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Abstract—The received signal strength (RSS)-based approach
to wireless localization offers the advantage of low cost and easy
implementability. To circumvent the nonconvexity of the conven-
tional maximum likelihood (ML) estimator, in this paper, we pro-
pose convex estimators specifically for the RSS-based localization
problems. Both noncooperative and cooperative schemes are con-
sidered. We start with the noncooperative RSS-based localization
problem and derive a nonconvex estimator that approximates the
ML estimator but has no logarithm in the residual. Next, we apply
the semidefinite relaxation technique to the derived nonconvex
estimator and develop a convex estimator. To further improve the
estimation performance, we append the ML estimator to the con-
vex estimator with the result by the convex estimator as the initial
point. We then extend these techniques to the cooperative local-
ization problem. The corresponding Cramer–Rao lower bounds
(CRLB) are derived as performance benchmarks. Our proposed
convex estimators comply well with the RSS measurement model,
and simulation results clearly demonstrate their superior perfor-
mance for RSS-based wireless localization.

Index Terms—Cooperative localization, Cramer–Rao lower
bound (CRLB), maximum likelihood (ML), received signal
strength (RSS), relaxation, semidefinite programming (SDP),
wireless localization.

I. INTRODUCTION

W IRELESS localization has gained considerable attention
over the past decade [1]–[4]. The capability of accu-

rately positioning a mobile station in cellular networks enables
many innovative applications, for example, emergency services,
friend finding, and tracking of the elderly [5]. In addition,
wireless localization is an indispensable component of wireless
sensor networks since the readings from a large number of
sensor nodes are meaningful only when the geolocations of
these readings are known. In this paper, we will refer to the
base stations in cellular networks and the anchor nodes in
wireless sensor networks with known locations as reference
nodes (RNs) and the mobile stations and sensor nodes with
unknown locations as blind nodes (BNs).

Most of the current localization techniques [6]–[14] for wire-
less networks are based on the measurement of one or several
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(hybrid) physical parameters of the radio signal transmitted
between the RNs and BNs. These parameters include time
of arrival (TOA), time difference of arrival, angle of arrival,
and received signal strength (RSS). There exist inherent trade-
offs between the localization accuracy and the implementation
complexity of these techniques, and the RSS-based technique
provides a low-cost and easy-implementation solution.

Determining the location of a BN given the measurements of
one or several aforementioned parameters can be formulated as
an estimation problem. The commonly used estimators fall into
the following two main categories: 1) the maximum likelihood
(ML) estimator [6]–[10] and 2) the linearized least squares
(LLS) estimator [11]–[14]. When the statistics of the mea-
surement error are known, the ML estimator is asymptotically
optimal. However, due to the nature of the localization problem
itself, the formed ML estimator has no closed-form solution,
and thus, an iterative solver is required. In addition, the formed
ML estimator is nonconvex, and thus, its performance highly
depends on the initial point provided for the iterative solver
(a local optimization method). A poor initialization often leads
to a very bad estimation. Moreover, also due to the nonconvex-
ity, searching for the global minimum of the ML estimator is
very difficult.

To overcome this problem, several researchers have proposed
the LLS estimator. The idea of the LLS estimator is to reorga-
nize and approximate the original nonlinear equations into a set
of linear equations with respect to the BN’s location without
Taylor-series expansion [15] and then apply the LS technique.
Since these equations are linear in the BN’s location, a closed-
form solution can be obtained. Though the LLS estimator is
much easier and has an explicit solution, its accuracy is not as
good as the ML estimator, particularly when the variance of
the measurement noise is high or the geometric condition is not
good. Several other proposed methods can be found in [16]–[18].

Recently, the use of the semidefinite relaxation technique
for the wireless localization problem is studied in [19] and
[20]. The basic idea is to relax the original nonconvex problem
via semidefinite programming (SDP) [21] to produce a convex
problem. By taking advantage of the convex optimization tech-
nique, the global minimum of a convex problem can be quickly
and efficiently found. Biswas et al. [19], [20] state that the
estimators formed via the semidefinite relaxation technique are
highly satisfactory compared with other techniques. However,
the SDP estimators in [19] and [20] are proposed for general
wireless-localization problems given pairwise distance infor-
mation. Directly applying these general SDP estimators to the
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RSS-based localization problem may result in large errors due
to the extra errors introduced when first estimating pairwise
distances from the RSS measurements.

Motivated by the above, in this paper, we design SDP estima-
tors specifically for the RSS-based localization problems. We
start with the noncooperative localization problem and derive
a nonconvex estimator that approximates the ML estimator but
has no logarithm in the residual. Then, we apply the semidef-
inite relaxation technique to the derived nonconvex estimator
to form a convex estimator. To further improve the estimation
performance, we append the ML estimator to the convex es-
timator with the result by the convex estimator as the initial
point. These techniques are then extended to the cooperative
localization problem. The corresponding Cramer–Rao lower
bounds (CRLBs) are derived as performance benchmarks.

Simulation results show that without appending the corre-
sponding ML estimators, our proposed SDP estimators outper-
form all the other estimators that we compared. Their solutions
also serve as better initial points for the corresponding ML esti-
mators to further refine the estimation for RSS-based localiza-
tion. Further, our proposed SDP estimators perform closely to
the corresponding CRLBs, and the performance improvement
gained from appending the corresponding ML estimators is
minor. That is to say, our proposed SDP estimators can already
generate satisfactory results without ML refinement. Although
this paper focuses on the 2-D scenario, all the estimators
involved can be easily extended to the 3-D scenario.

The remainder of this paper is organized as follows.
Section II briefly introduces the RSS measurement model and
details the development of the proposed convex estimator for
the noncooperative-localization problem. Section III extends
these estimators to the cooperative-localization problem. The
corresponding CRLBs are derived in Section IV as bench-
marks for performance comparison. Simulation results for
noncooperative- and cooperative-localization problems are pre-
sented in Sections V and VI, respectively. Finally, Section VII
draws the conclusions.

II. RECEIVED SIGNAL STRENGTH MEASUREMENT MODEL

AND CONVEX ESTIMATOR DEVELOPMENT

A. RSS Measurement Model

For future convenience, we start by introducing the notations
used throughout this paper. R, R

n, R
n×m, and S

n denote the
set of real numbers, n-vectors, n by m matrices, and symmetric
n by n matrices, respectively. tr(A) represents the trace of
matrix A. (·)T is the transpose operator. E(·) is the expectation
operator. The identity n by n matrix is noted as In. ‖u‖ denotes
the Euclidean norm of vector u. For two symmetric matrices A
and B, A � B means that A − B is positive semidefinite. We
use [u]i and [A]i,j to denote the ith element of vector u and
the element at the ith row jth column of matrix A, respectively.
[A]i:j,k:l denotes the submatrix formed by the intersection of the
ith to the jth rows and the kth to the lth columns of matrix A.

We first study the noncooperative-localization problem, in
which only one BN is to be localized. We denote the unknown
coordinates of the BN as θ = [x, y]T (θ ∈ R

2) and the known
coordinates of the ith RN as φi = [ai, bi]T (φi ∈ R

2), with

i = 1, 2, . . . , N (where N is the total number of RNs that the
BN can hear).

The RSS (from the BN and received by the ith RN or vice
versa), which is denoted as Pi, can be related to the distance
between the BN and the ith RN through the path loss model for
wireless transmission (in decibels) as [22]

Li =L0+10γ log10

‖θ−φi‖
d0

+ mi, i=1, 2, . . . , N (1)

where Li = PT − Pi is the path loss (PT is the transmission
power), L0 denotes the path loss value at the reference distance
d0 (‖θ − φi‖ ≥ d0), γ is the path loss exponent, and mi is a
Gaussian random variable representing the log-normal shadow
fading effect in multipath environments. The parametric RSS-
based wireless localization problem estimates θ based on (1),
given measurements and environmental parameters.

B. Nonconvex Estimator Without Logarithm in the Residual

In (1), mi’s are often modeled as independent and identically
distributed (i.i.d.) Gaussian random variables with zero mean
and standard deviation σ. The joint conditional pdf of the
observation vector L = [L1, . . . , LN ]T (L ∈ R

N ), given θ, is

p(L|θ) =
N∏

i=1

1√
2πσ

exp

⎧⎪⎨
⎪⎩−

(
Li−L0−10γ log10

‖θ−φi‖
d0

)2

2σ2

⎫⎪⎬
⎪⎭ .

(2)

The corresponding ML estimator is therefore

θ̂ = arg min
θ

N∑
i=1

(
10γ log10

‖θ − φi‖
d0

− (Li − L0)
)2

. (3)

Define ri = 10γ log10(‖θ − φi‖/d0) − (Li − L0) in (3) as
the residual, which is the difference between the true value and
the measurement. Then, (3) can be considered to minimize a
penalty function on the residual vector r = [r1, . . . , rN ]T (r ∈
R

N ) as

θ̂ = arg min
θ

f(r) (4)

where f(·) = ‖ · ‖2.
It is clear that the ML estimator (3) is nonconvex since its

domain {θ|θ �= φi} is not continuous. In addition, (3) contains
log10 ‖θ − φi‖, which is neither convex nor concave in the ob-
jective function, although we restrict θ in a convex domain (this
can be verified by examining the Hessian of log10 ‖θ − φi‖,
which is neither positive semidefinite nor negative semidefi-
nite). Due to the nonconvexity of (3), finding and confirming
the global minimum solution is difficult. A convex estimator
would be highly desirable, but the existence of log10 ‖θ − φi‖
in ri encumbers such an idea.

Hence, to facilitate the design of a convex estimator, we
first derive a nonconvex estimator that approximates the ML
estimator (3) but has no logarithm in the residual. To this end,
we replace f(·) = ‖ · ‖2 in (4) by another penalty function

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2010 at 06:31:26 UTC from IEEE Xplore.  Restrictions apply. 



OUYANG et al.: RSS-BASED WIRELESS LOCALIZATION VIA SEMIDEFINITE PROGRAMMING 1309

f(·) = ‖ · ‖∞ = maxi |[·]i|, i.e., the Chebyshev norm, which is
also known as the �∞ norm [21]. Then, the ML estimator (3) is
approximated as

θ̂ = arg min
θ

max
i

∣∣∣∣10γ log10

‖θ − φi‖
d0

− (Li − L0)
∣∣∣∣ . (5)

The advantage of such an approximation is that after certain
manipulations [21], we can form an equivalent problem without
alogarithm, as shown in the following.

Since ‖θ − φi‖ > 0 and positive scaling of the objective
function will not influence the minimizer, (5) is equivalent to

θ̂ = arg min
θ

max
i

∣∣∣∣log10

‖θ − φi‖2

β2
i

∣∣∣∣ (6)

where

β2
i = d2

010
Li−L0

5γ . (7)

By noting that∣∣∣∣log10

‖θ − φi‖2

β2
i

∣∣∣∣
= max

(
log10

‖θ − φi‖2

β2
i

, log10

β2
i

‖θ − φi‖2

)

= log10

(
max

(
‖θ − φi‖2

β2
i

,
β2

i

‖θ − φi‖2

))
(8)

we can rewrite (6) as

θ̂ = arg min
θ

max
i

log10

(
max

(
‖θ − φi‖2

β2
i

,
β2

i

‖θ − φi‖2

))
.

(9)

Since log10(x) is a strictly monotonically increasing function
in its domain (0,+∞) (there is a one-to-one mapping between
log10(x) and x, and when log10(x) is maximized, x is also
maximized), (9) is equivalent to

θ̂ = arg min
θ

max
i

max
(
‖θ − φi‖2

β2
i

,
β2

i

‖θ − φi‖2

)
. (10)

Following is our proposed estimator for the RSS-based
noncooperative localization problem, which can simply be
written as

θ̂ = arg min
θ

f(r̃). (11)

where r̃ = [r̃1, . . . , r̃N ]T (r̃ ∈ R
N ) is the proposed residual

vector with

r̃i = max
(
‖θ − φi‖2

β2
i

,
β2

i

‖θ − φi‖2

)
(12)

and f(·) is an arbitrary convex penalty function (e.g., the �p

norm family [21]). Obviously, r̃i contains no logarithm.
The rationality of the proposed estimator (11) lies at least in

the following aspects.

1) A close inspection of (1) reveals that it can be expressed as

β2
i = 10

mi
5 ‖θ − φi‖2 (13)

where β2
i is given by (7). That is to say, the noise in β2

i

(a function of the measurement Li) is multiplicative to
‖θ − φi‖2. The residual r̃i complies with such a multi-
plicative noise model since it consists of only the ratio
‖θ − φi‖2/β2

i and its inverse.
2) With f(·) in (11) being the Chebyshev norm, (11) is just

(10). As has been shown, (10) is equivalent to (5), which
is an approximation of the asymptotically optimal ML
estimator (3).

Although, compared with the ML estimator (3), (11) has
no logarithm in the residual, it is still not convex due to the
nonconvexity of the term β2

i /‖θ − φi‖2.

C. Convex Estimator Development via Semidefinite Relaxation

In the following, we will develop a convex estimator based
on the derived nonconvex estimator (11).

By introducing an auxiliary variable t = [t1, . . . , tN ]T (t ∈
R

N ), (11) can be cast as [21]

(θ̂, t̂ ) = arg min
θ,t

f(t)

s.t.
‖θ−φi‖2

β2
i

≤ ti,
β2

i

‖θ−φi‖2
≤ ti, i=1, . . . , N (14)

where s.t. is short for subject to. Obviously, in the above
formulation, ti > 0.

We then rewrite (14) as

(θ̂, t̂ ) = arg min
θ,t

f(t)

s.t. ‖θ − φi‖2 ≤ β2
i ti,

‖θ − φi‖2 ≥ β2
i t−1

i , i = 1, . . . , N. (15)

Note that (15) is actually the same as (14) since the constraints
in (15) already imply ‖θ − φi‖2 �= 0 and ti > 0. Therefore, we
can derive (14) from (15).

For simplicity, we define ki = ‖φi‖2. By noting that ‖θ −
φi‖2 = θT θ − 2φT

i θ + ki, we can rewrite (15) with an auxil-
iary variable X (X ∈ S

2) as

(θ̂, X̂, t̂ ) = arg min
θ,X,t

f(t)

s.t. tr(X) − 2φT
i θ + ki ≤ β2

i ti,

tr(X) − 2φT
i θ + ki ≥ β2

i t−1
i , i = 1, . . . , N

X = θθT . (16)

In the above formulation, tr(X) − 2φT
i θ + ki ≤ β2

i ti are
affine constraints, and tr(X) − 2φT

i θ + ki ≥ β2
i t−1

i are convex
constraints since tr(X) is linear in X , −2φT

i θ is linear in θ,
and t−1

i is convex on ti > 0. However, the equality constraint
X = θθT is not affine; therefore, the above formulation is still
not convex.

To obtain a convex estimator, we relax the equality constraint
X = θθT to an inequality constraint X � θθT (semidefinite
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relaxation) and then express it as a linear matrix inequality
(LMI) [23] by using a Schur complement [21], i.e.,

(θ̂, X̂, t̂ ) = arg min
θ,X,t

f(t)

s.t. tr(X) − 2φT
i θ + ki ≤ β2

i ti
tr(X) − 2φT

i θ + ki ≥ β2
i t−1

i , i = 1, . . . , N[
X θ
θT 1

]
� 0. (17)

Now, (17) is convex, and the readily developed numeri-
cal tools [24], [25] for solving convex optimization problems
can be used. An excellent property of a convex optimization
problem is that any local minimum is also the global mini-
mum. Therefore, we can guarantee that the global minimum
is achieved when a solution is obtained.

In the above formulation, we can also express tr(X) −
2φT

i θ + ki ≥ β2
i t−1

i as LMIs as follows:[
tr(X) − 2φT

i θ + ki βi

βi ti

]
� 0. (18)

An advantage of using LMIs is that t−1
i is circumvented in the

expression, and the constraints become linear.
The only difference between (16) and (17) is that we relax

the equality constraint in (16) to an inequality constraint in
(17). Therefore, if the solution of (17) satisfies X̂ = θ̂θ̂T , we
conclude that θ̂ given by (17) is also the global minimizer
of (16) and, thus, the global minimizer of (11) [since (16) is
equivalent to (11)]. If not, θ̂ given by (17) is still feasible for
(11), except θ̂ = φi, since (11) is unconstrained with domain
{θ|θ �= φi}. In addition, f(t̂ ) given by (17) provides a lower
bound on the optimal value of (11) since we solve a relaxed
problem on a larger set. In the following, we will refer to (17)
as an SDP estimator (although it is not strict) to emphasize the
utilization of semidefinite relaxation.

D. Result Analysis

Compared with (11), besides giving θ̂, the SDP problem (17)
also produces X̂ , which can provide us additional information.

Due to relaxation, θ̂ given by (17) may not be the global
minimizer of (11), unless X̂ = θ̂θ̂T is satisfied. If we view the
unknown global minimizer of (11) as a random variable [19]
and denote it as θ̃, generally, we have

E(θ̃) = θ̂ E(θ̃θ̃T ) = X̂. (19)

Then, the covariance matrix of θ̃ is given by

cov(θ̃) = E(θ̃θ̃T ) − E(θ̃)E(θ̃)T = X̂ − θ̂θ̂T . (20)

Since X̂ and θ̂ are the solutions of (17), they must sat-
isfy [X̂ θ̂; θ̂T 1] � 0, which is equivalent to X̂ − θ̂θ̂T � 0.
Therefore, we can observe that X̂ − θ̂θ̂T can, indeed, serve
as a covariance matrix. Such an interpretation coincides with
our previous analysis since if X̂ − θ̂θ̂T = 0, then θ̃ should be
deterministic, and hence, θ̃ = E(θ̃) = θ̂, i.e., θ̂ given by (17) is
also the global minimizer of (11).

Since (17) provides us the information about the covariance
matrix of θ̃, we can utilize it to trust a θ̂, which results in small

element variances in cov(θ̃), and discard a θ̂, which causes large
variances and requires a new estimation.

Such an interpretation also assists in designing approaches to
approximately find the global minimizer of (11).

We can assume a certain distribution of θ̃ that satisfies (19)
and (20), and then randomly generate K realizations of θ̃
(denoted as θ̃k, where k = 1, 2, . . . ,K) according to the
assumed distribution and record the corresponding objective
function values f(r̃(θ̃k)) of (11). The approximate global
minimizer of (11) is given by θ̃k, which results in the smallest
f(r̃(θ̃k)) among all the K objective function values. Such an
approach is called randomization [26]. It sounds reasonable;
however, through simulations, we find that although it can
result in a lower objective function value, it does not necessarily
produce a better estimation in the Euclidean distance sense.
The smallest objective function value is very likely to be caused
by a local minimizer (or a point close to a local minimizer)
rather than the global minimizer since the solution space is not
discrete, and the objective function is nonconvex. A sufficiently
large number of randomizations may be required to produce a
satisfactory result.

Another approach is through grid search. Since we know
that for a Gaussian random variable x, P[|x − E(x)| ≤ 2σx] =
0.97, where P denotes probability, and σx is the standard
deviation of x. Therefore, assuming θ̃ is Gaussian, it lies in the
following space with very high probability: E(x̃) − 2σx̃ ≤ x̃ ≤
E(x̃) + 2σx̃, E(ỹ) − 2σỹ ≤ ỹ ≤ E(ỹ) + 2σỹ , where E(x̃) =

[θ̂]1, E(ỹ) = [θ̂]2, σx̃ =
√

[cov(θ̃)]1,1, and σỹ =
√

[cov(θ̃)]2,2.
We can then search through the space with grid steps Δx, Δy

along the respective axis, record the resultant objective function
values, and choose the point given the smallest objective func-
tion value as the approximate global minimizer of (11). The
smaller the step size is, the better the final estimation becomes.

A more convenient and straightforward way is to provide the
solution given by the SDP problem (17) as an initial point for
the original problem (11) and run a local optimization method
[27] to refine the estimation. However, (11) is nondifferentiable,
and its equivalent problem (15) is not very smooth. Alterna-
tively, we provide the solution given by (17) as an initial point
for the ML estimator (3) due to its smoothness and asymptot-
ical optimality. In the simulation results, we only present the
refined solutions by this method since it is more efficient than
randomization and grid search, particularly when the dimension
of the problem is high (e.g., cooperative localization, which will
be discussed in Section III). However, the refined estimation is
then an approximate global minimizer of (3) rather than (11).

III. EXTENSION TO COOPERATIVE LOCALIZATION

Assume that there are N RNs and M BNs in a network. Due
to limited communication ranges or other physical limitations,
probably none of the BNs can directly connect to at least three
RNs, and therefore, none of them can localize themselves by
traditional noncooperative localization methods. Cooperative
localization provides an excellent solution to this problem.
It allows BNs to connect with each other and measure the
RSS between themselves. Instead of solving for each BN’s
location independently, all the BNs’ locations will be estimated
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simultaneously after the necessary RSS measurements are col-
lected. For a more detailed description, see [28].

We now describe the cooperative localization problem math-
ematically. Denote the coordinates of the ith BN (unknown)
as θi (i = 1, 2, . . . ,M, θi ∈ R

2) and the coordinates of the
jth RN (known) as φj (j = 1, 2, . . . , N, φj ∈ R

2). For ease
of expression, we further define θ = [θ1, θ2, . . . , θM ] (θ ∈
R

2×M ). The tuple sets {(i, j)}, {(i, k)} indicating the existence
of pairwise BN/RN and BN/BN RSS measurements are de-
noted as A and B, respectively (i, k = 1, 2, . . . ,M, i �= k, j =
1, 2, . . . , N). Further, define a subset of B with those {(i, k)|i <
k} as C.

The RSS measurement model for cooperative localization is

LA
ij = L0 + 10γ log10

‖θi − φj‖
d0

+ mij , (i, j) ∈ A

LB
ik = L0 + 10γ log10

‖θi − θk‖
d0

+ nik, (i, k) ∈ B (21)

where mij , nik are i.i.d. Gaussian random variables with zero
mean and standard deviation σ. Assume that LB

ki = LB
ik for

(i, k) ∈ B.
The ML estimator based on the above measurement model is

easily formulated as

θ̂ = arg min
θ

∑
i,j:(i,j)∈A

(
10γ log10

‖θi − φj‖
d0

−
(
LA

ij − L0

))2

+
∑

i,k:(i,k)∈C

(
10γ log10

‖θi − θk‖
d0

−
(
LB

ik − L0

))2

(22)

which is nonconvex.
Similar to the procedures done for noncooperative localiza-

tion problem, we can also formulate a convex estimator for
cooperative localization by applying semidefinite relaxation to
our proposed nonconvex estimator.

First, we extend (15) [the equivalent problem of (11)] for
cooperative localization as

(θ̂, t̂ ) = arg min
θ,t

f(t)

s.t. ‖θi − φj‖2 ≤ β2
ijtij

‖θi − φj‖2 ≥ β2
ijt

−1
ij ∀ (i, j) ∈ A

‖θi − θk‖2 ≤ ζ2
iksik

‖θi − θk‖2 ≥ ζ2
iks−1

ik ∀ (i, k) ∈ C (23)

where t is a vector constructed by stacking all the tij’s

and sik’s, β2
ij = d2

010(LA
ij−L0)/5γ for (i, j) ∈ A and ζ2

ik =
d2
010(LB

ik
−L0)/5γ for (i, k) ∈ C.

It is easy to show that [20]

‖θi − φj‖2 = [ei;−φj ]T [θ I2]T [θ I2][ei;−φj ]

‖θi − θk‖2 = (ei − ek)T θT θ(ei − ek)

where ei is an M -vector with 1 at the ith entry and 0 elsewhere
(semicolon means line break).

Further, define X = θT θ, gij = [ei;−φj ] for (i, j) ∈ A and
hik = [ei − ek; 02] for (i, k) ∈ C (gij , hik ∈ R

M+2), and then,
(23) can be expressed as

(θ̂, X̂, t̂ ) = arg min
θ,X,t

f(t)

s.t. gT
ij [X θT ; θ I2]gij ≤ β2

ijtij

gT
ij [X θT ; θ I2]gij ≥ β2

ijt
−1
ij ∀ (i, j) ∈ A

hT
ik[X θT ; θ I2]hik ≤ ζ2

iksik

hT
ik[X θT ; θ I2]hik ≥ ζ2

iks−1
ik ∀ (i, k) ∈ C

X = θT θ. (24)

We apply the semidefinite relaxation technique again to
relax the constraint X = θT θ in (24) to X � θT θ, which is
equivalent to [X θT ; θ I2] � 0.

For simplicity, we define Z = [X θT ; θ I2]. Now, the relaxed
problem can be written as

(Ẑ, t̂ ) = arg min
Z,t

f(t)

s.t. gT
ijZgij ≤ β2

ijtij , gT
ijZgij ≥ β2

ijt
−1
ij ∀(i, j) ∈ A

hT
ikZhik ≤ ζ2

iksik, hT
ikZhik ≥ ζ2

iks−1
ik ∀(i, k) ∈ C

Z � 0, [Z]M+1:M+2,M+1:M+2 = I2 (25)

which is convex.
Similarly, gT

ijZgij ≥ β2
ijt

−1
ij and hT

ikZhik ≥ ζ2
iks−1

ik can be
expressed as LMIs as follows:[

gT
ijZgij βij

βij tij

]
� 0,

[
hT

ikZhik ζik

ζik sik

]
� 0

which render these constraints linear.
The estimation of θ is given by θ̂ = [Ẑ]M+1:M+2,1:M , and

the estimation of X is given by X̂ = [Ẑ]1:M,1:M . Furthermore,
the estimation of θi is given by the ith column of θ̂. Similarly,
after we solve (25), we need to check whether X̂ = θ̂T θ̂. If
it does, then the solution given by (25) is also the global
minimizer of (24) and, thus, the global minimizer of (23).

A. Result Analysis

Similar to what has been discussed in Section II-D, we view
the global minimizer of (23) as random and denote it as θ̃. We
then have

E(θ̃) = θ̂, E(θ̃T θ̃) = X̂.

For each θ̃i, we define its ensemble variance var(θ̃i) as the
summation of the individual variance of its elements. Then, we
have

var(θ̃i) = var(x̃i) + var(ỹi) = tr
(
E

(
θ̃iθ̃

T
i

)
− E(θ̃i)E(θ̃i)T

)
= E

(
θ̃T

i θ̃i

)
− E(θ̃i)T

E(θ̃i) = [X̂]i,i − θ̂T
i θ̂i.

As can be seen, in cooperative localization, the solution of
the SDP problem only provides us the ensemble variance of
each θ̃i rather than the covariance matrix. For the refinement
of the final solution, θ̂, given by (25), is provided as an initial
point for the corresponding ML estimator (22).
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IV. CRAMER–RAO LOWER BOUND ANALYSIS

The CRLB (denoted as J−1) [29] sets a lower limit on the
covariance matrix of any unbiased estimator (unbiased means
E(θ̂) = θ). That is

Ez

[
(θ̂ − θ)(θ̂ − θ)T

]
� J−1 (26)

where J is the Fisher information matrix (FIM) [29], with the
element [J ]i,j defined by

[J ]i,j = −Ez

[
∂2 ln p(z|θ)
∂[θ]i∂[θ]j

]
. (27)

z denotes the observation vector, and p(z|θ) is the joint
conditional pdf of the observations given θ.

A. Noncooperative Localization

In noncooperative localization, each BN is localized individ-
ually. For a specific BN, J ∈ S

2. The joint conditional pdf of
the observations is given by (2), and therefore, we have

[J ]1,1 =α2
N∑

i=1

(x − ai)2

‖θ − φi‖4
[J ]2,2 = α2

N∑
i=1

(y − bi)2

‖θ − φi‖4

[J ]1,2 = [J ]2,1 = α2
N∑

i=1

(x − ai)(y − bi)
‖θ − φi‖4

(28)

where α = 10γ/(σ ln 10).
Define the location estimation error as e = ‖θ̂ − θ‖. For any

unbiased location estimator, its root mean square error (RMSE)√
E(e2) is lower bounded by√

E(e2) =
√

E [(x̂ − x)2] + E [(ŷ − y)2]

≥
√

[J−1]1,1 + [J−1]2,2 =
√

tr(J−1). (29)

Therefore, we define σNC
Δ=

√
tr(J−1) as the CRLB on the

RMSE of any unbiased noncooperative location estimator.
Relationship Between σNC and the Environmental Parame-

ters: From (28), it is clear that J can be written as J =
α2G(θ, φi), where G(θ, φi) ∈ S

2 ([G]i,j = [J ]i,j/α2) is a ma-
trix that depends only on the true locations of the BN and the
involved RNs but not α. Therefore

σNC = α−1
√

tr(G−1) ∝ α−1 =
ln 10
10

σ

γ
. (30)

It is interesting to note that σNC ∝ σ/γ. That is, σNC in-
creases as σ increases while it decreases as γ increases. This
is because the RSS measurements vary more around the mean
power as σ goes larger (causing more uncertainty when relating
a measurement to the distance), but they become more sensitive
to distance as γ goes larger (causing less uncertainty when
relating a measurement to the distance). More interestingly,
with the same geometric layout, it is possible to obtain a
smaller σNC under a non-line-of-sight (NLOS) environment
than a line-of-sight (LOS) environment since the parameters
corresponding to the NLOS environment may result in a smaller
σ/γ. For example, according to the IEEE 802.15.4a channel
models [30], the residential NLOS environment brings about a

smaller σ/γ than the residential LOS environment and, thus, a
smaller σNC.

Relationship Between σNC and the Size of the Network: As-
sume that the coordinates of the BN and the RNs are scaled by
κ, i.e., θnew = [κx, κy]T , φi,new = [κai, κbi]T , which means
that the network is scaled without changing the topology (σ and
γ are kept the same).

Denote the corresponding J (σNC) before and after the
scaling as Jold (σNC,old) and Jnew (σNC,new), respectively.
From (28), we have Jnew = κ−2Jold. Therefore

σNC,new =
√

tr (J−1
new) = κ

√
tr

(
J−1

old

)
= κσNC,old. (31)

From the above relationship, we can observe that σNC in-
creases as the network enlarges while keeping the topology
unchanged. Specifically, if all the coordinates of the network
are scaled by κ, σNC will also be scaled by κ.

B. Cooperative Localization

In cooperative localization, the involved BNs are localized
simultaneously. To facilitate the derivation of the CRLB, we
define θx = [x1, x2, . . . , xM ]T and θy = [y1, y2, . . . , yM ]T and
construct an ensemble (unknown) coordinate vector as θen =
[θx; θy]. Then, xi = [θen]i, yi = [θen]M+i (i = 1, 2, . . . ,M).
The expression of the corresponding FIM J (for θen) is given
in the Appendix.

Define the location estimation error for each BN as ei =
‖θ̂i − θi‖ and further define the normalized RMSE (NRMSE)
for the whole network (involving all the located BNs) as√

(1/M)
∑M

i=1 E(e2
i ). Then, for any unbiased cooperative lo-

cation estimator, we have the NRMSE lower bounded by√√√√ 1
M

M∑
i=1

E (e2
i ) =

√√√√ 1
M

M∑
i=1

(E [(x̂i − xi)2] + E [(ŷi − yi)2])

≥

√√√√ 1
M

M∑
i=1

([J−1]i,i + [J−1]M+i,M+i)

=

√
1
M

tr(J−1).

Therefore, we define σCO
Δ=

√
(1/M)tr(J−1) as the CRLB

on the NRMSE of any unbiased cooperative location estimator.
Obviously, the two properties (30) and (31) of σNC also hold
for σCO.

V. SIMULATION RESULTS FOR

NONCOOPERATIVE LOCALIZATION

This section presents the simulation results for the nonco-
operative localization problem. In (1), we set d0 = 1 m, L0 =
40 dB, and γ = 3. We consider the scenario that there are N
RNs evenly located on a circle centered at (0, 0) with radius
rad = 20 (the unit used here is meter and the same below). The
location of the ith RN (i = 1, . . . , N) is given by

ai = rad cos
2π(i − 1)

N
, bi = rad sin

2π(i − 1)
N

.
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In addition to our proposed SDP estimator (17) (we term it
SDPRSS), the following estimators are chosen for comparison.

One is the general SDP estimator proposed in [20] (we
term it SDP ) for wireless-localization problems given pairwise
distance information, regardless of how such information is ob-
tained (e.g., through TOA or RSS). The general SDP estimator
is to relax the following original problem:

θ̂ = arg min
θ

f̆(r̆) (32)

where r̆ = [r̆1, . . . , r̆N ]T (r̆ ∈ R
N ) is the residual vector with

r̆i = ‖θ − φi‖2 − d̂2
i (33)

and f̆(·) being a penalty function (the penalty functions con-
sidered in [20] are the �1 norm (

∑N
i=1 |[·]i|) and the �2 norm

(
√∑N

i=1[·]2i )). d̂i in r̆i is the measured or estimated pairwise
distance between the BN and the ith RN. When the distance is
estimated through the RSS measurement by the corresponding
ML estimator, d̂i is given by

d̂i = arg min
di

(
10γ log10

di

d0
− (Li − L0)

)2

= d010
Li−L0

10γ .

(34)

Note that d̂i
2

= β2
i for RSS-based localization and, thus, (33)

is actually

r̆i = ‖θ − φi‖2 − β2
i . (35)

Obviously, r̆i treats the noise in β2
i as additive to ‖θ − φi‖2.

However, according to (13), the noise contained in β2
i is mul-

tiplicative to ‖θ − φi‖2. Therefore, r̆i is not well tailored to
the RSS measurement model and neither is the general SDP
estimator, while our proposed SDP estimator complies with the
multiplicative noise model.

After a similar procedure done in Section II-C, the general
SDP estimator can be expressed as

(θ̂, X̂, t̂ ) = arg min
θ,X,t

f̆(t)

s.t. tr(X) − 2φT
i θ + ki − β2

i ≤ ti
tr(X) − 2φT

i θ + ki − β2
i ≥ −ti, i = 1, . . . , N[

X θ
θT 1

]
� 0. (36)

To avoid the impact of different penalty functions on the
performance of the estimators, in the simulations, we set both
the penalty function f(·) for our proposed SDP estimator (17)
and the penalty function f̆(·) for the general SDP estimator
(36) as the �1 norm, which is the most robust among the three
commonly used norms—the �1, �2, and �∞ norms. In addition,
since in (17) and (36) ti ≥ 0, the objective functions of these
two problems become

∑N
i=1 ti.

Another estimator compared is the LLS estimator proposed
in [12] (we term it LLS) with pairwise distance information
given by (34).

In addition, the ML estimator (3) is appended to each of these
three estimators with the solution produced by the respective
estimator as an initial point. We denote the ML estimator

with the initial point provided by estimator A as A-ML. The
CRLB on the RMSE for any unbiased noncooperative location
estimator (σNC) is also presented as a benchmark.

The simulations are done via MATLAB. The SDP esti-
mators are solved by CVX [24], and the ML estimators are
solved by the MATLAB function lsqnonlin, which adopts the
Levenberg–Marquardt method [27].

A. Effect of the Geometric Layout

It is well known that the geometric layout of the BN and
the RNs has a significant impact on the localization accuracy,
which is known as the geometric dilution of precision [31]. To
investigate its effect, we keep the RN locations fixed (N = 3)
and choose three different BN locations that represent three
typical geometric BN–RN configurations: The first is (0, 2),
which is very close to the centroid of the triangle formed by
the RNs; the second is (12, −2), which is close to one of the
RNs while being far away from the other two; and the third is
(22, 8), which is outside the convex hull formed by the RNs.

The RMSEs of different estimators for different BN locations
are shown in Fig. 1 (each result is based on 1000 independent
runs). We find that under such simulation scenarios, all the ML
estimators converge to the same point; therefore, we present
their results by only one curve in each subfigure and denote it
as ML. Such a phenomenon indicates that the nonconvergence
problem of the ML estimator is not severe when N is small.
However, this problem becomes evident as N increases, which
will be shown later. Through simulations, we find that all these
estimators are more or less biased. Therefore, their performance
cannot be well lower bounded by the CRLB. However, the
CRLB can serve as a benchmark representing the minimum
RMSE that any unbiased location estimator can achieve.

From Fig. 1, it is clear that the geometric configurations of
the BN and the RNs significantly influence the localization
accuracy since the estimators exhibit a very different behavior
under different geometric layouts. When the MS is at (0, 2),
the performance among all the estimators do not differ as much
when σ is small. As σ becomes large, the performance of LLS
degrades very quickly. When the MS is at (12, −2), SDPRSS is
slightly better than ML, and their RMSEs are even lower than
the CRLB, while the other two estimators perform much worse.
When the MS is at (22, 8), LLS shows very poor performance,
almost exponentially degrading as σ increases. Even though
SDP is much better than LLS, its performance is still poor.
Nevertheless, SDPRSS and ML exhibit steady and excellent
performance, and their RMSEs are even lower than the CRLB
for large σ.

As can be seen, our proposed SDP estimator is very robust to
bad geometric layout and can generate even better performance
than the ML estimator when N = 3.

B. Effect of the Standard Deviation

The effect of the standard deviation σ of the log-normal
shadow fading variable mi on the localization accuracy has also
been shown in Fig. 1. We can observe that no matter where
the BN is, the RMSE of any estimator shows degradation as
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Fig. 1. RMSE versus σ when the BN is at different locations with N = 3.
(a) BN is at (0, 2). (b) BN is at (12, −2). (c) BN is at (22, 8).

σ increases. Compared with the LLS estimator and the general
SDP estimator, the performance degradation of our proposed
SDP estimator is much slower and steadier. As has been ana-
lyzed, the CRLB on the RMSE for any unbiased noncooperative
location estimator σNC is a linearly increasing function of σ,
which coincides with the simulation results.

Fig. 2. RMSE versus σ when N = 6.

To average out the effect of the geometric layout, we fix
the locations of the RNs (N = 6) and uniformly sample
200 random BN locations inside the convex hull formed by
these six RNs for each σ. Then, 100 independent localizations
are performed to calculate the corresponding RMSE for each
sampled location. Finally, the average RMSE is computed by
averaging these RMSEs for all the sampled locations. The aver-
age RMSEs versus different standard deviations are depicted in
Fig. 2. It can be observed that on the average, the performance
of SDPRSS is much better than that of SDP . The noncon-
vergence problem of the ML estimator is exhibited clearly
now, as the ML estimators with different initial points produce
very different results. When σ is small, the ML estimators can
attain the CRLB. However, as σ increases, the ML estimators
diverge from the CRLB due to limited data records and large
noise variances. When σ = 5 or 6 dB, SDPRSS exhibits almost
the same performance as SDPRSS-ML and SDP -ML. This
demonstrates the excellent performance of SDPRSS in harsh
environments, where SDPRSS itself already generates good
results, and the ML refinement is not necessary.

C. Effect of the Number of Hearable RNs

In addition to σ, the number of hearable RNs N also impacts
the localization accuracy. In the following simulations, we vary
N from 3 to 20 while keeping the BN location inside the square
region: {(x, y)| − 10 ≤ x ≤ 10,−10 ≤ y ≤ 10}. For each N ,
a similar procedure as has been described in Section V-B is
done to calculate the average RMSE.

Fig. 3 shows the average RMSEs versus different numbers
of hearable RNs when σ = 4 dB. It can be observed clearly
that without ML estimators, SDPRSS performs best, followed
by SDP , and the worst is LLS, no matter how large N is.
Although when N is small, the ML estimators does not differ so
much, as N increases, SDPRSS-ML outperforms SDP -ML,
and SDP -ML performs better than LLS-ML, indicating that,
generally, a better initial point leads to a better final result for
the nonconvex ML estimator.

In addition, under the simulated scenarios, on the average,
SDPRSS is always better than LLS-ML, which illustrates that,
generally, LLS cannot serve as a good starting point for the ML
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Fig. 3. RMSE versus N when σ = 4 dB.

estimator. Furthermore, the performance gain by appending the
ML estimator to SDPRSS is minor (while the gains for SDP
and LLS are much larger), exhibiting the superior performance
of our proposed SDP estimator, which can generate excellent
results solely without refinement by the ML estimator.

VI. SIMULATION RESULTS FOR

COOPERATIVE LOCALIZATION

This section presents the simulation results for the cooper-
ative localization problem. The parameter settings for (21) are
the same as those for (1) in Section V. We consider a network
with N = 4 RNs and M = 30 BNs. The four RNs are located
at (10, 10), (−10, 10), (−10,−10), and (10, −10), respectively,
and the BNs are inside the square region (convex hull) formed
by these RNs.

Similar to Section V, our proposed SDP estimator (25) and
the general SDP estimator (for cooperative localization) are
compared (the penalty functions are set to the �1 norm). In
addition to them, the multidimensional scaling (MDS) estima-
tor [32] (we term it MDS) is chosen for comparison due to
its ability to locate several BNs simultaneously. In addition,
the ML estimator (22) is appended to each of these compared
estimators with the solution produced by the respective esti-
mator as an initial point. The naming for these estimators for
cooperative localization is the same as that for noncooperative
localization. The CRLB on the NRMSE for any unbiased coop-
erative location estimator (σCO) is presented as a benchmark.
Without specific indication, each simulation result presented in
this section is based on 100 independent runs.

A. Effect of the Network Structure

Through simulations, we find that the structure of the net-
work has a significant influence on the performance of the
estimators. Roughly, we classify the network structures as
follows: 1) regular and 2) irregular. By regular, we mean that the
BNs are connected and spread relatively uniformly throughout
the deployment area, and by irregular, we mean that there are
obvious large areas without connection and clusters with BNs
crowded together. Fig. 4 shows a typical regular network and a
typical irregular network with communication range R = 8 (we

Fig. 4. Network structure. (a) Network I: a typical regular network; BNs are
connected and spread relatively uniformly throughout the deployment area.
(b) Network II: a typical irregular network with obvious blank areas and
clusters.

Fig. 5. NRMSE versus σ when R = 8 m. (a) Network I. (b) Network II.

assume that the nodes in the network have the same communi-
cation range), where the RNs are denoted by red stars, the BNs
by blue circles, and the links between the nodes by green lines.
A link between two nodes exists if they can communicate with
each other.

The NRMSEs of different estimators versus different σ of
mij , nik in (21) for networks I and II are shown in Fig. 5.
As can be observed in Fig. 5(a), for the regular network,
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MDS performs very poorly. This is because there are many
incomplete data in the required Euclidean distance matrix (due
to limited communication range) to recover the configuration of
the points. In addition, there are very limited RNs with known
locations to accurately determine the required translation, rota-
tion, and scaling. In contrast, the SDP estimators perform much
better, and SDPRSS is always better than SDP . As to the ML
estimators, MDS-ML performs poorly since MDS does not
perform well. SDP -ML and SDPRSS-ML are much better,
and they can even attain the CRLB for small σ. As σ becomes
large, their performance shows degradation and diverges from
the CRLB. When σ = 6 dB, these two perform the same as
SDPRSS. This demonstrates again in harsh environments that
SDPRSS itself can already generate good results and that the
ML refinement almost does not help.

In Fig. 5(b), for the irregular network, MDS and MDS-ML
exhibit similar performance as that for the regular network,
while SDPRSS and SDP perform closely, and SDPRSS is
slightly better than SDP . All the ML estimators diverge largely
from the CRLB in such an irregular network.

B. Effect of the Standard Deviation

The effect of the standard deviation σ of the log-normal
shadow fading variable on the NRMSE has already been shown
in Fig. 5. Whether in the regular or the irregular network, all
the estimators show performance degradation as the standard
deviation σ increases. As has been analyzed, the CRLB on the
NRMSE for any unbiased cooperative location estimator σCO

is a linearly increasing function of σ, and this coincides with
the simulation results.

C. Effect of the Communication Range

We explore the effect of the communication range R on
the performance of the estimators in this section. We still use
the two networks shown in Fig. 4. The NRMSEs of different
estimators versus different R’s (σ is set to 4 dB) for networks I
and II are shown in Fig. 6.

As can be seen, the CRLB decreases as R increases. This is
because when R increases, a node can communicate with more
other nodes, thus obtaining more information and facilitating
more accurate estimations. For the regular network, excluding
the ML estimators, MDS performs worst and is not steady.
SDPRSS performs best, and the performance gap between
SDPRSS and SDP enlarges as R increases. SDPRSS exhibits
steady performance enhancement as R increases, while the
NRMSE of SDP is almost unchanged when R ∈ [9, 15]. After
the ML estimator refinement, SDPRSS-ML is the best, and its
NRMSE is very close to the CRLB, while SDP -ML is slightly
worse.

For the irregular network, MDS still performs poorly and
not steadily. Although when R = 8, SDPRSS and SDP per-
form almost the same, as R increases, the performance gap
between them enlarges, and SDPRSS performs better than
SDP . In addition, unlike the result for the regular network,
SDPRSS-ML is far above the CRLB for small R for the irreg-
ular network. Only when R ≥ 11 does it perform close to the
CRLB. For the irregular network, the performance difference

Fig. 6. NRMSE versus R when σ = 4 dB. (a) Network I. (b) Network II.

between SDPRSS-ML and SDP -ML is more evident than
that for the regular network. Sometimes, SDP -ML is even
worse than SDPRSS (e.g., when R = 10, 13).

Whether for the regular or the irregular network, as can be
seen, appending the ML estimator to refine the result helps a lot
for MDS and SDP , while the performance improvement for
SDPRSS is minor.

D. Effect of the Number of Hearable RNs

In this section, we investigate the effect of the number of
hearable RNs on the performance of the estimators. We set σ =
4 dB and R = 8. First, we use the original four RNs, and then,
we increase N to eight and place four additional RNs at (10, 0),
(0, 10), (−10, 0), and (0, −10), respectively. The NRMSEs of
the estimators versus different N are depicted in Fig. 7.

From the figure, we can observe that the performance of
all the estimators improves as N increases from four to eight
since more RNs will provide more information and references.
When N = 8, MDS performs significantly better, and the per-
formance gap between MDS and the SDP estimators becomes
much smaller compared with the case when N = 4. This is
because more RNs will increase the connectivity as well as
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Fig. 7. NRMSE versus N when σ = 4 dB and R = 8 m. (a) Network I.
(b) Network II. (A) MDS. (B) SDP . (C) SDPRSS. (A∗) MDS-ML.
(B∗) SDP -ML. (C∗) SDPRSS-ML.

Fig. 8. NRMSEs averaged over 300 randomly generated networks.
(A) MDS. (B) SDP . (C) SDPRSS. (A∗) MDS-ML. (B∗) SDP -ML.
(C∗) SDPRSS-ML.

facilitate accurately determination of the translation, rotation,
and scaling required by MDS.

Another observation is that as more RNs are involved, the
impact of the network structure on the performance of the
estimators diminishes. We can see that when N = 8, the es-
timators exhibit similar performance for networks I and II.
Moreover, SDPRSS performs best, excluding the ML estima-
tors, and SDPRSS-ML is the best among the ML estimators,
which is the closest to the CRLB. In addition, the performance
improvement from SDPRSS to SDPRSS-ML is minor.

E. Performance Averaged Over Random Network Structures

We present some averaged performance results here, al-
though we consider it to be more appropriate to investigate
the performance of the estimators on a network-structure-type
basis (e.g., regular or irregular), such as what has been dis-
cussed before. We set N = 4, σ = 4 dB, and R = 10, generate
300 different networks with M = 30 BNs randomly deployed
in the convex hull formed by the RNs (the distance between any
BNs is kept larger than d0) and then average over these 300 net-
works to obtain the NRMSEs. The results are plotted in Fig. 8.

As expected, on the average, SDPRSS is the best, excluding
the ML estimators, SDPRSS-ML is the best among all the ML
estimators, and the performance enhancement when appending
the ML estimator to SDPRSS is very small. That is to say,
SDPRSS can generate excellent results solely without refine-
ment by the ML estimator. Moreover, since, for large M , the

computational complexity of the ML estimator (22) can exceed
that of our proposed SDP estimator (also the general SDP
estimator), SDPRSS is the best compromise between local-
ization accuracy and computational efficiency for cooperative
localization.

VII. CONCLUSION

To circumvent the nonconvexity of the conventional ML es-
timator, we have proposed convex SDP estimators specifically
for RSS-based wireless localization in this paper. Both nonco-
operative and cooperative localization problems were investi-
gated. Our proposed SDP estimators complied well with the
RSS measurement model. Simulation results showed that with-
out appending ML estimators, our proposed SDP estimators
outperformed all the other estimators compared and performed
closely to the corresponding CRLBs in RSS-based wireless
localization. The solutions of our proposed SDP estimators
also served as better initial points for the corresponding ML
estimators to further refine the estimations. Moreover, since
the performance improvement by appending ML estimators to
our proposed SDP estimators is minor while the improvement
for other estimators compared is much more significant, our
proposed SDP estimators exhibited superior performance for
RSS-based wireless localization, which can generate excellent
results solely without ML refinement.

APPENDIX

FISHER INFORMATION MATRIX FOR

COOPERATIVE LOCALIZATION

It is clear that the corresponding FIM (for θen) J ∈ S
2M , and

it can be partitioned as J = [Jxx Jxy;Jyx Jyy], where all the
block matrices are of dimension M by M , and Jyx = JT

xy .
Given the measurement model in (21), we have

[Jxx]i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α2

[ ∑
l:(i,l)∈A

(xi−al)
2

‖θi−φl‖4

+
∑

k:(i,k)∈B

(xi−xk)2

‖θi−θk‖4

]
, i = j

−α2δij
(xi−xj)

2

‖θi−θj‖4 , i �= j

[Jyy]i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α2

[ ∑
l:(i,l)∈A

(yi−bl)
2

‖θi−φl‖4

+
∑

k:(i,k)∈B

(yi−yk)2

‖θi−θk‖4

]
, i = j

−α2δij
(yi−yj)

2

‖θi−θj‖4 , i �= j

[Jxy]i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α2

[ ∑
l:(i,l)∈A

(xi−al)(yi−bl)
‖θi−φl‖4

+
∑

k:(i,k)∈B

(xi−xk)(yi−yk)
‖θi−θk‖4

]
, i = j

−α2δij
(xi−xj)(yi−yj)

‖θi−θj‖4 , i �= j

where α = 10γ/(σ ln 10), δij = 1 for (i, j) ∈ B, and δij = 0
otherwise.
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