
Receding Horizon Control for Temporal Logic
Specifications

Tichakorn
Wongpiromsarn

California Institute of
Technology

Pasadena, CA
nok@caltech.edu

Ufuk Topcu
California Institute of

Technology
Pasadena, CA

utopcu@cds.caltech.edu

Richard M. Murray
California Institute of

Technology
Pasadena, CA

murray@cds.caltech.edu

ABSTRACT
In this paper, we describe a receding horizon scheme that
satisfies a class of linear temporal logic specifications suffi-
cient to describe a wide range of properties including safety,
stability, progress, obligation, response and guarantee. The
resulting embedded control software consists of a goal gener-
ator, a trajectory planner, and a continuous controller. The
goal generator essentially reduces the trajectory generation
problem to a sequence of smaller problems of short horizon
while preserving the desired system-level temporal proper-
ties. Subsequently, in each iteration, the trajectory plan-
ner solves the corresponding short-horizon problem with the
currently observed state as the initial state and generates a
feasible trajectory to be implemented by the continuous con-
troller. Based on the simulation property, we show that the
composition of the goal generator, trajectory planner and
continuous controller and the corresponding receding hori-
zon scheme guarantee the correctness of the system. To han-
dle failures that may occur due to a mismatch between the
actual system and its model, we propose a response mech-
anism and illustrate, through an example, how the system
is capable of responding to certain failures and continues to
exhibit a correct behavior.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.10 [Software Engineering]:
Design—Methodologies; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Control theory;
Plan execution, formation, and generation

General Terms
Design, Verification

Keywords
Embedded control software, linear temporal logic, receding
horizon control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC ’10 Stockholm, Sweden
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Synthesis of correct-by-construction embedded control soft-

ware based on temporal logic specifications has attracted
considerable attention in the recent years due to the in-
creasing frequency of systems with tight integration between
computational and physical elements and the complexity in
designing and verifying such systems. A common approach
[11, 2, 10, 22, 19, 5] is to construct a finite transition sys-
tem that serves as an abstract model of the physical system
(which typically has infinitely many states) and synthesize a
strategy, represented by a finite state automaton, satisfying
the given temporal properties based on this model. One of
the main challenges of this approach is in the abstraction of
systems evolving on a continuous domain into equivalent (in
the simulation sense) finite state models. Several methods
have been proposed based on a fixed abstraction for differ-
ent cases of system dynamics [11, 2, 10, 22, 19, 5]. More
recently, a sampling-based method has been proposed for
µ-calculus specifications [9].

Another main challenge that remains an open problem
and has received less attention in literature is computational
complexity in the synthesis of finite state automata. In par-
ticular, the synthesis problem becomes significantly harder
when the interaction with the (potentially dynamic and not
a priori known) environment has to be taken into account.
Piterman et al. [17] treated this problem as a two-player
game between the system and the environment and proposed
an algorithm for the synthesis of a finite state automaton
that satisfies its specification regardless of the environment
in which it operates (subject to certain assumptions on the
environment that need to be stated in the specification).
Although for a certain class of properties, known as Gener-
alized Reactivity[1] , such an automaton can be computed in
polynomial time, the applications of the synthesis tool are
limited to small problems due to the state explosion issue.

Similar computational complexity is also encountered in
the area of constrained optimal control. In the controls do-
main, an effective and well-established technique to address
this problem is to design and implement control strategies
in a receding horizon manner, i.e., optimize over a “shorter”
horizon, starting from the currently observed state, imple-
ment the initial control action, move the horizon one step
ahead, and re-optimize. This strategy reduces the com-
putational complexity by essentially solving a sequence of
“smaller” optimization problems, each with a specific initial
condition (as opposed to optimizing with any initial condi-
tion in traditional optimal control). Under certain condi-

tions, receding horizon control strategies are known to lead
to closed-loop stability [14, 16, 8]. See, for example, [6] for a
detailed discussion on constrained optimal control, including
finite horizon optimal control and receding horizon control.

In this paper, we build on our previous work [22] and fur-
ther develop the receding horizon scheme for executing finite
state automata while ensuring system correctness with re-
spect to a given temporal logic specification. This essentially
allows the synthesis problem to be reduced to a set of smaller
problems of short horizon. This paper is the enhanced ver-
sion of [22] in several ways. First, we deal with a much richer
class of linear temporal logic specifications. In [22], we only
allow safety and guarantee properties, while in this paper we
also deal with stability, progress, obligation and response, in
addition to safety and guarantee properties. (See Section 2
for the exact definitions.) Second, we add an additional layer
to the embedded control software, namely, a goal generator,
in order to allow a sequence of short-horizon problems to be
automatically generated (as opposed to having to manually
generate these problems as in [22]). Finally, we present a
response mechanism that potentially increases the robust-
ness of the system with respect to a mismatch between the
actual system and its model and violation of the environ-
ment assumptions. The benefit of adding this mechanism
is illustrated through an example where the system contin-
ues to exhibit a correct behavior even though some of the
environment assumptions do not hold during an execution.

2. PRELIMINARIES
We use linear temporal logic (LTL) to describe the desired

properties of the system. In this section, we first give formal
definitions of terminology and notations used throughout the
paper. Then, based on these definitions, we briefly describe
LTL and some important classes of LTL formulas.

Definition 1. A system consists of a set V of variables.
The domain of V , denoted by dom(V), is the set of valua-
tions of V . A state of the system is an element v ∈ dom(V).

Definition 2. A finite transition system is a tuple T :=
(V,V0,→) where V is a finite set of states, V0 ⊆ V is a set of
inital states, and → ⊆ V × V is a transition relation. Given
states νi, νj ∈ V, we write νi → νj if there is a transition
from νi to νj .

Definition 3. A partially ordered set (V,�) consists of a
set V and a binary relation � over the set V satisfying the
following properties: for any v1, v2, v3 ∈ V , (a) v1 � v1;
(b) if v1 � v2 and v2 � v1, then v1 = v2; (c) if v1 � v2 and
v2 � v3, then v1 � v3.

Definition 4. An atomic proposition is a statement on
system variables υ that has a unique truth value (True or
False) for a given value of υ. Let v ∈ dom(V) be a state of
the system and p be an atomic proposition. We write v
 p
if p is True at the state v. Otherwise, we write v 1 p.

Definition 5. An execution σ of a discrete-time system is
an infinite sequence of the system states over a particular
run, i.e., σ can be written as σ = v0v1v2 . . . where for each
t ≥ 0, vt ∈ dom(V) is the state of the system at time t.

Linear Temporal Logic
Linear temporal logic (LTL) [13, 7, 3] is a powerful specifi-
cation language for unambiguously and concisely expressing
a wide range of properties of systems. LTL is built up from
a set of atomic propositions, the logic connectives (¬, ∨ ,
∧ , =⇒), and the temporal modal operators (#, �, 3, U

which are read as “next,” “always,” “eventually,” and “un-
til,” respectively). An LTL formula is defined inductively
as follows: (1) any atomic proposition p is an LTL formula;
and (2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, #ϕ and
ϕ U ψ are also LTL formulas. Other operators can be de-
fined as follows: ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), ϕ =⇒ ψ = ¬ϕ ∨ ψ,
3ϕ = True U ϕ, and �ϕ = ¬3¬ϕ. A propositional formula
is one that does not include temporal operators. Given a
set of LTL formulas ϕ1, . . . , ϕn, their Boolean combination
is an LTL formula formed by joining ϕ1, . . . , ϕn with logic
connectives.

Semantics of LTL: An LTL formula is interpreted over
an infinite sequence of states. Given an execution σ =
v0v1v2 . . . and an LTL formula ϕ, we say that ϕ holds at
position i ≥ 0 of σ, written vi |= σ, if and only if (iff) ϕ
holds for the remainder of the execution σ starting at po-
sition i. The semantics of LTL is defined inductively as
follows: (a) For an atomic proposition p, vi |= p iff vi
 p;
(b) vi |= ¬ϕ iff vi |6= ϕ; (c) vi |= ϕ ∨ ψ iff vi |= ϕ or
vi |= ψ; (d) vi |= #ϕ iff vi+1 |= ϕ; and (e) vi |= ϕ U ψ iff
∃j ≥ i, vj |= ψ and ∀k ∈ [i, j), vk |= ϕ. Based on this defi-
nition, #ϕ holds at position vi iff ϕ holds at the next state
vi+1, �ϕ holds at position i iff ϕ holds at every position in σ
starting at position i, and 3ϕ holds at position i iff ϕ holds
at some position j ≥ i in σ.

Definition 6. An execution σ = v0v1v2 . . . satisfies ϕ, de-
noted by σ |= ϕ, if v0 |= ϕ.

Definition 7. Let Σ be the set of all executions of a sys-
tem. The system is said to be correct with respect to its
specification ϕ, written Σ |= ϕ, if all its executions satisfy
ϕ, that is, (Σ |= ϕ) ⇐⇒

`
∀σ, (σ ∈ Σ) =⇒ (σ |= ϕ)

´
.

Examples: Given propositional formulas p and q describing
the states of interest, important and widely-used properties
can be defined in terms of their corresponding LTL formulas
as follows.

Safety (invariance): A safety formula is of the form �p,
which simply asserts that the property p remains invariantly
true throughout an execution. Typically, a safety property
ensures that nothing bad happens. A classic example of
safety property frequently used in the robot motion planning
domain is obstacle avoidance.

Guarantee (reachability): A guarantee formula is of the
form 3p, which guarantees that the property p becomes true
at least once in an execution, i.e., a state satisfying p is
reachable. Reaching a goal state is an example of a guaran-
tee property.

Obligation: An obligation formula is a disjunction of
safety and guarantee formulas, �p ∨ 3q. It can be eas-
ily shown that any safety and progress property can be ex-
pressed using an obligation formula. (By letting q ≡ False,
we obtain a safety formula and by letting p ≡ False, we
obtain a guarantee formula.)

Progress (recurrence): A progress formula is of the form
�3p, which essentially states that the property p holds in-
finitely often in an execution. As the name suggests, a
progress property typically ensures that the system keeps
making progress throughout the execution.

Response: A response formula is of the form �(p =⇒
3q), which states that following any point in an execution
where the property p is true, there exists a point where the
property q is true. A response property can be used to
describe how the system should react to changes in the op-
erating conditions.

Stability (persistence): A stability formula is of the form
3�p, which asserts that there is a point in an execution
where the property p becomes invariantly true for the re-
mainder of the execution. This definition corresponds to
the definition of stability in the controls domain since it es-
sentially ensures that eventually, the system converges to a
desired operating point and remains there for the remainder
of the execution.

Remark 1. Properties typically studied in the control and
hybrid systems domains are safety (usually in the form of
constraints on the system state) and stability (i.e., conver-
gence to an equilibrium or a desired state). LTL thus offers
extensions to properties that can be expressed. Not only
can it express other classes of properties, but it also allows
more general safety and stability properties than constraints
on the system state or convergence to an equilibrium since
p in �p and 3�p can be any propositional formula.

3. PROBLEM FORMULATION
We are interested in designing embedded control software

for a system that interacts with its (potentially dynamic and
not a priori known) environment. This software needs to en-
sure that the system satisfies the desired property ϕs for any
initial condition and any environment in which it operates,
provided that the initial condition and the environment sat-
isfy certain assumptions, ϕinit and ϕe, respectively.

Specifically, we define the system model S, the desired
property ϕs and the assumptions ϕinit and ϕe as follows.

System Model : Consider a system model S with a set V =
S ∪E of variables where S and E are disjoint sets that rep-
resent the set of variables controlled by the system and the
set of variables controlled by the environment respectively.
The domain of V is given by dom(V) = dom(S)× dom(E)
and a state of the system can be written as v = (s, e) where
s ∈ dom(S) and e ∈ dom(E). Throughout the paper, we
call s the controlled state and e the environment state.

Assume that the controlled state evolves according to ei-
ther a discrete-time, time-invariant dynamics

s(t+ 1) = f(s(t), u(t)), u(t) ∈ U, ∀t ≥ 0 (1)

or a continuous-time, time-invariant dynamics

ṡ(t) = f(s(t), u(t)), u(t) ∈ U, ∀t ∈ N (2)

where U is the set of admissible control inputs and s(t) and
u(t) are the controlled state and control signal at time t.

Example 1. Consider a robot motion planning problem
where a robot needs to navigate an environment populated
with (potentially dynamic) obstacles and explore certain ar-
eas of interest. S typically includes the state (e.g. position
and velocity) of the robot while E typically includes the po-
sitions of obstacles (which are generally not known a prior
and may change over time). The evolution of the controlled
state (i.e., the state of the robot) is simply governed its
equations of motion.

Desired Properties and Assumptions: Let Π be a finite
set of atomic propositions of variables from V . Each of the
atomic propositions in Π essentially captures the states of
interest. We assume that the desired property ϕs is an LTL
specification built from Π and can be expressed as a con-
junction of safety, guarantee, obligation, progress, response
and stability properties as follows:

ϕs =
V
j∈J1 �ps1,j ∧

V
j∈J2 3ps2,j ∧V

j∈J3(�ps3,j ∨ 3qs3,j) ∧
V
j∈J4 �3ps4,j ∧V

j∈J5 �(ps5,j =⇒ 3qs5,j) ∧
V
j∈J6 3�ps6,j ,

(3)

where J1, . . . , J6 are finite sets and for any i and j, psi,j and
qsi,j are propositional formulas of variables from V that are
built from Π.

We further assume that the initial condition of the sys-
tem satisfies a propositional formula ϕinit built from Π and
the environment satisfies an assumption ϕe where ϕe can
be expressed as a conjunction of justice requirements and
propositions that are assumed to be true throughout an ex-
ecution as follows:

ϕe =
V
i∈I1 �pes,i ∧

V
i∈I2 �3pef,i, (4)

where pes,i and pef,i are propositional formulas built from Π
and only contain variables from E (i.e., environment vari-
ables).

In summary, the specification of S is given by`
ϕinit ∧ ϕe) =⇒ ϕs. (5)

Observe, from the specification (5), that the desired prop-
erty ϕs is guaranteed only when the assumptions on the
initial condition and the environment are satisfied.

Example 2. Consider the robot motion planning problem
described in Example 1. Suppose the workspace of the robot
is partitioned into cells C1, . . . , Cm and the robot needs to
explore (i.e., visit) the cells C1 and C2 infinitely often. In
addition, we assume that one of the cells C1, . . . , Cm may be
occupied by an obstacle at any given time and this obstacle-
occupied cell may change arbitrarily throughout an execu-
tion but infinitely often, C1 and C2 are not occupied. Let
s and o represent the position of the robot and the obsta-
cle, respectively. In this case, the desired properties of the
system can be written as ϕs = �3(s ∈ C1) ∧ �3(s ∈
C2) ∧ �((o ∈ C1) =⇒ (s 6∈ C1)) ∧ �((o ∈ C2) =⇒
(s 6∈ C2)) ∧ . . . ∧ �((o ∈ Cm) =⇒ (s 6∈ Cm)). Assum-
ing that initially, the robot does not occupy the same cell
as the obstacle, we simply let ϕinit = ((o ∈ C1) =⇒ (s 6∈
C1)) ∧ ((o ∈ C2) =⇒ (s 6∈ C2)) ∧ . . . ∧ ((o ∈ Cm) =⇒
(s 6∈ Cm)). Finally, the assumption on the environment can
be expressed as ϕe = �3(o 6∈ C1) ∧ �3(o 6∈ C2).

Remark 2. We restrict ϕs and ϕe to be of the form (3)
and (4), respectively, for the clarity of presentation. Our
framework only requires that the specification (5) can be
reduced to the form of equation (7), presented later.

4. HIERARCHICAL APPROACH
A common approach (see, for example, [11, 2, 10, 22, 19,

5]) to designing embedded control software for a physical
system S that provably satisfies a temporal logic specifica-
tion is to construct a finite transition system D (e.g. Kripke
structure) that serves as an abstract model of S (which typi-
cally has infinitely many states). With this abstraction, the
problem is then decomposed into (a) synthesizing a plan-
ner that computes a discrete plan satisfying the specifica-
tion based on the abstract, finite-state model D, and (b) de-
signing a continuous controller that implements the discrete
plan. The success of this abstraction-based approach thus
heavily relies on the following two critical steps.
(a) an abstraction of an infinite-state system into an equiv-

alent (in the simulation sense) finite state model such
that any discrete plan generated by the planner can be
implemented (i.e., simulated ; see, for example, [20] for
the exact definition) by the continuous controller, and

(b) synthesis of a planner (i.e., a strategy), represented by
a finite state automaton, that ensures the correctness of
the discrete plan.

Different approaches have been proposed to handle step
(a). For example, a continuous-time, time-invariant model
(2) was considered in [11], [2] and [10] for special cases of
fully actuated (ṡ(t) = u(t)), kinematic (ṡ(t) = A(s(t))u(t))
and piecewise affine (PWA) dynamics, respectively, while
a discrete-time, time-invariant model (1) was considered in
[22] and [19] for special cases of PWA and controllable linear
systems respectively. Reference [5] deals with more general
dynamics by relaxing the bisimulation requirement and us-
ing the notions of approximate simulation and simulation
functions [4].

In this paper, we focus on addressing the computational
complexity of step (b). We assume that a finite state ab-
straction D of the physical system S has been constructed.
We denote the (finite) set of states of D by V. In order
to ensure the system correctness for any initial condition
and environment, we apply the two-player game approach
presented in [17] to synthesize a planner as in [11, 22]. In
summary, consider a class of LTL formulas of the form

(ψinit ∧ �ψe ∧
^
i∈If

�3ψf,i) =⇒ (
^
i∈Is

�ψs,i ∧
^
i∈Ig

�3ψg,i),

(6)
known as Generalized Reactivity[1] (GR[1]) formulas. Here
ψinit, ψf,i and ψg,i are propositional formulas of variables
from V ; ψe is a Boolean combination of propositional for-
mulas of variables from V and expressions of the form #ψte
where ψte is a propositional formula of variables from E that
describes the assumptions on the transitions of environment
states; and ψs,i is a Boolean combination of propositional
formulas of variables from V and expressions of the form
#ψts where ψts is a propositional formula of variables from V
that describes the constraints on the transitions of controlled
states. The approach presented in [17] allows checking the
realizability of this class of specifications and synthesizing
the corresponding finite state automaton to be performed in
time O(M3) where M is the size of the state space of the
system. We refer the reader to [17] and references therein
for a detailed discussion.

Proposition 1. By introducing auxiliary Boolean variables,
a specification of the form (5) can be reduced to a subclass
of GR[1] formula of the form:`
ψinit ∧ �ψee

^
i∈If

�3ψef,i
´

=⇒
` ^
i∈Is

�ψs,i ∧
^
i∈Ig

�3ψg,i
´
,

(7)
where ψinit, ψs,i and ψg,i are defined as in (6) and ψee
and ψef,i are propositional formulas of variables from E.
Throughout the paper, we call the left hand side and the
right hand side of (7) the “assumption” part and the “guar-
antee” part, respectively.

The proof of Proposition 1 is based on the fact that all
safety, guarantee, obligation and response properties are spe-
cial cases of progress formulas �3p, provided that p is al-
lowed to be a past formula [13]. (See [13] for the defini-
tion of a past formula and how each of these properties can
be reduced to an instance of a progress property.) Hence,
these properties can be reduced to the guarantee part of (7)
by introducing auxiliary Boolean variables. For example,
a guarantee property 3ps2,j can be reduced to the guaran-
tee part of (7) by introducing an auxiliary Boolean vari-
able x, initialized to ps2,j . 3ps2,j can then be equivalently
expressed as a conjunction of �

`
(x ∨ ps2,j) =⇒ #x

´
,

�
`
¬(x ∨ ps2,j) =⇒ #(¬x)

´
and �3x. Obligation and

response properties can be reduced to the guarantee part
of (7) using a similar idea. In addition, a stability prop-
erty 3�ps6,j can be reduced to the guarantee part of (7)
by introducing an auxiliary Boolean variable y, initialized
to False. 3�ps6,j can then be equivalently expressed as a
conjunction of �(y =⇒ ps6,j), �(y =⇒ #y), �

`
¬y =⇒

(#y ∨ #(¬y))
´

and �3y. Note that these reductions lead
to equivalent specifications. However, for the case of stabil-
ity, the reduction may lead to an unrealizable specification
even though the original specification is realizable. Roughly
speaking, this is because the auxiliary Boolean variable y
needs to make clairvoyant (prophecy), non-deterministic de-
cisions. For other properties, the realizability remains the
same after the reduction since the synthesis algorithm [17]
is capable of handling past formulas. The detail of this dis-
cussion is beyond the scope of this paper and we refer the
reader to [17] for more detailed discussion on the synthesis
of GR[1] specification.

Having shown that the specification (5) can be reduced to
(7), in Section 4.1, we describe a receding horizon strategy
that allows the synthesis problem for a specification (7) to be
reduced to a sequence of smaller problems of shorter horizon.
Then, in Section 4.2, we describe its implementation, leading
to the decomposition of the planner into a goal generator and
a trajectory planner.

4.1 Receding Horizon Strategy
The main limitation of the synthesis of finite state au-

tomata from their LTL specifications [17] is the state explo-
sion problem. In the worst case, the resulting automaton
may contain all the possible states of the system. For exam-
ple, if the system has 10 variables, each can take any value in
{1, . . . , 10}, then there may be as many as 1010 nodes in the
automaton. This type of computational complexity limits
the application of the systhesis to relatively small problems.

Similar computational complexity is also an inherent prob-
lem in the area of constrained optimal control. Consider, for
example, a trajectory generation problem as shown in Fig-
ure 1. In traditional constrained optimal control [6], trajec-
tory generation is typically run in an open loop manner, i.e.,
there is no dashed arrow labeled“Receding Horizon Control”
and a reference trajectory sd is computed offline, taking into
account all the possible initial conditions. An effective and
well-established approach to deal with computational com-
plexity pertaining to this problem is to “close the loop” at
the trajectory generation level as shown in Figure 1 and al-
low control strategies to be designed and implemented in a
receding horizon manner, i.e., optimize over a shorter hori-
zon, starting from the currently observed state, implement
the initial control action, move the horizon one step ahead,
and re-optimize. This strategy reduces the computational
complexity by essentially solving a sequence of “smaller” op-
timization problems, each with a specific initial condition
(as opposed to optimizing with any initial condition in tra-
ditional optimal control). Under certain conditions, receding
horizon control strategies are known to lead to closed-loop
stability [14, 16, 8]. See, for example, [6] for a detailed
discussion on constrained optimal control, including finite
horizon optimal control and receding horizon control.

We apply a similar idea to reduce computational com-
plexity in the synthesis of finite state automata in order to
extend the traditional receding horizon control to handle

Trajectory
Generation
(optimal
control)

Local
Control

Plant

∆

noise

“Receding Horizon Control”

reference
u

δu

sd

Figure 1: A typical control system with trajectory
generation implemented in a receding horizon man-
ner. ∆ models uncertainties in the plant model. The
local control is implemented to account for the ef-
fect of the noise and unmodeled dynamics captured
by ∆.

(potentially dynamic and not a priori known) environments
and more general properties than stability. First, we ob-
serve that in many applications, it is not necessary to plan
for the whole execution, taking into account all the possible
behaviors of the environment since a state that is very far
from the current state of the system typically does not affect
the near future plan. Consider, for example, the robot mo-
tion planning problem described in Example 2. Suppose C1

or C2 is very far, say 100 kilometers, away from the initial
position of the robot. Under certain conditions, it may be
sufficient to only plan out an execution for 500 meters and
implement it in a receding horizon fashion, i.e., re-compute
the plan as the robot moves, starting from the currently
observed state (rather than from all initial conditions sat-
isfying ϕinit as the original specification (5) suggests). In
this section, we present a sufficient condition and a receding
horizon scheme that allows the synthesis to be performed on
a smaller domain; thus, substantially reduces the number of
states (or nodes) of the automaton while still ensuring the
system correctness with respect to the LTL specification (5).

We consider a specification of the form (7) since, from
Proposition 1, the specification (5) can be reduced to this
form. Let Φ be a propositional formula of variables from V
such that ψinit =⇒ Φ is a tautology, i.e., any state ν ∈ V
that satisfies ψinit also satisfies Φ. For each progress prop-
erty �3ψg,i where i ∈ Ig, suppose there exists a collection
of subsets Wi

0, . . . ,Wi
p of V such that

(a) Wi
0 ∪Wi

1 ∪ . . . ∪Wi
p = V,

(b) ψg,i is satisfied for any ν ∈ Wi
0, i.e., Wi

0 is the set of the
states that constitute the progress of the system, and

(c) Pi := ({Wi
0, . . . ,Wi

p},�ψg,i) is a partially ordered set

defined such that Wi
0 ≺ψg,i W

i
j , ∀j 6= 0.

Define a function F i : {Wi
0, . . . ,Wi

p} → {Wi
0, . . . ,Wi

p} such

that F i(Wi
0) �ψg,i W

i
0 and F i(Wi

j) ≺ψg,i W
i
j , ∀j 6= 0.

With the above definitions of Φ, Wi
0, . . . ,Wi

p and F i, we

define a short-horizon specification Ψi
j associated with Wi

j

for each i ∈ Ig and j ∈ {0, . . . , p} as follows:

Ψi
j =

“
(ν ∈ Wi

j) ∧ Φ ∧ �ψee ∧
V
k∈If

�3ψef,k
”

=⇒
“V

k∈Is �ψs,k ∧ �3
`
ν ∈ F i(Wi

j)
´
∧ �Φ

”
,

(8)
where ν is the state of the system and ψee , ψ

e
f,k and ψs,k are

defined as in (7).

Essentially, an automaton Aij satisfying Ψi
j defines a strat-

egy for going from a state ν1 ∈ Wi
j to a state ν2 ∈ F i(Wi

j)
while satisfying the safety requirements

V
i∈Is �ψs,i and main-

taining the invariant Φ. (See Remark 4 for the role of Φ in
this framework.) The partial order Pi essentially provides a
measure of “closeness” to the states satisfying ψg,i (i.e., the
states that constitute the progress of the system). Since each
specification Ψi

j asserts that the system eventually reaches
a state that is smaller in the partial order, it essentially
ensures that each automaton Aij brings the system “closer”

to the states satisfying ψg,i. The function F i thus defines
the horizon length for these short-horizon problems. If the
function F i is chosen properly so that we essentially have to
plan a short step ahead, then the automaton Aij will con-
tain significantly less number of states than an automaton
satisfying the original specification (7).

Receding Horizon Strategy : Let Ig = {i1, . . . , in} and
define a corresponding ordered set (i1, . . . , in).

(1) Determine the index j1 such that the current state ν0 ∈
Wi1
j1

. If j1 6= 0, then execute the automaton Ai1j1 until

the system reaches a state ν1 ∈ Wi1
k where Wi1

k ≺ψg,i1
Wi1
j1

. (Note that since the union of Wi1
1 , . . . ,Wi1

p is the
set V of all the states, given any ν0, ν1 ∈ V, there exist
j1, k ∈ {0, . . . , p} such that ν0 ∈ Wi1

j1
and ν1 ∈ Wi1

k .)

This step corresponds to going from Wi1
j1

to Wi1
j1−1 in

Figure 2.

(2) If the current state ν1 6∈ Wi1
0 , switch to the automaton

Ai1k where the index k is chosen such that the current

state ν1 ∈ Wi1
k . Execute Ai1k until the system reaches a

state that is smaller in the partial order Pi1 Repeat this
step until a state ν2 ∈ Wi1

0 is reached. (It is guaranteed

that a state ν2 ∈ Wi1
0 is eventually reached because of

the finiteness of the set {Wi1
0 , . . . ,Wi1

p } and its partial
order. See the proof of Theorem 1 for more details.)
This step corresponds to going all the way down the
leftmost column in Figure 2.

(3) Switch to the automaton Ai2j2 where the index j2 is cho-

sen such that the current state ν2 ∈ Wi2
j2

. Work through

the partial order Pi2 until a state ν3 ∈ Wi2
0 is reached

as previously done in step (2) for the partial order Pi1 .
Repeat this step with i2 replaced by i3, i4, . . . , in, respec-
tively, until a state νn ∈ Win

0 is reached. (As previously
noted, since for any i ∈ Ig, the union of Wi

1, . . . ,Wi
p is

the set V of all the states, given any ν2 ∈ V, there exist
j2 ∈ {0, . . . , p} such that ν2 ∈ Wi2

j2
.) In Figure 2, this

step corresponds to moving to the next column, going
all the way down this column and repeating this process
until we reach the bottom of the rightmost column.

(4) Repeat steps (1)–(3).

Theorem 1. Suppose Ψi
j is realizable for each i ∈ Ig, j ∈

{0, . . . , p}. Then the proposed receding horizon strategy en-
sures that the system is correct with respect to the specifi-
cation (7), i.e., any execution of the system satisfies (7).

Proof. Consider an arbitrary execution σ of the system
that satisfies the assumption part of (7). We want to show
that the safety properties ψs,i, i ∈ Is hold throughout the ex-
ecution and for each i ∈ Ig, a state satisfying ψg,i is reached
infinitely often.

Let ν0 ∈ V be the initial state of the system and let the
index j1 be such that ν0 ∈ Wi1

j1
. From the tautology of

Wi1
p

Wi1
j1

Wi1
1

Wi1
0

Wi2
p

Wi2
j2

Wi2
1

Wi2
0

Wi3
p

Wi3
j3

Wi3
1

Wi3
0

Win
p

Win
jn

Win
1

Win
0

initial
state ν0

Figure 2: A graphical description of the receding
horizon strategy for a special case where for each
i ∈ Ig, Wi

j ≺ψg,i W
i
k, ∀j < k, F i(Wi

j) = Wi
j−1,∀j > 0 and

F i(Wi
0) = Wi

0. Starting from a state ν0, the system
executes the automaton Ai1j1 where the index j1 is

chosen such that ν0 ∈ Ai1j1 . Repetition of step (2)

ensures that a state ν2 ∈ Wi1
0 (i.e., a state satisfying

ψg,i1) is eventually reached. This state ν2 belongs
to some set, say, Wi2

j2
in the partial order Pi2 . The

system then works through this partial order un-
til a state ν3 ∈ Wi2

0 (i.e., a state satisfying ψg,i2) is
reached. This process is repeated until a state νn
satisfying ψg,in is reached. At this point, for each
i ∈ Ig, a state satisfying ψg,i has been visited at least
once in the execution. In addition, the state νn be-
longs to some set in the partial order Pi1 and the
whole process is repeated, ensuring that for each
i ∈ Ig, a state satisfying ψg,i is visited infinitely often
in the execution.

ψinit =⇒ Φ, it is easy to show that σ satisfies the assump-
tion part of Ψi1

j1
as defined in (8). Thus, if j1 = 0, then Ai10

ensures that a state ν2 satisfying ψg,i1 is eventually reached
and the safety properties ψs,i, i ∈ Is hold at every posi-
tion of σ up to and including the point where ν2 is reached.
Otherwise, j1 6= 0 and Ai1j1 ensures that eventually, a state

ν1 ∈ Wi1
k whereWi1

k ≺ψg W
i1
j1

is reached, i.e., ν1 is the state
of the system at some position p1 of σ. In addition, the in-
variant Φ and all the safety properties ψs,i, i ∈ Is are guar-
anteed to hold at all the positions of σ up to and including
the position p1. According to the receding horizon scheme,
the planner switches to the automaton Ai1k at position p1

of σ. Since ν1 ∈ Wi1
k and ν1 satisfies Φ, the assumption

part of Ψi1
k as defined in (8) is satisfied. Using the previ-

ous argument, we get that Ψi1
k ensures that all the safety

properties ψs,i, i ∈ Is hold at every position of σ starting
from position p1 up to and including position p2 at which
the planner switches the automaton and Φ holds at position
p2. By repeating this procedure and using the finiteness of
the set {Wi1

0 , . . . ,Wi1
p } and its partial order, eventually the

automaton Ai10 is executed which ensures that σ contains a
state ν2 satisfying ψg,i1 and step (2) terminates.

Applying the previous argument to step (3), we get that
step (3) terminates and before it terminates, the safety prop-
erties ψs,i, i ∈ Is and the invariant Φ hold throughout the
execution and for each i ∈ Ig, a state satisfying ψg,i has been
reached at least once. By continually repeating steps (1)–
(3), the receding horizon strategy ensures that ψs,i, i ∈ Is

hold throughout the execution and for each i ∈ Ig, a state
satisfying ψg,i is reached infinitely often.

Remark 3. Traditional receding horizon control is known
to not only reduce computational complexity but also in-
crease the robustness of the system with respect to exoge-
nous disturbances and modeling uncertainties of the plant
[16]. With disturbances and modeling uncertainties, an ac-
tual execution of the system usually deviates from a refer-
ence trajectory sd, computed by the trajectory generation
component (cf. Figure 1). Receding horizon control allows
the current state of the system to be continually re-evaluated
so sd can be adjusted accordingly based on the externally
received reference if the actual execution of the system does
not match it. Such an effect may be expected in our exten-
sion of the traditional receding horizon control. Verifying
this property is subject to current study.

Remark 4. The propositional formula Φ (which can be
viewed as an invariant of the system) adds an assumption
on the initial state of each automaton Aij and is added in

order to make Ψi
j realizable. Without Φ, the set of initial

states of Aij includes any state ν ∈ Wi
j . However, starting

from some “bad” state (e.g. unsafe state) in Wi
j , there may

not exist a strategy for the system to satisfy Ψi
j . Φ is essen-

tially used to eliminate the possibility of starting from these
“bad” states. Given a partially order set Pi and a function
F i, one way to determine Φ is to start with Φ ≡ True and
check the realizability of the resulting Ψi

j . If there exist

i ∈ Ig and j ∈ {0, . . . , p} such that Ψi
j is not realizable,

the synthesis process provides the initial state ν∗ of the sys-
tem starting from which there exists a set of moves of the
environment such that the system cannot satisfy Ψi

j . This
information provides guidelines for constructing Φ, i.e., we
can add a propositional formula to Φ that essentially pre-
vents the system from reaching the state ν∗. This procedure
can be repeated until Ψi

j is realizable for any i ∈ Ig and
j ∈ {0, . . . , p} or until Φ excludes all the possible states, in
which case either the original specification is unrealizable or
the proposed receding horizon strategy cannot be applied
with the given partially order set Pi and function F i.

Remark 5. For each i ∈ Ig and j ∈ {0, . . . , p}, check-
ing the realizability of Ψi

j requires considering all the initial

conditions in Wi
j satisfying Φ. However, as will be further

discussed in Section 4.2, when a strategy (i.e., a finite state
automaton satisfying Ψi

j) is to be extracted, only the cur-
rently observed state needs to be considered as the initial
condition. Typically, checking the realizability can be done
symbolically and enumeration of states is only required when
a strategy needs to be extracted [17]. Symbolic methods are
known to handle large number of states, in practice, sig-
nificantly better than enumeration-based methods. Hence,
state explosion usually occurs at the synthesis (i.e., strat-
egy extraction) stage rather than the realizability checking
stage. By considering only the currently observed state as
the initial state in the synthesis stage, our approach avoids
state explosion both by considering a short-horizon problem
and a specific initial state.

Remark 6. The proposed receding horizon approach is not
complete. Even if there exists a control strategy that satis-
fies the original specification, there may not exist an invari-
ant Φ and a collection of subsets Wi

0, . . . ,Wi
p that allow the

receding horizon strategy to be applied since the correspond-
ing Ψi

j may not be realizable for all i ∈ Ig and j ∈ {0, . . . , p}.

4.2 Implementation
In order to implement the receding horizon strategy de-

scribed in Section 4.1, a partial order Pi and the correspond-
ing function F i need to be defined for each i ∈ Ig. In this
section, we present an implementation of this strategy, es-
sentially allowing Pi and F i to be automatically determined
for each i ∈ Ig while ensuring that all the short-horizon
specifications Ψi

j , i ∈ Ig, j ∈ {0, . . . , p} as defined in (8) are
realizable.

Given an invariant Φ and subsetsWi
0, . . . ,Wi

p of V for each

i ∈ Ig, we first construct a finite transition system Ti with
the set of states {Wi

0, . . . ,Wi
p}. For each j, k ∈ {0, . . . , p},

there is a transition Wi
j → Wi

k in Ti only if j 6= k and the

specification in (8) is realizable with F i(Wi
j) = Wi

k. This

finite transition system Ti can be regarded as an abstraction
of the finite state model D of the physical system S, i.e., a
higher-level abstraction of S.

Suppose Φ is defined such that there exists a path in Ti
from Wi

j to Wi
0 for all i ∈ Ig, j ∈ {1, . . . , p}. (Verifying this

property is essentially a graph search problem. If a path
does not exist, Φ can be re-computed using a procedure
described in Remark 4.) We propose an embedded control
software with three components (cf. Figure 3).

Goal generator: Define an order1 (i1, . . . , in) for the ele-
ments of the unordered set Ig = {i1, . . . , in} and maintain
an index k ∈ {1, . . . , n} throughout the execution. Starting
with k = 1, in each iteration, the goal generator performs
the following tasks.

(a1) Receive the currently observed state of the plant (i.e.
the controlled state) and environment.

(a2) Evaluate whether the abstract state corresponding to

the currently observed state belongs to Wik
0 . If so,

update k to (k mod n) + 1.

(a3) If k was updated in step (a2) or this is the first iter-
ation, then based on the higher level abstraction Tik
of the physical system S, compute a path from Wik

j

to Wik
0 where the index j ∈ {0, . . . , p} is chosen such

that the abstract state corresponding to the currently
observed state belongs to Wik

j .

(a4) If a new path is computed in step (a3), then issue

this path (i.e., a sequence G =Wik
l0
, . . . ,Wik

lm
for some

m ∈ {0, . . . , p} where l0, . . . lm ∈ {0, . . . , p}, l0 = j,
lm = 0, lα 6= lα′ for any α 6= α′, and there exists a
transition Wik

lα
→Wik

lα+1
in Tik for any α < m) to the

trajectory planner.

Note that the problem of finding a path in Tik from Wik
j

to Wik
0 can be efficiently solved using any graph search or

shortest-path algorithm [18], such as Dijkstra’s, A*, etc. To
reduce the original synthesis problem to a set of problems
with short horizon, the cost on each edge (Wik

lα
,Wik

lα′
) of the

graph built from Tik may be defined, for example, as an
exponential function of the “distance” between the sets Wik

lα

and Wik
lα′

.

Trajectory planner: The trajectory planner maintains the
latest sequence G = Wik

l0
, . . . ,Wik

lm
of goal states received

1This order can be defined arbitrarily. In general, its def-
inition affects a strategy the system chooses to satisfy the
specification (7) as it corresponds to the sequence of progress
properties ψg,i1 , . . . , ψg,in the system tries to satisfy.

from the goal generator, an index q ∈ {1, . . . ,m} of the
current goal state in G, a strategy F represented by a finite
state automaton, and the next abstract state ν∗ throughout
the execution. Starting with q = 1, F being an empty finite
state automaton and ν∗ being a null state, in each iteration,
the trajectory planner performs the following tasks.

(b1) Receive the currently observed state of the plant and
environment.

(b2) Check whether a new sequence of goal states is received
from the goal generator.
If so, update G to this latest sequence of goal states,

update q to 1, and update ν∗ to null.
Otherwise, evaluate whether the abstract state corre-

sponding to the currently observed state belongs
to Wik

lq
. If so, update q to q + 1 and ν∗ to null.

(b3) If ν∗ is null, then based on the abstraction D of the
physical system S, synthesize (using, for example, the
synthesis tool [17]) a strategy that satisfies the spec-

ification (8) with F i(Wi
j) = Wik

lq
, starting from the

abstract state ν0 corresponding to the currently ob-
served state (i.e., replace the assumption ν ∈ Wi

j with
ν = ν0). Assign this strategy to F and update ν∗ to
the state following the initial state in F based on the
current environment state.

(b4) If the controlled state ς∗ component of ν∗ corresponds
to the currently observed state of the plant, update ν∗

to the state following the current ν∗ in F based on the
current environment state.

(b5) If ν∗ was updated in step (b3) or (b4), then issue the
controlled state ς∗ to the continuous controller.

Continuous controller: The continuous controller main-
tains the last received (abstract) final controlled state ς∗

from the trajectory planner. In each iteration, it receives
the currently observed state s of the plant. Then, it deter-
mines a control signal u such that the continuous execution
of the system eventually reaches the cell of D corresponding
to the abstract controlled state ς∗ while always staying in
the cell corresponding to the abstract controlled state ς∗ and
the cell containing s. Essentially, the continuous execution
has to simulate the abstract plan computed by the trajec-
tory planner. See, for example, [11, 2, 10, 22, 19, 5], for how
such a control signal can be computed.

From the construction of Ti, i ∈ Ig, it can be verified that
the composition of the goal generator and the trajectory
planner correctly implements the receding horizon strategy
described in Section 4.1. Roughly speaking, the path G from
Wi
j toWi

0 computed by the goal generator essentially defines

the partial order Pi and the corresponding function F i. For
a setWi

lα 6=W
i
0 contained in G, we simply letWi

lα+1
≺ Wi

lα

and F i(Wi
lα) = Wi

lα+1
where Wi

lα+1
immediately follows

Wi
lα in G. In addition, since, by assumption, for any i ∈ Ig

and l ∈ {0, . . . , p}, there exists a path in Ti from Wi
l to Wi

0,
it can be easily verified that the specification Ψi

l is realiz-
able with F(Wi

l) = Wi
0. Thus, for a set Wi

l not contained
in G, we simply let Wi

l ≺ Wi
0 and F i(Wi

l) =Wi
0. Although

the synthesis problem for this latter case may be large, it
does not affect the computational efficiency of our approach
as an automaton satisfying Ψi

l does not have to be synthe-
sized. Hence, from Theorem 1, the abstract plan generated
by the trajectory planner ensures the correctness of the sys-
tem with respect to the specification (7). In addition, since
the continuous controller simulates this abstract plan, the

continuous execution is guaranteed to preserve the correct-
ness of the system.

The resulting system is depicted in Figure 3. Note that
since it is guaranteed to satisfy the specification (7), the de-
sired behavior (i.e. the guarantee part of (7)) is ensured
only when the environment and the initial condition respect
their assumptions. To moderate the sensitivity to violation
of these assumptions, the trajectory planner may send a
response to the goal generator, indicating the failure of ex-
ecuting the last received sequence of goals as a consequence
of assumption violation. The goal generator can then re-
move the problematic transition from the corresponding fi-
nite transition system Ti and re-compute a new sequence G
of goals. This procedure will be illustrated in the example
presented in Section 5. Similarly, a response may be sent
from the continuous controller to the trajectory planner to
account for the mismatch between the actual system and its
model. In addition, a local control may be added in order to
account for the effect of the noise and unmodeled dynamics
captured by ∆. Notice the similarity of Figure 1 and Fig-
ure 3. The trajectory generation in Figure 1 is essentially
decomposed into the goal generator, the trajectory planner
and the continuous controller in Figure 3.

Goal
Generator

Trajectory
Planner

Continuous
Controller

Local
Control

Plant

∆

noise

“Receding Horizon Control”

environment

environment

ς∗

G

response

response

u

δu

sd

Figure 3: A system with the embedded control soft-
ware implemented in a receding horizon manner.
As in Figure 1, ∆ models uncertainties in the plant
model.

5. EXAMPLE
We consider an autonomous vehicle navigating an urban

environment while avoiding obstacles and obeying certain
traffic rules. The state of the vehicle is the position (x, y)
whose evolution is assumed to follow a fully actuated model
ẋ(t) = ux(t) and ẏ(t) = uy(t) subject to the following con-
straints on the control effort: ux(t), uy(t) ∈ [−1, 1], ∀t ≥ 0.

Interests in autonomous driving in urban environments
were recently stimulated by the launch of the 2007 DARPA
Urban Challenge [1]. In this competition, autonomous vehi-
cles have to navigate, in a fully autonomous manner, through
a partially known urban-like environment populated with
(static and dynamic) obstacles and perform different tasks
such as road and off-road driving, parking and visiting cer-
tain areas while obeying traffic rules. For the vehicles to
successfully complete the race, they need to be capable of
negotiating an intersection, handling changes in the environ-
ment or operating condition (e.g. newly discovered obsta-
cles) and reactively replanning in response to those changes
(e.g. making a U-turn and finding a new route when the
newly discovered obstacles fully block the road).

A common approach to solve the planning and control as-
pect of this problem is a three layer design with a mission
planner computing a route (i.e., a sequence of roads to be
navigated) to accomplish the given tasks, a trajectory plan-
ner computing a path (i.e., a sequence of desired positions)
satisfying the traffic rules that essentially describes how the
vehicle should navigate the route generated by the mission
planner, and a controller computing a control signal such
that the vehicle closely follows the path generated by the
trajectory planner [21]. Observe how this three layer ap-
proach naturally follows our general framework for embed-
ded control software design (cf. Figure 3) with the mission
planner being an instance of a goal generator and each of
the sets Wi

1, . . . ,Wi
p being an entire road. However, these

components are typically designed by hand and validated
through extensive simulations and field tests. Although a
correct-by-construction approach has been applied in [12], it
is based on building a finite state abstraction of the physical
system and synthesizing a planner that computes a strategy
for the whole execution, taking into account all the possible
behaviors of the environment. As discussed in Section 4,
this approach fails to handle large problems due to the state
explosion issue. In this section, we show how to apply the
receding horizon scheme to substantially reduce computa-
tional complexity of the correct-by-construction approach.

We consider the road network shown in Figure 4 with 3
intersections, I1, I2 and I3, and 6 roads, R1, R2 (joining
I1 and I3), R3, R4 (joining I2 and I3), R5 (joining I1 and
I3) and R6 (joining I1 and I2). Each of these roads has two
lanes going in opposite directions. The positive and negative
directions for each road is defined in Figure 4. We partition
the roads and intersections into N = 282 cells (cf. Figure 4),
each of which may be occupied by an obstacle.

Given this system model, we want to design embedded
control software for the vehicle based on the following de-
sired properties and assumptions.

R1 R2

R4R3
R6

R5

I1

I2

I3
+

-

+

-

+

-

+

-

+
-

W1
0

Wi
j

W2
0Wi

j−1Wi
j+1

Figure 4: The road network and its partition for
the autonomous vehicle example. The solid (black)
lines define the states in the set V of the finite state
model D used by the trajectory planner. Examples
of subsets Wi

j’s are drawn in dotted (red) rectangles.
The stars indicate the areas that need to be visited
infinitely often.

Desired Properties: We require that each of the two cells
marked by star needs to be visited infinitely often while the
following traffic rules need to be satisfied at all time.

(P1) No collision, i.e., the vehicle cannot occupied the same
cell as an obstacle.

(P2) The vehicle stays in the travel lane (i.e., right lane)
unless there is an obstacle blocking the lane.

(P3) The vehicle can only proceed through an intersection
when the intersection is clear.

Assumptions: We assume that the vehicle starts from some
point on R1 that belongs to an obstacle-free cell and at least
one of its adjacent cells is obstacle-free. In addition, the
environment is assumed to satisfy the following assumptions
throughout an execution.

(A1) Obstacles may not block a road.

(A2) An obstacle is detected before the vehicle gets too close
to it, i.e., an obstacle may not instantly pop up right
in front of the vehicle.

(A3) Sensing range is limited, i.e., the vehicle cannot detect
an obstacle that is away from it farther than certain
distance.

(A4) To make sure that the stay-in-lane property is achiev-
able, we assume that an obstacle does not disappear
while the vehicle is in its vicinity.

(A5) Obstacles may not span more than a certain number
of consecutive cells in the middle of the road.

(A6) Each of the intersections is clear infinitely often.

(A7) Each of the cells marked by star and its adjacent cells
are not occupied by an obstacle infinitely often.

See [22] for precise statements of properties (P1) and (P2)
and assumptions (A1)–(A4) and how they can be expressed
in the form of the guarantee and assumption parts of (7).
Property (P3) can be expressed as a safety formula and the
requirement that the vehicle visit the two cells infinitely of-
ten is essentially a progress property. Finally, assumption
(A5) can be expressed as a safety assumption on the envi-
ronment while assumptions (A6) and (A7) can be expressed
as justice requirements on the environment.

We follow the approach described in Section 4. First, we
compute a finite state abstraction D of the system. Fol-
lowing the scheme in [22], a state ν of D can be writ-
ten as ν = (ς, ρ, o1, o2, . . . , oN) where ς ∈ {1, . . . , N} and
ρ ∈ {+,−} are the controlled state components of ν, spec-
ifying the cell occupied by the vehicle and the direction of
travel, respectively, and for each i ∈ {1, . . . , N}, oi ∈ {0, 1}
indicates whether the ith cell is occupied by an obstacle.
This leads to the total of 2N2N possible states of D. For
any two states ν1 and ν2 of D, there is a transition ν1 → ν2
if the controlled state components of ν1 and ν2 correspond
to adjacent cells.

Since the only progress property is to visit the two cells
marked by star infinitely often, the set Ig in (7) has two
elements, say, Ig = {1, 2}. We let W1

0 be the set of abstract
states whose ς component corresponds to one of these two
cells and define W2

0 similarly for the other cell as shown
in Figure 4. Other Wi

j is defined such that it includes all
the abstract states whose ς component corresponds to cells
across the width of the road (cf. Figure 4).

Next, we define Φ such that it excludes states where the
vehicle is not in the travel lane while there is no obstacle
blocking the lane and states where the vehicle is in the same

cell as an obstacle or none the cells adjacent to the vehicle
are obstacle-free. With this Φ, the specification (8) is re-
alizable with F i(Wi

j) = Wi
k where Wi

j and Wi
k correspond

to adjacent dotted (red) rectangles in Figure 4. The finite
transition system Ti used by the goal planner can then be
constructed such that there is a transitionWi

j →Wi
k for any

adjacent Wi
j and Wi

k. With this transition relation, for any

i ∈ Ig and j ∈ {0, . . . , p}, there exists a path in Ti from Wi
j

toWi
0 and the trajectory planner essentially only has to plan

one step ahead2. Thus, the size of finite state automata syn-
thesized by the trajectory planner to satisfy the specification
(8) is completely independent of N . Using JTLV [17], each
of these automata has less than 900 states and only takes
approximately 1.5 seconds to compute on a MacBook with a
2 GHz Intel Core 2 Duo processor. In addition, with an effi-
cient graph search algorithm, the computation time requires
by the goal generator is in the order of milliseconds. Hence,
with a real-time implementation of optimization-based con-
trol such as NTG [15] at the continuous controller level, our
approach can be potentially implemented in real-time.

A simulation result is shown in Figure 5(a), illustrating
a correct execution of the vehicle when all the assumptions
on the environment and initial condition are satisfied. Note
that without the receding horizon strategy, there can be as
many as 1087 states in the automaton, making this problem
essentially impossible to solve.

To illustrate the benefit of the response mechanism, we
add a road blockage on R2 to violate the assumption (A1).
The result is shown in Figure 5(b). Once the vehicle dis-
covers the road blockage, the trajectory planner cannot find
the current state of the system in the finite state automaton
synthesized from the specification (8) since the assumption
on the environment is violated. The trajectory planner then
informs the goal generator of the failure to satisfy the cor-
responding specification with the associated pair of Wi

j and

F(Wi
j). Subsequently, the goal generator removes the tran-

sition from Wi
j to F(Wi

j) in Ti and re-computes a path to

Wi
0. As a result, the vehicle continues to exhibit a correct

behavior by making a U-turn and completing the task using
a different path.

6. CONCLUSIONS AND FUTURE WORK
This paper described a receding horizon based scheme that

allows a computationally complex synthesis problem to be
reduced to a set of significantly smaller problems. An im-
plementation of the proposed scheme was presented, leading
to a hierarchical, modular design with a goal generator, a
trajectory planner and a continuous controller. A response
mechanism that increases the robustness of the system with
respect to a mismatch between the system and its model
and between the actual behavior of the environment and its
assumptions was discussed. The example illustrated that
the system is capable of exhibiting a correct behavior even
if some of the assumptions on the environment do not hold
in the actual execution.

Future work includes further investigation of the robust-
ness of the receding horizon scheme. Specifically, we want to

2A longer horizon may be used. However, in general, the
size of an automaton satisfying the specification (8) increases
with the horizon length. With too short horizon, the spec-
ification (8) is generally not realizable. A good practice is
to choose the shortest horizon, subject to the realizability of
the resulting specification (8).

Figure 5: Simulation results with (top) no road
blockage, (bottom) a road blockage on R2.

formally identify the types of properties and faults/failures
that can be correctly handled using the proposed response
mechanism. This mechanism has been implemented on Al-
ice, an autonomous vehicle built at Caltech, for distributed
mission and contingency management [21]. Based on exten-
sive simulations and field tests, it has been shown to han-
dle many types of failures and faults at different levels of
the system, including inconsistency of the states of different
software modules and hardware and software failures.

Another direction of research is to study an asynchronous
execution of the goal generator, the trajectory planner and
the continuous controller. Although as described in the pa-
per, these components are to be executed sequentially, with
certain assumptions on the communication channels, a dis-
tributed, asynchronous implementation of these components
may still guarantee the correctness of the system.

Acknowledgments
The authors gratefully acknowledge Hadas Kress-Gazit for
the inspiring discussions on the synthesis of finite state au-
tomata and Yaniv Sa’ar for the discussions on reducing sta-
bility properties to a GR[1] formula and his suggestions and
help with JTLV. This work is partially supported by AFOSR
and the Boeing Corporation.

7. REFERENCES
[1] DARPA Urban Challenge. http://www.darpa.mil/

grandchallenge/index.asp, 2007.

[2] D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and
G. Pappas. Valet parking without a valet. In Proc. of
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 572–577, 2007.

[3] E. A. Emerson. Temporal and modal logic. In
Handbook of theoretical computer science (vol. B):
formal models and semantics, pages 995–1072. MIT
Press, Cambridge, MA, USA, 1990.

[4] A. Girard, A. A. Julius, and G. J. Pappas.
Approximate simulation relations for hybrid systems.
Discrete Event Dynamic Systems, 18(2):163–179, 2008.

[5] A. Girard and G. J. Pappas. Brief paper: Hierarchical
control system design using approximate simulation.
Automatica, 45(2):566–571, 2009.

[6] G. C. Goodwin, M. M. Seron, and J. A. D. Doná.
Constrained Control and Estimation: An Optimisation
Approach. Springer, 2004.

[7] M. Huth and M. Ryan. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge
University Press, 2nd edition, 2004.

[8] A. Jadbabaie. Nonlinear Receding Horizon Control: A
Control Lyapunov Function Approach. PhD thesis,
California Institute of Technology, 2000.

[9] S. Karaman and E. Frazzoli. Sampling-based motion
planning with deterministic µ-calculus specifications.
In Proc. of IEEE Conference on Decision and Control,
Dec. 2009.

[10] M. Kloetzer and C. Belta. A fully automated
framework for control of linear systems from temporal
logic specifications. IEEE Transaction on Automatic
Control, 53(1):287–297, 2008.

[11] H. Kress-Gazit, G. Fainekos, and G. Pappas. Where’s
waldo? Sensor-based temporal logic motion planning.
In Proc. of IEEE International Conference on Robotics
and Automation, pages 3116–3121, April 2007.

[12] H. Kress-Gazit and G. J. Pappas. Automatically
synthesizing a planning and control subsystem for the
DARPA Urban Challenge. In IEEE International
Conference on Automation Science and Engineering,
pages 766–771, 2008.

[13] Z. Manna and A. Pnueli. The temporal logic of reactive
and concurrent systems. Springer-Verlag, 1992.

[14] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert.
Constrained model predictive control: Stability and
optimality. Automatica, 36:789–814(26), June 2000.

[15] M. B. Milam, K. Mushambi, and R. M. Murray. A
new computational approach to real-time trajectory
generation for constrained mechanical systems. In
Proc. of IEEE Conference on Decision and Control,
pages 845–851, 2000.

[16] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam,
N. Petit, W. B. Dunbar, and R. Franz. Online control
customization via optimization-based control. In
Software-Enabled Control: Information Technology for
Dynamical Systems, pages 149–174.
Wiley-Interscience, 2002.

[17] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. In Verification, Model Checking
and Abstract Interpretation, volume 3855 of Lecture
Notes in Computer Science, pages 364 – 380.
Springer-Verlag, 2006. Software available at
http://jtlv.sourceforge.net/.

[18] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Pearson Education, 2003.

[19] P. Tabuada and G. J. Pappas. Linear time logic
control of linear systems. IEEE Transaction on
Automatic Control, 51(12):1862–1877, 2006.

[20] H. Tanner and G. J. Pappas. Simulation relations for
discrete-time linear systems. In Proc. of the IFAC
World Congress on Automatic Control, pages
1302–1307, 2002.

[21] T. Wongpiromsarn and R. M. Murray. Distributed
mission and contingency management for the DARPA
urban challenge. In International Workshop on
Intelligent Vehicle Control Systems (IVCS), 2008.

[22] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon temporal logic planning for
dynamical systems. In Proc. of IEEE Conference on
Decision and Control, Dec. 2009.

