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Abstract As mobile robots venture into more difficult environments, more complex

state-space paths are required to move safely and efficiently. The difference between

mission success and failure can be determined by a mobile robots capacity to effec-

tively navigate such paths in the presence of disturbances. This paper describes a

technique for mobile robot model predictive control that utilizes the structure of a

regional motion plan to effectively search the local continuum for an improved solu-

tion. The contribution, a receding horizon model-predictive control (RHMPC) tech-

nique, specifically addresses the problem of path following and obstacle avoidance

through geometric singularities and discontinuities such as cusps, turn-in-place, and

multi-point turn maneuvers in environments where terrain shape and vehicle mobil-

ity effects are non-negligible. The technique is formulated as an optimal controller

that utilizes a model-predictive trajectory generator to relax parameterized control

inputs initialized from a regional motion planner to navigate safely through the en-

vironment. Experimental results are presented for a six-wheeled skid-steered field

robot in natural terrain.

1 Introduction

Mobile robot navigation is the challenge of selecting intelligent actions from the

continuum of possible actions that make progress towards achieving some goal un-

der the constraints of limited perceptual information, computational resources, and

planning time of the system. It also often viewed as the problem of balancing path

following and obstacle avoidance in autonomous system architectures. Regional

motion planning is the problem of planning beyond the sensor horizon.

A state-space trajectory is typically defined as a vector valued function of mono-

tonic time (t). There are, however, circumstances where time is replaced by po-
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tentially nonmonotonic functions of distance (s) or heading (ψ) to form a path. Path

representations are used to achieve behaviors that allows velocity to remain unspeci-

fied. A cusp is a point in a trajectory where linear velocity changes sign. While cusps

are discontinuous in path curvature, they are not discontinuous in state space trajec-

tories and are perfectly feasible motions. Furthermore, the concept of forward on a

path is not well-defined for cusps (and likewise for point turns) whereas forwards in

time always has meaning. The capacity of a state space trajectory representation to

remove discontinuities and permit a forward horizon to be defined are the basis of

our preference for this representation.

A reference trajectory is the state-space trajectory (x(t)1) provided by a regional

motion planner (or other form of global guidance). The reference actions (u(x, t))
are the inputs which cause the vehicle to follow the path perfectly in the absence

of disturbances. In the presence of disturbances, the reference input signals that

correspond to a disturbance free trajectory must be augmented by corrective actions

to null the following error over some time horizon.

1.1 Motivation

As mobile robots navigate intricate motion plans composed of cusps, turn-in-place,

and multi-turn maneuvers, the geometric singularities and discontinuities of these

inflection points become problematic. Commonly applied techniques cannot gener-

ally reason about actions beyond these problematic points, which can endanger the

system or impede path following performance by limiting the navigation horizon.

Consider the situation illustrated in Figure 1. In this example, the mobile robot

deviates from the reference trajectory from disturbances including errors in model-

ing dynamics, terramechanical properties, and mobility.

Fig. 1 An illustration of a vehicle attempting to to follow a reference trajectory with geometric

singularities.

1 The state (x) contains the vehicle position, orientation, velocity, or any other quantity of interest
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The popular class of pursuit algorithms [1] will round path corners, avoid cusps,

and fail for turn-in-place maneuvers where the pursuit point becomes undefined.

In contexts where such intricate maneuvers were generated by a path planner in

order to avoid obstacles, a pursuit planner is inadequate. Sampling-based obstacle

avoidance techniques [6] sometimes fail for intricate path navigation because of the

computational resources required to search the entire input or state space densely

enough to find an acceptable solution.

For effective intricate path navigation, a technique is needed which can exploit

the reference trajectory structure to search in the local continuum for actions which

minimize path deviation and avoid obstacles. This is the process of parametric re-

laxation, the technique of rendering a functional on a few parameters in order to

permit relaxation of a trajectory (for optimization purposes) by searching a small

number of degrees of freedom.

1.2 Related Work

There has been substantial research in the problem of developing effective, efficient

mobile robot navigators. Early path following controllers operate on the assumption

of tracking a single lookahead point and have been greatly extended in the literature

[4]. In [12], effective search spaces for navigation in roads and trails were produced

by generating nudges and swerves to the motion that reacquires the lane center.

An alternative approach involves sampling in the input space of the vehicle. In

[6], navigation search spaces were generated by sampling in the input space of cur-

vature. This approach also estimated the response of each action through a predictive

motion model subject to the initial state constraints to more accurately predict the

consequences of the actions. Egographs [8] represent a technique for generating ex-

pressive navigation search spaces offline by precomputing layered trajectories for a

discrete set of initial states. Precomputed arcs and point turns comprised the control

primitive sets used to autonomously guide planetary rovers for geologic exploration

[2] where convolution on a cost or goodness map determined the selected trajec-

tory. This approach was an extension of Morphin [11], an arc-planner variant where

terrain shape was considered in the trajectory selection process. Another closely

related algorithm is the one presented in [3], where an arc-based search space is

evaluated based on considering risk and interest.

Other techniques such as rapidly-exploring random trees [7] have been effec-

tively used to generate search spaces around the mobile robot to navigate cluttered,

difficult environments and generate sophisticated maneuvers including u-turns. [9]

presents a reactive path following controller for a unicycle type mobile robot built

with a Deformable Virtual Zone to navigate paths without the need for global path

replanning.
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1.3 Discriminators

The main contribution of this work is the development of a receding horizon model-

predictive controller (RHMPC) that effectively navigates intricate paths in complex

environments. The algorithm leverages the capacity to generate the reference con-

trols for a given reference trajectory. This capability exists because the sequence of

reference controls can be generated by a trajectory generator that understands the

association between actions and the corresponding state-space trajectory. Our par-

ticular preference is parameterized controls, but the key issue is that the controls are

known, however represented, which correspond exactly to the reference trajectory.

The corresponding reference trajectory inputs are already available in many regional

motion planner implementations, so this simply requires that this additional infor-

mation is passed to the navigator with the reference trajectory. Field experiments

results demonstrate that the proposed technique can effectively navigate intricate

paths composed of path singularities and discontinuities.

2 Technical Approach

This section describes the issues related to navigation of intricate paths generated by

regional motion planners, the methods by which parameterized controls are gener-

ated, and the trajectory optimization techniques used to generate corrective actions.

The trajectory follower is formulated as an optimal control problem:

minimize: J(x,u, t)

subject to: ẋ = fPMM(x,u, t)

x(tI) = xI

u(x) ∈ U(x), t ∈ [tI , tF ]

(1)

The problem is one of determining actions from a set of functions (U(x, t)) to

represent the control inputs (u(x, t)) which, when subject to the predictive motion

model (fPMM(x,u, t)), minimize a penalty function (J(x,u, t)). An additional re-

quirement for the trajectory follower is that the resulting control must be defined for

a specific period of time or distance. This allows the optimized path to be evaluated

for hazards to ensure vehicle safety.

2.1 Control Parameterization

One of the most difficult problems in motion planning involves reducing the contin-

uum of actions to a manageable space to search. The trajectory following technique

that we present uses a portion of the reference controls, which may be only piece-

wise continuous, as the initial guess. First, the reference trajectory is divided into
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the primitives used by the motion planner as shown in Figure 2(a). For each action,

there exists a set of controls that, when applied to the system, produce a path seg-

ment of a certain shape. Parameterized freedom vectors (pi) control the shape of

each set of inputs (u(pi,x, t)) that define the reference trajectory.

(a) Reference trajectory segmentation (b) Horizon-limited action extraction

u(p0,x, t)

u(p1,x, t)
u(p2,x, t) u(p3,x, t)

closest point Pq

reference trajectory

✻

uRHMPC(p1,p2,p3,x, t)

✻

Fig. 2 An illustration of the parameterized action initialization in the RHMPC technique.

The initial guess for the parameterized control inputs (uRHMPC(pRHMPC,x, t))
is defined by the sequence of trajectory segments between the nearest state and the

predefined fixed control horizon (Figure 2(b)). In this example, the free parame-

ters of the receding horizon model-predictive controller (pRHMPC) are defined by a

concatenation of free parameters in the control inputs:

pRHMPC =
[

p1 p2 p3

]T
(2)

2.2 Path Deviation Optimal Control

Once the control input parameterization is determined, the next step is to modify the

parameters to compensate for disturbances, approximations, and errors in the motion

model. This technique seeks to minimize a cost function (J(x,u, t)) by modifying a

set of control inputs:

J(x,u, t) = Φ(x(tI), tI ,x(tF), tF)+
∫ tF

tI

L (x(t),u(p,x), t)dt (3)

The initial corrective action is evaluated through the predictive motion model

subject to the initial state constraints to obtain a cost estimate as illustrated in Figure

3. While the gradient of the cost function with respect to the parameterized control

input freedom exceeds a threshold, the algorithm adjusts the control inputs to min-

imize the integrated penalty function (L (x,u, t)). The parameterized freedoms are

modified iteratively through any standard optimization technique, such as gradient

descent, as the cost function gradient is determined entirely numerically:
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pRHMPCi = pRHMPCi−1 −α▽J(x,u, t), i ≥ 1 (4)

(a) Simulation of the initial action (b) Simulation of a corrective action with

optimized parameters

xI +
∫ tF

tI
fPMM(uRHMPC(p1,p2,p3,x, t))dt

❇
❇

❇
❇

❇
❇
❇▼

xI +
∫ tF

tI
fPMM(uRHMPC(ṕ1, ṕ2, ṕ3,x, t))dt

✻

Fig. 3 An illustration of the parameterized action correction in the RHMPC technique.

2.3 Integrating Observed Cost Information

There are several situations when a mobile robot should intentionally deviate from

the reference trajectory. Navigating around recently observed static and dynamic

obstacles faster than the replanning rate of the regional motion planner is important

when perceptual information is frequently updated. Another reason for deviation

is the suboptimality of the reference trajectory itself. One solution is to stop and

request a refined or alternative plan. A potentially better method is to include cost

information into the utility functional optimized by the receding horizon model-

predictive controller to determine the obstacle avoidance maneuver. The presented

technique is naturally suited to deform the current action for local obstacle avoid-

ance and path smoothing. The desired behaviors can be integrated by modifying the

cost function to include a weighted penalty for obstacle cost.

3 Implementation

The regional motion planer used to generate feasible reference trajectories for these

experiments runs A* on a graph composed of regularly arranged discrete nodes in a

state space, similar to [10]. The connectivity between nodes in the discretized graph

was provided by a motion template consisting of forward, reverse, and turn-in-place

trajectories with lengths varying between 3m and 9m. This particular implemen-
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tation operated on a 60m x 60m vehicle-centered cost map. Reference trajectory

updates were provided by the regional motion planner at a rate of 2Hz.

The resulting reference trajectory is a series of sequential independent parame-

terized trajectories. Intricate paths composed of multiple cusps and/or turn-in-place

actions often result from the diversity of edges in motion planning graphs and the

complexity of the environment. The model-predictive trajectory generator [5] was

used in both the motion template generation and the path deviation optimal control.

Actions in the motion template were composed of constant linear velocities and ei-

ther second-order spline curvature functions parameterized by distance or constant

angular velocity functions parameterized by heading. Generic spline classes defined

by sequences of individual command profiles parameters were optimized by the re-

ceding horizon model-predictive controller. The corrective actions were generated

by the receding horizon model-predictive controller at a rate of 20Hz.

4 Experiments

A set of experiments were designed as a comparison between a navigator that used

the presented trajectory follower and one that directly executed the regional motion

plan. Both systems used the same version of a lattice planner that searches dynam-

ically feasible actions which was specifically designed for the test platform. Each

field experiment was required to achieve a series of waypoints in an environment

with updating perceptual information generated by an on-board perception system

combined with limited overhead prior data.

The platform for the field experiments was Crusher (Figure 4(a)), a six-wheeled

skid steered outdoor mobile robot. The multi-kilometer experiments were conducted

at a test site in Pittsburgh, Pennsylvania with variable off-road terrain (Figure 4(b)).

(a) Crusher (b) The field experiment courses

course 1

course 3

course 2

Fig. 4 The mobile robot and test environment for the trajectory follower field experiments.

Integrated path cost was the main metric used to measure success for the field

experiments, which is related to the risk, mobility, and traversability for the vehicles

configuration in the environment. While inherently unitless and scaleless, it provides
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the best metric for measuring performance because both the motion planner and the

trajectory follower optimize this quantity.

5 Results

This section presents the results of the three field experiments comparing the per-

formance of the presented trajectory follower to a system directly executing the

regional motion plan. Figure 5 shows several selected examples from the field ex-

periments where the receding horizon model-predictive control was used to navigate

intricate paths in varied, natural terrain. Two different situations are shown involving

geometric singularities and discontinuities including cusps and turn-in-place actions

where the generated RHMPC action is shown as a solid green line.

(a) Planning a control that reasons about a

turn-in-place action and compensates for a

path following disturbance

(b) Planning a control with a constant horizon

through a future turn-in-place action

Fig. 5 Selected examples of the RHMPC navigator used in the multi-kilometer field experiments.

Figure 5(a) shows the receding horizon model-predictive control determined for

following of a trajectory with an initial turn-in-place action with path following dis-

turbance. The current vehicle state is off the reference trajectory and a corrective

control is determined which adjusts the length of the angular velocity command and

bends the straight segment to reacquire the path in a feasible manner. The last ex-

ample shown in Figure 5(b) involves planning through a future turn-in-place action

between two nominally straight segments. This example shows the flexibility of the

technique, where the turn-in-place action does not necessarily need to start or end

at a specific point in the receding horizon model-predictive control.

Figure 6 shows the integrated cost of each systems between each waypoint. It is

useful to look at each waypoint-waypoint segment separately because each one can

be considered to be an independent trial. On average, the system using the trajectory

follower slightly outperformed or achieved a similar level of performance of the

alternative system.

For portions of the course where disturbances relative to the predicted motion

are uncommon or the local cost gradient was small near the disturbances very little
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(a) Course 1 waypoint path cost
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(b) Course 2 waypoint path cost
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(c) Course 3 waypoint path cost
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(d) Total path cost

Fig. 6 The waypoint and total path cost for a series of comparison runs on three courses

improvement would be expected, with more improvement expected in cases where

small system disturbances can quickly lead to significantly different path cost. Fig-

ure 6(d) shows the total integrated cost for each of the three field experiments. It

is important to note that while the trajectory follower did not outperform the al-

ternative system between every waypoint, it did improve the overall performance

of the system by up to 7.2%. The variability in the results is expected because of

the chaotic nature of outdoor mobile robots were any number of small changes can

cause the robot to select a significantly different path.

6 Conclusions

The receding horizon model-predictive control algorithm enables mobile robots to

navigate intricate paths by utilizing the paths by relaxing parameterized controls that

correspond exactly to the path shape. This technique enables planning through in-

flection points and turn-in-place actions in paths to better reason about the recovery

trajectory. This method makes it possible to intelligently search the local contin-

uum for an action which minimizes path following error and/or avoids obstacles.

It also enables several other important behaviors including the capacity to define a

utility function in situations where pursuit planners fail and the ability to correctly

follow path discontinuities like cusps which are otherwise feasible motions. Several

multi-kilometer field experiments demonstrated that the inclusion of the presented

trajectory follower as a mobile robot navigator improves upon the metric that the

regional motion planner minimizes.
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