
Receding Horizon Control of Autonomous Aerial Vehicles 1

John Bellingham 2, Arthur Richards 3, and Jonathan P. How 4

Massachusetts Institute of Technology
Cambridge MA 02139

Abstract

This paper presents a new approach to trajectory op-
timization for autonomous fixed-wing aerial vehicles
performing large-scale maneuvers. The main result is
a planner which designs nearly minimum time planar
trajectories to a goal, constrained by no-fly zones and
the vehicle’s maximum speed and turning rate. Mixed-
Integer Linear Programming (MILP) is used for the op-
timization, and is well suited to trajectory optimization
because it can incorporate logical constraints, such as
no-fly zone avoidance, and continuous constraints, such
as aircraft dynamics. MILP is applied over a receding
planning horizon to reduce the computational effort of
the planner and to incorporate feedback. In this ap-
proach, MILP is used to plan short trajectories that
extend towards the goal, but do not necessarily reach
it. The cost function accounts for decisions beyond the
planning horizon by estimating the time to reach the
goal from the plan’s end point. This time is estimated
by searching a graph representation of the environment.
This approach is shown to avoid entrapment behind ob-
stacles, to yield near-optimal performance when com-
parison with the minimum arrival time found using a
fixed horizon controller is possible, and to work consis-
tently on large trajectory optimization problems that
are intractable for the fixed horizon controller.

1 Introduction

The capabilities and roles of Unmanned Aerial Vehicles
(UAVs) are evolving, and require new concepts for their
control. A significant aspect of this control problem is
optimizing the long-range kinodynamically constrained
trajectory from the UAV’s starting point to its goal.
This problem is complicated by the fact that the space
of possible control actions is extremely large, and that
simplifications that reduce its dimensionality while pre-
serving feasibility and near optimality are challenging.

Two well-known methods that have been applied to this
problem are Probabilistic Road Maps [1] (PRMs) and
Rapidly-exploring Random Trees [2] (RRTs). These
methods reduce the dimensionality of the problem by

1 The research was funded in part under DARPA contract
N6601-01-C-8075 and Air Force grant # F49620-01-1-0453.

2 Research Assistant john b@mit.edu
3 Research Assistant, arthurr@mit.edu
4 Associate Professor, jhow@mit.edu

sampling the possible control actions, but the result-
ing trajectories are generally not optimal. This work
presents a new method for optimizing kinodynamically
constrained trajectories that is near-optimal (shown to
be within 3% on average for several examples) and com-
putationally tractable.

Mixed-Integer Linear Programming (MILP) is the key
element of this new approach. MILP extends linear
programming to include variables that are constrained
to take on integer or binary values. These variables
can be used to add logical constraints into the opti-
mization problem [3, 4], such as obstacle and collision
avoidance [5, 6, 7]. Recent improvements in combina-
torial optimization and computer speed make MILP a
feasible tool for trajectory optimization. To reduce the
computation time required by MILP for large trajecto-
ries, it can been used in a receding horizon framework,
such as the basic approach presented in Ref. [5].

In general, receding horizon control (also called Model
Predictive Control) designs an input trajectory that op-
timizes the plant’s output over a period of time, called
the planning horizon. The input trajectory is imple-
mented over the shorter execution horizon, and the op-
timization is performed again starting from the state
that is reached. This re-planning incorporates feedback
to account for disturbances and plant modeling errors.
In this problem setting, computation can be saved by
applying MILP in a receding horizon framework to de-
sign a series of short trajectories to the goal instead of
one long trajectory, since the computation required to
solve a MILP problem grows non-linearly with its size.

One approach to ensuring that the successively planned
short trajectories actually reach the goal is to minimize
some estimate of the cost to go from the plan’s end,
or terminal point, to the goal. However, it is not obvi-
ous how to find an accurate cost-to-go estimate without
planning the trajectory all the way to the goal, increas-
ing the computation required. The approach suggested
in [5] used an estimate of the time-to-go from endpoint
of the plan to the goal that was not cognizant of obsta-
cles in this interval. This terminal penalty led to the
aircraft becoming trapped behind obstacles. Control
Lyapunov Functions have been used successfully as ter-
minal penalties in other problem settings [8], but these
are also incompatible with the presence of obstacles in
the environment. This paper investigates a cost-to-go

function based on a modified version of Dijkstra’s Al-
gorithm applied to a visibility graph representation of
the environment.

2 Fixed Horizon Minimum Time Controller

A minimum arrival time controller using MILP over a
fixed planning horizon was presented in Ref. [7]. At
time step k it designs a series of control inputs {u(k +
i) ∈ R2 : i = 0, 1, . . . , L − 1}, that give the trajectory
{x(k+i) ∈ R2 : i = 1, 2, . . . , L}. Constraints are added
to specify that one of the L trajectory points x(k +
i) = [xk+i,1 xk+i,2]

T must equal the goal xgoal. The
optimization minimizes the time along this trajectory
at which the goal is reached, using L binary decision
variables bgoal ∈ {0, 1} as

min
u(·)

φ1(bgoal, t) =
L∑

i=1

bgoal,iti (1)

subject to
xk+i,1 − xgoal,1 ≤ R(1 − bgoal,i)
xk+i,1 − xgoal,1 ≥ −R(1 − bgoal,i)
xk+i,2 − xgoal,2 ≤ R(1 − bgoal,i)
xk+i,2 − xgoal,2 ≥ −R(1 − bgoal,i) (2)

L∑
i=1

bgoal,i = 1 (3)

where R is a large positive number, and ti is the time
at which the trajectory point x(k+ i) is reached. When
the binary variable bgoal,i is 0, it relaxes the arrival con-
straint in Eqn. 2. Eqn. 3 ensures that the arrival con-
straint is enforced once.

To include collision avoidance in the optimization, con-
straints are added to ensure that none of the L trajec-
tory points penetrate any obstacles. Rectangular ob-
stacles are used in this formulation, and are described
by their lower left corner (ulow, vlow) and upper right
corner (uhigh, vhigh). To avoid collisions, the following
constraints must be satisfied by each trajectory point

xk+i,1 ≤ ulow + R bin,1

xk+i,1 ≥ uhigh − R bin,2

xk+i,2 ≤ vlow + R bin,3

xk+i,2 ≥ vhigh − R bin,4 (4)
4∑

j=1

bin,j ≤ 3 (5)

The jth constraint is relaxed if bin,j = 1, and enforced
if bin,j = 0. Eqn. 5 ensures that at least one con-
straint in Eqn. 4 is active for the trajectory point.
These constraints are applied to all trajectory points
{x(k + i) : i = 1, 2, . . . , L}. Note that the obstacle
avoidance constraints are not applied between the tra-
jectory points for this discrete-time system, so small

incursions into obstacles are possible. As a result, the
obstacle regions in the optimization must be slightly
larger that the real obstacles to allow for this margin.

The trajectory is also constrained by discretized dy-
namics, which model a fixed-wing aircraft with limited
speed and turning rate. The latter is represented by
a limit on the magnitude of the turning force u(k + i)
that can be applied [7].[

ẋ(k + i + 1)
x(k + i + 1)

]
= A

[
ẋ(k + i)
x(k + i)

]
+ Bu(k + i) (6)

subject to the linear approximations of velocity and
force magnitude limits

�a(ẋ(k + i)) ≤ ẋmax (7)
�a(u(k + i)) ≤ umax (8)

The constraints in Eqns. 7 and 8 make use of an ap-
proximation �a(r) of the length of a vector r = (x1, x2)

�a(r) = s : s ≥ L1x1 + L2x2, ∀ (L1, L2) ∈ L (9)

where L is a finite set of unit vectors whose directions
are distributed from 0◦ − 360◦.

This formulation finds the minimum arrival time tra-
jectory. Experience has shown that the computational
effort required to solve this optimization problem can
grow quickly and unevenly with the product of the
length of the trajectory to be planned and the number
of obstacles to be avoided [5, 7]. However, as discussed
in the following sections, a receding horizon approach
can be used to design large-scale trajectories.

3 Simple Terminal Cost Formulation

In order to reduce the computational effort required,
MILP has been applied within a receding horizon
framework. To enable a more direct comparison of
the effects of the terminal penalty, the following pro-
vides a brief outline of the receding horizon approach
suggested in Ref. [5]. The MILP trajectory optimiza-
tion is repeatedly applied over a moving time-window
of length Hp. The result is a series of control inputs
{u(k + i) ∈ R2 : i = 0, 1, . . . , Hp − 1}, that give the
trajectory {x(k + i) ∈ R2 : i = 1, 2, . . . , Hp}. The first
part of this input trajectory, of length He < Hp, is ex-
ecuted before a new trajectory is planned. The cost
function of this optimization is the terminal penalty
φ2(x(k + Hp)), which finds the 1-norm of the distance
between the trajectory’s end point and the goal. The
formulation is piecewise-linear and can be included in
a MILP using slack variables as

min
u(·)

φ2(x(k + Hp)) = �b(xgoal − x(k + Hp)) (10)

where �b(r) evaluates the sum of the absolute values
of the components of r. Obstacle avoidance and dy-
namics constraints are also added. This formulation

φ
2
 as terminal penalty

Fig. 1: Starting point at left, goal at right. Circles
show trajectory points. Receding horizon controller us-
ing simple terminal penalty φ2 and Hp = 12 becomes
entrapped and fails to reach the goal.

is equivalent to the fixed horizon controller when the
horizon length is just long enough to reach the goal.
However, when the horizon length does not reach the
goal, the optimization minimizes the approximate dis-
tance between the trajectory’s terminal point and the
goal. This choice of terminal penalty can prevent the
aircraft from reaching the goal when the approxima-
tion does not reflect the length of a flyable path. This
occurs if the line connecting x(k + Hp) and the goal
penetrates obstacles. This problem is especially appar-
ent when the path encounters a concave obstacle, as
shown in Fig. 1. If the terminal point that minimizes
the distance to the goal is within the concavity behind
an obstacle, then the controller will plan a trajectory
into the concavity. If the path out of the concavity re-
quires a temporary increase in the 1-norm distance to
the goal, the aircraft can become trapped behind the
obstacle. This is comparable to the entrapment in local
minima that is possible using potential field methods.

4 Improved Receding Horizon Control
Strategy

This section presents a novel method for approximating
the time-to-go and shows how this can be implemented
in a MILP program, using only linear and binary vari-
ables. This approach avoids the difficulties associated
with nonlinear programming, such as choosing a suit-
able initial guess for the optimization.

4.1 Control Architecture
The control strategy is comprised of a cost estimation
phase and a trajectory design phase. The cost esti-
mation phase computes a compact “cost map” of the
approximate minimum time-to-go from a limited set of
points to the goal. The cost estimation phase is per-
formed once for a given obstacle field and position of the

Fig.2: Resolution Levels of the Planning Algorithm

goal, and would be repeated if the environment changes.
The trajectory designer uses this cost map information
in the terminal penalties of the receding horizon opti-
mization to design a series of short trajectory segments
that are followed until the goal is reached. This divi-
sion of computation between the cost estimation and
trajectory design phases enables the trajectory opti-
mization to use only linear relationships. An example
of a result that would be expected from the trajectory
design phase is shown schematically in Fig. 2. In this
phase, a trajectory consistent with discretized aircraft
dynamics is designed from x(k) over a fine resolution
planning horizon with length Hp steps. The trajectory
is optimized using MILP to minimize the cost function
assessed at the plan’s terminal point x(k + Hp). This
cost estimates the time to reach the goal from this point
as the time to move from x(k + Hp) to a visible point
xvis, whose cost-to-go was previously estimated, plus
the cost-to-go estimate Cvis for xvis. As described in
Section 4.2, Cvis is estimated using a coarser model
of the aircraft dynamics that can be evaluated very
quickly. Only the first He steps are executed before
a new plan is formed starting from x(k + He).

The use of two dynamics models with different levels
of resolution exploits the trajectory planning problem’s
structure. On a long time-scale, a successful controller
need only decide which combination of obstacle gaps
to pass through in order to take the shortest dynami-
cally feasible path. However, on a short time-scale, a
successful controller must plan the dynamically feasible
time-optimal route around the nearby obstacles to pass
through the chosen gaps. The different resolution lev-
els of the receding horizon controller described above
allow it to make decisions on these two levels, without
performing additional computation to “over plan” the
trajectory to an unnecessary level of detail.

The cost estimation is performed in MATLAB. It pro-
duces a data file containing the cost map in the AMPL

language, and an AMPL model file specifies the form
of the cost function and constraints. The CPLEX op-
timization program is used to solve the MILP problem
and outputs the resulting input and position trajectory.
MATLAB is used to simulate the execution of this tra-
jectory up to x(k+He), which leads to a new trajectory
optimization problem with an updated starting point.

4.2 Computation of Cost Map
The shortest path around a set of polygonal obstacles to
a goal, without regard for dynamics, is a series of joined
line segments that connect the starting point, possibly
obstacle vertices, and the goal. To find this path, a
visibility graph can be formed whose nodes represent
these points. Edges are added between pairs of nodes
if the points they represent can be connected by a line
that does not penetrate any obstacles. The visibility
graph is searched using Dijkstra’s Single Source Short-
est Path Algorithm [9], starting at the goal, to find the
shortest path from the each node of the graph to the
goal, and the corresponding distances.

This work is concerned with minimum arrival time
paths, not minimum distance paths. It is possible that
the fastest path is not necessarily the shortest: longer
paths can be faster if they require fewer sharp turns be-
cause the aircraft must slow down to turn sharply. This
effect can be approximately accounted for by modify-
ing Dijkstra’s Algorithm. When Dijkstra’s Algorithm
examines an edge to see if it should be added to the
tree of shortest paths being grown from the goal out-
wards, its length is divided by ẋmax, and a penalty is
added that is proportional to the change in direction
between the new edge and the next edge towards the
goal in the tree. This approximately compensates for
the reduction in aircraft speed necessary to make the
turn between the two associated legs. With this mod-
ification, Dijkstra’s Algorithm finds the approximate
minimum time to reach the goal from each graph node.

In order to illustrate how the resulting cost map ac-
counts for obstacles, their contribution to the cost is
isolated in Fig. 3. To produce this graph, cost values
were found over a fine grid of points in two fields of
equal size, one with obstacles, and one without1. The
two sets of cost values were subtracted to remove the
contribution of straight line distance to costs in the
obstacle field. Areas of larger difference are shown in
Fig. 3 by darker shading. Note that the cost is increas-
ing into the concave obstacle. This increase is crucial
to avoiding the entrapment shown in Fig. 1.

1Cost values need not be found over such a fine grid to plan
trajectories successfully. Since optimal large-scale trajectories
tend to connect the starting point, obstacle vertices, and the
goal, costs need only be found at these points. Many extra grid
points are added here to more clearly demonstrate the trend in
cost values.

Fig.3: Difference between actual cost at various points
in an obstacle field and cost in same region with no ob-
stacles, showing the effects of obstacles on cost values.
Goal is at center right.

4.3 Modified MILP Problem
The results of the cost estimation phase are provided to
the trajectory design phase as pairs of a position where
the approximate cost-to-go is known and the cost at
that point (xcost,j, Cj). This new formulation includes
a significantly different terminal cost that is a function
of x(k + Hp), and (xvis, Cvis), a pair from the cost es-
timation phase. The optimization seeks to minimize
the time to fly from x(k + Hp) to the goal by choosing
x(k + Hp) and the pair (xvis, Cvis) that minimize the
time to fly from x(k + Hp) to xvis, plus the estimated
time to fly from xvis to xgoal, Cvis,

min
u(·)

φ3(x(k+Hp),xvis, Cvis) =
�a(xvis − x(k + Hp))

vmax
+Cvis

(11)
A key element in the algorithm is that the optimization
is not free to choose x(k + Hp) and xvis independently.
Instead, xvis is constrained to be visible from x(k+Hp).
Note that visibility constraints are, in general, nonlin-
ear because they involve checking whether every point
along a line is outside of all obstacles. Because these
nonlinear constraints cannot be included in a MILP
problem, they are approximated by constraining a dis-
crete set of interpolating points between x(k+Hp) and
xvis to lie outside of all obstacles. These interpolating
points are a portion τ of the distance along the line-of-
sight between x(k + Hp) and xvis

∀ τ ∈ T : [x(k + Hp) + τ · (xvis − x(k + Hp))] /∈ Xobst

(12)
where T ⊂ [0, 1] is a discrete set of interpolation dis-
tances and Xobst is the obstacle space.

The visibility constraint ensures that the length of the
line between x(k+Hp) and xvis is a good estimate of the
length of a flyable path between them, and ultimately

φ
3
 as terminal penalty

Fig. 4: Trajectories designed using receding horizon
controller with φ3 terminal penalty avoid entrapment.
Trajectories start at left and at center, goal is at right.
Circles show trajectory points. Hp = 12.

that the terminal penalty is a good estimate of the time
to reach the goal from x(k + Hp). The interpolating
points are constrained to lie outside obstacles in the
same way that the trajectory points are constrained to
lie outside obstacles in the previous formulations (see
Eqns. 4 and 5), so it is possible that portions of the
line-of-sight between interpolating points penetrate ob-
stacles. However, if a sufficient number of interpolating
points is used, the line-of-sight will only be able to “cut
corners” of the obstacles. In this case, the extra time
required to fly around the corner is small, and the ac-
curacy of the terminal penalty is not seriously affected.

The values of the position xvis and cost Cvis are eval-
uated using the binary variables bcost ∈ {0, 1} and the
n points on the cost map as

xvis =
∑n

j=1 bcost,jxcost,j (13)

Cvis =
∑n

j=1 bcost,jCj (14)∑n
j=1 bcost,j = 1 (15)

Obstacle avoidance constraints (Eqns. 4 and 5) are
enforced without modification at {x(k + i) : i =
1, 2, . . . , Hp}. The dynamics model (Eqn. 6), the veloc-
ity limit (Eqn. 7), and the control force limit (Eqn. 8)
are also enforced in this formulation. This provides a
completely linear receding horizon formulation of the
trajectory design problem.

5 Results

The following examples demonstrate that the new re-
ceding horizon control strategy provides trajectories
that are close to time-optimal and avoid entrapment,
while maintaining computational tractability.

5.1 Avoidance of Entrapment
In order to test the performance of the improved cost
penalty around concave obstacles, the improved termi-

5 10 15 20 25 30
0

1

2

3

4

In
cr

ea
se

 in
 p

la
n

le
ng

th
 fr

om
 th

e

op

tim
al

 p
la

n
to

 th
e

re
ce

di
ng

 h
or

iz
on

 c
on

tr
ol

le
r

(%
)

Number of Steps per Plan

5 10 15 20 25 30
0

50

100

150

200

A
ve

ra
ge

 to
ta

l c
om

pu
ta

tio
nT

im
e

ts
)

Fig.5: The Effects of Plan Length. Increase in arrival
time from optimal to that found by receding horizon
controller is plotted with a solid line. Average total
computation time is plotted with a dashed line.

nal penalty φ3 was applied to the obstacle field con-
sidered in Section 3, and the resulting trajectories are
shown in Fig. 4. The new cost function captures the dif-
ference between the distance to the goal and the length
of a feasible path to the goal, which allows the receding
horizon controller to plan trajectories that consistently
reach the goal.

5.2 Optimality
The computational effort required by the receding hori-
zon control strategy is significantly less than that of the
fixed horizon controller because its planning horizon is
much shorter. However, for the same reason, global
optimality is not guaranteed. To examine this trade-
off, a set of random obstacle fields was created, and a
trajectory to the goal was planned using both the reced-
ing and fixed horizon controllers. The receding horizon
controller was applied several times to each problem,
each time with a longer planning horizon. The results
are shown in Fig. 5. The extra number of time steps
in the receding horizon controller’s trajectory is plotted
as a percentage of the minimum number of steps found
using the fixed horizon controller, averaged over several
obstacle fields. The plot shows that, on average, the re-
ceding horizon controller is within 3% of the optimum
for a planning horizon longer than 7 time steps. The
average total computation time for the receding hori-
zon controller is also plotted, showing that the increase
in computation time is roughly linear with plan length.

5.3 Computation Savings
The effects of problem complexity on computation time
were also examined by timing the fixed and receding
horizon controllers’ computation on a 1 GHz PIII com-
puter. The complexity of a MILP problem is related
to its number of binary variables, which grows with
the product of the number of obstacles and number of
steps to be planned. A series of obstacle fields was

Fig.6: Cumulative Computation Time vs. Complexity

Fig.7: Sample Long Trajectory Designed using Reced-
ing Horizon Controller. Executed trajectory (plan plus
velocity disturbance) shown with thick line, planned
trajectory segments shown with thin lines.

created with several different values of this complex-
ity metric, and a trajectory to the goal was planned
using both the receding and fixed horizon controllers.
The optimization of each plan was aborted if the op-
timum was not found in 600 seconds. The results are
shown in Fig. 6, which gives the average cumulative
computation time for the receding horizon controller,
and the median computation time for the fixed hori-
zon controller. The median computation time for the
fixed horizon controller was over 600 seconds for all
complexity levels over 1628. At several complexity lev-
els for which its median computation time was below
600 seconds, the fixed horizon controller also failed to
complete plans. The cumulative time required by the
receding horizon controller to design all the trajectory
segments to the goal was less than this time limit for
every problem. All but the first of its plans can be com-
puted during execution of the previous, so the aircraft
can begin moving towards the goal much sooner.

Next, an extremely large problem, with a complex-
ity of 6636, was attempted with the receding horizon
controller. It successfully designed a trajectory that
reached the goal in 316 time steps, in a cumulative com-
putation time of 313.2 seconds. This controller took

2.97 seconds on average to design one trajectory seg-
ment. The fixed horizon controller could not solve this
problem in 1200 seconds of computation time. A trajec-
tory through the same obstacle field was also planned
in the presence of velocity disturbances, causing the fol-
lowed trajectory to differ significantly from each of the
planned trajectory segments. By designing each trajec-
tory segment from the state that is actually reached, the
receding horizon controller compensates for the distur-
bance. The executed trajectory and planned trajectory
segments are shown in Fig. 7.

6 Conclusions
This paper presents a new algorithm for designing
long-range kinodynamically constrained trajectories for
fixed-wing UAVs. It is based on MILP optimization
within a receding horizon control framework. A novel
terminal penalty for the receding horizon optimization
is computed by finding a cost map for the environment,
and connecting the aircraft trajectory over the planning
horizon to the cost map. The resulting MILP problem
can be solved with commercially available optimization
software. Simulation results show that: (a) the receding
horizon controller plans trajectories whose arrival times
are within 3% of optimal; (b) the controller can suc-
cessfully solve complex trajectory planning problems
in practical computation times; and (c) the controller
avoids entrapment behind obstacles.

References

[1] Kavraki, L. E., Lamiraux, F., and Holleman, C.,
“Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces,” IEEE Transactions on
Robotics and Automation, 12(4):566-580.

[2] LaValle, S. M. and Kuffner, J. J., “Randomized Kino-
dynamic Planning,” IEEE International Conference on Ro-
botics and Automation, July, 1999.

[3] Floudas, C. A., “Nonlinear and Mixed-Integer Pro-
gramming – Fundamentals and Applications,” Oxford Uni-
versity Press, 1995.

[4] Williams, H. P., and Brailsford, S. C., “Computa-
tional Logic and Integer Programming,” in Advances in Lin-
ear and Integer Programming, Editor J. E. Beasley, Claren-
don Press, Oxford, 1996, pp. 249–281.

[5] Schouwenaars, T., De Moor, B., Feron, E. and
How, J., “Mixed Integer Programming for Multi-Vehicle
Path Planning,” ECC, 2001.

[6] Richards, A., How, J., Schouwenaars, T., Feron, E.,
“Plume Avoidance Maneuver Planning Using Mixed Integer
Linear Programming” AIAA GN&C Conf., 2001.

[7] Richards, A. and How, J., “Aircraft Trajectory Plan-
ning With Collision Avoidance Using Mixed Integer Linear
Programming”, to appear at ACC, 2002.

[8] Jadbabaie, A., Primbs, J. and Hauser, J. “Uncon-
strained receding horizon control with no terminal cost”,
presented at the ACC, Arlington VA, June 2001.

[9] Cormen, T. H., Leiserson, C. E., Rivest, R. L.. “In-
troduction to Algorithms,” MIT Press, 1990.

