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Abstract—Receding horizon trajectory optimization for op-
timal information gathering in opportunistic navigation e nvi-

ronments is considered. A receiver is assumed to be dropped

in an environment comprising multiple signals of opportunity
(SOPs) transmitters. The receiver has minimala priori knowl-

environment, it constructs a map that is composed of land-
marks with associated positions. OpNav extends this cdancep
to radio signals, with SOPs playing the role of landmarks. In
contrast to a SLAM environmental map, the OpNav signal

edge about its own states and the SOPs’ states. The receiver@ndscape is dynamic and more complex. In pseudorange-

draws pseudorange observations from the SOPs. The receiver
objective is to build a high-fidelity signal landscape map whe

simultaneously localizing itself within this map in space ad

time. Assuming that the receiver can control its maneuvers,
the following two problems are considered. First, the mininal

conditions under which the environment is completely obsesable

are established. It is shown that receiver-controlled manavers

reduce the minimal a priori information about the environment

required for complete observability. Second, the trajectoies that

the receiver should traverse are prescribed. To this end, aree-step
look-ahead (greedy) strategy is compared with a multi-stefpook-

ahead (receding horizon) strategy. The limitations and acieved

improvements in the map quality and space-time localizatio

accuracy due to the receding horizon strategy are quantified
The computational burden associated with the receding hozon

strategy is also discussed.

Index Terms—Trajectory optimization, receding horizon, adap-
tive sensing, motion planning, radionavigation, signals fooppor-
tunity, opportunistic navigation

I. INTRODUCTION

only OpNav, the receiver must simultaneously estimatevits o
states and the states of each SOP. The latter comprise dlor ea
transmitter, the position and velocity, the time offsetnfra
reference time base, the rate of change of time offset, and
optionally a set of parameters that characterize the gtabil
of the transmitter’s oscillator. The signal landscape map ¢
be thought of metaphorically as a “jello map,” with the jello
firmer as the oscillators become more stable.

A receiver entering a new signal landscape may have
minimala priori knowledge about its own states and the SOPs’
states. The observability of planar COpNav environments
comprising multiple receivers with velocity random walk-dy
namics making pseudorange measurements on multiple SOPs
was thoroughly analyzed in [9], [10], and the degree of
observability, also known as estimability, of the variotstas
was quantified in [11]. Observability is a Boolean property:
it asserts whether a system is observable or not. It does not
specify which trajectory is best for information gatheranug,
consequently, estimability. Such trajectory optimizatis the

Opportunistic navigation (OpNav) aims to extract positiosubject of this paper. Accordingly, the receiver dynamies a
and timing information from ambient radio signals of oppert modified to permit receiver-controlled maneuvers.
nity (SOPs) to improve navigation robustness in Global Navi In tracking problems, optimizing the observer’s path has
gation Satellite System (GNSS)-challenged environmetits [been studied extensively [12]-[14]. In such problems, the
OpNav treats all signals as potential SOPs, from conveatiombserver, which is assumed to have perfect knowledge of its
GNSS signals to communications signals never intended town states, tracks a mobile target. The trajectory optimiza
use as timing or positioning sources, such as signals fraion objective is to prescribe trajectories for the obsernee

cellular towers [2], digital video broadcasting [3], Inioh
satellites [4], and ultrawideband orthogonal frequeneysitn

maintain good estimates of the target's states. In SLAM, the
problem of trajectory optimization is more involved due he t

multiplexed radar [5]. In collaborative OpNav (COpNav)coupling between the localization accuracy and map quality
multiple OpNav receivers share information to construat arfj15]-[17].

continuously refine a global signal landscape [6].

In OpNav environments, trajectory optimization can be

The OpNav estimation problem is similar to the simultanghought of as a hybrid ofi] optimizing an observer’s path
ous localization and mapping (SLAM) problem in robotics [7]in tracking problems andi{) optimizing the robot’s path in
[8]. Both imagine an agent which, starting with incomplet§SLAM. First, due to the dynamical nature of the clock error
knowledge of its location and surroundings, simultanepusitates, the SOP’s state space is non-stationary, whichatiage
builds a map of its environment and locates itself withint thgrroblem analogous to tracking non-stationary targetsoisc
map. In traditional SLAM, as the robot moves through thghe similarity to SLAM stems from the coupling between the
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receiver space-time localization accuracy and signaldeape
fidelity. A particular feature of OpNav is that the qualitytbke
estimates not only depends on the spatial trajectory thevwec
traverses within the environment, but also on the velocith w
which the receiver traverses such trajectory [18].

Receiver trajectory optimization in OpNav environments
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was initially studied in [18], where the following problemspace-time localization accuracy from random, greedy, and

was considered. A receiver with na priori knowledge receding horizon trajectories. Concluding remarks aremiv

about its own states is dropped in an OpNav environmentSection VI.

comprising multiple SOPs. Assuming that the receiver could

prescribe its own trajectory in the form of velocity command I

what motion planning strategy should the receiver adopt to )

build a high-fidelity map of the OpNav signal landscapd®- Dynamics Model

while simultaneously localizing itself within this map in The receiver's dynamics will be assumed to evolve accord-

space and time? To address this question, an optimal closigy to the controlled velocity random walk model. An object

loop information-theoretic one-step look-ahead, alsokmas moving according to such dynamics in a generic coordiiate

greedy, strategy was proposed for receiver motion planningas the dynamics

Three information measures were compared: D-optimality, A .

optimality, and E-optimality [19]. It was demonstrated ttha £(t) = u(t) + we(t),

greedy strategies outperformed a receiver moving randorBI)q
0

. MODEL DESCRIPTION

ereu(t) is the control input in the form of an acceleration
mmand andb, () is a zero-mean white noise process with
power spectral density, i.e.,

or in a pre-defined trajectory. Among these measures,
optimality yielded less estimation error than A-optimakind
E-optimality criteria. Active collaborative signal larcdpe
map building_was ao_ldresse_d in [ZQ], where four decis_ion E [@e(t)] = 0, E[e(t)we(r)] = Ge 6(t — 7),

making and information fusion architectures were studied:

decentralized, centralized, and hierarchical with andhwitwWhered(t) is the Dirac delta function. The receiver and SOP
out feedback. It was demonstrated that the hierarchical wilock error dynamics will be modeled according to the two-
feedback architecture achieves a negligible price of dmyarcState model composed of the clock bisand clock driftdt.
(PoA). The PoA measures the degradation in the solutidfe clock error states evolve according to

quality should the receivers produce their own maps and make . o _

their own maneuver decisions versus a completely cergchliz o (t) = At ek (t) + Wene(t),

approach. st sy 0 1

Multi-step look-ahead, also known as receding horizon,Teclk = [ 5t } v Welk = [ Wy, } o A = { 0 0 ] ’
strategies are known to outperform greedy strategies for
trajectory optimization [16], [21], [22]. An initial studyf Where ws; and ws;, are modeled as zero-mean, mutually
receding horizon receiver trajectory optimization in OpNaindependent white noise processes with power spetira
environments was conducted in [23]; however, only the proBDdSa,,, respectively. The power spectfg;;, andSy,, can
lem of simultaneous receiver localization and signal laage be related to the power-law coefficienfé, }>__,, which
mapping was tackled, only single-run simulation resultsavehave been shown through laboratory experiments to be ad-
presented, and the observability conclusions were offeitd  equate to characterize the power spectral density of tie fra
out proofs. This paper’s contribution is to extend [23] irtw tional frequency deviation(t) of an oscillator from nominal
ways. First, it presents rigorous nonlinear observabbiaged frequency, which takes the forn§,(f) = >2__, haf®
proofs showing that receiver-controlled maneuvers redoee [24]. It is common to approximate the clock error dynamics
a priori knowledge required about the COpNav environmeht considering only the frequency random walk coefficient
for complete observability. Second, it studies the actlevé—2 and the white frequency coefficiedl, which lead to
improvements and associated limitations of a recedingzbari Sa;, ~ % and Sy, ~ 212h_5 [25].
strategy over a greedy strategy for the two observable modedhe receiver’s state vector will be defined by augmenting
of operation: {) simultaneous receiver localization and signdhe receiver’s planar position. and velocitys,. with its clock
landscape mapping and) signal landscape mapping. Singleerror statese.y to yield the state space realization
run and Monte Carlo (MC) based simulations are presented to

conclude that receding horizon trajectory optimizatiomisre r(t) = Ar o(t) + Bru(t) + Dy w(t), @)
effective in the signal landscape mapping mode. Moreowr, i h B S T B T B
demonstrated that the advantages of receding horizon igiminV"€"€ r = {TT’ Ty, Otr, tr} e = ey ue =

as the system uncertainty in the form of observation noise i, u,
creases. For the sake of simplicity, this paper considensapl

T ~ [~ ~ ~ ~ T
] y Wy = [ X9 U)y, wst,. wStJ ’

environments. Extensions to three-dimensions is antegpt 0252 Ioxz  Ozxo 022 0
. _ _ _ 2x4
be straightforward. Ar=|022 022 O2x2 |, Br=] Iz |, DT_{LLXJ '
The remainder of this paper is organized as follows. Sec- 022 O2x2  Ack 02x2

tion Il describes the COpNav environment dynamics and rhe receivers dynamics in (1) is discretized at a constant

observation models. Section Il analyzes COpNav Obseré’ampling periodl” 2 .1 — t;, assuming zero-order hold
ability. Section IV formulates the receding horizon reeev 4t the control inputs, i.e.{u(t) : u(ty), te <t < tisr}, tO

trajectory optimization problem and discusses the aswatia, io|d the discrete-time (DT) model
computational burden. Section V presents simulation tesu¥
comparing the achieved signal landscape map quality amd(tx+1) = F, z,(t;) + G, u,(tr) + w,(tr), k=0,1,2,...
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where w,. is a DT zero-mean white noise sequence wittvheredt,(t) anddt,(t) are the amounts by which the receiver
covarianceQ, = diag [Qpv, Qcix,], Where and SOP clocks are different from true time, respectively.
The pseudorange observation made by the receiver on an

T2
Loxz Tloxo Ozxz FRLEE 1 T] SOP is made in the receiver time and is modeled according to
F,.=|02x2 Iox2 O2x2|, Gr=| TIaxs |, Fex= 01
0252 O2x2 Fex 022 p(ty) =
S5, L'+ Sy, %% Sig, %2 [rr [ty = 6tr(tr)] — 7 [ty — 6tr(tr) — Stror]ll2 +
Qeik,r = Sa, I i g T e {0t (t,) — 0ts [ty — 6t (t,) — Stror]} + ,(t.), (4)
W, Wt
- T3 0 -T2 0 where ¢ is the speed of lightytror is the time-of-flight
@3 73 L P of the signal from the SOP to the receiver, aiigis the
Qw = _ sz 1y73 NO Iy | error in the pseudorange measurement, which is modeled as a
Qx5 0 ) Gz T 0 zero-mean white Gaussian noise process with power spectral
0 G5 0 GyT density 7 [26]. The clock offsetsét, and ot in (4) were

The SOP will be assumed to emanate from a spatiall§sSumed to be small and slowly changing, in which case

stationary terrestrial transmitter whose state consigtitso 0tr(t) = 0t [tr — 5t ()] ~ 5tr_(tr)'- The first term in (4) is the
planar position and clock error states. Hence, the SORY€ range between the receiver's position at time of régept

dynamics can be described by the state space model an(_:i the SOP’s position a_lt time of transmission of the sigr_lal,
while the second term arises due to the offsets from true time
&s(t) = As zs(t) + Dsws(t), (2) " in the receiver and SOP clocks.
T . qT T . The observation model in (4) can be further simplified by
where z, = [Ts’ Ots, 5753} vrs = ey ws = converting it to true time and invoking mild approximations

T

[Wst., Wg, ] discussed in [10], to arrive at

A — { O2x2  O2x2 } D. — [ 02x2 } 2(t) = p(t) £ y(t) + T,(t)
Tl 0 Aac [T T | T ~ () = ro(O)la + ¢ - [5t:(8) = Sto(D)] + 5, (t), (5)
Dggrse?ﬁén%_trr_]: szsn?ﬁggfs (2) at a sampling intefal wherey is the noise-free observation. Discretizing the obser-
v quiv vation equation (5) at a sampling interval yields the DT-

s (tpt1) = Fsxs(tr) + ws(t), equivalent model
where w, is a DT zero-mean white noise sequence with(t,) =y(t;) + v, (k) (6)
covarianceQ., and = [lrr(ti) = 7otz + ¢ - Bt (tr) — Bta(tx)] + vp(tr),

F, = diag[Iax2, Foar], Qs = diag[02x2, Qew,s], where, is a DT zero-mean white Gaussian sequence with
whereQ.y, is identical toQ.u, ., except thalz,, andSg,  variancer = 7/T.
are now replaced with SOP-specific spectfa,,  andSg,, ,

respectively. . . I1l. OBSERVABILITY ANALYSIS
Defining the augmented state vecter= [wIT’ wH . the The observability of COpNav environments comprising
augmented process noise ve_ctoré [w], w(] , andu £ muyltiple receivers with velocity random walk dynamics,.i.e
u,, yields the system dynamics without controlled maneuvers, making pseudorange observa
T (trs1) = Fa(t) + Gu (ty) + w(ty), (3) tions on multiple SOPs, was considered in [10] via linear
T ~ observability tools. The objective of that observabilityadysis
where F = diag[F,, F,], G = [G],0],,] , andw is was twofold: ¢) determine the minimal required priori
a zero-mean white noise sequence with covaria@e= knowledge about the environment for full observabilitydan
diag [Q., Qs]. While the model defined in (3) considers onlyi;) in cases where the environment is not fully observable,
one receiver and one SOP, it can be readily extended determine the observable states, if any. In this sectiom, th
multiple receivers and multiple SOPs by further augmeattati COpNav observability analysis is extended to study thecesfe
of allowing the receivers to actively control their manetsve
B. Observation Model To this end, and in contrast with the linear observabilityl$o
To properly model the pseudorange observations, one mioked in [10], the observability is analyzed here via non-
consider three different time systems. The first is true fiménear observability tools. As will be shown, the obserliapi
denoted by the variable which can be considered equivalenfonditions with control are less stringent than those witho
to Global Positioning System (GPS) time. The second tinf@ntrol.
system is that of the receiver’s clock and is denatedThe
third time system is that of the SOP's clock and is denated A. Observability of Nonlinear Systems

The three time systems are related to each other according t&or nonlinear systems, it is more appropriate to analyze

t =t, — 0t (¢), t=ts — 0ts(t), observability through nonlinear observability tools etlthan
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by linearizing the nonlinear system and applying linearobs observability rank condition is satisfied generically. Tteem

ability tools, for two reasong:) nonlinear observability tools “generically” means tha®yy, is full-rank everywhere, except

capture the nonlinearities of the dynamics and observaitiopossibly within a subset of the domain #f[30].

and (i¢) while the control inputs are never considered in the

linear observability tools, they are explicitly taken irecount g gcenarios Overview

in the nonlinear observability tools [27]. Th . . idered in the ob bilit |
For the sake of clarity and self-containment, the nonlinear € varlous scenarios considered In the observabiiiyyana

observability test employed in this paper is outlined next> ar¢ outlined Ta_blg |, where m € N. In Table I, unknown .
Consider a continuous-time nonlinear dynamic system in theeans that na priori knowledge about any of th? §tates IS
control affine form [28] available, whereas fully-known means tha‘; all the w_nttaless
. are known. Thus, a fully-known receiver is one with known
S {fb(t) =fole@®)]+> i fi [2®)]ui, z(to) =0 (7) @r(to), whereas a fully-known SOP is one with known(to ).
y(t)=h[z()], On the other hand, partially-known means that only theahiti
wherez € R" is the system state vectar,€ R" is the control Position states are known. Thus, a partially-known receive

input vector,y € R™ is the observation vector, and, is an IS one with knownr,(to), whereas a partially-known SOP
arbitrary initial condition. is one with knownr(tp). For the cases of multiple SOPs,

Several notions of nonlinear observability exist foky,, it is assumed that the SOPs are not colocated. Moreover, it
namely (global) nonlinear observability, local obserliapi IS assumed that each SOP's classification, whether unknown,
weak observability, and local weak observability [27]. Aartially-known, or fully-known, is known to any receiver
algebraic test exists to assess local weak observabilitighw Making use of that SOP.
intuitively means thatr, is instantaneously distinguishable TABLE |
from its neighbors. This test is based on constructing the SO copNav OBSERVABILITY ANALYSIS SCENARIOS CONSIDERED
called nonlinear observability matrix defined next.

Definition 1ll.1. The first-order Lie derivative of a scalar Case Receiver(s) SOPE)
; ; . i 1 1 Unknown 1 Unknown
functionh with respect to a vector-valued functighis 5 1 Unknown m Partially-known
L N n 8h(:c) 3 1 Unknown 1 Fully-known
Loh(x) = () = (V..h(x T 8 4 1 Unknown 1 Fully-known & 1 Partially-known
f (@) ; O0x; fj( ) (Vah(z). f(2)), (©) 5 n Partially-known 1 Unknown
I= 6 n Partially-known  m Partially-known
A T _ . 7 1 Partially-known 1 Fully-known
where f(x) = [fi(x),..., fn(x)] . The zeroth-order Lie 8 1 Fully-known 1 Unknown

derivative of any function is the function itself, i.é‘:}h(m) =
h(x). The second-order Lie derivative can be computed recur-

sively as
h(a) = ¢ [Slh( )] <[V el )] £ )> ) C. Preliminary Facts
f it f The following facts will be invoked in the observability
Higher-order Lie derivatives can be computed similarlyproofs corresponding to Table I. First, the rank of an aaljtr
Mixed-order Lie derivatives of(x) with respect to different matrix A € R”*" is the maximal number of linearly indepen-
functionsf; and f;, given the derivative with respect t;,, dent rows or columns; consequentlynk[A] < min {m,n}.
can be defined as Second, when constructin)nr,, one can stop calculating
further derivatives of the output function at the first imste of
2 A Al 1 _ 1
Sfifjh(m) B Efj {Sfih(m)} - <|:Vm£fihl(m):| ’fj(m)>' linear dependence among the gradients, since after thig poi
The nonlinear observability matrix, denotefy;,, of Xy, additional rows will not affect the rank o®ny. Third, the

defined in (7) is a matrix whose rows are the gradients @Pservable states in a COpNav environment, if any, can be
Lie derivatives, specifically found by computing the basis vectors spanning the null space

of On1, denotedN [Oxr], and arranging the basis vectors
Ot 2 ! VT [Eg ; hl(m)} into a matrix. The presence of a row of zeros in this matrix
ired indicates that the corresponding state element is obdervab
since this state element is orthogonal to the unobservable
n—11= 1,...,m}

i7j207"'7p;p: 3ttt

(10) subspace. Fourth, having prior knowledge about some of
the COpNav environment states is equivalent to augmenting
A T the observation vector with fictitious observations that ar
whereh(z) = [h (), hm ()] identical to these known states. For instance, an envirabhme
The significance ofOyr, is that it can be employed towith a partially-known receiver and an unknown SOP can be
furnish necessary and sufficient conditions for local weassociated with an observation vectpe [xr,yT,p]T.
observability [27], [29]. In particular, ifOxr, is full-rank, The remainder of this subsection discusses pertinent prop-
thenXyy, is said to satisfy the observability rank condition, irerties of the rows oy, in preparation for the observability
which case the system is locally weakly observable. Moreoveroofs that will follow. Consider an environment with one
if a system Xy, is locally weakly observable, then thereceiver making a pseudorange observation on one SOP.

4
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The vectors{f,}._, corresponding to¥nr, in (7) become  Allowing controlled maneuvers introduces an additional
fo = ire1 +yrey + btres + dtseq, fi = e, and f, = ey, linearly independent I’OW'{VT {22 (m)} i=1or 2}

where e; is the standard basis vector consisting of a 1 ‘?eldmg rank (O] = 6 and remov|ngn5 from N [Ony].
the ith element and zeros elsewhere. CTonS|der the vector n

h = |:Ira Yrr Lry Yrs 5tr7 5tr7 TsyYs, 6tsa 5tsa ]
It can be shown that the gradients of the zeroth-order L
derivatives of{h;(x }l:1 with respect tof,; are given by

Theorem 111.2. A COpNav environment with one unknown
recelver without controlled maneuvers, amdoartially-known
SOPs has no observable states far = 1. The receiver

@-(e] —el)+¢9-(ed —e3) position and velocity states become observablerfor> 2.
v; [g(}_hl(m)} =< +c(el —el), [ =11; Allowing controlled maneuvers makes the receiver position
’ e/, otherwise; and velocity states observabien > 1.
T -z, s Proof: The observation vector iy = [rs,,...,7
fori =0,1,2, whereg) & Ze=2Zs (9 £  Yr—be \ 1009 Vs
Y [rr—rslla? 92 7 Jlrp—rl 6+4m _
The gradients of the first-order LEe derivatives ardsi: - Psn] ANAT € R - Without cogtrolo and forn =
v [S}ihz( )} — 0, fori = 1,2 andVl; and 1, the only linearly independent rows a{? {Q hi(x )} =
. _ L3I [Ez}ohg(cc)} ,p=1,..., } hencerank [Ony] =
e_3ra ; = ;: 7, and
Zf‘r’ B 5’ N [Ox1] = span{ns, n4, ns}.
6 — Y%
el [El h (m)} ) el 1=09; For m > 2, the only linearly independent rows are
= RPN gd (o] — el 4 gd(e] — el) {Vig§ @)t =1.....3m: VI |2} mu(a)] .1 = 2m + 1,
1 1
ig?’(z%—i__ z%(;‘* 111 ..3m¢, with the following additional linearly independent
6 10/» - .
0, otherwise; rows:
e m=2{VI[e" m(@)|.p=2.31= 5,6}
whereg! £ (a:Tgl —|—yrgg) anda =z,.for¢g=1,a =y, ) Tl s T as
for ¢ _q2 a 2 g for g = 3, anda = g, for g — 4, e m=3:4V, Sfohl(w) A=7,8,9V, [Efofw(w)] },
The gradients of the second-order Lie derivatives aree m >4: < V] S?Ohl(m) JA=3m—4,.. .,3m}.
s gi- (61 - 67) +92 (e5 —eg) N [OxL] = span {ng,n7},
Va: [nghl(m)} =< + 93 63 + 94 647 l=11; Wheren6 A es + Z;Zl es.1i and ny A er + Z;Zl €610

0 otherwise; ; -
’ Allowing controlled maneuvers, fom > 1, introduces an

whereg? £ 2 (i, g} + 4, g}), anda = z, for¢g =1, =y, additional linearly independent rov{:vl {S?Ofihmﬂ(m)] ,

for =2, a=21I, for q =3, anda = Ur for q= 4, i=1or 2}, yleldlng rank [ONL] — 4m + 4, and

T gﬂ(el—e;) N [Oni] = span {ng, nr}
vm |:£20f1hl(w):| = +gﬁ+1 (e-Qr e-8r)7 l= 11! NL] = spah 65 (B u
0, otherwise; Theorem 111.3. A COpNav environment with one unknown

receiver, without controlled maneuvers, and one fullysno

2 A 6 1 )

where§ =5if i =1andf=7if i =2 andg = SOP only has observable the receiver clock bias and drift
andgﬁﬂ yr91+2 states. Allowing controlled maneuvers makes all the states
observable.

D. Observability Analysis Proof: The observation vector ig = [z, p] andz ¢

Theorem 1Il.1. A COpNav environment with one unknowiR'?. Without control, the only linearly independent rows are
receiver, without controlled maneuvers, and one unkno T 20 hz( ), i=1,...,5 V] [gl} h5(:1:)} p=1,... 74};
SOP has no observable states. Allowing controlled mansuvggnce rank [Ox1] = 9, and ’

makes the receiver velocity states observable.

N [OnL] = :
Proof: The observation vector igy = [p] and x € (O] = span {ns}

R'9. Without control, the only linearly independent rows are Allowing controlled maneuvers introduces an additional
{VI {Sl}oh(m)} ,p=0,.. .,4}; hencerank [Oni] =5, and linearly independent row{Vl |:£‘2fofih,5(.’13):| ,i=1or 2},
yielding rank [Oyy,] = 10. n
N [OxL] = span {ni, na, n3, n4, ns}, _ _

N N N N Theorem 111.4. A COpNav environment with one unknown
wheren; = el + er, N2 = € + es, 13 " es + €9, M4 = receiver, without controlled maneuvers, one fully-knov@PS
e + €10, M5 = ), vieq, andyy = —HEs, qp = 250 gnd one partially-known SOP s fully-observable. Allowing
v3 = il £ 1. controlled maneuvers does not affect observability.
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Proof: The observation vector i8 = [xs,, T's,, Ps; 5 Pss ) Proof: The observation vector ig = [r,, x,, p] andx €
andz € R, Without control, the only linearly independentR'°. Without control, the only linearly independent rows are

rows are{v; [S(}Dhl(:c)},l =1,...,8V]! [Ez}ohl(m)},p = {v; [Is(}ohl(m)},z =1,...,1;V] {Q}Ohl(m)},l - 1,2,7} and
1,...,3, 1 = 7,8}, andrank [Ox1] = 14. Allowing con- rank Ont] = 10, i.e., full-rank.

trolled maneuvers does not add linearly independent rawvs. Theorem 111.8. A COpNav environment with one fully-known
receiver, without controlled maneuvers, and one unknow SO

is fully-observable. Allowing controlled maneuvers does n
?effect observability.

Theorem 111.5. A COpNav environment witm partially-
known receivers, without controlled maneuvers, and one
known SOP only has observable the receivers’ velocity sta
and the SOP’s position states. Allowing controlled manesive  Proof: The observation vector ig = [z,,p] andz €
does not affect observability. R'9. Without control, the only linearly independent rows are

Proof: The observation vector ig = [r,.,, ..., 7\, Pry, {VI [Iﬂgohz(w)] A=1,....7;,V; {E}Ohl(w)] =12, 7} and
.., pr,] andz € R4, Without control, the only linearly in- rank [Oxz] = 10, i.e., full-rank.
dependent rows ar; | £ hu(z)|,p = 0,1, =1,...,3n;, _ 3 . u
with the following additional linearly independent rows: Table Il summarizes the opservab|l|ty resulps_. Itis co_deldl
et T B that a planar COpNav environment comprisingreceivers
o n=1: (Vg |&% hs(x)|,p = 2,3}, with velocity random walk dynamics making pseudorange
o n>24VI 2; hi(z)|,l=2n+1,2n+ 2}. observations omn terrestrial SOPs is fully-observable if the
0 initial states of at least:iY one receiver is fully-known,if)
one receiver is partially-known and one SOP is fully-known,
} or (i¢7) one SOP is fully-known and one SOP is partially-

Hence,rank [Ony,] = 6n + 2, and

known. If the receivers control their maneuvers in the fofm o
acceleration commands, the environment is fully-obsdeviib
Allowing controlled maneuvers does not improve the rank arile initial states of at leasti)(one receiver is fully-known or
further, since the control inputs will introduce additibnaws (i7) one SOP is fully-known.

into On1. whose columns are linearly independent according

N [On1] = span {65 + ) esieir €6+ Y €cioi

i=1 i=1

) _ vl ‘ _ -l . TABLE II
t0: O6n+3 = =2 ig Os+6i ,and O6n+a = —>io Os+sis COPNAV OBSERVABILITY ANALYSIS RESULTS: OBSERVABLE STATES
where ©O; corresponds to théh column of Oyr.. [ |
Theorem 111.6. A COpNav environment wit partially- _Case Without Control With Control
known receivers, without controlled maneuvers, and 1 none T, Yr o
partially-known SOPs only has observable the receivers’ ve? "3 ;: 20”2 i m 2 1 @ry Yoo vy Yr
. . sl . ™ T T T
locity states. Allowing controlled maneuvers does notcaffe e
. 3 Otr, Oty all
observability. 4 all all
i i 5 Tryy Yryr Tsy Ysy 8 =1,...,m Ty Yrir Tsy Ys, 1=1,...,m
Proof: The observation vector ig = [r,,,..., Ty, , s, 6 Ergy Yrgr 1= 1,...,m Epyy Yy i=1,...,n
T Prisyse e Pros,] @nd @€ ROMEAMWith- 7 g” g”

out control, the only linearly independent rows are
{Vl [ﬂ}ohl(m)} A=1,...,2n+2m+nm; V] {E}Ohl(m)} ,

l=2m+1,....4n+4m —nm — 2}? hencerank [Oni] = IV. RECEDING HORIZON RECEIVER TRAJECTORY
6n + 4m — 2, and OPTIMIZATION

m—2

n This section presents the proposed receding horizon irceiv
N [Oni] = Span{36n+4m—1 + Z €1 + Z €6n+41+3;  trajectory optimization for optimal information gathegiim an
=1 =0 OpNav environment comprising a single receiver and muatipl
~ = SOPs. Here, the information gathered by the receiver about
Con+am + D €61+ Y Contarta the environment is locally fused and utilized to prescribe
=1 =0 the receiver’s trajectory. For the case of multiple receiye
Allowing controlled maneuvers does not improve the rank afrious decision making and information fusion architegsu
further, since the control inputs will introduce additibnaws grise, e.g., centralized, decentralized, and hierarchagj.

into On1, whose columns are linearly independent accordinghe forthcoming discussion assumes that the receiverreithe

to: O¢nyam—1 = — [23?21 Og1—1+ > :;ZBQ o6n+4l+3} and has full knowledge of the initial state of one anchor SOP
- its own initial state; hence, making the environmentyfull

o :—[z",o Y20 } orl _ ' , > _ _

Ontdm I=1 6l l=0 H6nditd observable in accordance with the conditions established i

Theorem IIl.7. A COpNav environment with one partially-Section Il

known receiver, without controlled maneuvers, and ong/full In receding horizon trajectory optimization, at a partaul
known SOP is fully-observable. Allowing controlled maneuime step, a multi-step look-ahead optimal control seqaenc
vers does not affect observability. is computed. However, only the first step of this sequence is



Preprint of article submitted to IEEE Transactions on Apexe and Electronic Systems

applied, whereas the rest of the sequence is discarded. Thi®ne drawback of receding horizon trajectory optimizat®n i
is motivated by the fact that at the next time step, a new@peated invoking of the zero-innovation assumption. Aaot
measurement becomes available, which contains informatidrawback is increased computational burden. Fig. 2 ikust
that is used to refine the optimal trajectory. the cascade of feasibility regions that should be consitlase

The proposed receding horizon trajectory optimizatiotme horizon is increased. In particular, each point in trekl
loop is illustrated in Fig. 1. At a particular time step, shaded region corresponding to the feasibility region @f th
the pseudorange observations made by the receiver on fingt-step look-ahead has an associated feasibility regfots
SOPs in the environment(t;) £ [zl(tk),...,zm(tk)]T, own signifying the feasible maneuvers the receiver coltd ta
are fused through an estimator, an extended Kalman filfer the second-step. The number of optimization variabbes f
(EKF) in this case, which produces a state estimiatg.|t;,) an N-step look-ahead problem a2év. Denoting the number
and an associated estimation error covariaR¢e; |t,). The of feasible maneuvers in a particular time stgpby n;, it
estimate and associated covariance are fed into a recedsgasy to see that an exhaustive search-type algorithm has a
horizon optimal control solver, which solves for the optimacomputational burded® (H{V:l n;).
admissible N-step look-ahead control actiorﬁj\i, which !

*
are defined as(Ufi) = {w (thyy), j=0,...,N -1} Algorithm 1 N-step look-ahead receding horizon trajectory
to minimize the D-optimality cost functional/, subject to optimization
the OpNav dynamics and observation modgj,n.. along Given: @(ty|tn), P(trlts), N
with velocity and acceleration constraints. The D-optitgal ¢, j=Fk ....k+N—1find
criterion is proportional to the volume of the estimation & (tialt;) = Fa(t|t;) + Gul(t))
error uncertainty ellipsoid [19] and was demonstrated in H(Ls ) — ah[%(tﬁ])ws(tﬂl)]r
[18] to yield less estimation error than the A-optimalitydan (t41) = o @=a(t;41t;)
E-optimality criteria. In Fig. 1,u; max and a, max represent
the maximum speed and acceleration, respectively, with
which the receiver can move.

P(tj1]t;) = FP(4;]t,)FT + Q

S(tj+1) = H(tj41)P(tia|t)H (t41) + R

W(tj41) = P(tjpalt;) H (£41)S ™ (tj41)
P(tj1ltir1) =Pt palt;) =W (t;11)S(t 1) W (t41)

OpNav Environment: Dynamical System @(tjp1ltjr1) = 2(tj4alt)
. end for
u(tr) @, (tr1) = Frao(ty) + Grug(ty) + w,(t;) z(ty) Solve:
ZOpNav m.s,(thrl) =F, zs,(tk) + ws,(tk) 0 Ve . N 1
Zity) = hiz(t), (b)) +vs(ty), i=1,...,m minimize J {Utk} = —logdet P (tp+ N |thtrn)
uN
subject to Xopnay
Estimator: EKF wrtrrn—j)l2<armax, J=1,....,N
'U* (therjfl) VUr max
(b N—j) + — =
&(teltn). P(teltr) H (b n—3) T , o T
- - - j=1,...,N
Receding Horizon Optimal Control Apply: w*(t1)
minimize J [UQ] = —logdet P~ (t4 n|thsn) Discard: {u* (tk+1), C ,u* (therl)}
Uy
subject to  XopNav
)= et )2 < Grmass 5 =150, N w1
1 1 Lo(ty

”u7'<t/¢AN—j) + T’v:(thrN—j—l)H‘Z S Tl'muaxv
J=1...N FVrmax

Fig. 1. N-step look-ahead receding horizon receiver motion plantdop

Note that if N = 1, the receding horizon trajectory op-
timization problem reduces to greedy optimization. To eval
uate theN-step estimation error covarian@{ti+n|tx+n ),
the zero future innovations assumption, namely,,;) =
Z(tj+1) — h[i(tlj_‘_lﬁj)] = 0, for g =k,....k4+ N -1,
will be invoked [16]. ane the optimalV-step look-ahead (a)

control actions Utk are found, Only the first control Fig. 2. Cascade of feasibility regions for two-step looleath horizon. The

action u*(t;) is applied, whereas the rest of the controvo disks in (a) represent the acceleration and velocitystramts for the firs-

; x (3 \1k+N-1 ; : : : step look-ahead. The disks intersection (black shaded areathe receiver
aCtlons{u (tﬂ)}j:k+1 are dl_scarded. A Slngle Iter_atlon of Fhefeasible maneuvers. Each point in this feasibility regisnassociated with
proposed algorithm for finding the receding horizon optimahother feasibility region in (b) representing the feasibianeuvers for the

receiver trajectory is outlined in Algorithm 1. second-step look-ahead.
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V. SIMULATION RESULTS SOP was assumed to bBOP;. The initial estimates

This section presents simulation results to demonstrate {R" the receiver and the three SOPs were generated
limitations and effectiveness of receding horizon trajegt 2ccording to &, (tolto)  ~ Nz (to), Pr(to|to)] and
optimization versus greedy. An OpNav environment confs: (folto) ~ Nlas(to), Py, (tolto)], i = 2.3,4, with
prising a receiver and four SOPs, Iabel@SiOPi}le, was |n|t|fl egtlmatlon error cov:a2r|ance matriceB,. (to|to) 4:
simulated according to the settings presented in Tabld Hé (1.0 ) - diag [1, 1, 1,1, 1, 10*] and P, (tolto) = (10%) -
receiver's and SOPs’ clocks were assumed to be temperatdté8 [1,1,1,107%]. To assess the localization accuracy and
compensated and oven-controlled crystal oscillators (@Cx8ignal landscape map quality, the natural logarithm of the
and OCXOs), respectively. For purposes of numerical stabil POSterior estimation error covariance determinant, npmel
the clock error states were defined to &% and cst. Two 108 det [P(fr+1]t+1)], was adopted.
receiver modes of operation were considered, correspgndin The_ resulting receiver trajectories for = 250m* and
to the two observability conditions established in Section @ Particular run are illustrated in Fig. 3. The resulting lo-
(i) simultaneous receiver localization and signal landscaf@lization and signal landscape map uncertaintiesrfog
mapping in an environment with one fully-known “anchor? 250; 300, 350 } m? and the same run are plotted in Fig. 4-6.
SOP and three unknown SOPs, and) (signal landscape Thelog det [P*(tx+1|tr+1)] plots exhibited a similar behavior

mapping in an environment with four unknown SOPs and fgr various MC runs. The reduction in receiver localizateord
fully-known receiver. signal landscape map estimation uncertainty for the regedi

horizon approaches over the greedy approach at the end of the

TABLE Il simulation time is averaged over ten MC runs and is tabulated
SIMULATION SETTINGS in Table IV.
Parameter Value TABLE IV
T AVERAGE % REDUCTION IN RECEIVER LOCALIZATION AND SIGNAL
x5, (to) [0, 150, 10, 0.1] LANDSCAPE MAP ESTIMATION UNCERTAINTY FORN-STEP LOOKAHEAD
s, (to) [100, —150, 20, 0.2]7 RECEDING HORIZON OVER GREEDY AND VARIOUS OBSERVATION NOISE
54 (to) [200, 200, 30, 0.3]7 INTENSITIES, 7
x5, (to) [—150, 50, 40, 0.4]7
{ho,r, h—2,r} {2x 10719, 2 x 10720} N =250 r=2300 r=350
—20 —23 .
{ho,sj, h,uj} {8x10°20,4x 1023} j=1,...,4 > 1410 — 503
Gy Gy 0.1 (m/s?)? 3 2963 20.95 6.28
r {250, 300, 350} m?
{Uma)u amax} {101’I1/S7 3m/52}
T 0.2s

B. Case 2: Signal Landscape Mapping with a Known Receiver

Three sets of simulations were performed for three differen The receiver was assumed to have an initial known state
observation noise intensities Four receiver trajectories perof xz,(t,) = [0, 0, 0, 0, 100, 10]T. The initial estimates for
noise intensity were generated: a random trajectory, adgreeghe the four SOPs were generated according: {Qto|to) ~
trajectory (i.e.,N = 1), and two receding horizon trajectories\ [z, (t0), Ps, (tolto)], ¢ = 1,...,4, with initial esti-
with N = 2 and N = 3. The random trajectory wasmation error covariance matriceP;, (tolto) = (10%) -
generated by choosing at every time step a feasible maneulieg [1, 1,1, 10—2]. To assess the signal landscape map
at random, while the greedy and receding horizon trajezsoriquality, log det [P (¢x+1|tx+1)] was adopted.
were generated through Algorithm 1. The optimal solutios wa The resulting receiver trajectories foe= 250 m? and a par-
found through an exhaustive search over the feasibilitjoreg ticular run are illustrated in Fig. 7. The resulting sigrahd-
depicted in Fig. 2. To this end, the acceleration space wasape map uncertainty for € {250, 300, 350 } m? and the
gridded with spacingu, = du, = 1m/s”> and the extreme same run are plotted in Fig. 8-10. The det [P* (¢441|trr1)]
points of the two disks corresponding to the acceleratiah aplots exhibited a similar behavior for various MC runs. The
velocity constraints were gridded with an angular spacihg ceduction in signal landscape map estimation uncertainty f
0.15 rad. This resulted in aroursd” feasible maneuvers onthe receding horizon approaches over the greedy approach at
average at a particular time step. For meaningful compayristhe end of the simulation time is averaged over ten MC runs
the same initial state estimates and process and observatind is tabulated in Table V.
noise realization time histories were used to generatedbe f

: ) . TABLE V
receiver trajectories. Several MC-based runs were cORAUCt  AyerAGE % REDUCTION IN SIGNAL LANDSCAPE MAP ESTIMATION

for each noise intensity with randomized initial staterasties  UNCERTAINTY FOR N-STEP LOOK-AHEAD RECEDING HORIZON OVER
and noise realization time histories. GREEDY AND VARIOUS OBSERVATION NOISE INTENSITIEST

r=250 r=300 r=350

N
2 94.69 55.56 43.61
3 135.51 78.46 52.63

A. Case 1. Simultaneous Receiver Localization and Signal
Landscape Mapping with One Known Anchor SOP

The receiver was assumed to have the initial state
x-(tp) = 0,0, 10, 0, 100, 10]T and the known anchor
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Fig. 3. Case 1: receiver trajectories due to (a) random, gbijnal greedy,
(c) optimal two-step look-ahead, and (d) optimal threg@-dtmk-ahead
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Fig. 4. Localization & signal landscape map uncertainty dmeandom
receiver maneuvers and optimal-step look-ahead withr = 250
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Fig. 5. Localization & signal landscape map uncertainty dweandom
receiver maneuvers and optimal-step look-ahead witlr = 300
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Fig. 6. Localization & signal landscape map uncertainty dmeandom
receiver maneuvers and optimal-step look-ahead withr = 350

C. Simulation Results Discussion

The following conclusions can be drawn from the presented
simulations. First, greedy motion planning and receding-ho
zon trajectory optimization yielded superior results todam
trajectories. Second, receding horizon trajectory opétidn
outperformed greedy motion planning. However, this superi
ority came at the expense of increased computational burden
In particular, at each time step, the greedy motion planning
required the computation of around 35 functionals of the
posterior estimation error covariance matrix, corresjomd
to each feasible maneuver. The receding horizon trajectory
optimization, on the other hand, required the computatibn o
around35” functionals at each time step, whehe = 2, 3.
Third, the superiority of receding horizon over greedy defse
on the observation noise intensity — the larger the observat
noise, the less advantage the receding horizon strategy has
In fact, for large enough observation noise, receding looriz
yields nearly identical (or slightly worse) performancerth
greedy. Fourth, for the same simulation settings, the imgro
ments gained from receding horizon over greedy were more
significant whenever the receiver hagriori knowledge about
its own state and was tasked with signal landscape mapping,
over the case where the receiver hadangriori knowledge
about its state and was tasked with simultaneous receiver
localization and signal landscape mapping.

VI. CONCLUSIONS

This paper studied the problem of multi-step look-ahead
(receding horizon) receiver trajectory optimization f@tinal
information gathering in OpNav environments. To this end, i
was first shown that allowing receivers to actively conthait
maneuvers reduces the requiegriori knowledge about the
environment for complete observability. In particularwas
shown that a planar COpNav environment comprising mul-
tiple receivers with velocity random walk dynamics making
pseudorange observations on multiple terrestrial SOR4lis f
observable if the initial states of at least) pne receiver is
fully-known, (i7) one receiver is partially-known and one SOP
is fully-known, or ¢ii) one SOP is fully-known and one SOP
is partially-known. If the receivers control their maners/e
in the form of acceleration commands, the environment is
fully-observable if the initial states of at least) one receiver
is fully-known or () one SOP is fully-known. Furthermore,
random receiver trajectories, greedy trajectories, anddiag
horizon trajectories were compared. It was demonstratad th
optimal greedy and receding horizon receiver motion plagni
yielded higher fidelity signal landscape maps and more ac-
curate receiver localization than random receiver trajées.
Moreover, the improvements gained from receding horizon
over greedy were more prominent for the case of signal
landscape mapping with a known receiver over the case of
simultaneous receiver localization and signal landscapp-m
ping with a known anchor SOP. It was demonstrated that while
the receding horizon strategy outperformed the greedyodeth
the receding horizon strategy became less advantageous as
the environment uncertainty in the form of observation eois
intensity was increased. Future work will study convexity
properties of the optimal motion planning strategy.
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Fig. 7.
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log det[P*(tg41]tx

*

T =

00

300

200

1000

1000

200

3000+

0 2000 1000

00

1000

200

30

200
!

1000

00

1000

(b)

200 3000

A

A

200 000 00

1000

(c)

000

3000

0

0

1000

1)

1000

(d)

2000

W0 4000

Case 2: receiver trajectories due to (a) random, fbjnal greedy,

Random
— N=1

N =2

N=3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Time (s)

Fig. 8. Signal landscape map uncertainty due to randomveceianeuvers
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