
����������
�������

Citation: Sakuno, T.; Hiraoka, Y. Rec8

Cohesin: A Structural Platform for

Shaping the Meiotic Chromosomes.

Genes 2022, 13, 200. https://doi.org/

10.3390/genes13020200

Academic Editors: Monique Zetka

and Verena Jantsch

Received: 13 December 2021

Accepted: 21 January 2022

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Review

Rec8 Cohesin: A Structural Platform for Shaping the
Meiotic Chromosomes
Takeshi Sakuno and Yasushi Hiraoka *

Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; sakuno@fbs.osaka-u.ac.jp
* Correspondence: hiraoka@fbs.osaka-u.ac.jp

Abstract: Meiosis is critically different from mitosis in that during meiosis, pairing and segregation
of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes
drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific
cohesin complex plays a central role in the regulation of the processes required for recombination.
In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of
eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the
pairing and recombination of homologous chromosomes in meiosis. Here, we review the current
understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.

Keywords: meiosis; chromosome; cohesin; Rec8; Pds5; Wpl1; synaptonemal complex; axis-loop
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1. Introduction

Cohesin is a highly conserved protein complex that establishes cohesion between sister
chromatids after DNA replication, and is essential for proper chromosome segregation
during mitosis and meiosis [1,2]. Rec8, a meiosis-specific component of cohesin, plays a
central role in the recombination of homologous chromosomes during meiosis [3,4].

Meiosis is a unique type of eukaryotic cell division that produces gametes which are
essential for sexual reproduction. In meiosis, one round of DNA replication is followed by
two successive rounds of chromosome segregation, thus resulting in half the number of
chromosomes in the gametes. Meiosis produces sperm and eggs in humans, and abnor-
malities in meiosis can cause miscarriages as well as various congenital genetic disorders,
such as Down syndrome [5,6].

In the first meiotic division (meiosis I), homologous chromosomes segregate to oppo-
site poles. This process is called reductional segregation and is essentially different from
both mitosis and the second meiotic division (meiosis II), in which sister chromatids (a pair
of replicated chromosomes) segregate to opposite poles (Figure 1) [3]. To correctly accom-
plish reductional segregation in meiosis I, homologous chromosomes need to be physically
linked to each other via the chiasmata, a product of crossing over (the exchange of DNA
sequences between homologous chromosomes) during the meiotic prophase. In almost all
eukaryotes, homologous chromosomes are spatially separated in the nucleus during mitosis,
but they become paired during the meiotic prophase, by first identifying the correct partner
and then moving into physical proximity (pairing). Pairing is stabilized by the synaptone-
mal complex (SC), which holds homologous axes together along its entire length (synapsis)
(Figure 2). The SC is composed of two lateral elements, each of which is derived from an
axial element formed along a pair of sister chromatids, and the central region, which is
composed of transverse filaments (i.e., Zip1 in budding yeast or SYCP1 in mice) which
connect the lateral elements of each homologous chromosome (Figure 2) [7,8]. However,
homologous chromosomes can pair without SCs, even in SC-forming organisms [9–11].
Moreover, homologous pairing also occurs in asynaptic organisms, such as the fission yeast
Schizosaccharomyces pombe, which does not form a typical SC [12–14].
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Figure 1. Chromosome segregation during mitosis and meiosis. Schematic diagram of
chromosome segregation patterns during mitosis and meiosis. The picture shows spores of
Schizosaccharomyces pombe produced after meiosis.
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Figure 2. Chromosome organization during meiotic prophase. Schematic representation of chro-
mosome organization during meiotic prophase in synaptonemal complex (SC)-forming organisms.
Meiotic prophase is divided into four distinct stages: leptotene, zygotene, pachytene, and diplotene.
The axial element (AE) is the precursor of the lateral element (LE) of the SC.

The Rec8-containing cohesin complex (Rec8 cohesin) is essential for the assembly of
lateral elements, which are required for SC formation and homologous recombination in
a wide range of eukaryotes [15–25]. Even in asynaptic organisms, Rec8 cohesin forms an
axial structure resembling the lateral element, which is essential for homologous recom-
bination during meiosis [26–32]. In addition to these canonical roles of Rec8 cohesin in
recombination, recent developments in technologies, such as genome-wide chromosome
conformation capture, have revealed roles for Rec8 cohesin in meiotic chromosome architec-
ture [33–36]. This review highlights the role of Rec8 cohesin in meiosis, which is common
in both SC-forming and asynaptic organisms.

2. Components of Cohesin Complexes

The mitotic cohesin complex consists of four core subunits, two structural maintenance
of chromosome (SMC) family proteins, Smc1 and Smc3, and two non-SMC kleisin subunits,
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Scc1 and Scc3 (Scc1 is also called Mcd1 in the budding yeast Saccharomyces cerevisiae, and
Rad21 in several other organisms; Scc3 is also called SA1/2 in metazoans, and Psc3 in
S. pombe) (Figure 3A,B) [37]. It has been proposed that the cohesin complex forms a ring
structure that topologically entraps two sister chromatids together; alternatively, two
cohesin rings, each entrapping one sister chromatid, are held together [38,39].
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Figure 3. Cohesin complex in mitosis and meiosis
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Figure 3. Cohesin complex in mitosis and meiosis. (A). A schematic diagram of cohesin complexes in
Schizosaccharomyces pombe. During mitosis in S. pombe, the Rad21-Psc3 cohesin complex is distributed
at the centromere and along the chromosome arm. During meiosis, the Rec8-Psc3 cohesin complex
is localized only at the centromere, whereas the Rec8-Rec11 cohesin complex is distributed along
the chromosome arms. (B). Nomenclature for the subunits of the cohesin complex in representative
eukaryotic model organisms. The constitutively expressed subunits and the meiosis-specific subunits
are shown.

The meiotic cohesin complex uses subunits that differ from those involved in mi-
tosis. In most species, the vast majority of Rad21 and SA1/2 subunits are replaced by
meiosis-specific subunits, namely Rec8 and SA3, respectively (Figure 3B). In vertebrates,
Smc1β is expressed in addition to Smc1, and a meiosis-specific kleisin, Rad21L, is also
expressed [40–42]. In many species, these meiosis-specific subunits are required not only
for sister chromatid cohesion, but also for the formation of the axial element, which serves
as a scaffold for recombination reactions within the SC [8].

3. Roles of Meiotic Cohesin in Chromosomal Events

Homologous chromosomes must be paired and recombined during meiosis to ensure
proper segregation of homologous chromosomes. Meiosis-specific subunits of cohesin play
an essential role in these meiotic chromosomal events.

3.1. Pairing of Homologous Chromosomes

A striking example of asynaptic pairing of homologous chromosomes can be observed
in S. pombe. In S. pombe, pairing of homologous chromosomes depends highly on the oscilla-
tory movement of the nucleus (so-called “horsetail” movement) with the telomeres bundled
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at the spindle pole body (SPB) generating a bouquet orientation of chromosomes [26,43–47].
In S. pombe, the pairing of homologous chromosomes is achieved during horsetail nuclear
movement in the absence of DNA double-strand breaks (DSBs) introduced by Rec12 (Spo11
in S. cerevisiae). Nevertheless, pairing of homologous chromosomes requires Rec8 cohesin,
indicating that meiotic cohesin plays a role in homolog pairing independent of Rec12-
mediated DSB or SC formation. Torsional turning of chromosomes, which occurs when
the SPB changes the direction of nuclear movement, is thought to promote the alignment
of homologous chromosomes (Figure 4A) [48]. Such chromosome movements promote
homologous pairing and at the same time, eliminate non-homologous interaction [48,49].
Meiosis-specific chromosome movements caused by the attachment of telomeres to the
nuclear membrane also contribute to the initiation of pairing in other organisms [50,51].
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Additionally, it has been shown that in S. pombe, noncoding RNAs and their associated
factors, called sme2 RNA-associated proteins (Smp), contribute to the DSB-independent
pairing of homologous chromosomes [43,45,52]. It should be noted that non-coding RNA-
mediated pairing of homologous chromosomes in S. pombe requires Rec8 [45,53–55]. In
rec8∆ meiotic cells of S. pombe, the oscillatory movement of SPB and bouquet orientation
appear to be normal [32,54,55]. However, the bulk of the chromosomes are stuck, protruding
from the leading edge of the nucleus during horsetail movement, resulting in defective
pairing in rec8∆ cells (Figure 4B) [54,55]. Therefore, during horsetail nuclear movement,
compromised chromosome motion in rec8∆ cells without torsional turning of chromosomes
could lead to pairing defects. This abnormal chromosomal behavior in rec8∆ cells might
occur because the traction force that drives whole chromosomes is not well transmitted
to the entire chromosome, owing to a loss of chromosome structure in the absence of
Rec8 cohesin.

3.2. Regulation of Recombination Bias between Homologous Chromosomes and Sister Chromatids

During the repair of DSBs, which occurs spontaneously during mitosis, Scc1/Rad21
mitotic cohesin promotes damage-induced homologous recombination between sister
chromatids, suppressing recombination between homologous chromosomes [56]. This is
called sister bias, and is presumably caused by the spatial proximity of sister chromatids
due to cohesin-dependent sister chromatid cohesion. In contrast, during meiotic prophase,
DSBs introduced by Spo11 are repaired by homologous recombination, which preferentially
uses homologous chromosomes and not sister chromatids as templates, a mechanism
called homolog bias [57,58]. The physical proximity of homologous chromosomes via
pairing or SC formation is an essential prerequisite for establishing homolog bias. In
addition, studies in S. cerevisiae have suggested that this bias is facilitated by the cooperative
function of Rec8 cohesin with components of axial elements, such as Red1, Hop1, and
Mek1 [59,60]. Interestingly, in the absence of these axial components, sister bias was induced
in a Rec8 cohesin-dependent manner, suggesting that Rec8 cohesin which is responsible
for sister chromatid cohesion during meiosis also potentially plays a role in sister bias in
Spo11-induced meiotic recombination as well as Scc1/Rad21 cohesin during mitosis [59].
However, the functions of Rec8 cohesin can be modified and regulated to promote homolog
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bias by several factors, including components of the axial element. The conservation of
this homolog bias across eukaryotes is not apparent, but it seems to be absent in fission
yeast [61].

3.3. Segregation of Homologous Chromosomes and Sister Chromatids

After physical links are established between homologous chromosomes via the chias-
mata as a result of crossing over, homologous chromosomes segregate to opposite poles
(reductional segregation) during meiosis I. In metaphase I, sister kinetochores behave as
a single unit and establish mono-polar attachment; specifically, sister kinetochores are
captured by spindle microtubules emanating from one pole (Figure 5). Because of the
cooperative action of this mono-polar attachment and the chiasmata, tension is generated
between homologous chromosomes; thus, spindles successfully pull homologous chro-
mosomes toward both poles [3,15,62–69]. In S. pombe, it has been shown that in meiosis
I, sister kinetochores are connected by the Rec8 cohesin-mediated cohesion around the
centromeric region [70]. More recently, this type of Rec8 cohesin-dependent cohesion at
the centromere was shown to be necessary for mono-polar meiosis I attachment in female
mice [71]. The establishment of Rec8 cohesin-dependent centromeric cohesion is regulated
by meiosis-specific kinetochore factors called Meikin family proteins, Moa1 in S. pombe,
Spo13 in S. cerevisiae, and Meikin in mice [72–77]. The precise functions of Meikin family
proteins are still unknown, but it has been reported that Meikin recruits polo-like kinases to
the kinetochore, and this kinase has essential functions in establishing mono-polar attach-
ment [72–74]. In S. cerevisiae, in addition to regulation by Spo13, mono-polar attachment is
also regulated by a different set of meiosis-specific kinetochore protein complexes called
monopolins, including Mam1, Csm1, Lrs4, and Hrr25 [68,69,78].

Figure 5. Molecular details in the regulation of chromosome segregation in meiosis I
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Figure 5. Molecular details of the regulation of chromosome segregation in meiosis I. A schematic
diagram of the state of chromosomes immediately before segregation in mitosis (left) and
meiosis I (right).

Rec8 cohesin holds homologous chromosomes together via sister chromatid cohesion,
and this state is maintained in the vicinity of the crossing over site until anaphase I, result-
ing in retention of physical interaction of homologous chromosomes via the chiasma [3,79].
Subsequently, at the onset of anaphase I, cohesin complexes are dissociated from chromo-
somes by separase, a cysteine endoprotease which cleaves the kleisin subunit of cohesin,
thus allowing the separation of homologous chromosomes. Importantly, although cohesin
at the chromosome arms is degraded by separase in anaphase I, cohesin at the centromere
is protected from degradation [15,80]. As a result, sister chromatids remain associated at
the centromere through cohesion via Rec8 cohesin. Subsequently, in meiosis II, sister chro-
matids are evenly segregated, similar to somatic cell division, by releasing the remaining
cohesion at the centromeres (Figure 5). It has been reported that the frequency of crossing
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over at centromeres is approximately 5–100 times lower than that at similar distances in
chromosome arms in several organisms [81–83]. Frequent crossing over at the centromere
causes loss of centromeric cohesion leading to meiosis II failure and aneuploid gametoge-
nesis [84,85]. Therefore, suppression of crossing over at centromeric regions is essential
for proper chromosome segregation during meiosis II. In addition, studies in S. pombe
have identified that Sgo1 protects Rec8 from cleavage by separase around the centromere
during anaphase I [86–88]. Sgo1 is specifically expressed during meiosis and localizes to
the centromeric region. Rec8 is phosphorylated by type I casein kinase δ/ε (CK1), which
makes it susceptible to degradation by separase. In contrast, PP2A phosphatase, which
interacts with Sgo1, localizes to the centromere. Therefore, at the centromere, phospho-
rylation of Rec8 by CK1 was reversed by PP2A. Consequently, Rec8 at the centromere is
protected from degradation by separase [89–91]. Furthermore, when the expression of
mouse shugoshin is suppressed in oocytes, Rec8 at the centromere is degraded prematurely
in anaphase I, consistent with findings in sgo1∆ mutants of S. pombe [92,93]. Thus, meiotic
cohesin protection mechanism of Sgo1 is evolutionarily conserved. Therefore, many crucial
processes are regulated by Rec8 cohesin during meiosis, which is an essential event for
sexual reproduction in eukaryotes.

4. Roles of Meiotic Cohesin in Chromosome Architecture

Forced expression of Rad21 during meiosis in the absence of Rec8 partially recovers
sister chromatid cohesion, but does not compensate for defects in meiosis-specific chro-
mosome events, including reductional segregation [65,69]. Moreover, formation of SCs in
S. cerevisiae and the axial structure of chromosomes in S. pombe during meiosis are defective
in rec8∆ mutants, even with the ectopic expression of Scc1/Rad21 [35,69]. Therefore, Rec8
cohesin may play additional roles other than cohesion in regulating meiotic chromosome
behavior, such as SC formation, associated with axial structure.

4.1. Formation of Axial Elements

The axial element is a precursor of the lateral element of the SC, and corresponds
to the LinE in in asynaptic organisms such as S. pombe. In the SC-forming organism
S. cerevisiae, the formation of the axial element during the meiotic prophase is defective in
rec8 mutants, specifically affecting Hop1 and Red1, which are both structural components of
the axial element and do not form linear structures in rec8 mutants, as observed by electron
microscopy of the meiotic prophase nuclei [15]. Rec8 interacts with Red1 (Rec10 in S. pombe
and SYCP2 in mice) and Hop1 [94]. Because Rec8 is required for correct localization of
Red1 and Hop1 to the chromosomal axis sites [94,95], Rec8 is essential for recruiting Red1
and Hop1 to a subset of meiotic chromosomal positions, at least in S. cerevisiae [94].

In S. pombe, Rec8 cohesin contains a meiosis-specific SA3 subunit called Rec11. No
obvious homolog of SA3 has been found in S. cerevisiae. Importantly, it has been shown
that the N-terminal region of Rec11 is phosphorylated by CK1 during meiosis [96,97]. This
phosphorylation induces an interaction between Rec11 and Rec10 (a homolog of S. cerevisiae
Red1, which is a structural component of LinE in S. pombe). This interaction further results
in the recruitment of Rec10 and other LinE components, such as Hop1, Rec25, and Rec27,
onto chromatin, and induce LinE assembly along sister chromatids [96]. As implied by its
gene name, Rec8, Rec10, and Rec11 in S. pombe were originally isolated as mutants deficient
in meiotic recombination [98]. LinE is necessary for the recruitment of recombination
apparatus, such as Rec12 (Spo11 homolog in S. pombe), along the chromatin [99]. Therefore,
the mechanism by which cohesin and LinE cooperate to regulate recombination in S. pombe
may explain the recombination-defective phenotype in these mutants.

In mice, in addition to Rec8, the meiosis-specific subunits SA3 (Rec11 homolog), kleisin
subunit Rad21L, and Smc1β are required for the assembly of axial elements during the
meiotic prophase [20–25,100,101]. Moreover, chromatin-bound cohesins, including SA3,
are highly phosphorylated during the meiotic prophase in mouse spermatocytes [102].
Therefore, it is possible that phosphorylation of the cohesin complex contributes to the
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meiotic chromosome axis assembly in mammalian meiosis, similar to S. pombe. Rec8
cohesin is also required for the assembly of axial elements in Arabidopsis thaliana and
Caenorhabditis elegans [16–18,103]. Therefore, the meiosis-specific cohesin complex has
conserved functions in a wide range of organisms and regulates meiotic recombination by
assembling axis structures along sister chromatids by recruiting structural components of
the axial element.

4.2. Formation of the Axis-Loop Chromatin Structure

Importantly, studies using mouse spermatocytes have demonstrated that the loss
of SYCP2 or SYCP3, structural components of the axial element, disrupts the formation
of axial elements, but generally results in retention of the cohesin axis, which is visual-
ized by immunostaining of cohesin subunits in meiotic prophase cells [25,104,105]. Simi-
larly, in S. pombe, LinE formation-defective mutants, but not rec8 mutants, maintain struc-
tural properties of chromatin to withstand oscillatory nuclear movement during meiotic
prophase [54,96]. These results strongly suggest that Rec8 cohesin-induced chromosome
structure is independent of the axial elements (or LinEs in S. pombe). In addition, previous
electron microscopy observations have detected axial structures with chromatin loops
(axis-loop chromatin structure), such as those now thought to be mediated by Rec8 co-
hesin [33–35,106]. Furthermore, recent studies in several organisms using high-throughput
chromosome conformation capture (Hi-C) have depicted the configuration of meiotic chro-
mosomal structures [33,107–115]. Importantly, it has been reported that Rec8 localization
correlates with regions of contacts detected by Hi-C, which represent the bases of chro-
matin loops in S. cerevisiae [33,34,116]. Moreover, these loops are lost in the absence of Rec8
cohesins [33]. Therefore, it is now clear that the axis structure with chromatin loops is
mediated by Rec8 cohesin during meiosis.

In contrast, chromatin loops are undetectable via Hi-C in mammalian meiosis [107,109,110],
despite clear observation of chromatin loop structures in mouse meiotic chromosomes
by electron microscopy [117,118]. It has been argued that the chromosomal position of
Rec8 or the loop location varies from cell to cell in mammals [107]. In somatic cells of
several organisms, Rad21/Scc1 cohesins have the ability to form higher-order structures
called topologically associated domains (TADs) by pulling together distant regions of
chromosomes, which can at times be up to several Mbp [119–123]. In mammalian meiosis,
TAD signals observed in mitotic interphase cells mostly disappear [107,109,110]. This
suggests that switching of protein subunits is essential to construct chromosomes that are
ready for subsequent meiotic recombination, probably by exchanging cohesins from mitotic
RAD21 to its meiotic counterparts along the chromosomes.

Recently, Hi-C analysis in S. pombe has revealed the appearance of chromatin loops
between known Rec8-binding sites upon entry into meiosis [35]. These loop structures are
completely lost in rec8∆ cells. However, in rec12∆ (Spo11 homolog of S. pombe) mutants,
in which recombination never occurs, these loop structures are normally maintained.
Moreover, the normal formation of loop structures is also observed in rec10∆ cells, in
which LinE is not assembled. In addition, similar to those in mammalian spermatocytes,
with the emergence of Rec8-dependent loop structures, TAD-like signals observed in
mitotic interphase cells mostly disappear during the meiotic prophase [35]. This could be
mainly due to the switching of kleisin subunits from Rad21 to Rec8, which occurs upon
commitment to meiosis. Although Rec8-cohesin-dependent loop structures have been
detected in S. pombe and S. cerevisiae [33–35], the mechanism through which loop formation
and sister chromatid cohesion are coordinately regulated as well as the contribution of
Rad21/Scc1 cohesin remains unclear. It has been proposed that two separate populations
of Rec8 cohesin act on loop formation and cohesion [34]. In mouse oocyte meiosis, it has
been suggested that RAD21/SCC1 and REC8 cohesins have distinct functions in chromatin
loop formation and cohesion, respectively [36,108]. Functions of the kleisin subunits in
meiotic chromatin structure may differ among species.
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Considering the cohesin-mediated axial loop structure of chromosomes during meio-
sis, it is necessary to consider the cohesin regulators Pds5 and Wpl1/WAPL. Pds5 is a
cohesin-associated factor thought to maintain cohesion during mitosis [124–127]. How-
ever, it has been shown that WAPL interaction with PDS5 promotes the release of mitotic
cohesin from the chromosome arms prior to anaphase onset independently of separase
in mammals (Figure 6) [128–130]. Additionally, in S. cerevisiae, Wpl1 releases Rec8 co-
hesin from chromosomes during the meiotic prophase [131,132]. Interestingly, consistent
with findings in WAPL-depleted mammalian somatic cells [108,131,133–136], shortening
of the chromatin axis was also commonly observed in Pds5 and Wpl1/WAPL-depleted
meiotic cells in S. pombe, S. cerevisiae, C. elegans, and mice [35,54,131,132,136–138]. Con-
comitant with shortening of the axial structure, lengthening of the chromatin loop has
also been observed [35,133,139]. Taken together, this suggests that Pds5 and Wpl1/WAPL
have a conserved function that maintains the full axis length of meiotic chromosomes
(Figures 6 and 7). Intriguingly, in S. cerevisiae and S. pombe meiotic cells, the loss of Pds5
results in a pairing defect similar to that observed in rec8∆ meiotic cells [55,137]. Moreover,
S. pombe meiotic wpl1∆ cells are defective in homologous pairing [35]. These results sug-
gest that Pds5 and Wpl1/WAPL modulate Rec8 cohesin axis-loop structures, acting as a
structural platform that facilitates pairing and subsequent recombination during meiosis.
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Figure 7. Chromosome architectures regulated by Pds5, Wpl1 and Rec8 in S. pombe. The Rec8-
dependent loop-axis structure and linear element (LinE) are shown. It is unclear whether the same
Rec8 cohesin complex is responsible for both cohesion and loop formation or whether different
subsets of Rec8 cohesin are used at each step separately.
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5. Perspective

In this review, we highlighted Rec8 cohesin-dependent formation of the axis-loop struc-
ture of chromatin and its role in pairing and recombination during the meiotic prophase.
In mammalian somatic cells, cis-looping of the distal chromatin or TAD formation occurs
via the SCC1/RAD21 cohesin during interphase. Interestingly, the SCC1/RAD21 cohesin
forms an axial structure in WAPL-depleted mammalian somatic cells. Thus, Rad21 cohesin
also seems to have the potential to regulate the formation of axial structures, albeit in a
mechanism different from Rec8. In mammalian somatic cells, RAD21 cohesin complexes
are anchored to chromatin via the CCCTC-binding factor (CTCF) [139–142], leading to
the creation of TADs. To date, it is unknown whether CTCF functions in establishing
meiotic chromosomes with an axis and looping. Recently, a loop extrusion model has been
proposed to create a chromatin loop via SMC protein complexes, including cohesin. In this
proposed model, the SMC protein complex interacts with DNA, which reels and extrudes
it through its ring structure to form a DNA loop [143–147]. The human RAD21/SCC1
cohesin can extrude DNA with the cohesin loading factors NIPBL and MAU2 in vitro [143],
although it is unknown whether the loop extrusion model is applicable in vivo, whereas
CTCF is a conserved factor only in vertebrates [148], NIPBL/Scc2 and MAU2/Scc4 are
conserved in a wide range of eukaryotes from yeasts to humans. Therefore, it is possible to
consider a scenario in which Rec8 cohesin might function with a cohesin loader for axes
and loops along the meiotic chromosomes.

Loss-of-function mutations of cohesin-related factors are known to be responsible for
human diseases called “cohesinopathies”, such as Cornelia de Lange Syndrome which is
characterized by mental retardation, facial dysmorphism, upper limb abnormalities, and
growth delay [149,150]. In addition, defects in the regulation of meiotic recombination by
meiotic cohesins are closely associated with miscarriages and congenital abnormalities in
humans [5,6]. Therefore, it is important to elucidate the contribution of cohesin-induced
axes and loop structure formation to the etiology of these human diseases.
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