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Deniz Kilinc, Student Member, IEEE, and Ozgur B. Akan, Senior Member, IEEE

Abstract—In the Molecular Communication (MC), molecules
are utilized to encode, transmit, and receive information. Trans-
mission of the information is achieved by means of diffusion of
molecules and the information is recovered based on the molecule
concentration variations at the receiver location. The MC is very
prone to intersymbol interference (ISI) due to residual molecules
emitted previously. Furthermore, the stochastic nature of the
molecule movements adds noise to the MC. For the first time,
we propose four methods for a receiver in the MC to recover
the transmitted information distorted by both ISI and noise.
We introduce sequence detection methods based on maximum
a posteriori (MAP) and maximum likelihood (ML) criterions, a
linear equalizer based on minimum mean-square error (MMSE)
criterion, and a decision-feedback equalizer (DFE) which is a
nonlinear equalizer. We present a channel estimator to estimate
time varying MC channel at the receiver. The performances of
the proposed methods based on bit error rates are evaluated.
The sequence detection methods reveal the best performance at
the expense of computational complexity. However, the MMSE
equalizer has the lowest performance with the lowest compu-
tational complexity. The results show that using these methods
significantly increases the information transmission rate in the
MC.

Index Terms—Molecular communication, sequence detection,
channel equalization, signal-dependent noise, intersymbol inter-
ference.

I. INTRODUCTION

M
OLECULAR communication (MC) is a promising

paradigm for communication at nanoscale [1], [2] and

it is inspired by the communication of the biological systems

at cellular level [3]. The construction of nanonetworks by

interconnecting nanodevices via MC channels expands the

capabilities of single nanodevices by means of cooperation

between them [4], [5]. In the MC, molecules are utilized to

encode, transmit, and receive information. It is believed that

the integration process of the molecular transceivers in nan-

odevices is more feasible due to their size and natural domain

unlike the classical communication techniques [6]. In the MC,

the information transmission relies on the diffusion process,

i.e., the propagation of molecules by means of the laws of free

diffusion in an aqueous medium, enabling the transmission

of the information. Several nature-inspired and theoretically

modeled MC techniques exist in the literature. For example,

in [7], based on the diffusion of pheromones, spores, and

pollen, a long range interconnection of nanodevices deployed
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over distances from a few centimeters to several meters is

discussed. On the other hand, short range MC channel between

cardiomyocytes is constructed by gap junction channels [8].

In [4], flagellated bacteria and catalytic nanomotors are two

proposed communication techniques for the transport of DNA

encoded information between emitters and receivers by means

of a physical carrier. Morphogenesis is also proposed as a

method for communication of nanodevices [9].

The research on the information theoretical investigation

of the MC has been heavily conducted in the literature [10],

[11], [12], [13]. However, to the date, there is little effort

addressing the design of a receiver nanodevice which detects

the transmitted information from the received concentration

signal. Although in [14], [15], the diffusion-based MC channel

is analyzed from an information theoretical perspective, noise

sources are not incorporated to the analysis. For the first time,

the noise sources in the MC are analyzed in [6].

For the MC, the information is encoded in the concentration

of the emitted molecules with on-off keying (OOK) modu-

lation in [14], [15], [16]. As described in [10], an emitted

concentration pulse changes the molecule concentration at

the receiver location. Because of the diffusion of the emitted

molecules from regions of high concentration to those of

low concentration, the molecule concentration at the receiver

location decreases if the molecule emission ceases. However,

the emitted molecules do not vanish completely in the recep-

tion space. That is, if a new concentration pulse is emitted

before the molecule concentration at the receiver location

becomes negligibly low, the receiver senses the effects of both

the previously emitted concentration pulses and the currently

transmitted pulse. Therefore, a low signaling interval, i.e., a

high transmission rate, causes intersymbol interference (ISI)

in the MC. If the transmitter waits long enough to send a new

concentration pulse, the effect of the ISI can be eliminated;

then, the information transmission rate becomes very low.

Nevertheless, having high transmission rates is desirable to

improve communication capabilities of nanodevices.

For the first time in the literature, in order to recover the

transmitted information distorted by both the ISI and the noise

at high transmission rates in the MC, we propose the follow-

ing solutions. Firstly, the sequence detection methods based

on maximum a posteriori (MAP) and maximum likelihood

(ML) criterions are presented. Secondly, we present a linear

equalizer based on minimum mean-square error (MMSE). Fi-

nally, a decision-feedback equalizer (DFE) is proposed. These

methods are well covered for the classical communication

systems [17], [18]. However, most of these techniques are

developed for the communication channels having additive

white Gaussian noise (AWGN) at the output of the channel.

Since in the MC, the noise that is added to the received signal
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is signal-dependent which makes the noise nonstationary [6],

the existing techniques in the classical communication cannot

be applied directly to the MC. In this paper, we modify the

detection methods stated above to properly implement for

a receiver in the MC. The proposed methods significantly

decrease the bit error probabilities and hence increase the

communication capabilities of nanodevices communicating via

MC. Since the magnetic recording channels have also signal-

dependent noise at the output of the channel [19], [20], the

signal detection methods used for magnetic recording channels

are useful in the design of a receiver for the MC.
The rest of the paper is organized as follows. Section II

describes the model of the MC. In Section III, the sequence

detection methods based on MAP and ML criterions are pre-

sented. A linear equalizer which satisfies the MMSE criterion

is described in Section IV. A nonlinear type of equalizer which

is a decision-feedback equalizer is presented in Section V. In

Section VI, to estimate the time varying channel, a channel

estimator is presented. The performance of these methods

based on bit error rates are evaluated in Section VII. Finally,

Section VIII concludes the paper.

II. MOLECULAR COMMUNICATION MODEL

The MC model that is considered in this paper consists of

a Transmitter Nanodevice (TN), molecular diffusion channel,

signal-dependent additive noise at the output of the channel,

and a Receiver Nanodevice (RN) as illustrated in Fig. 1. TN

encodes the binary information bits, {aj}, into the molecule

concentration pulses. The concentration pulse, denoted by

s(t), is the time variation of the molecule concentration

emitted by TN for the transmission of one information bit. The

transmitted concentration signal propagates until it reaches

the receiver location. The propagation relies on the particle

diffusion process in the aqueous medium. At the reception

space, the molecule concentration, denoted by y(t), changes

according to both the time and the distance between TN

and RN. Furthermore, a signal-dependent concentration noise,

n(t), is added to the molecule concentration signal in the

reception space. RN samples the noisy molecule concentra-

tion, denoted by z(t), in the reception space, and decides the

transmitted information sequence based on these samples. In

the model, we consider following assumptions:

• The communication takes place in a 3D aqueous envi-

ronment having infinite extent which is indexed through

the Cartesian axes x, y, and z.

• The size of the TN is considered negligible with respect

to the distance between the TN and the RN. Therefore,

the TN is approximated as a point source emitting

desired molecule concentration signals at the location

(x = 0, y = 0, z = 0).
• The emitted molecules by TN propagates from the TN

location (x = 0, y = 0, z = 0) to the RN location

(x = xR, y = yR, z = zR) only by means of the laws of

free diffusion in an aqueous medium. That is, the emitted

molecules are subject to the Brownian motion.

• The particle concentration measurement takes place in-

side the reception space having a spherical shape with

radius ρ. The received molecule concentration, z(t), is

assumed homogeneous inside the reception space.
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Fig. 1. The diffusion-based MC model between TN and RN. (a) Graphical
representation. (b) Block diagram representation.

• The communication between TN and RN is considered as

the binary digital communication with OOK modulation

with equally likely transmitted binary information bits.

Firstly, we derive the impulse response of the molecular

diffusion channel, i.e., h(t). According to Fick’s second law

of diffusion [14], the concentration of the molecules, denoted

by c(x, y, z, t), at location (x, y, z) and at time t is described

by the following equation

1

D

∂c(x, y, z, t)

∂t
= ∇2c(x, y, z, t) (1)

where D is the diffusion coefficient of the medium and

∇2c(x, y, z, t) is the sum of the 3D spatial second derivatives

of c(x, y, z, t). The impulse response of the molecular diffu-

sion channel is found by solving (1) with initial condition

c(x, y, z, t = 0) = δ(x, y, z) (2)

where the molecules are emitted by TN which is a point source

located at (x = 0, y = 0, z = 0). The response of (1) to the

impulse given in (2) is

c(x, y, z, t) =
m

(4πtD)3/2
exp

[

−
(x)2 + (y)2 + (z)2

4tD

]

. (3)

where m is the total number of the emitted molecules.

Therefore, in a 3D medium, if RN is located at (xR, yR, zR),
the impulse response of the diffusion channel h(t) is given by

h(t) =
m

(4πtD)3/2
exp

[

−
|r|2

4tD

]

(4)

where |r| is the Euclidean distance between RN and TN, i.e.,

|r| =
√

(xR)2 + (yR)2 + (zR)2. To have a compact notation,

we drop (x, y, z) term in h(x, y, z, t) because TN and RN

are located at fixed positions. Since the diffusion coefficient

D depends on several factors such as the temperature and

viscosity of the fluid which are time varying properties, the

diffusion-based molecular channel is also time varying.
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We consider the transmitter concentration pulse as a rect-

angular pulse given as

s(t) = Arect

(

t− Te/2

Te

)

(5)

where A is the amplitude of the molecule concentration

emitted by TN and Te is the duration of the molecule emission.

Therefore, the response of the channel to the input signal s(t)
is denoted by y(t) and can be obtained using the convolution

operation as y(t) = s(t) ∗ h(t). The physical meaning of

y(t) is the noiseless molecule concentration variation in the

reception space caused by one emitted pulse. The variation of

y(t) with respect to time is shown in Fig. 2. Assuming the

communication starts at time t = 0, the total emitted molecule

concentration into the aqueous environment, denoted by sT (t),
for the transmitted information sequence {aj} is given as

sT (t) =

∞
∑

j=0

ajs(t− jT ) (6)

where T is the duration of the signaling interval. Since the

response of the channel to the pulse s(t) is given by y(t), the

total noiseless received concentration by RN is

yT (t) =

∞
∑

j=0

ajy(t− jT ) (7)

The emission of a new pulse before the previously emitted

molecules vanish in the reception space causes ISI because

y(t) is a infinite duration signal and do not disappear com-

pletely in the reception space in a short time as illustrated

in Fig. 2. That is, the currently emitted pulse is distorted

due to the previous transmissions which can be seen in (7).

Since y(t) decreases after reaching its maximum value at

t = tmax, the signaling interval T should satisfy the condition

T ≫ tmax in order to have negligible ISI. However, an

increase in the signaling interval decreases the transmission

rate given as R = 1/T and a low information transmission rate

is undesirable. It is aimed to have high transmission rates to

improve the communication capabilities of nanodevices using

the MC. As a result, to deal with the distortion caused by the

ISI at higher transmission rates, we introduce several methods

for RN which are discussed in the subsequent sections.

At the output of the channel, an additive signal-dependent

noise is added to the ISI distorted signal yT (t). Then, the total

molecule concentration variation in the reception space caused

by the transmitted information sequence {aj} is given by

z(t) =

∞
∑

j=0

ajy(t− jT ) + n(t) (8)

where n(t) is the particle counting noise generated by a

random process [6]. To describe the noise introduced in [6],

firstly, we need to define the noiseless and noisy number of

molecules inside the reception space, denoted by Np(t) and

N̂p(t), respectively, given as

Np(t) = VRyT (t); N̂p(t) = VRz(t) (9)

where VR = (4/3)πρ3 is the volume of the spherical reception

space. As given in [6], N̂p(t) is distributed with Poisson
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Fig. 2. The noiseless molecule concentration variation at RN, y(t), for D =
2.2× 10−9m2/s, r = 250nm, m = 105, A = 4× 109, Te = 4.7µs.

probability distribution function (pdf) whose parameter is

Np(t) at observation time t. Therefore, both the expectation

and variance of the number of molecules in the reception

space is Np(t). Furthermore, in a reliable MC between TN

and RN, we can assume that Np(t) ≫ 100 condition is

satisfied at any instant. Thus, the Gaussian approximation

of the Poisson distribution for N̂p(t) can be used, i.e.,

N̂p(t) ∼ N (Np(t), Np(t)). By using (9) and the pdf of N̂p(t),
the received noisy molecule concentration in the reception

space, z(t), is distributed as z(t) ∼ N (yT (t), yT (t)/VR).
Finally, the probability distribution of the noise, n(t), is

given as n(t) ∼ N (0, yT (t)/VR). Thus, the variance of the

additive Gaussian noise n(t) depends on both y(t) and the

transmitted information sequence {aj} which makes the noise

nonstationary. Furthermore, based on the independency of the

Brownian movement of different molecules in the aqueous

medium, the noise samples are assumed independent of each

other at different observation times [6].

We assume that RN is able to sample the molecule con-

centration inside the reception space at a rate R, and the TN

and RN are synchronized, i.e., both transmission and reception

start at the same time t = 0. Therefore, the received signal

samples by the RN is given as

zk =

∞
∑

j=0

ajyk−j + nk, k = 0, 1, . . . (10)

where zk = z(kT ), yk−j = y((k − j)T ), and nk = n(kT ).
However, the channel response is causal, i.e., yk = 0 if

k < 0. Furthermore, in a practical system, it is acceptable

to assume that the length of the ISI is finite and given by

I + 1; that is, yk = 0 for k > I . Thus, zk depends on the

currently transmitted bit ak and I previously transmitted bits

ak−1, . . . , ak−I . Then,

zk =

k
∑

j=k−I

ajyk−j+nk =

I
∑

j=0

yjak−j+nk, k = 0, 1, . . .

(11)

Using (11), the discrete-time equivalent model of the

diffusion-based MC channel is shown in Fig. 3. The pdf of zk
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Fig. 3. Discrete-time equivalent model of the molecular diffusion channel
with intersymbol interference.

is

zk ∼ N (µk, σ
2
k) (12)

where the mean and variance, respectively, are

µk =

I
∑

j=0

yjak−j ; σ2
k =

1

VR

I
∑

j=0

yjak−j (13)

and the pdf of the noise samples is given as

nk ∼ N (0, σ2
k) (14)

After describing the propagation and noise models of the

diffusion-based MC, we present several methods for RN to

recover the transmitted information bits that are distorted by

both the ISI and noise.

III. SEQUENCE DETECTION

In the presence of the ISI, the sequence detection is equiv-

alent to the problem of estimating the state of a finite-state

machine (FSM) [17]. For ISI with length I + 1, the state

of the FSM at any instant depends on the I most recent

inputs. Since we consider binary communication, the channel

has 2I states. Therefore, the channel can be described by

a 2I -state trellis and the transmitted information sequence

corresponds to a path through the trellis. In Fig. 4, a trellis is

illustrated for I = 2. Each branch represents a state transition

having a weight called the branch metric. The sum of the

weights of each branch in a path is called the path metric. A

sequence detector selects a path (sequence) corresponding to

the received signal sequence {zk} based on the path metric of

the each possible path, which is discussed later in this section.

We consider two criterions to obtain the branch metrics:

the maximum a posteriori (MAP) and maximum likelihood

(ML) where the former selects the sequence maximizing the

a posteriori probability density function and the latter selects

the sequence maximizing the likelihood function in the trellis

search. Furthermore, RN can reduce the complexity of the

sequence detector and the number of sequences in the trellis

search by using the Viterbi algorithm to discard the unlikely

sequences when the new samples are received by the RN [21].

A. MAP Sequence Detection

The MAP sequence detector determines the transmitted

sequence of information bits {aj} by maximizing the joint pdf

of the transmitted bits and the received samples [19]. That is,

âN
0 = argmax

a
N

0

f(zN
0 ,aN

0 ) (15)

00

01

10

11

State

t=0 t=T t=2T t=3T t=4T ...

Fig. 4. A trellis diagram for I = 2 with 2I states.

where N + 1 is the length of the transmitted sequence of

bits, âN
0 denotes the detected sequence for the transmitted

information sequence aN
0 , the pdf f(zN

0 ,aN
0 ) is the joint

pdf of the received concentration signal samples zN
0 and the

transmitted bits aN
0 . The bold and underlined symbols indicate

the sequence of those symbols whose starting and ending

elements are indicated in the subscript and superscript indexes,

respectively. By Bayes rule, the joint pdf can be factored as

follows

f(zN
0 ,aN

0 ) =P(aN
0 )f(zN

0 | aN
0 )

=

N
∏

k=0

P(ak | aN
k+1)

N
∏

k=0

f(zk | zN
k+1,a

N
0 )

(16)

where P(aN
0 ) and P(ak | aN

k+1) are the joint and conditional

probability mass functions of the transmitted binary informa-

tion bits, respectively, f(zN
0 | aN

0 ) and f(zk | zN
k+1,a

N
0 ) are

the conditional pdf’s. Since ak’s are assumed as independent,

P(ak | aN
k+1) = P(ak) (17)

The noise samples are also independent and the channel has

a finite ISI length; thus, we can exploit these properties of the

MC to simplify (16). The conditional pdf of each observation

can be further simplified as follows

f(zk | zNk+1,a
N
0 ) = f(zk | ak

k−I) (18)

The conditional pdf of zk depends only on ak
k−I which also

can be seen in (11).

Maximizing the joint pdf given in (16) is equivalent to min-

imizing its negative logarithm. Therefore, the MAP detector

is given as

âN
0 = − argmin

a
N

0

ln

[

N
∏

k=0

P(ak)

N
∏

k=0

f(zk | ak
k−I)

]

= − argmin
a

N

0

[

N
∑

k=0

ln P(ak) +

N
∑

k=0

ln f(zk | ak
k−I)

]

= − argmin
a

N

0

N
∑

k=0

[

ln P(ak) + ln f(zk | ak
k−I)

]

= argmin
a

N

0

N
∑

k=0

MMAP(zk,a
k
k−I)

(19)
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where MMAP(zk,a
k
k−I) is the branch metric of trellis search

in the Viterbi algorithm for the MAP criterion and given by

MMAP(zk,a
k
k−I) = − lnP(ak)− ln f(zk | ak

k−I) (20)

By using the pdf of the noise samples, the conditional pdf of

the concentration samples is given as

f(zk | ak
k−I) =

1
√

2πσ2
k

exp

[

−
(zk − µk)

2

2σ2
k

]

(21)

where µk and σ2
k are given in (13). After substituting the pdf

given in (21) into the expression for the branch metric (20),

and eliminating constant terms that are common, the MAP

branch metric becomes

MMAP(zk,a
k
k−I) = lnσ2

k +
(zk − µk)

2

σ2
k

− 2 lnP(ak) (22)

B. ML Sequence Detection

The ML sequence detection method determines the trans-

mitted sequence of information bits {aj} by maximizing the

likelihood function [17], i.e.,

âN
0 = argmax

a
N

0

f(zN
0 | aN

0 ) (23)

where the likelihood function f(zN
0 | aN

0 ) is the joint pdf

of the received concentration signal samples zN
0 conditioned

on the transmitted bits aN
0 . Furthermore, if the transmitted

binary information bits are equally probable, i.e., P(ak) =
1
2 ,

the MAP sequence detection is identical to the ML sequence

detection. The ML sequence detector is the optimum detector

minimizing the error probability of a sequence [17]. With

arguments similar to those for MAP sequence detection, the

ML sequence detection can be simplified as follows

âN
0 = argmin

a
N

0

N
∑

k=0

MML(zk,a
k
k−I) (24)

where MML(zk,a
k
k−I) is the branch metric of the trellis

search for the ML criterion. By using (22) and eliminating

the constant terms, the ML branch metric is

MML(zk,a
k
k−I) = lnσ2

k +
(zk − µk)

2

σ2
k

(25)

A similar result is found in [20] for the magnetic recording

channels which have also signal dependent noise. After de-

riving the branch metrics, the Viterbi algorithm can be easily

implemented to reduce the computational complexity of the

MAP and ML sequence detection methods.

IV. MINIMUM MEAN-SQUARE ERROR EQUALIZER

The MAP sequence detection in the presence of a priori

symbol probabilities and the ML detection in the presence

of equally probable symbols minimize the probability of a

sequence error [17]. However, the complexities of the MAP

and ML detectors grow exponentially with an increase in the

length of the ISI even if the Viterbi algorithm is implemented.

At nanoscale, the implementation of a complex circuitry is not

practical. In this section, to mitigate the ISI, we present a linear

equalizer based on the minimum mean-square error (MMSE)

criterion called MMSE equalizer. The MMSE equalizer is a

suboptimum linear equalizer with significantly less complexity

compared to the MAP and ML sequence detectors [17].

In the MMSE equalization, the equalizer is designed to

minimize the mean-square error (MSE), i.e., εk = ak−d − ãk
where ak−d is the transmitted bit in the (k − d)th signaling

interval, ãk is the estimate of that bit at the output of the

equalizer and d is the equalizer delay. The equalizer delay is

found as follows. Let yd1
be the greatest magnitude component

of {yk}. Also, let the number of MMSE equalizer taps be

equal to S = 2d2+1 where d2 is an integer. Then, we choose

the equalizer delay as d = d1 + d2 [22]. Since the MMSE

equalizer is linear, its output as a linear combination of input

samples is given by

ãk =

S−1
∑

q=0

rqzk−q (26)

where r0 through rS−1 are tap weight coefficients of the

MMSE equalizer as illustrated in Fig. 5. The output ãk is

quantized to the nearest information bit in Euclidian distance

to decide âk by using a simple quantizer. We assume that the

number of taps of the MMSE equalizer is the same as the ISI

length, i.e., S = I + 1.

To minimize the MSE which is defined as J = E|εk|2, we

can obtain a set of linear equations by using the orthogonality

principle in the mean-square estimation [17]. That is, the

coefficients {rp} are selected to make the error εk orthog-

onal to the signal samples {zk−p}, i.e., E[εkzk−p] = 0 for

0 ≤ p ≤ S − 1. Then, by using (11) and (26), the following

set of equations are found

E

[(

ak−d −
S−1
∑

q=0

rqzk−q

)

zk−p

]

= 0, p = 0, 1, . . . , S − 1

(27)

or, equivalently,

S−1
∑

q=0

rqE[zk−qzk−p] = E[ak−dzk−p], p = 0, 1, . . . , S − 1

(28)

We use Γpq = E[zk−qzk−p] and ξp = E[ak−dzk−p] for a

compact notation. After taking the expectations, we get

Γpq =

I
∑

m=0

ymym+p−q + σ2
k−pδpq, p, q = 0, . . . , S − 1

ξp = yd−p, p = 0, 1, . . . , S − 1
(29)

where δpq is the Kronecker delta function, σ2
k−p is the variance

of the concentration sample zk−p, and yd−p is the (d − p)th
coefficient of the equivalent discrete time channel. Thus, (28)

can be written as

S−1
∑

q=0

Γpqrq = ξp, p = 0, 1, . . . , S − 1 (30)

Unlike the additive stationary Gaussian noise, the variance of

the noise is signal-dependent in the diffusion-based MC. As

a result, for different transmitted information sequences, there

is a different optimum solution for the MMSE equalizer tap
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Fig. 5. The block diagram of MMSE equalizer with S tap coefficients.

weights. The detected bits âk through âk−S−I+1 are required

to evaluate the variances σ2
k through σ2

k−S+1 in (29), assuming

the decisions are correct. Hence, the output of the decision

device is used in the MMSE equalizer to solve (30) which

makes the proposed MMSE equalizer signal sensitive. That

is, the equalizer tap coefficients are adaptively updated based

on the detected bits. Since using âk in the estimation of ak
is inconsistent, we set âk = 1

2 in the estimation of ak as

an ad hoc method to prevent this inconsistency. âk = 1
2 has

equal Euclidian distances to both âk = 0 and âk = 1, that is,

ak can be 0 or 1 with equal probabilities, which is consistent

with the equally likely transmitted bits. Also note that, the use

of the wrong decisions causes error propagation which may

deteriorate the performance of the MMSE equalizer

It is convenient to use matrix form to solve the set of

equations given in (30) as follows

Γropt = ξ (31)

where ropt is the column vector of S optimum equalizer tap

weights {rp} given as ropt = [r0, r1, , . . . , rS−1]
T

and Γ

denotes the Hermitian covariance matrix with elements Γpq

given in (29), and ξ is the column vector with elements

ξp given in (29). Therefore, for kth received signal zk, the

optimum equalizer tap weights to estimate ãk are found as

ropt = Γ
−1ξ (32)

where Γ
−1 is the inverse of the matrix Γ. Due to the

nonstationary characteristic of the noise, the optimum tap

coefficients of the MMSE equalizer are updated at each sample

using the previously detected bits. Thus, the MMSE equalizer

needs to perform the operation given in (32) for each sample,

which increases the complexity of the equallizer. However, the

proposed method for the MMSE equalizer is not as complex

as the sequence detection methods described in Section III.

V. DECISION-FEEDBACK EQUALIZER

In this section, we consider the decision-feedback equalizer

(DFE) which is a nonlinear type of equalizer to mitigate the

ISI. The DFE is also suboptimum; however, its performance

is generally better than that of suboptimum linear equalizers,

e.g., the MMSE equalizer [17]. Furthermore, the DFE still

is not as complex as the optimum ML and MAP sequence

detection methods. The DFE consists of two sections that are

a feedforward filter and a feedback filter as shown in Fig. 6.

The decisions are made on the output of the equalizer and

they are propagated through the feedback filter to eliminate

the ISI. Since the input of the feedback filter is the output

of a decision device, the DFE has a nonlinear characteristics.

The output of the DFE is the estimate of the transmitted bit

and it is given by

ãk =
L−1
∑

q=0

fqzk−q +
M
∑

q=1

bqâk−q−1 (33)

where zk is the noisy and ISI-distorted signal at the input of

the DFE and âk is the kth detected bit.

The feedforward filter is based on the MMSE criterion and

as analyzed in Section IV, its coefficients f0 through fL−1 are

given by the system of linear equations

L−1
∑

q=0

Ψpqfq = ϕp, p = 0, 1, . . . , L− 1 (34)

where Γpq and ϕp are defined as

Ψpq =

I
∑

m=0

ymym+p−q + σ2
kδpq, p, q = 0, . . . , L− 1

ϕp = y1−p, p = 0, 1, . . . , L− 1

(35)

As stated in Section IV, the coefficients of the feedforward

filter are found by using the matrix form representation of the

system of the linear equations given in (34) as follows

f
opt

= Ψ
−1ϕ (36)

where f
opt

is the vector containing the optimum equalizer

tap weights {fq}, i.e., f
opt

= [f0, f1, , . . . , fL−1]
T

, Ψ−1 is

the inverse of the Hermitian covariance matrix with elements

Ψpq given in (35), and ϕ is the column vector with elements

ϕp given in (35). As in the case of the MMSE equalizer, the

optimum coefficients for the feedforward filter of the DFE are

evaluated and updated at each sampling time.

The coefficients of the feedback filter of the DFE detector

are expressed in terms of the coefficients of the feedforward

filter [17] as follows

bk = −
L−1
∑

q=0

fqyk−q = −fT

opt
y
k
, k = 1, 2, . . . ,M (37)

where y
k

is the L-dimensional column vector defined as y
k
=

[yk, yk−1, , . . . , yk−L+1]
T

. The values of the coefficients of

the feedback filter b1 through bM completely eliminate the

ISI caused by the previously transmitted bits provided that

the previous decisions are correct and that M = L + I − 1
[22]. We choose L = I + 1 and M = 2I . Thus, for the

coefficients of the feedback filter given in (37), the output of

the DFE given in (33) reduces to

ãk = f0y1ak−1 +

I
∑

q=0

fqnk−q

= βak−1 + wk

(38)

where wk is the correlated Gaussian noise term and β = f0y1.

The correlation length of the noise is the same as the ISI length

I + 1 which can be seen from (38).

In Section IV, the output of the MMSE equalizer is quan-

tized by a decision device to the nearest bit in Euclidian

distance. However, for a decision device of the DFE, we

propose an alternative method to minimize the probability of
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the decision error. Motivated by the ML sequence detection,

the decisions are made as follows

âk−1 = argmax
ak−1

f(ãk | ak
k−1, â

k−2
k−I , ã

k−1
k−I)

= − arg min
ak−1

ln f(ãk | ak
k−1, â

k−2
k−I , ã

k−1
k−I)

= arg min
ak−1

H(ak, ak−1)

(39)

where H(ak, ak−1) is the comparison metric given by

H(ak, ak−1) = − ln f(ãk | ak
k−1, â

k−2
k−I , ã

k−1
k−I) (40)

where H(0, 0), H(0, 1), H(1, 0), and H(1, 1) are the metric

values of the possible combinations of ak and ak−1. In this

case, the input samples of the decision device, i.e. ãk’s, are

not independent due to the correlated noise term vk. By Bayes

rule, the pdf given in (39) can be written as

f(ãk | ak
k−1, â

k−2
k−I , ã

k−1
k−I) =

f(ãk
k−I | ak

k−1, â
k−2
k−I)

f(ãk−1
k−I | ak

k−1, â
k−2
k−I)

(41)

By using the pdf of the independent molecule concentration

samples at the output of the channel, the expression given in

(41) can be written as

f(ãk
k−I | ak

k−1, â
k−2
k−I)

f(ãk−1
k−I | ak

k−1, â
k−2
k−I)

=

√

(2π)I det ck
(2π)I+1 detCk

exp[− 1
2Nk

T
C

−1
k Nk]

exp[− 1
2nk

Tc
−1
k nk]

(42)

where Ck is the (I + 1) × (I + 1) covariance matrix of the

data samples ãk
k−I given ak

k−1, â
k−1
k−I and the ck is the I × I

lower principal submatrix of

Ck =

[

· ·
· ck

]

(43)

Nk is the (I+1)-dimensional column vector of the differences

between ãk’s and their mean values given ak
k−1, â

k−2
k−I , i.e.,

Nk = [(ãk − βak−1), . . . , (ãk−I−1 − βâk−I)]
T (44)

nk is the vector including the last I elements of Nk, i.e.,

nk = [(ãk−1 − βâk−2), . . . , (ãk−I − βâk−I−1)]
T (45)

Using (42) for the comparison metric calculation and cancel-

ing constant terms, we get

H(ak, ak−1) = ln
detCk

det ck
+N

T
kC

−1
k Nk − n

T
k c

−1
k nk (46)

Therefore, the decision strategy of the decision device is

âk−1 =

{

1, if minH(ak, ak−1) = {H(0, 1) or H(1, 1)}

0, if minH(ak, ak−1) = {H(0, 0) or H(1, 0)}
(47)

The decision device computes the comparison metric given

in (46) for each decision; thus, such a decision device is

more complex than a simple quantizer as used for the MMSE

equalizer in Section IV. In the performance analysis, we

analyze the improvement in the performance of the DFE after

implementing a decision device that uses the metric given (46).

VI. ADAPTIVE RECEIVER

To recover the transmitted bits from the molecule con-

centration samples distorted by both the ISI and noise, we

present the following methods: the MAP and ML sequence

detectors, MMSE equalizer and DFE in the previous sections.

For each case, the RN needs the knowledge of the discrete-

time equivalent channel coefficients of the diffusion-based MC

channel, i.e., y0 through yI . However, the molecular diffusion

channel is time-varying caused by the time variation of the

diffusion coefficient D. Therefore, even if the RN knows

the initial channel coefficients, since the molecular diffusion

channel is time-varying, initial knowledge of the RN is not

useful after the channel coefficients change.

To find the discrete-time equivalent coefficients of a channel

that is unknown or time varying, we adopt a channel estimator

presented in [17], [18]. The channel estimator of the RN

recursively estimates the tap coefficients of the channel to

minimize the MSE between the actual received sequence and

the output of the estimator. That is, the channel estimator

approximates the actual discrete-time equivalent channel with

a similar structure to the actual channel. The steepest-descent

algorithm can be used for the estimation of the channel tap

coefficients. The operation of the channel estimator is as

follows. Firstly, at each sampling time a new data sample

zk and the detected information bit for the corresponding

data sample âk are fed to the channel estimator as illustrated

in Fig. 7. The estimate for the data sample z̃k is obtained

by multiplying the sequence of detected bits {âj} by the

corresponding estimate of the coefficient {ỹj} and summing

the results of all multiplications,

z̃k =

I
∑

j=0

ỹj âk−j , k = 0, 1, . . . (48)

The difference between the data sample zk and its estimate z̃k
at kth iteration step generates an error signal ε(k) = zk − z̃k.

To form a new set of estimates of the channel coefficients, the

obtained error is used as

ỹ
(k+1)
j = ỹ

(k)
j +∆ε(k)âk−j , j = 0, 1, . . . , I − 1 (49)

where ỹ
(k)
j is the estimate of the channel coefficient yj at

the kth iteration step, ∆ is the step size, and âj is the jth
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Fig. 7. The conceptual model of the channel estimator using in a detector.

detected information bit in the estimator. The speed of the

convergence and the accuracy of the estimation are controlled

by the value of the step size ∆. A delay equal to the

decision delay of the transmitted bit is required to have a

proper synchronization. When the MSE between zk and ẑk
is minimized, the estimates of the tap weight coefficients

of the channel estimator are exactly equal to the equivalent

discrete-time channel coefficients [17]. Furthermore, since the

steepest descent algorithm is used in (49) to adjust the channel

coefficient estimates, the channel estimator is able to track

slow variations in the actual channel coefficients. We assume

that the time variation of the molecular diffusion channel

is slow compared to the convergence speed of the channel

estimator. The channel estimator introduced in this section is

compatible with all detectors presented above.

VII. PERFORMANCE ANALYSIS

In this section, we present the performance analysis of the

ML sequence detector, the MMSE equalizer and the DFE

detector. Since we assume that the transmitted information bits

are equally likely, the MAP sequence detection is equivalent to

the ML sequence detection. For the performance comparison

of the proposed methods, the bit error rates of the corre-

sponding methods are considered. We use the Monte Carlo

simulation to estimate the bit error rates. The bit error rates

of the proposed detectors are evaluated with respect to the

signal to noise ratio (SNR) at the RN which is defined as

SNR =
Py

Pn
=

1

I + 1

I
∑

n=0

|yn|
2

E[σ2
k]

=

1

I + 1

I
∑

n=0

|yn|
2

0.5

VR

I
∑

n=0

yn

(50)

where Py and Pn are considered as the received signal power

and the noise power, respectively, at the receiver. In the SNR

definition, we use the expected value of the noise variance.

As seen from (50), SNR depends on only the discrete time

equivalent channel coefficients. Therefore, we change the

amplitude of the concentration pulse A to change SNR values.

For an emitted concentration pulse, the noiseless concen-

tration in the reception space y(t) reaches its maximum at

t = tmax as stated above. Hence, we set the sampling time of

RN as T = tmax in order to sample the concentration with

the highest SNR for a given concentration pulse amplitude A.

Furthermore, the change in y(t) at different communication

distances causes tmax to change. Thus, the signaling interval

T = tmax and the information transmission rate R = 1/T
change with the communication distance. In the analysis, we

set the molecule emission duration as

Te =
r2

6D0
(51)

where D0 is the initial value of the diffusion coefficient D.

The value of the Te effects the ISI length and the signaling

rate. The selection of the molecule emission duration depends

on the application of the MC and the duration can be set in

different ways. Since, we use the expression given in (51),

the ISI length can be considered as I +1 = 6 because y(kT )
for k > 6 becomes sufficiently small that can be ignored.

Moreover, in the performance analysis, we use 25-state trellis

for the ML detector, S = 6 taps for the MMSE equalizer,

L = 6 taps for the feedforward filter of the DFE and M = 10
tap for the feedback filter of the DFE. In the analysis, we set

the radius the spherical reception space ρ = 1nm.

A. Time Invariant Channel

In this section, we consider the diffusion-based MC channel

as time invariant by setting D = 2.2 × 10−9 m2/s and we

assume that the channel is known at RN. The performances

of the ML sequence detector, the MMSE equalizer, the DFE

using the decision metric given in (46), and the DFE using

the simple quantizer are analyzed. In Fig. 8(a), (b) and (c),

bit error rates of the proposed detectors with respect to SNR

for the communication distances r = 50nm, r = 250nm, and

r = 1µm, respectively, are illustrated. We do not show the ML

sequence detector performance beyond SNR = 13dB since the

Monte Carlo simulation takes too long time to compute. In

the simulations, the signaling rates R = 3.12Mbps for r =
50nm, R = 127.9kbps for r = 250nm, and R = 8.1kbps

for r = 1000nm are used. The first conclusion can be drawn

from Fig. 8 is that for different distances, the performances of

the considered methods are very similar. This is an expected

result since the communication rates are adjusted at different

communication distances in order to sample the concentration

with the highest SNR for a given concentration amplitude A.

Therefore, the same bit error rate can be achieved at a longer

distance with a lower transmission rate.

Since the ML sequence detector is the optimum receiver, in

the sense that it minimizes bit error probability of a sequence

[17], it gives the best performance compared to the rest

of the methods as seen in Fig. 8. On the other hand, the

MMSE equalizer has the worst performance among the others.

The DFE detectors have better performance than the MMSE

equalizer as expected. Furthermore, the DFE with the decision

device at the output is almost 2dB better than the DFE with a

simple quantizer at the output for a bit error rate equal to 10−4.

For SNR less than 10dB, the performances of the DFE and

MMSE equalizer are very close to each other. Then, we can

conclude that using a feedback filter does not improve much

the performance of the forward MMSE equalizer at low SNR

values in the MC. Moreover, the performances of the proposed

methods increase with an increase in the complexity. That is,

the best performance is obtained by the ML detector which is

the most complex detector and the MMSE equalizer which is

the most simple detector gives the worst bit error rate.
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Fig. 8. Bit error rates of four different detection approaches at different communication distances (a) r = 50nm, R = 3.12Mbps, (b) r = 250nm, R =
127.9kbps, and (c) r = 1µm, R = 8.1kbps with same time invariant diffusion-based molecular channel known at RN.
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Fig. 9. Bit error rates of four different detection methods for time varying diffusion-based molecular communication channels with (a) D(t) = 2.2 ×
10−9 + 0.8× 10−9cos(2πt) m2/s and (b) D(t) = 2.2× 10−9 + 0.8× 10−9cos(10πt) m2/s.

B. Time Varying Channel

The diffusion-based MC channel has time varying charac-

teristics depending on several factors as stated in Section II. In

this part, we use the time varying diffusion channel together

with the channel estimator described in Section VI with a

step size ∆ = 0.001 to investigate the performances of the

proposed methods in more realistic conditions. In this part,

we set the signaling rate R = 8.1kbps at a communication

distance r = 250nm for the simulations. In the Fig. 9(a)

and (b), the performance analyses of the proposed methods

for D(t) = 2.2 × 10−9 + 0.8 × 10−9cos(2πt) m2/s and

D(t) = 2.2×10−9+0.8×10−9cos(10πt) m2/s, respectively,

are shown. The time variation of the first channel is 5 times

slower than the time variation of the second channel. The

performances of all methods decrease when the time varying

channel is used, which can be seen when we compare Fig. 8(b)

and Fig. 9. Although we use the channel estimator for the

time varying channel, the detectors cannot exactly know the

channel. That is, the transmitted information is recovered

based on an estimate of the time varying channel coeffi-

cients which might decrease the performance of the proposed

methods. Moreover, the convergence speed of the channel

estimator should be fast enough to estimate the exact channel

coefficients. The step size ∆ can be adjusted according to the

time variation characteristic of the channel. The performances

of the proposed methods for a time varying channel whose

time variation is faster can be seen in Fig. 9(b). We can say

that the performances of all methods decrease with an increase

in the time variation of the channel if the step size ∆ is not

adjusted accordingly.

VIII. CONCLUSION

In the MC, high signaling rates causes ISI because of

the infinite duration impulse response of the diffusion-based

molecular channel. In addition, the MC suffers from a signal-

dependent noise at the receiver. For the first time in the

literature, four signal detection methods for nanodevices

communicating via diffusion-based molecular communication

channel are proposed in this paper. We present the sequence

detection methods based on MAP and ML criterions, the

MMSE equalizer, and the DFE to mitigate both the ISI and

noise in the MC. Firstly, the diffusion-based molecular channel

is described, the impulse response of the channel is obtained.

Then, the nonstationary particle counting noise is incorporated

to the model to design the detection methods properly. Suc-

ceeding that we present the MAP and ML sequence detection

methods and derive branch metrics of the trellis search in the

Viterbi algorithm. Next, a linear equalizer based on MMSE

criterion is introduced. Then, a nonlinear type equalizer, DFE,

is presented. To improve the performance of the DFE, we

propose a decision device based on ML detection method at

the output of the DFE.

According to the simulation results, while the best per-

formance is achieved by the ML sequence detector which

is the most complex detector, the MMSE equalizer has the

worst performance which is the most simple detector. The

performance of the DFE stands between MMSE equalizer and

ML sequence detector. Furthermore, the usage of a decision
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device instead of a simple quantizer increases the performance

of the DFE. A detector can be selected based on the required

reliability of the communication and the feasible complexity

of the detector at nanoscale. Moreover, since the diffusion-

based molecular channel is time varying, we propose using

a channel estimator at RN. Our results reveal that in MC,

very high information transmission rates can be achieved

with very low bit error rates by using the detection methods

presented above. Thus, the detection methods obtained in this

paper significantly improves the communication capabilities

of nanodevices.
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