talking about query complexity. Note
that the practical complexity is always greater or equal to the query complexity.

The Generic Approach. In this generic approach the only property used
about f is the fact that the outputs of f are contained in the vector space FN2 .

Let us now assume that an adversary is making Q queries to the function f .
Assuming that Q� 2N/2, we thus get K =

(
Q
2

)
differences (∈ FN2) coming from

these Q queries. For given n and t� n, we now want to calculate the probability
that among these K difference vectors, we have t vectors that span a space of
dimension less or equal to n.

We will need the following fact about matrices over finite fields. Let E(t,N, d)
denote the number of t ×N matrices over F2 that have rank equal to d. Then,
it is well known (cf. [9] or [13]) that

E(t,N, d) =
d−1∏
i=0

(2N − 2i) ·
(
t

d

)
2

=
d−1∏
i=0

(2N − 2i) · (2t − 2i)
2d − 2i

, (10)

where
(
t
d

)
2

denotes the q-binomial coefficient with q = 2.

13

Proposition 1 Let n, t,N ∈ N be given such that t � N > n. We assume a
set of K vectors chosen uniformly at random from FN2 . Let Pr(K, t,N, n) denote
the probability that t of these K vectors span a space of dimension not larger
than n. Then, we have

Pr(K, t,N, n) ≤
(
K

t

)
2−t·N

n∑
d=1

E(t,N, d) (11)

≤ 1√
2πt

(
Ke

t

)t
2−(N−n)(t−n)−(n−1). (12)

Proof. Based on the definition of E(t,N, d), it is easy to see that (11) is an upper
bound for Pr(K, t,N, n).

Computing the second bound consists of two steps. Bounding the binomial
coefficient and bounding the rest. We get

2−t·N
n∑
d=1

E(t,N, d) ≤ 2−t·N · 2 · E(t,N, n) (13)

≤ 2−t·N+1

(
(2t − 2n−1) · (2N − 2n−1)

2n − 2n−1

)n
(14)

≤ 2−t·N+1
(

2n−1 · 2t−(n−1) · 2N−(n−1)
)n

(15)

= 2−(t−n)(N−n)−(n−1). (16)

These inequalities are based on two facts. First, it is easy to show that for
t � N > n, we have E(t,N, n) ≤∑n

d=1E(t,N, d) ≤ 2 · E(t,N, n). This can be
proven by using induction over n and elementary properties of the q-binomial
coefficient. Second, (14) follows from the fact that the function defined by f(x) =
(2t − x)(2N − x)/(2n − x) is strictly increasing on the interval x ∈ [0, 2n−1].

For the binomial coefficient
(
K
t

)
we combine the simple estimate

(
K
t

)
≤ Kt/t!

with the following inequality based on Stirling’s formula [22]:

√
2πtt+

1
2 e
−t+ 1

12t+1 < t! <
√

2πtt+
1
2 e−t+

1
12t (17)

From this we get
(
K
t

)
≤ 1√

2πt

(
K·e
t

)t
and with (16), this proves the proposition.

�

As a corollary, we can give a lower bound for the number of random vectors
needed to fulfill the conditions of the proposition with a certain probability.

Corollary 1 For a given probability p and given N,n, t as in Proposition 1, the
number K of random vectors needed to contain t vectors spanning a space of
dimension not larger than n with a probability p is lower bounded by

K ≥ 1
e

(
p
√

2πt
) 1
t · t · 2

(N−n)(t−n)+(n−1)
t . (18)

14

and the number of queries Q to f needed to produce t vectors spanning a space
of dimension not larger than n with a probability p is lower bounded by

Q ≥
√

2
e

(
p
√

2πt
) 1

2t ·
√
t · 2

(N−n)(t−n)+(n−1)
2t . (19)

Proof. Equation (18) follows immediately from (12) and (19) follows from setting
K =

(
Q
2

)
= Q(Q− 1)/2 in (18). �

5.3 Complexity of the Distinguishing Attack

Table 2 shows the complexities of the generic approach and our dedicated ap-
proach for several values of t. As can be seen in the table, one can distinguish the
full Whirlpool compression function from random with a complexity of about
2188 with t = 212 (or 2121 with t = 29 using a precomputation table). In other
words, when performing 2188 queries to a random function (19) shows that the
probability for solving Problem 1 for t = 212 is� 1. To the best of our knowledge
this is the first result on the full Whirlpool compression function.

Table 2. Values for t, Q (query complexity), C (complexity of our attack), and
Cp (complexity of our attack with precomputation) for p = 1, N = 512, n = 128

log2(t) log2(Q) log2(C) log2(Cp) log2(t) log2(Q) log2(C) log2(Cp)

9 148.41 185 121 13 195.29 189 125
10 172.84 186 122 14 197.28 190 126
11 185.31 187 123 15 198.53 191 127
12 191.80 188 124 16 199.40 192 128

6 Conclusion

In this paper, we have proposed a new kind of distinguishing attack for cryptanal-
ysis of hash functions. We have successfully attacked the Whirlpool compression
function. To the best of our knowledge this is the first attack on full Whirlpool.

We have obtained this result by improving the rebound attack on reduced
Whirlpool. First, the inbound phase of the rebound attack was extended by up
to two rounds using the available degrees of freedom from the key schedule. This
resulted in a near-collision attack on 9.5 rounds of the compression function
of Whirlpool. Second, we have shown how to turn this rebound near-collision
attack into a distinguishing attack for the full 10 round compression function of
Whirlpool.

The idea seems applicable to a wider range of hash function constructions.
In particular, the attacks described in this paper can be applied to the hash

15

function Maelstrom [8] in a straight forward manner because of the similarity to
Whirlpool (see also [16]). Several SHA-3 candidates are a natural target for this
new kind of attack, see for instance [14, 15]. Furthermore, subspace distinguishers
can be applied to block ciphers as well. This will be discussed in an extended
version of this paper.

Acknowledgements

The authors wish to thank the anonymous referees for useful comments and
discussions. The work in this paper has been supported in part by the European
Commission under contract ICT-2007-216646 (ECRYPT II) and in part by the
IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy).

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function. Submitted
to NESSIE, September 2000, revised May 2003. Available online at http://www.

larc.usp.br/~pbarreto/WhirlpoolPage.html (2008/12/11)
2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:

Menezes, A., Vanstone, S.A. (eds.) CRYPTO. LNCS, vol. 537, pp. 2–21. Springer
(1990)

3. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO.
LNCS, vol. 2442, pp. 320–335. Springer (2002)

4. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) IMA
Int. Conf. LNCS, vol. 2260, pp. 222–238. Springer (2001)

5. Daemen, J., Rijmen, V.: The Design of Rijndael. Information Security and Cryp-
tography, Springer (2002), iSBN 3-540-42580-2

6. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On
the Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.)
Selected Areas in Cryptography. LNCS, vol. 4876, pp. 56–73. Springer (2007)

7. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. LNCS, vol. 4284, pp.
1–20. Springer (2006)

8. Filho, D.G., Barreto, P.S., Rijmen, V.: The Maelstrom-0 hash function. In: SBSeg
2006 (2006)

9. Fisher, S.D.: Classroom Notes: Matrices over a Finite Field. Amer. Math. Monthly
73(6), 639–641 (1966)

10. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE. LNCS, vol. 1008, pp. 196–211. Springer (1994)

11. Knudsen, L.R.: Non-random properties of reduced-round Whirlpool. NESSIE pub-
lic report, NES/DOC/UIB/WP5/017/1 (2002)

12. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT. LNCS, vol. 4833, pp. 315–324. Springer (2007)

13. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Cambridge University Press, Cambridge, second edn. (1997),
with a foreword by P. M. Cohn

16

14. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Re-
bound Attack on the Full LANE Compression Function. In: Matsui, M. (ed.) ASI-
ACRYPT. LNCS, Springer (2009), to appear

15. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block
Cipher. In: Jacobson, Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas
in Cryptography. LNCS, Springer (2009), to appear

16. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE.
LNCS, vol. 5665, pp. 260–276. Springer (2009)

17. Mendel, F., Rijmen, V.: Cryptanalysis of the Tiger Hash Function. In: Kurosawa,
K. (ed.) ASIACRYPT. LNCS, vol. 4833, pp. 536–550. Springer (2007)

18. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1997), available online at http://www.cacr.math.uwaterloo.

ca/hac/

19. National Institute of Standards and Technology: FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (November 2001)

20. NESSIE: New European Schemes for Signatures, Integrity, and Encryption. IST-
1999-12324, available online at http://cryptonessie.org/

21. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT. LNCS,
vol. 4833, pp. 551–567. Springer (2007)

22. Robbins, H.: A remark on Stirling’s formula. Amer. Math. Monthly 62, 26–29
(1955)

23. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell Systems Technical
Journal 28, 656–715 (1949)

24. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT. LNCS, vol. 3494, pp. 1–
18. Springer (2005)

25. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. LNCS, vol. 3621, pp. 17–36. Springer (2005)

26. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT. LNCS, vol. 3494, pp. 19–35. Springer (2005)

A Attacks on the Hash Function

In this section, we present a collision and near-collision for the Whirlpool hash
function. The attacks are a straight forward extension of the collision and near-
collision attack on 4.5 and 6.5 rounds of Whirlpool presented in [16]. By adding
one round in the inbound phase we can find a collision and a near-collision for
Whirlpool reduced to 5.5 and 7.5 rounds, respectively. The core of the attack is a
5 round differential trail, where two fully active states are placed in the middle:

1 r1−→ 8 r2−→ 64 r3−→ 64 r4−→ 8 r5−→ 1

Since the outbound phase of the attacks is identical to the previous attacks (see
Sect. 4), we only discuss the inbound phase of the attack here (see Fig. 7).
It can be summarized as follows.

17

SSC
2 S2 SSB

3 S3 SSB
4 SMR

4

AK
MR

r2

SB
r3 AK

MR
SC

r3

SB
r4

MR
SC

r4

K2 K3

Fig. 7. The inbound phase of the collision attack and near-collision attack on the hash
function.

1. Precomputation: For the S-box, compute a 256 × 256 lookup table as de-
scribed in Sect. 3.2.

2. Start with 8 active bytes (differences) at the input of MixRows in round r2
(SSC

2) and propagate forward to the input of SubBytes in round r3 (S2).
3. Start with 8 active bytes at the output of MixRows in round r4 (SMR

4) and
propagate backward to the output of SubBytes in round r4 (SSB

4).
4. Next we have to connect the states S2 and SSB

4 such that the differential trail
holds. In other words, we have to find the actual values for S2 such that:

SB(MR(SC(SB(S2)))⊕K3)⊕ SB(MR(SC(SB(S2 ⊕∆1)))⊕K3) = ∆2

where ∆1 denotes the active bytes (differences) in S2 and ∆2 denotes the
active bytes (differences) in SSB

4 . In the following, we will show how this
equation can be solved with a complexity of about 264 by solving the equation
for sets of 8 bytes independently. It can be summarized as follows.
(a) For all 264 values of S2[0, 0], S2[1, 7], . . . , S2[7, 1] compute the first row of

SSB
4 and check if the above equation holds. Note that due to ShiftColumns,

these bytes are shifted to the first row of SSC
3 and MixRows works on each

row independently. In other words, we get 264 candidates for each row
of SSB

4 . Hence, after testing all 264 candidates for the first row of SSB
4 we

expect to find a match for the first row of ∆2.
(b) Do the same for the corresponding 8 bytes for row 2-8 of SSB

4 .
After testing each set of 8 bytes independently, we will find a state S2 such
that the differential trail is connected. Finishing this step of the attack has
a complexity of about 8 · 264 MixRows (≈ 264 round computations).

Hence, we can compute one starting point for the outbound phase with a com-
plexity of about 264. Note that the complexity of the inbound phase can be sig-
nificantly reduced at the cost of higher memory requirements. By saving 264−s

candidates for SSB
4 in a list, we can do a standard time/memory tradeoff with a

complexity of about 2120+s and memory requirements of 264−s. By setting s = 0
we can find 264 starting points with a complexity of 264 and similar memory
requirements of 264.

Hence, we can find a collision for Whirlpool reduced to 5.5 rounds with a
complexity of about 2120 and a near-collision for 7.5 rounds in 50 (respectively
52) bytes with a complexity of about 2120 and 2112 (respectively 2128). All attacks
have memory requirements of 264.

18

