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Abstract—Receding horizon trajectory optimization for op-
timal information gathering in opportunistic navigation e nvi-
ronments is considered. A receiver is assumed to be dropped
in an environment comprising multiple signals of opportunity
(SOPs) transmitters. The receiver has minimala priori knowl-
edge about its own states and the SOPs’ states. The receiver
draws pseudorange observations from the SOPs. The receiver’s
objective is to build a high-fidelity signal landscape map while
simultaneously localizing itself within this map in space and
time. Assuming that the receiver can control its maneuvers,
the following two problems are considered. First, the minimal
conditions under which the environment is completely observable
are established. It is shown that receiver-controlled maneuvers
reduce the minimal a priori information about the environment
required for complete observability. Second, the trajectories that
the receiver should traverse are prescribed. To this end, a one-step
look-ahead (greedy) strategy is compared with a multi-steplook-
ahead (receding horizon) strategy. The limitations and achieved
improvements in the map quality and space-time localization
accuracy due to the receding horizon strategy are quantified.
The computational burden associated with the receding horizon
strategy is also discussed.

Index Terms—Trajectory optimization, receding horizon, adap-
tive sensing, motion planning, radionavigation, signals of oppor-
tunity, opportunistic navigation

I. I NTRODUCTION

Opportunistic navigation (OpNav) aims to extract position
and timing information from ambient radio signals of opportu-
nity (SOPs) to improve navigation robustness in Global Navi-
gation Satellite System (GNSS)-challenged environments [1].
OpNav treats all signals as potential SOPs, from conventional
GNSS signals to communications signals never intended for
use as timing or positioning sources, such as signals from
cellular towers [2], digital video broadcasting [3], Iridium
satellites [4], and ultrawideband orthogonal frequency division
multiplexed radar [5]. In collaborative OpNav (COpNav),
multiple OpNav receivers share information to construct and
continuously refine a global signal landscape [6].

The OpNav estimation problem is similar to the simultane-
ous localization and mapping (SLAM) problem in robotics [7],
[8]. Both imagine an agent which, starting with incomplete
knowledge of its location and surroundings, simultaneously
builds a map of its environment and locates itself within that
map. In traditional SLAM, as the robot moves through the
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environment, it constructs a map that is composed of land-
marks with associated positions. OpNav extends this concept
to radio signals, with SOPs playing the role of landmarks. In
contrast to a SLAM environmental map, the OpNav signal
landscape is dynamic and more complex. In pseudorange-
only OpNav, the receiver must simultaneously estimate its own
states and the states of each SOP. The latter comprise, for each
transmitter, the position and velocity, the time offset from a
reference time base, the rate of change of time offset, and
optionally a set of parameters that characterize the stability
of the transmitter’s oscillator. The signal landscape map can
be thought of metaphorically as a “jello map,” with the jello
firmer as the oscillators become more stable.

A receiver entering a new signal landscape may have
minimala priori knowledge about its own states and the SOPs’
states. The observability of planar COpNav environments
comprising multiple receivers with velocity random walk dy-
namics making pseudorange measurements on multiple SOPs
was thoroughly analyzed in [9], [10], and the degree of
observability, also known as estimability, of the various states
was quantified in [11]. Observability is a Boolean property:
it asserts whether a system is observable or not. It does not
specify which trajectory is best for information gatheringand,
consequently, estimability. Such trajectory optimization is the
subject of this paper. Accordingly, the receiver dynamics are
modified to permit receiver-controlled maneuvers.

In tracking problems, optimizing the observer’s path has
been studied extensively [12]–[14]. In such problems, the
observer, which is assumed to have perfect knowledge of its
own states, tracks a mobile target. The trajectory optimiza-
tion objective is to prescribe trajectories for the observer to
maintain good estimates of the target’s states. In SLAM, the
problem of trajectory optimization is more involved due to the
coupling between the localization accuracy and map quality
[15]–[17].

In OpNav environments, trajectory optimization can be
thought of as a hybrid of (i) optimizing an observer’s path
in tracking problems and (ii) optimizing the robot’s path in
SLAM. First, due to the dynamical nature of the clock error
states, the SOP’s state space is non-stationary, which makes the
problem analogous to tracking non-stationary targets. Second,
the similarity to SLAM stems from the coupling between the
receiver space-time localization accuracy and signal landscape
fidelity. A particular feature of OpNav is that the quality ofthe
estimates not only depends on the spatial trajectory the receiver
traverses within the environment, but also on the velocity with
which the receiver traverses such trajectory [18].

Receiver trajectory optimization in OpNav environments
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was initially studied in [18], where the following problem
was considered. A receiver with noa priori knowledge
about its own states is dropped in an OpNav environment
comprising multiple SOPs. Assuming that the receiver could
prescribe its own trajectory in the form of velocity commands,
what motion planning strategy should the receiver adopt to
build a high-fidelity map of the OpNav signal landscape,
while simultaneously localizing itself within this map in
space and time? To address this question, an optimal closed-
loop information-theoretic one-step look-ahead, also known as
greedy, strategy was proposed for receiver motion planning.
Three information measures were compared: D-optimality, A-
optimality, and E-optimality [19]. It was demonstrated that
greedy strategies outperformed a receiver moving randomly
or in a pre-defined trajectory. Among these measures, D-
optimality yielded less estimation error than A-optimality and
E-optimality criteria. Active collaborative signal landscape
map building was addressed in [20], where four decision
making and information fusion architectures were studied:
decentralized, centralized, and hierarchical with and with-
out feedback. It was demonstrated that the hierarchical with
feedback architecture achieves a negligible price of anarchy
(PoA). The PoA measures the degradation in the solution
quality should the receivers produce their own maps and make
their own maneuver decisions versus a completely centralized
approach.

Multi-step look-ahead, also known as receding horizon,
strategies are known to outperform greedy strategies for
trajectory optimization [16], [21], [22]. An initial studyof
receding horizon receiver trajectory optimization in OpNav
environments was conducted in [23]; however, only the prob-
lem of simultaneous receiver localization and signal landscape
mapping was tackled, only single-run simulation results were
presented, and the observability conclusions were offeredwith-
out proofs. This paper’s contribution is to extend [23] in two
ways. First, it presents rigorous nonlinear observability-based
proofs showing that receiver-controlled maneuvers reducethe
a priori knowledge required about the COpNav environment
for complete observability. Second, it studies the achieved
improvements and associated limitations of a receding horizon
strategy over a greedy strategy for the two observable modes
of operation: (i) simultaneous receiver localization and signal
landscape mapping and (ii) signal landscape mapping. Single-
run and Monte Carlo (MC) based simulations are presented to
conclude that receding horizon trajectory optimization ismore
effective in the signal landscape mapping mode. Moreover, it is
demonstrated that the advantages of receding horizon diminish
as the system uncertainty in the form of observation noise in-
creases. For the sake of simplicity, this paper considers planar
environments. Extensions to three-dimensions is anticipated to
be straightforward.

The remainder of this paper is organized as follows. Sec-
tion II describes the COpNav environment dynamics and
observation models. Section III analyzes COpNav observ-
ability. Section IV formulates the receding horizon receiver
trajectory optimization problem and discusses the associated
computational burden. Section V presents simulation results
comparing the achieved signal landscape map quality and

space-time localization accuracy from random, greedy, and
receding horizon trajectories. Concluding remarks are given
in Section VI.

II. M ODEL DESCRIPTION

A. Dynamics Model

The receiver’s dynamics will be assumed to evolve accord-
ing to the controlled velocity random walk model. An object
moving according to such dynamics in a generic coordinateξ
has the dynamics

ξ̈(t) = u(t) + w̃ξ(t),

whereu(t) is the control input in the form of an acceleration
command and̃wξ(t) is a zero-mean white noise process with
power spectral densitỹqξ, i.e.,

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ),

whereδ(t) is the Dirac delta function. The receiver and SOP
clock error dynamics will be modeled according to the two-
state model composed of the clock biasδt and clock driftδ̇t.
The clock error states evolve according to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

xclk =

[

δt

δ̇t

]

, w̃clk =

[

w̃δt

w̃δ̇t

]

, Aclk =

[

0 1
0 0

]

,

where w̃δt and w̃δ̇t are modeled as zero-mean, mutually
independent white noise processes with power spectraSw̃δt

andSw̃δ̇t
, respectively. The power spectraSw̃δt

andSw̃δ̇t
can

be related to the power-law coefficients{hα}
2
α=−2, which

have been shown through laboratory experiments to be ad-
equate to characterize the power spectral density of the frac-
tional frequency deviationy(t) of an oscillator from nominal
frequency, which takes the formSy(f) =

∑2
α=−2 hαf

α

[24]. It is common to approximate the clock error dynamics
by considering only the frequency random walk coefficient
h−2 and the white frequency coefficienth0, which lead to
Sw̃δt

≈
h0

2 andSw̃δ̇t
≈ 2π2h−2 [25].

The receiver’s state vector will be defined by augmenting
the receiver’s planar positionrr and velocityṙr with its clock
error statesxclk to yield the state space realization

ẋr(t) = Ar xr(t) +Br ur(t) +Dr w̃r(t), (1)

where xr =
[

rTr , ṙ
T

r , δtr, δ̇tr

]T

, rr = [xr, yr]
T, ur =

[ux, uy]
T, w̃r =

[

w̃x, w̃y, w̃δtr , w̃δ̇tr

]T

,

Ar=





02×2 I2×2 02×2

02×2 02×2 02×2

02×2 02×2 Aclk



 , Br=





02×2

I2×2

02×2



 , Dr=

[

02×4

I4×4

]

.

The receiver’s dynamics in (1) is discretized at a constant
sampling periodT , tk+1 − tk, assuming zero-order hold
of the control inputs, i.e.,{u(t) = u(tk), tk ≤ t < tk+1}, to
yield the discrete-time (DT) model

xr (tk+1) = Fr xr(tk)+Gr ur(tk)+wr(tk), k = 0, 1, 2, . . .

2
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where wr is a DT zero-mean white noise sequence with
covarianceQr = diag [Qpv, Qclk,r], where

Fr=





I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk



 , Gr=





T 2

2 I2×2

T I2×2

02×2



 , Fclk=

[

1 T
0 1

]

Qclk,r=

[

Sw̃δtr
T+Sw̃δ̇tr

T 3

3 Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2 Sw̃δ̇tr
T

]

Qpv =











q̃x
T 3

3 0 q̃x
T 2

2 0

0 q̃y
T 3

3 0 q̃y
T 2

2

q̃x
T 2

2 0 q̃xT 0

0 q̃y
T 2

2 0 q̃yT











.

The SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter whose state consists of its
planar position and clock error states. Hence, the SOP’s
dynamics can be described by the state space model

ẋs(t) = As xs(t) +Dsw̃s(t), (2)

where xs =
[

rT

s , δts, δ̇ts

]T

, rs = [xs, ys]
T, w̃s =

[

w̃δts , w̃δ̇ts

]T

As =

[

02×2 02×2

02×2 Aclk

]

, Ds =

[

02×2

I2×2

]

.

Discretizing the SOP’s dynamics (2) at a sampling intervalT
yields the DT-equivalent model

xs (tk+1) = Fs xs(tk) +ws(tk),

where ws is a DT zero-mean white noise sequence with
covarianceQs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

whereQclk,s is identical toQclk,r, except thatSw̃δtr
andSw̃δ̇tr

are now replaced with SOP-specific spectra,Sw̃δts
andSw̃δ̇ts

,
respectively.

Defining the augmented state vectorx ,
[

xT

r , x
T

s

]T

, the

augmented process noise vectorw ,
[

wT

r , w
T

s

]T

, andu ,

ur, yields the system dynamics

x (tk+1) = Fx (tk) +Gu (tk) +w(tk), (3)

where F = diag [Fr, Fs], G =
[

GT

r ,0
T

4×2

]T

, and w is
a zero-mean white noise sequence with covarianceQ =
diag [Qr,Qs]. While the model defined in (3) considers only
one receiver and one SOP, it can be readily extended to
multiple receivers and multiple SOPs by further augmentation.

B. Observation Model

To properly model the pseudorange observations, one must
consider three different time systems. The first is true time,
denoted by the variablet, which can be considered equivalent
to Global Positioning System (GPS) time. The second time
system is that of the receiver’s clock and is denotedtr. The
third time system is that of the SOP’s clock and is denotedts.
The three time systems are related to each other according to

t = tr − δtr(t), t = ts − δts(t),

whereδtr(t) andδts(t) are the amounts by which the receiver
and SOP clocks are different from true time, respectively.

The pseudorange observation made by the receiver on an
SOP is made in the receiver time and is modeled according to

ρ(tr) =

‖rr [tr − δtr(tr)]− rs [tr − δtr(tr)− δtTOF]‖2 +

c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ ṽρ(tr), (4)

where c is the speed of light,δtTOF is the time-of-flight
of the signal from the SOP to the receiver, andṽρ is the
error in the pseudorange measurement, which is modeled as a
zero-mean white Gaussian noise process with power spectral
density r̃ [26]. The clock offsetsδtr and δts in (4) were
assumed to be small and slowly changing, in which case
δtr(t) = δtr [tr − δtr(t)] ≈ δtr(tr). The first term in (4) is the
true range between the receiver’s position at time of reception
and the SOP’s position at time of transmission of the signal,
while the second term arises due to the offsets from true time
in the receiver and SOP clocks.

The observation model in (4) can be further simplified by
converting it to true time and invoking mild approximations,
discussed in [10], to arrive at

z(t)= ρ(t) , y(t) + ṽρ(t)

≈ ‖rr(t)− rs(t)‖2 + c · [δtr(t)− δts(t)] + ṽρ(t), (5)

wherey is the noise-free observation. Discretizing the obser-
vation equation (5) at a sampling intervalT yields the DT-
equivalent model

z(tk)= y(tk) + vρ(tk) (6)

= ‖rr(tk)− rs(tk)‖2 + c · [δtr(tk)− δts(tk)] + vρ(tk),

wherevρ is a DT zero-mean white Gaussian sequence with
variancer = r̃/T .

III. O BSERVABILITY ANALYSIS

The observability of COpNav environments comprising
multiple receivers with velocity random walk dynamics, i.e.,
without controlled maneuvers, making pseudorange observa-
tions on multiple SOPs, was considered in [10] via linear
observability tools. The objective of that observability analysis
was twofold: (i) determine the minimal requireda priori
knowledge about the environment for full observability, and
(ii) in cases where the environment is not fully observable,
determine the observable states, if any. In this section, the
COpNav observability analysis is extended to study the effects
of allowing the receivers to actively control their maneuvers.
To this end, and in contrast with the linear observability tools
invoked in [10], the observability is analyzed here via non-
linear observability tools. As will be shown, the observability
conditions with control are less stringent than those without
control.

A. Observability of Nonlinear Systems

For nonlinear systems, it is more appropriate to analyze
observability through nonlinear observability tools rather than

3
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by linearizing the nonlinear system and applying linear observ-
ability tools, for two reasons:(i) nonlinear observability tools
capture the nonlinearities of the dynamics and observations,
and (ii) while the control inputs are never considered in the
linear observability tools, they are explicitly taken intoaccount
in the nonlinear observability tools [27].

For the sake of clarity and self-containment, the nonlinear
observability test employed in this paper is outlined next.
Consider a continuous-time nonlinear dynamic system in the
control affine form [28]

ΣNL :

{

ẋ(t)=f0 [x(t)]+
∑r

i=1f i [x(t)]ui, x(t0)=x0

y(t)=h [x(t)] ,
(7)

wherex ∈ R
n is the system state vector,u ∈ R

r is the control
input vector,y ∈ R

m is the observation vector, andx0 is an
arbitrary initial condition.

Several notions of nonlinear observability exist forΣNL,
namely (global) nonlinear observability, local observability,
weak observability, and local weak observability [27]. An
algebraic test exists to assess local weak observability, which
intuitively means thatx0 is instantaneously distinguishable
from its neighbors. This test is based on constructing the so-
called nonlinear observability matrix defined next.

Definition III.1. The first-order Lie derivative of a scalar
functionh with respect to a vector-valued functionf is

L
1
fh(x) ,

n
∑

j=1

∂h(x)

∂xj

fj(x) = 〈∇xh(x),f(x)〉 , (8)

where f(x) , [f1(x), . . . , fn(x)]
T. The zeroth-order Lie

derivative of any function is the function itself, i.e.,L
0
fh(x) =

h(x). The second-order Lie derivative can be computed recur-
sively as

L
2
fh(x) = Lf

[

L
1
fh(x)

]

=
〈[

∇xL
1
fh(x)

]

,f(x)
〉

. (9)

Higher-order Lie derivatives can be computed similarly.
Mixed-order Lie derivatives ofh(x) with respect to different
functionsf i and f j , given the derivative with respect tof i,
can be defined as

L
2
f ifj

h(x) , L
1
fj

[

L
1
f i
h(x)

]

=
〈[

∇xL
1
f i
h(x)

]

,f j(x)
〉

.

The nonlinear observability matrix, denotedONL, of ΣNL

defined in (7) is a matrix whose rows are the gradients of
Lie derivatives, specifically

ONL ,

{

∇T

x

[

L
p
f i,...,fj

hl(x)
]

∣

∣

∣

∣

∣

i, j = 0, . . . , p; p = 0, . . . ,

n− 1; l = 1, . . . ,m

}

(10)

whereh(x) , [h1(x), . . . , hm(x)]T.

The significance ofONL is that it can be employed to
furnish necessary and sufficient conditions for local weak
observability [27], [29]. In particular, ifONL is full-rank,
thenΣNL is said to satisfy the observability rank condition, in
which case the system is locally weakly observable. Moreover,
if a system ΣNL is locally weakly observable, then the

observability rank condition is satisfied generically. Theterm
“generically” means thatONL is full-rank everywhere, except
possibly within a subset of the domain ofx [30].

B. Scenarios Overview

The various scenarios considered in the observability analy-
sis are outlined Table I, wheren,m ∈ N. In Table I, unknown
means that noa priori knowledge about any of the states is
available, whereas fully-known means that all the initial states
are known. Thus, a fully-known receiver is one with known
xr(t0), whereas a fully-known SOP is one with knownxs(t0).
On the other hand, partially-known means that only the initial
position states are known. Thus, a partially-known receiver
is one with knownrr(t0), whereas a partially-known SOP
is one with knownrs(t0). For the cases of multiple SOPs,
it is assumed that the SOPs are not colocated. Moreover, it
is assumed that each SOP’s classification, whether unknown,
partially-known, or fully-known, is known to any receiver
making use of that SOP.

TABLE I
COPNAV OBSERVABILITY ANALYSIS SCENARIOS CONSIDERED

Case Receiver(s) SOP(s)

1 1 Unknown 1 Unknown
2 1 Unknown m Partially-known
3 1 Unknown 1 Fully-known
4 1 Unknown 1 Fully-known & 1 Partially-known
5 n Partially-known 1 Unknown
6 n Partially-known m Partially-known
7 1 Partially-known 1 Fully-known
8 1 Fully-known 1 Unknown

C. Preliminary Facts

The following facts will be invoked in the observability
proofs corresponding to Table I. First, the rank of an arbitrary
matrixA ∈ R

m×n is the maximal number of linearly indepen-
dent rows or columns; consequently,rank[A] ≤ min {m,n}.
Second, when constructingONL, one can stop calculating
further derivatives of the output function at the first instance of
linear dependence among the gradients, since after this point
additional rows will not affect the rank ofONL. Third, the
observable states in a COpNav environment, if any, can be
found by computing the basis vectors spanning the null space
of ONL, denotedN [ONL], and arranging the basis vectors
into a matrix. The presence of a row of zeros in this matrix
indicates that the corresponding state element is observable,
since this state element is orthogonal to the unobservable
subspace. Fourth, having prior knowledge about some of
the COpNav environment states is equivalent to augmenting
the observation vector with fictitious observations that are
identical to these known states. For instance, an environment
with a partially-known receiver and an unknown SOP can be
associated with an observation vectory = [xr, yr, ρ]

T.
The remainder of this subsection discusses pertinent prop-

erties of the rows ofONL in preparation for the observability
proofs that will follow. Consider an environment with one
receiver making a pseudorange observation on one SOP.

4
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The vectors{f i}
r
i=0 corresponding toΣNL in (7) become

f0 = ẋre1 + ẏre2 + δ̇tre5 + δ̇tse9, f1 = e3, andf2 = e4,
where ei is the standard basis vector consisting of a 1 in
the ith element and zeros elsewhere. Consider the vector

h =
[

xr , yr, ẋr, ẏr, δtr, δ̇tr, xs, ys, δts, δ̇ts, ρ
]T

.
It can be shown that the gradients of the zeroth-order Lie

derivatives of{hl(x)}
11
l=1 with respect tof i are given by

∇T

x

[

L
0
f i
hl(x)

]

=







g01 ·(e
T

1 − eT7 ) + g02 ·(e
T

2 − eT8 )
+ c·(eT5 − eT9 ), l = 11;
eTl , otherwise;

for i = 0, 1, 2, whereg01 , xr−xs

‖rr−rs‖2
, g02 ,

yr−ys

‖rr−rs‖2
.

The gradients of the first-order Lie derivatives are
∇T

x

[

L
1
f i
hl(x)

]

= 0, for i = 1, 2 and∀l; and

∇T

x

[

L
1
f0
hl(x)

]

=















































eT3 , l = 1;
eT4 , l = 2;
eT6 , l = 5;
eT10, l = 9;
g11 ·(e

T

1 − eT7 ) + g12 ·(e
T

2 − eT8 )
+ g13 e

T

3 + g14 e
T

4

+ c·(eT6 − eT10), l = 11
0, otherwise;

whereg1q , ∂
∂α

(

ẋr g
0
1 + ẏr g

0
2

)

, andα = xr for q = 1, α = yr
for q = 2, α = ẋr for q = 3, andα = ẏr for q = 4.

The gradients of the second-order Lie derivatives are
∇T

x

[

L
2
f i
hl(x)

]

= 0, for i = 1, 2 and∀l; and

∇T

x

[

L
2
f0
hl(x)

]

=







g21 ·(e
T

1 − eT7 ) + g22 ·(e
T

2 − eT8 )
+ g23 e

T

3 + g24 e
T

4 , l = 11;
0, otherwise;

whereg2q , ∂
∂α

(

ẋr g
1
1 + ẏr g

1
2

)

, andα = xr for q = 1, α = yr
for q = 2, α = ẋr for q = 3, andα = ẏr for q = 4,

∇T

x

[

L
2
f0f i

hl(x)
]

=







g2β ·(e
T

1 − eT7 )

+ g2β+1 ·(e
T

2 − eT8 ), l = 11;
0, otherwise;

whereβ = 5 if i = 1 andβ = 7 if i = 2; andg2β , ∂
∂xr

g1i+2

andg2β+1 ,
∂

∂yr
g1i+2.

D. Observability Analysis

Theorem III.1. A COpNav environment with one unknown
receiver, without controlled maneuvers, and one unknown
SOP has no observable states. Allowing controlled maneuvers
makes the receiver velocity states observable.

Proof: The observation vector isy = [ ρ ] and x ∈
R

10. Without control, the only linearly independent rows are
{

∇T

x

[

L
p
f0
h(x)

]

, p = 0, . . . , 4
}

; hence,rank [ONL] = 5, and

N [ONL] = span {n1, n2, n3, n4, n5} ,

wheren1 , e1 + e7, n2 , e2 + e8, n3 , e5 + e9, n4 ,

e6 + e10, n5 ,
∑4

i=1 γiei, andγ1 ,
−yr+ys

ẋr
, γ2 , xr−xs

ẋr
,

γ3 ,
−ẏr

ẋr
, γ4 , 1.

Allowing controlled maneuvers introduces an additional
linearly independent row:

{

∇T

x

[

L
2
f0f i

h(x)
]

, i = 1 or 2
}

,

yielding rank [ONL] = 6 and removingn5 from N [ONL].

Theorem III.2. A COpNav environment with one unknown
receiver, without controlled maneuvers, andm partially-known
SOPs has no observable states form = 1. The receiver
position and velocity states become observable form ≥ 2.
Allowing controlled maneuvers makes the receiver position
and velocity states observable∀m ≥ 1.

Proof: The observation vector isy = [rs1 , . . . , rsm ,
ρs1 , . . . , ρsm ] andx ∈ R

6+4m. Without control, and form =

1, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l =

1, . . . , 3;∇T

x

[

L
p
f0
h3(x)

]

, p = 1, . . . , 4
}

; hence,rank [ONL] =

7, and
N [ONL] = span{n3, n4, n5} .

For m ≥ 2, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 3m;∇T

x

[

L
1
f0
hl(x)

]

, l = 2m+ 1,

. . . 3m
}

, with the following additional linearly independent
rows:

• m = 2:
{

∇T

x

[

L
p
f0
hl(x)

]

, p = 2, 3, l = 5, 6
}

• m = 3:
{

∇T

x

[

L
2
f0
hl(x)

]

, l = 7, 8, 9;∇T

x

[

L
3
f0
h7(x)

]}

,

• m ≥ 4:
{

∇T

x

[

L
2
f0
hl(x)

]

, l = 3m− 4, . . . , 3m
}

.

Hence,rank [ONL] = 4m+ 4, and

N [ONL] = span {n6,n7} ,

wheren6 , e5 +
∑m

i=1 e5+4i andn7 , e7 +
∑m

i=1 e6+4i.
Allowing controlled maneuvers, form ≥ 1, introduces an

additional linearly independent row:
{

∇T

x

[

L
2
f0fi

h2m+1(x)
]

,

i = 1 or 2
}

, yielding rank [ONL] = 4m+ 4, and

N [ONL] = span {n6, n7} .

Theorem III.3. A COpNav environment with one unknown
receiver, without controlled maneuvers, and one fully-known
SOP only has observable the receiver clock bias and drift
states. Allowing controlled maneuvers makes all the states
observable.

Proof: The observation vector isy = [xs, ρ ] andx ∈
R

10. Without control, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 5;∇T

x

[

L
p
f0
h5(x)

]

, p = 1, . . . , 4
}

;

hence,rank [ONL] = 9, and

N [ONL] = span {n5} .

Allowing controlled maneuvers introduces an additional
linearly independent row:

{

∇T

x

[

L
2
f0f i

h5(x)
]

, i = 1 or 2
}

,

yielding rank [ONL] = 10.

Theorem III.4. A COpNav environment with one unknown
receiver, without controlled maneuvers, one fully-known SOP,
and one partially-known SOP is fully-observable. Allowing
controlled maneuvers does not affect observability.

5
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Proof: The observation vector isy = [xs1 , rs2 , ρs1 , ρs2 ]
andx ∈ R

14. Without control, the only linearly independent
rows are

{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 8;∇T

x

[

L
p
f0
hl(x)

]

, p =

1, . . . , 3, l = 7, 8
}

, and rank [ONL] = 14. Allowing con-
trolled maneuvers does not add linearly independent rows.

Theorem III.5. A COpNav environment withn partially-
known receivers, without controlled maneuvers, and one un-
known SOP only has observable the receivers’ velocity states
and the SOP’s position states. Allowing controlled maneuvers
does not affect observability.

Proof: The observation vector isy = [rr1 , . . . , rrn , ρr1 ,
. . . , ρrn ] andx ∈ R

6n+4. Without control, the only linearly in-

dependent rows are
{

∇T

x

[

L
p
f0
hl(x)

]

, p = 0, 1, l = 1, . . . , 3n
}

,

with the following additional linearly independent rows:

• n = 1:
{

∇T

x

[

L
p
f0
h3(x)

]

, p = 2, 3
}

,

• n ≥ 2:
{

∇T

x

[

L
2
f0
hl(x)

]

, l = 2n+ 1, 2n+ 2
}

.

Hence,rank [ONL] = 6n+ 2, and

N [ONL] = span

{

e5 +

n
∑

i=1

e5+6i, e6 +

n
∑

i=1

e6+6i

}

.

Allowing controlled maneuvers does not improve the rank any
further, since the control inputs will introduce additional rows
into ONL whose columns are linearly independent according
to: O6n+3 = −

∑n−1
i=0 O5+6i andO6n+4 = −

∑n−1
i=0 O6+6i,

whereOi corresponds to theith column ofONL.

Theorem III.6. A COpNav environment withn partially-
known receivers, without controlled maneuvers, andm
partially-known SOPs only has observable the receivers’ ve-
locity states. Allowing controlled maneuvers does not affect
observability.

Proof: The observation vector isy = [rr1 , . . . , rrn , rs1 ,
. . . , rsm , ρr1,s1 , . . . , ρrn,sm ] and x ∈ R

6n+4m. With-
out control, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 2n+ 2m+ nm;∇T

x

[

L
1
f0
hl(x)

]

,

l = 2m+ 1, . . . , 4n+ 4m− nm− 2
}

; hence,rank [ONL] =

6n+ 4m− 2, and

N [ONL] = span

{

e6n+4m−1 +

n
∑

l=1

e6l−1 +

m−2
∑

l=0

e6n+4l+3,

e6n+4m +

n
∑

l=1

e6l +

m−2
∑

l=0

e6n+4l+4

}

,

Allowing controlled maneuvers does not improve the rank any
further, since the control inputs will introduce additional rows
into ONL whose columns are linearly independent according
to: O6n+4m−1 = −

[

∑n
l=1 O6l−1 +

∑m−2
l=0 O6n+4l+3

]

and

O6n+4m = −
[

∑n
l=1 O6l +

∑m−2
l=0 O6n+4l+4

]

.

Theorem III.7. A COpNav environment with one partially-
known receiver, without controlled maneuvers, and one fully-
known SOP is fully-observable. Allowing controlled maneu-
vers does not affect observability.

Proof: The observation vector isy = [rr,xs, ρ] andx ∈
R

10. Without control, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 7;∇T

x

[

L
1
f0
hl(x)

]

, l = 1, 2, 7
}

and

rank [ONL] = 10, i.e., full-rank.

Theorem III.8. A COpNav environment with one fully-known
receiver, without controlled maneuvers, and one unknown SOP
is fully-observable. Allowing controlled maneuvers does not
affect observability.

Proof: The observation vector isy = [xr, ρ ] and x ∈
R

10. Without control, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 7;∇T

x

[

L
1
f0
hl(x)

]

, l = 1, 2, 7
}

and

rank [ONL] = 10, i.e., full-rank.

Table II summarizes the observability results. It is concluded
that a planar COpNav environment comprisingn receivers
with velocity random walk dynamics making pseudorange
observations onm terrestrial SOPs is fully-observable if the
initial states of at least: (i) one receiver is fully-known, (ii)
one receiver is partially-known and one SOP is fully-known,
or (iii) one SOP is fully-known and one SOP is partially-
known. If the receivers control their maneuvers in the form of
acceleration commands, the environment is fully-observable if
the initial states of at least: (i) one receiver is fully-known or
(ii) one SOP is fully-known.

TABLE II
COPNAV OBSERVABILITY ANALYSIS RESULTS: OBSERVABLE STATES

Case Without Control With Control

1 none ẋr, ẏr
2 m = 1: none m ≥ 1: xr , yr , ẋr, ẏr

m ≥ 2: xr, yr, ẋr , ẏr
3 δtr , δ̇tr all
4 all all
5 ẋri , ẏri , xs, ys, i = 1, . . . , n ẋri , ẏri , xs, ys, i = 1, . . . , n
6 ẋri , ẏri , i = 1, . . . , n ẋri , ẏri , i = 1, . . . , n
7 all all
8 all all

IV. RECEDING HORIZON RECEIVER TRAJECTORY

OPTIMIZATION

This section presents the proposed receding horizon receiver
trajectory optimization for optimal information gathering in an
OpNav environment comprising a single receiver and multiple
SOPs. Here, the information gathered by the receiver about
the environment is locally fused and utilized to prescribe
the receiver’s trajectory. For the case of multiple receivers,
various decision making and information fusion architectures
arise, e.g., centralized, decentralized, and hierarchical [20].
The forthcoming discussion assumes that the receiver either
has full knowledge of the initial state of one anchor SOP
or its own initial state; hence, making the environment fully
observable in accordance with the conditions established in
Section III.

In receding horizon trajectory optimization, at a particular
time step, a multi-step look-ahead optimal control sequence
is computed. However, only the first step of this sequence is

6
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applied, whereas the rest of the sequence is discarded. This
is motivated by the fact that at the next time step, a new
measurement becomes available, which contains information
that is used to refine the optimal trajectory.

The proposed receding horizon trajectory optimization
loop is illustrated in Fig. 1. At a particular time steptk,
the pseudorange observations made by the receiver on the
SOPs in the environment,z(tk) , [z1(tk), . . . , zm(tk)]

T,
are fused through an estimator, an extended Kalman filter
(EKF) in this case, which produces a state estimatex̂(tk|tk)
and an associated estimation error covarianceP(tk|tk). The
estimate and associated covariance are fed into a receding
horizon optimal control solver, which solves for the optimal
admissibleN -step look-ahead control actionsUN

tk
, which

are defined as
(

UN
tk

)⋆

, {u⋆(tk+j), j= 0, . . . , N − 1}

to minimize the D-optimality cost functionalJ , subject to
the OpNav dynamics and observation modelΣOpNav along
with velocity and acceleration constraints. The D-optimality
criterion is proportional to the volume of the estimation
error uncertainty ellipsoid [19] and was demonstrated in
[18] to yield less estimation error than the A-optimality and
E-optimality criteria. In Fig. 1,vr,max and ar,max represent
the maximum speed and acceleration, respectively, with
which the receiver can move.

OpNav Environment: Dynamical System

ΣOpNav :







xr(tk+1) = Fr xr(tk) +Gr ur(tk) +wr(tk)
xsi(tk+1) = Fs xsi(tk) +wsi(tk)
zi(tk) = h [xr(tk), xsi(tk)] + vsi(tk), i = 1, . . . ,m

Estimator: EKF

Receding Horizon Optimal Control

z(tk)

x̂(tk|tk), P(tk|tk)

u
⋆(tk)

(UN
tk
)⋆ =







































minimize
U

N

tk

J
[

U
N
tk

]

= − log detP−1(tk+N |tk+N)

subject to ΣOpNav

‖ur(tk+N−j)‖2 ≤ ar,max, j = 1, . . . , N

‖ur(tk+N−j) +
1

T
v
⋆
r(tk+N−j−1)‖2 ≤

1

T
vr,max,

j = 1, . . . , N

Fig. 1. N -step look-ahead receding horizon receiver motion planning loop

Note that if N = 1, the receding horizon trajectory op-
timization problem reduces to greedy optimization. To eval-
uate theN -step estimation error covariance,P(tk+N |tk+N ),
the zero future innovations assumption, namelyz̃(tj+1) ,

z(tj+1) − h [x̂(tj+1|tj)] ≡ 0, for j = k, . . . , k + N − 1,
will be invoked [16]. Once the optimalN -step look-ahead

control actions
(

UN
tk

)⋆

are found, only the first control

action u⋆(tk) is applied, whereas the rest of the control
actions{u⋆(tj)}

k+N−1
j=k+1 are discarded. A single iteration of the

proposed algorithm for finding the receding horizon optimal
receiver trajectory is outlined in Algorithm 1.

One drawback of receding horizon trajectory optimization is
repeated invoking of the zero-innovation assumption. Another
drawback is increased computational burden. Fig. 2 illustrates
the cascade of feasibility regions that should be considered as
the horizon is increased. In particular, each point in the black
shaded region corresponding to the feasibility region of the
first-step look-ahead has an associated feasibility regionof its
own signifying the feasible maneuvers the receiver could take
for the second-step. The number of optimization variables for
anN -step look-ahead problem are2N . Denoting the number
of feasible maneuvers in a particular time steptj by nj , it
is easy to see that an exhaustive search-type algorithm has a
computational burdenO

(

∏N
j=1 nj

)

.

Algorithm 1 N -step look-ahead receding horizon trajectory
optimization

Given: x̂(tk|tk), P(tk|tk), N
for j = k, . . . , k +N − 1 find
x̂(tj+1|tj) = Fx̂(tj |tj) +Gu(tj)

H(tj+1) =
∂h[xr(tj+1),xs(tj+1)]

∂x

∣

∣

∣

x=x̂(tj+1|tj)

P(tj+1|tj) = FP(tj |tj)FT +Q

S(tj+1) = H(tj+1)P(tj+1|tj)HT(tj+1) +R

W(tj+1) = P(tj+1|tj)HT(tj+1)S
−1(tj+1)

P(tj+1|tj+1)=P(tj+1|tj)−W(tj+1)S(tj+1)W
T(tj+1)

x̂(tj+1|tj+1) ≡ x̂(tj+1|tj)
end for
Solve:

minimize
UN

tk

J
[

UN
tk

]

= − log detP−1(tk+N |tk+N )

subject to ΣOpNav

‖ur(tk+N−j)‖2≤ar,max, j = 1, . . . , N
∥

∥

∥

∥

ur(tk+N−j) +
v⋆
r(tk+N−j−1)

T

∥

∥

∥

∥

2

≤
vr,max

T
,

j = 1, . . . , N
Apply: u⋆(tk)
Discard: {u⋆(tk+1), . . . ,u

⋆(tk+N−1)}

(a)

(b)

u1

u2

ar,max

1

T
vr,max

u(tk)

−

1

T
v(tk−1)

u1

u2

ar,max

1

T
vr,max

u(tk+1)

−

1

T
v(tk)

Fig. 2. Cascade of feasibility regions for two-step look-ahead horizon. The
two disks in (a) represent the acceleration and velocity constraints for the firs-
step look-ahead. The disks intersection (black shaded area) are the receiver
feasible maneuvers. Each point in this feasibility region is associated with
another feasibility region in (b) representing the feasible maneuvers for the
second-step look-ahead.
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V. SIMULATION RESULTS

This section presents simulation results to demonstrate the
limitations and effectiveness of receding horizon trajectory
optimization versus greedy. An OpNav environment com-
prising a receiver and four SOPs, labeled{SOPi}

4
i=1, was

simulated according to the settings presented in Table III.The
receiver’s and SOPs’ clocks were assumed to be temperature-
compensated and oven-controlled crystal oscillators (TCXO
and OCXOs), respectively. For purposes of numerical stability,
the clock error states were defined to becδt and cδ̇t. Two
receiver modes of operation were considered, corresponding
to the two observability conditions established in SectionIII:
(i) simultaneous receiver localization and signal landscape
mapping in an environment with one fully-known “anchor”
SOP and three unknown SOPs, and (ii) signal landscape
mapping in an environment with four unknown SOPs and a
fully-known receiver.

TABLE III
SIMULATION SETTINGS

Parameter Value

xs1
(t0) [ 0, 150, 10, 0.1 ]T

xs2
(t0) [ 100, −150, 20, 0.2 ]T

xs3
(t0) [ 200, 200, 30, 0.3 ]T

xs4
(t0) [−150, 50, 40, 0.4 ]T

{h0,r , h−2,r}
{

2× 10−19, 2× 10−20
}

{

h0,sj
, h

−2,sj

}

{

8× 10−20, 4× 10−23
}

, j = 1, . . . , 4

q̃x, q̃y 0.1 (m/s2)2

r {250, 300, 350} m2

{vmax, amax}
{

10m/s, 3m/s2
}

T 0.2 s

Three sets of simulations were performed for three different
observation noise intensitiesr. Four receiver trajectories per
noise intensity were generated: a random trajectory, a greedy
trajectory (i.e.,N = 1), and two receding horizon trajectories
with N = 2 and N = 3. The random trajectory was
generated by choosing at every time step a feasible maneuver
at random, while the greedy and receding horizon trajectories
were generated through Algorithm 1. The optimal solution was
found through an exhaustive search over the feasibility region
depicted in Fig. 2. To this end, the acceleration space was
gridded with spacingδux = δuy = 1m/s

2 and the extreme
points of the two disks corresponding to the acceleration and
velocity constraints were gridded with an angular spacing of
0.15 rad. This resulted in around35N feasible maneuvers on
average at a particular time step. For meaningful comparison,
the same initial state estimates and process and observation
noise realization time histories were used to generate the four
receiver trajectories. Several MC-based runs were conducted
for each noise intensity with randomized initial state estimates
and noise realization time histories.

A. Case 1: Simultaneous Receiver Localization and Signal
Landscape Mapping with One Known Anchor SOP

The receiver was assumed to have the initial state
xr(t0) = [ 0, 0, 10, 0, 100, 10 ]

T and the known anchor

SOP was assumed to beSOP1. The initial estimates
for the receiver and the three SOPs were generated
according to x̂r(t0|t0) ∼ N [xr(t0),Pr(t0|t0)] and
x̂si(t0|t0) ∼ N [xsi(t0),Psi(t0|t0)] , i = 2, 3, 4, with
initial estimation error covariance matricesPr(t0|t0) =
(104) · diag

[

1, 1, 1, 1, 1, 10−2
]

and Psi(t0|t0) = (104) ·
diag

[

1, 1, 1, 10−2
]

. To assess the localization accuracy and
signal landscape map quality, the natural logarithm of the
posterior estimation error covariance determinant, namely
log det [P(tk+1|tk+1)], was adopted.

The resulting receiver trajectories forr = 250m2 and
a particular run are illustrated in Fig. 3. The resulting lo-
calization and signal landscape map uncertainties forr ∈
{ 250, 300, 350 } m2 and the same run are plotted in Fig. 4-6.
The log det [P⋆(tk+1|tk+1)] plots exhibited a similar behavior
for various MC runs. The reduction in receiver localizationand
signal landscape map estimation uncertainty for the receding
horizon approaches over the greedy approach at the end of the
simulation time is averaged over ten MC runs and is tabulated
in Table IV.

TABLE IV
AVERAGE % REDUCTION IN RECEIVER LOCALIZATION AND SIGNAL

LANDSCAPE MAP ESTIMATION UNCERTAINTY FORN -STEP LOOK-AHEAD
RECEDING HORIZON OVER GREEDY AND VARIOUS OBSERVATION NOISE

INTENSITIES, r

N r = 250 r = 300 r = 350

2 14.19 7.51 -8.03
3 29.63 20.95 6.28

B. Case 2: Signal Landscape Mapping with a Known Receiver

The receiver was assumed to have an initial known state
of xr(t0) = [ 0, 0, 0, 0, 100, 10 ]

T. The initial estimates for
the the four SOPs were generated according tox̂si(t0|t0) ∼
N [xsi(t0),Psi(t0|t0)] , i = 1, . . . , 4, with initial esti-
mation error covariance matricesPsi(t0|t0) = (104) ·
diag

[

1, 1, 1, 10−2
]

. To assess the signal landscape map
quality, log det [P(tk+1|tk+1)] was adopted.

The resulting receiver trajectories forr = 250m2 and a par-
ticular run are illustrated in Fig. 7. The resulting signal land-
scape map uncertainty forr ∈ { 250, 300, 350 } m2 and the
same run are plotted in Fig. 8-10. Thelog det [P⋆(tk+1|tk+1)]
plots exhibited a similar behavior for various MC runs. The
reduction in signal landscape map estimation uncertainty for
the receding horizon approaches over the greedy approach at
the end of the simulation time is averaged over ten MC runs
and is tabulated in Table V.

TABLE V
AVERAGE % REDUCTION IN SIGNAL LANDSCAPE MAP ESTIMATION

UNCERTAINTY FORN -STEP LOOK-AHEAD RECEDING HORIZON OVER

GREEDY AND VARIOUS OBSERVATION NOISE INTENSITIES, r

N r = 250 r = 300 r = 350

2 94.69 55.56 43.61
3 135.51 78.46 52.63

8
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(a)

SOP1

SOP2

SOP3

SOP4

(b)

(c) (d)

Fig. 3. Case 1: receiver trajectories due to (a) random, (b) optimal greedy,
(c) optimal two-step look-ahead, and (d) optimal three-step look-ahead
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Fig. 4. Localization & signal landscape map uncertainty dueto random
receiver maneuvers and optimalN -step look-ahead withr = 250
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Fig. 5. Localization & signal landscape map uncertainty dueto random
receiver maneuvers and optimalN -step look-ahead withr = 300
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Fig. 6. Localization & signal landscape map uncertainty dueto random
receiver maneuvers and optimalN -step look-ahead withr = 350

C. Simulation Results Discussion

The following conclusions can be drawn from the presented
simulations. First, greedy motion planning and receding hori-
zon trajectory optimization yielded superior results to random
trajectories. Second, receding horizon trajectory optimization
outperformed greedy motion planning. However, this superi-
ority came at the expense of increased computational burden.
In particular, at each time step, the greedy motion planning
required the computation of around 35 functionals of the
posterior estimation error covariance matrix, corresponding
to each feasible maneuver. The receding horizon trajectory
optimization, on the other hand, required the computation of
around35N functionals at each time step, whereN = 2, 3.
Third, the superiority of receding horizon over greedy depends
on the observation noise intensity – the larger the observation
noise, the less advantage the receding horizon strategy has.
In fact, for large enough observation noise, receding horizon
yields nearly identical (or slightly worse) performance than
greedy. Fourth, for the same simulation settings, the improve-
ments gained from receding horizon over greedy were more
significant whenever the receiver hada priori knowledge about
its own state and was tasked with signal landscape mapping,
over the case where the receiver had noa priori knowledge
about its state and was tasked with simultaneous receiver
localization and signal landscape mapping.

VI. CONCLUSIONS

This paper studied the problem of multi-step look-ahead
(receding horizon) receiver trajectory optimization for optimal
information gathering in OpNav environments. To this end, it
was first shown that allowing receivers to actively control their
maneuvers reduces the requireda priori knowledge about the
environment for complete observability. In particular, itwas
shown that a planar COpNav environment comprising mul-
tiple receivers with velocity random walk dynamics making
pseudorange observations on multiple terrestrial SOPs is fully
observable if the initial states of at least: (i) one receiver is
fully-known, (ii) one receiver is partially-known and one SOP
is fully-known, or (iii) one SOP is fully-known and one SOP
is partially-known. If the receivers control their maneuvers
in the form of acceleration commands, the environment is
fully-observable if the initial states of at least: (i) one receiver
is fully-known or (ii) one SOP is fully-known. Furthermore,
random receiver trajectories, greedy trajectories, and receding
horizon trajectories were compared. It was demonstrated that
optimal greedy and receding horizon receiver motion planning
yielded higher fidelity signal landscape maps and more ac-
curate receiver localization than random receiver trajectories.
Moreover, the improvements gained from receding horizon
over greedy were more prominent for the case of signal
landscape mapping with a known receiver over the case of
simultaneous receiver localization and signal landscape map-
ping with a known anchor SOP. It was demonstrated that while
the receding horizon strategy outperformed the greedy method,
the receding horizon strategy became less advantageous as
the environment uncertainty in the form of observation noise
intensity was increased. Future work will study convexity
properties of the optimal motion planning strategy.
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Fig. 7. Case 2: receiver trajectories due to (a) random, (b) optimal greedy,
(c) optimal two-step look-ahead, and (d) optimal three-step look-ahead
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Fig. 8. Signal landscape map uncertainty due to random receiver maneuvers
and optimalN -step look-ahead withr = 250
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Fig. 9. Signal landscape map uncertainty due to random receiver maneuvers
and optimalN -step look-ahead withr = 300
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Fig. 10. Signal landscape map uncertainty due to random receiver maneuvers
and optimalN -step look-ahead withr = 350
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Of Technology and Göteborg University, Sweden, 2007.

[29] W. Respondek, “Geometry of static and dynamic feedback,” in Lecture
Notes at the Summer School on Mathematical Control Theory, Trieste,
Italy, September 2001.

[30] J. Casti, “Recent developments and future perspectives in nonlinear
system theory,”SIAM Review, vol. 24, no. 3, pp. 301–331, July 1982.

PLACE
PHOTO
HERE

Zaher (Zak) M. Kassas(S’98-M’08-SM’011) is an
assistant professor in the Department of Electrical
Engineering at The University of California, River-
side. He received a B.E. with Honors in Electrical
Engineering from The Lebanese American Univer-
sity, a M.S. in Electrical and Computer Engineering
from The Ohio State University, and a M.S.E. in
Aerospace Engineering and a Ph.D in Electrical and
Computer Engineering from The University of Texas
at Austin. From 2004 to 2010 he was a research
and development engineer with the Control Design

and Dynamical Systems Simulation Group at National Instruments Corp. His
research interests include estimation, navigation, autonomous vehicles, control
systems, and ITS.

PLACE
PHOTO
HERE

Todd E. Humphreys (M’12) is an assistant profes-
sor in the Department of Aerospace Engineering and
Engineering Mechanics at The University of Texas
at Austin and Director of The University of Texas
Radionavigation Laboratory. He received a B.S. and
M.S. in Electrical and Computer Engineering from
Utah State University and a Ph.D. in Aerospace
Engineering from Cornell University. His research
interests are in estimation and filtering, GNSS tech-
nology, GNSS-based study of the ionosphere and
neutral atmosphere, and GNSS security and integrity.

11


