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Abstract— In this paper we consider estimation of dynam-
ical systems over wireless communication channels. We show
that the communication protocols suitable for non real-time
applications like data networks may not be entirely applicable
for estimation and control of a rapidly changing dynamical
system. We then develop new design paradigms for these
applications to show how noisy packets should be handled
in the receiver. We prove that, in the presence of a cross-
layer feedback, keeping all the packets will both maximize
the stability range and minimize the estimation error variance.
In the absence of such a feedback, we show that keeping all
the packets still maximizes the stability range, independent
of the shape of the communication noise profile. In order
to optimize the performance, in the absence of a cross-layer
feedback, we prove that packet drop should be designed to
balance information loss and communication noise.

I. INTRODUCTION

There has recently been considerable interest in estima-
tion and control over wireless links. Advances in technology
have resulted in an abundance of cheap embedded units
equipped with sensing, processing, communication and ac-
tuation capabilities. This has resulted in a wide range of
sensor/actuator network applications [1]. Communication
plays a key role in the overall performance of such networks
as both sensor measurements and control commands are
transmitted over wireless links.

In this paper we consider a mobile sensor that is ob-
serving a dynamical system. It transmits its observation
over a wireless link to a remote node that is in charge
of estimation using a Kalman filter. This is a fundamental
problem that can arise in networked sensing, estimation and
control. Considering the impact of communication links on
estimation and control is an emerging area of research. At
this point, it is not yet clear what the right communication
design strategies are for such delay-sensitive applications.
Most of the current work has applied design principles
suitable for non real-time applications like data networks
when considering estimation and control over wireless links.
Data networks are not as sensitive to delays since the
application is not real time. The receiver, therefore, can
afford to drop erroneous packets and wait for retransmis-
sion. Control applications, on the other hand, are typically
delay sensitive as we are racing against the dynamics of the
system. Therefore, applying the same design strategies of
data networks may not be appropriate.

Micheli et al. investigated impact of packet loss on
estimation by considering random sampling of a dynamical

system [2]. This is followed by the work of Sinopoli
et al. which derived a range for the maximum tolerable
probability of packet loss to maintain stability [3]. Liu et
al. extended that work to the case of two sensors [4]. These
works applied data network design principles, better suited
for non real-time applications. They assumed a receiver that
drops those packets that contain any amount of error and
waits to receive packets that are noise-free. This can result
in loss of performance and instability as we are racing
against dynamics of the system.

We took a different approach in [5] and proved that
keeping all the packets and utilizing a cross-layer feedback
can prevent the instability that is introduced when erroneous
packets are dropped. In this paper we extend that work
to establish fundamentals of design strategies for delay-
sensitive estimation applications. We consider both cases
that the receiver is equipped with a cross-layer feedback
as well as scenarios that such a feedback is not supported
by the receiver. Instead of applying data network design
principles, we ask what the right design framework is for
such applications. The main question this paper addresses
is the following: “How should noisy packets be handled in
the receiver?”. We answer this question both in terms of
stability and performance (minimizing the estimation error
variance). Furthermore, we explore the role of a cross-layer
feedback and its impact on the optimum design. We prove
that stability condition stays the same independent of the
availability of a cross-layer feedback or the shape of the
communication noise profile. To optimize the performance,
when a cross-layer feedback is available, we show that the
receiver should keep all the packets. In the absence of such
a feedback, we prove that packet drop should be designed to
balance information loss and communication noise in order
to optimize the performance.

II. SYSTEM MODEL

Consider a mobile sensor observing a linear dynamical
system as follows:

x[k + 1] = Ax[k] + w[k]
y[k] = Cx[k] + v[k], (1)

where x[k] and y[k] represent the state and observation
respectively. w[k] and v[k] represent zero-mean process and
observation noises with variances of Q and R respectively.
In this paper, we assume scalar quantities to facilitate
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mathematical derivations. We are interested in estimating
unstable dynamics and therefore we consider cases where
|A| > 1. The sensor then transmits its observation over
a wireless fading channel to a remote node, which is in
charge of estimation. Since estimation of dynamical systems
over time-varying links has not been studied extensively,
we keep our analysis general by considering time-varying
channels. Therefore, our terminology is geared towards
wireless fading channels. However, the analysis and results
are applicable to any fixed or time-varying communication
link such as wireless, wireline, underwater, . . . .

A. Physical Layer: Wireless Communication

In this part we will see how to model the impact of
a noisy communication channel on the observation. The
sensor quantizes the observation, y[k], transforms it into
a packet of bits and transmits it over a fading channel. The
remote node will receive a noisy version of the transmitted
data. Let ŷ[k] represent output of the receiver at the remote
node. Then,

ŷ[k] = y[k] + n[k]. (2)

It should be noted that ŷ[k] represents output of the physical
layer, not its input, at the remote node. n[k] represents
zero-mean communication noise at time k and does not
necessarily have a Gaussian distribution. Let σ2

n[k] represent
the variance of n[k] at kth transmission:

σ2
n[k] = E(n2[k]). (3)

A fundamental parameter that impacts the performance of
a communication channel is the received Signal to Noise
Ratio [6]. As the sensor moves, the remote node will
experience different received Signal to Noise Ratios. Let
Υ[k] represent the instantaneous received Signal to Noise
Ratio at kth transmission. Then σ2

n[k] will be a function of
Υ[k]:

σ2
n[k] = F (Υ[k]), (4)

where function F is a decreasing function that depends on
the transmitter/receiver designs such as quantization, mod-
ulation and coding as well as the transmission environment.

Depending on the receiver design, there can be a packet
drop mechanism deployed in the receiver. Let Pdrop[k]
represent the probability that the receiver drops the kth

packet. Pdrop[k] can be presented as a function of Υ[k]
as well:

Pdrop(k) = G(Υ[k]), (5)

where G is a non-increasing function. Fig. 1 shows a
sample Pdrop as a function of Υ (solid line). It should be
noted that the receiver may not decide on dropping packets
directly based on Υ[k]. Since any other utilized measure
is a function of Υ[k], we find it useful to express Pdrop

as a function of this fundamental parameter. G is also a
function of receiver and transmitter technologies. Functions
F and G provide the abstraction necessary to consider the
impact of physical layer in the higher application layer.

Υ[k] is a stationary stochastic process with its distribution
a function of the environment and level of the mobility
of the sensor. We take Υ[k] to be independent from one
transmission to the next. This will be the case as long
as the time interval between consecutive transmissions is
bigger than channel coherence time [7]. In this paper, we
do not make any assumption on the distribution of Υ. Only
when we want to provide an example, we take Υ to be
exponentially distributed1. To ease mathematical derivations
we will approximate function G with the following:

Pdrop(Υ[k]) =
{

0 Υ[k] ≥ ΥT

1 else
(6)

This means that the receiver keeps those packets with
received Signal to Noise Ratio above a designated threshold:
ΥT . This approximation is shown in Fig. 1 (start line).
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Fig. 1. Solid line: an example of packet loss probability as a function of
Signal to Noise Ratio, star line: rectangular approximation

B. Application Layer: Estimation

The remote node estimates the state based on the received
observation using a Kalman filter [8]. Let x̂[k] represent
the estimate of x[k] given ŷ[0], . . . , ŷ[k − 1] at the remote
node. Then e[k] represents the corresponding estimation
error variance given Υ[k − 1], . . . , Υ[0]:

e[k] = E{(x[k] − x̂[k])2}Υ[k−1],...,Υ[0]. (7)

This is different from typical Kalman filtering since e[k] is
a function of channel statistics through Υ[k− 1], . . . , Υ[0].
To obtain E(e[k]), e[k] should be averaged over the joint
distribution of Υ[k − 1], . . . , Υ[0]. There will be different
forms of recursion for e[k] depending on the availability of
a cross-layer feedback in the receiver.

C. Cross-Layer Feedback

In networked sensing, estimation and control, application
layer will be in charge of estimation and control whereas
the knowledge of the quality of the communication link will
be available in the physical layer. A cross-layer feedback,
in this case, refers to a feedback from physical layer to
the application layer that carries some information on the

1Taking Signal to Noise Ratio to be exponentially distributed is a
common model for outdoor fading channels with no line-of-sight [7].
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quality of the link such as communication noise variance
or channel Signal to Noise Ratio. While presence of such
a feedback can play a key role in the overall performance
and the optimum design typically involves one, the receiver
architecture may not support it. Therefore, in this paper we
will consider scenarios where such a feedback is available
at the receiver as well as cases where it is not supported by
the architecture.

III. SCENARIO#1: IDEAL NOISE PROFILE

When considering estimation and control over wireless
links, the current work in the literature considers estimation
over fixed wireless channels. Furthermore, it applies data
network design principles by assuming a receiver that drops
those packets that contain any amount of error. The packets
that are kept in the receiver, therefore, are assumed to be
noise-free. We refer to this assumption on the communi-
cation noise profile as “ideal noise profile” throughout the
paper. Furthermore, we refer to this design strategy, which
applies data network protocols, as “scenario#1”. Such an
assumption translates to the following recursion for the
estimation error variance [3]:

e[k + 1] = A2e[k] − A2e2[k]C2

R + C2e[k] + S1(Υ[k])
+ Q, (8)

where S1[k] =
{

0 Υ[k] ≥ ΥT

∞ else
and

E(Pdrop,scenario#1) < A−2 is required for stability.

IV. RECEIVER DESIGN OPTIMIZATION

For non real-time applications like data networks, the
receiver can afford to drop erroneous packets and wait for
retransmission. Considering packets to be noise-free once
they are kept in the receiver, therefore, is a reasonable model
for these applications. However, estimation of a rapidly
changing dynamical system is delay sensitive. Dropping
erroneous packets can result in loss of information, can re-
duce the useful transmission rate and can lead to instability.
Therefore, the receiver can not afford to wait for receiving
noise-free packets. The main issue is then to find the right
strategy for handling the received, possibly noisy, packets.
The optimum receiver design can also change depending on
the availability of a cross-layer feedback, which should be
taken into account in the analysis.

We have shown in [5] that keeping all the packets and
utilizing a cross-layer feedback at the receiver can prevent
the instability that is introduced when erroneous packets are
dropped. The analysis of [5] was provided for one class of
communication noise profiles and an exponentially distrib-
uted Signal to noise Ratio. Furthermore, not all the receivers
can support a cross-layer feedback and the optimum receiver
design, in the absence of such a feedback, is yet to be
determined.

This Section will derive receiver design theories for
delay-sensitive estimation over wireless links without mak-
ing any assumption on channel characteristics. We will

NON-IDEAL IDEAL
NOISE PROFILE NOISE

Cross-Layer No Cross-Layer PROFILE
PACKET Scenario#3 Scenario#2 Scenario#1

DROP * * Studied by
Sinopoli et al.

KEEP * * Not Possible
ALL Studied by

Mostofi et al.
for a class of channels

TABLE I

DIFFERENT RECEIVER DESIGNS– THE ASTERISKS INDICATE CASES

NOT PREVIOUSLY CONSIDERED WHICH THIS PAPER ADDRESSES

analyze the performance and find the stability conditions
for the following cases:

1) The receiver cannot keep all the packets and cannot
provide a cross-layer feedback,

2) The receiver cannot keep all the packets but can
provide a cross-layer feedback for those packets kept,

3) The receiver can keep all the packets but cannot
provide a cross-layer feedback,

4) Finally, the receiver can keep all the packets and is
equipped with a cross-layer feedback.

Considering the aforementioned cases will provide in-
sights into receiver design strategies. Table I summa-
rizes different possible scenarios. The first row, “PACKET
DROP”, refers to the cases where the receiver deploys a
type of packet drop mechanism. The second row, “KEEP
ALL”, refers to the cases where the receiver is keeping
all the packets. “IDEAL NOISE PROFILE” refers to the
assumption that any packet that is kept in the receiver
is noise-free. Scenario#1 denotes cases that apply data
network design principles, as discussed in Section III. If
all the packets are kept in the receiver, then packets can not
be considered noise-free. This scenario is therefore crossed
out in Table I.

When considering non-ideal noise profiles, there will be
four possibilities as marked in Table I. In both scenario#2
and 3, the receiver is equipped with a form of packet
drop mechanism. In scenario#3 a cross-layer feedback is
available for those packets that are kept in the receiver.
The second row of Table I, case of keeping all the packets,
can be considered as a special case of the first row with
probability of packet drop set to zero. The goal of this
section is to study different scenarios of Table I for a general
communication noise variance and channel distribution.
The asterisks indicate the scenarios that have not been
considered before. We will study scenario#2 and 3, which
will allow us to study the corresponding cases of the second
row.

A. Scenario#2: Case of No Cross-Layer Feedback

In this part we will consider a receiver that does not
support a cross-layer feedback. Then the application layer
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(i.e. the Kalman filter) does not have any knowledge of the
quality of the communication link such as communication
noise variance, σ2

n. As a result, it assumes that those
packets that are not dropped are noise-free. We will find the
optimum way of dropping packets for such a receiver. To
ease mathematical derivation of this scenario, we assume
that the observation noise is negligible compared to the
communication noise2. The estimation using a Kalman filter
will then be as follows:

x̂[k + 1] =
{

Ax̂[k] if kth packet is dropped
AC−1ŷ[k] if kth packet is kept

(9)

This will result in the following recursion for the estimation
error variance using Eq. 1:

e[k +1] = A2e[k]+Q− A2e[k] − A2C−2σ2
n(Υ[k])

S2[k]
, (10)

where σ2
n is the communication noise variance as defined in

Section II and S2[k] =
{

1 Υ[k] ≥ ΥT

∞ else
. Averaging Eq.

10 over Υ[k], . . . ,Υ[0] will result in the following recursion
for average estimation error variance:

E(e[k + 1]) = A2PL(ΥT )E(e[k]) + A2C−2PN (ΥT ) + Q.
(11)

PL and PN represent average probability of packet loss
and average communication noise variance that entered the
estimation process respectively:

PL(ΥT ) = E(Pdrop) =
∫ ΥT

0

pdf(Υ)dΥ (12)

and

PN (ΥT ) =
∫ ∞

ΥT

σ2
n(Υ)pdf(Υ)dΥ, (13)

where pdf represents probability density function.
1) Stability: It can be easily seen from Eq. 11 that the

stability condition will be as follows:

E(Pdrop,scenario#2) < A−2, (14)

which means that the stability condition is independent of
the shape of the communication noise profile. Furthermore,
in order to maximize the stability range, all the packets
should be kept in the receiver despite lack of a cross-layer
feedback in this scenario. While keeping all the packets
results in maximum stability range, it will not minimize the
estimation error variance. Next we show how to design the
receiver to minimize the estimation error variance.

2) Optimum Performance: The asymptotic average es-
timation error variance will be as follows as long as the
stability condition of Eq. 14 holds:

E(e[∞]) =
A2C−2PN (ΥT ) + Q

1 − A2PL(ΥT )
for PL(ΥT ) < A−2.

(15)

2The analysis can be similarly carried out under the condition that
the knowledge of observation noise variance, R, is not available in the
estimator. Then σ2

n should be replaced by σ2
n +R throughout the analysis.

Intuitively, there should be an optimum ΥT (optimum way
of dropping packets) that will minimize the asymptotic
average estimation error variance for this case. If ΥT

is too low, the receiver will keep most of the packets
but the estimation will be too noisy. On the other hand,
if ΥT is too high, the receiver will be strict about the
quality of the packets that it will keep. This reduces the
amount of communication noise that enters the estimation
process but will result in high packet loss rate and therefore
information loss rate. Then the optimum ΥT will be the
one that provides a balance between information loss and
communication noise.

Theorem 1 (Balance of Information Loss & Communi-
cation Noise): Consider a receiver that does not support a
cross-layer feedback. Let ΥT,opt represent the optimum way
of dropping packets which will minimize the asymptotic
average estimation error variance of this receiver:

ΥT,opt = argmin E(e[∞,ΥT ]). (16)

Then ΥT,opt will be as follows:

ΥT,opt =
{

Υ∗
T Υ∗

T ≥ 0
0 else

(17)

where Υ∗
T is the unique solution to the following equation:

PL(Υ∗
T )︸ ︷︷ ︸

information loss

+ PN,norm(Υ∗
T )︸ ︷︷ ︸

communication noise

+
C2Q

A2σ2
n(Υ = Υ∗

T )
= A−2,

(18)
where PN,norm refers to the normalized average communi-
cation noise variance: PN,norm(Υ∗

T ) = PN (Υ∗
T )

σ2
n(Υ=Υ∗

T
) .

Proof: Let Υ∗
T represent any solution to Eq. 18. By

differentiating Eq. 15 with respect to ΥT , it can be easily
verified that ∂E(e[∞,ΥT ])

∂ΥT
is only zero at Υ∗

T . Next we show
that Eq. 18 has a unique solution. Assume that Eq. 18
has two solutions: Υ∗

T,1 and Υ∗
T,2 > Υ∗

T,1. Since σ2
n is

a decreasing function of ΥT , the following can be easily
verified:

PL(Υ∗
T,1) + PN,norm(Υ∗

T,1) + C2Q
A2σ2

n(Υ=Υ∗
T,1)

−PL(Υ∗
T,2) − PN,norm(Υ∗

T,2) − C2Q
A2σ2

n(Υ=Υ∗
T,2)

< 0
(19)

Therefore, Υ∗
T,1 = Υ∗

T,2. Let Υc
T be the critical stability

Threshold: 1−A2PL(Υc
T ) = 0. Consider those cases where

there exists a positive solution to Eq. 18. Then using the
fact that

lim
ΥT →Υc

T

E(e[∞,ΥT ]) → ∞ (20)

shows that Υ∗
T corresponds to the unique minimum of

E(e[∞,ΥT ]). Therefore, ΥT,opt = Υ∗
T . If process noise is

the dominant noise, compared to the communication noise,
there may be no positive solution to Eq. 18. It can be easily
seen that, in such cases, E(e[∞,ΥT ]) will be an increasing
function for ΥT ≥ 0, resulting in ΥT,opt = 0.

Theorem 1 shows that, in the absence of a cross-layer
feedback, the optimum way of dropping packets is the one
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that provides a balance between information loss (PL) and
communication noise (PN ). To see the impact of operating
at the optimum ΥT , Fig. 2 shows E(e[∞]) as a function of
ΥT and for different levels of average Signal to Noise Ratio,
Υave. For this example, Signal to Noise Ratio, Υ, is taken
to have an exponential distribution and the communication
noise profile is taken as follows: σ2

n(Υ) = α + δ × ζ(
√

Υ),
where ζ(c) = 1√

2π

∫ ∞
c

e−t2/2dt for an arbitrary c. This is
the variance of the communication noise for a uniformly
quantized, BPSK modulation system [9]. The following
parameters are chosen for this example: A = 2, C = 1,
Nb = 10 and ∆ = .0391, where Nb and ∆ represent the
number of transmitted bits per packet and the quantization
step size respectively. This results in α = 1.27× 10−4 and
δ = 533.3 [9]. Operating at the optimum ΥT will result
in reaching the minimums of the estimation error curves. It
can be seen that dropping packets properly can improve the
performance considerably. As ΥT increases, the estimation
will approach the instability regions due to high information
loss as predicted by Eq. 14.
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Fig. 2. Scenario#2: Minimums of the curves indicating optimum way of
dropping packets in the absence of a cross-layer feedback

B. Scenario#3: Impact of Cross-Layer Feedback

Consider a receiver that can support a cross-layer feed-
back for those packets that are not dropped. This means
that the Kalman filter will have the knowledge of the
communication noise variance. We will have the following
recursion for the estimation error variance:

e[k + 1] = A2e[k] − A2e2[k]C2

C2e[k] + σ2
z(Υ[k])

+ Q, (21)

where

σ2
z(Υ[k]) =

{
σ2

n(Υ[k]) + R Υ[k] ≥ ΥT

∞ else
(22)

1) Stability
The following two lemmas relate stability region of
scenario#3 to those of scenario#1 and 2.

Lemma 1: The stability region of scenario#1 includes that
of scenario#3:

PL,c,scenario#1 ≥ PL,c,scenario#3, (23)

where PL,c represents the maximum tolerable average prob-
ability of packet loss for stability.

Proof: Consider a special case of scenario#1, where
R = 0. Let g[k] and e[k] represent the estimation er-
ror variances of scenario#1 with R = 0 and scenario#3
respectively. Using Eq. 8 with R = 0, we will have
E(g[k + 1]) = A2PLE(g[k]) + Q. From Eq. 21, it can be
easily confirmed that e[k +1] ≥ A2e[k]+Q− A2e2[k]C2

C2e[k]+S1[k] ,
where S1[k] is as defined in Eq. 8. This results in the
following: E(e[k + 1]) ≥ A2PLE(e[k]) + Q. Then,

if E(e[k]) ≥ E(g[k]) ⇒ E(e[k + 1]) ≥ E(g[k + 1])
(24)

Therefore the stability region of scenario#1 includes that of
scenario#3.
Lemma 2: The stability region of scenario#3 includes that
of scenario#2:

PL,c,scenario#3 ≥ PL,c,scenario#2. (25)

Proof: Let q[k] represent the estimation error variance
of scenario#2 for an R �= 0. Then no knowledge of R is
available in the estimator for scenario#2 (see footnote of
Section IV, part A). Using Eq. 10, we will have:

E(q[k + 1]) = A2PLE(q[k]) + Q + A2C−2PN,R, (26)

where PN,R = PN + (1 − PL)R. Let e[k] represent the
estimation error variance of scenario#3. We will have

E(e[k + 1]|e[k]) = (1 − PL)E(e[k + 1]|e[k],Υ[k] > ΥT )
+PLE(e[k + 1]|e[k],Υ[k] < ΥT ).

(27)
e[k + 1] is a concave function of σ2

z(Υ[k]) as indicated by
Eq. 21. Therefore, using conditional Jensen’s inequality, we
will have,

E(e[k + 1]|e[k],Υ[k] > ΥT ) ≤
A2e[k] + Q − A2e2[k]C2

C2e[k]+E(σ2
z(Υ[k])|Υ[k]>ΥT ) .

(28)

Therefore,

E(e[k + 1]|e[k]) ≤
A2e[k] + Q + (PL−1)A2C2e2[k]

C2e[k]+E(σ2
z(Υ[k])|Υ[k]>ΥT ) .

(29)

The third term on the right-hand side of Eq. 29 is a concave
function of e[k]. Therefore by applying Jensen’s inequality,

E(e[k + 1]) ≤
A2E(e[k]) + Q − (1−PL)A2C2E2(e[k])

C2E(e[k])+E(σ2
z(Υ[k])|Υ[k]>ΥT ) =

A2PLE(e[k]) + Q + (1−PL)A2E(e[k])E(σ2
z(Υ[k])|Υ[k]>ΥT )

C2E(e[k])+E(σ2
z(Υ[k])|Υ[k]>ΥT ) .

(30)
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Noting that E(σ2
z(Υ[k])|Υ[k] > ΥT ) = PN,R

1−PL
, it can be

confirmed (using Eq. 26 and 30) that

if E(e[k]) ≤ E(q[k]) ⇒ E(e[k + 1]) ≤ E(q[k + 1])
(31)

Therefore the stability region of scenario#3 includes that of
scenario#2.

Theorem 2: The stability condition will be as follows for
a receiver that is equipped with a cross-layer feedback:

E(Pdrop,scenario#3) < A−2 (32)

Proof: Lemma 1 and 2 showed that PL,c,scenario#2 ≤
PL,c,scenario#3 ≤ PL,c,scenario#1. Noting that scenario#1
and 2 have the same stability region proves Theorem 2.

2) Optimum Performance
Theorem 3: Keeping all the packets, i.e. ΥT = 0,

will minimize the average estimation error variance for a
receiver that is equipped with a cross-layer feedback.

Proof: Let e1 and e2 represent estimation error
variances of two estimators using ΥT1 and ΥT2, where
ΥT2 > ΥT1. Then for any received Signal to Noise Ratio,
Υ, we will have σ2

z,2(Υ) ≥ σ2
z,1(Υ), where σ2

z,1 and σ2
z,2

are as defined in Eq. 22 for these two estimators. Using
Eq. 21, the following can be easily confirmed for any given
Υ[0],Υ[1], . . . ,Υ[k]:

if e1[k] ≤ e2[k] ⇒
e1[k]σ2

z,1(Υ[k])

C2e1[k]+σ2
z,1(Υ[k])

≤ e2[k]σ2
z,2(Υ[k])

C2e2[k]+σ2
z,2(Υ[k])

⇒
e1[k + 1] ≤ e2[k + 1].

(33)

This shows that using a lower Threshold will result in a
lower estimation error variance. Therefore, keeping all the
packets, i.e. ΥT = 0, will minimize the estimation error
variance (and its average over the distribution of Υ).

We can see that keeping all the packets not only prevents
instability but also minimizes the estimation error variance
in the presence of a cross-layer feedback. To see the impact
of a cross-layer feedback, Fig. 3 shows average estimation
error variance after 300 time steps for the system parameters
of Fig. 2 and for both scenario#2 and 3. By comparing the
corresponding curves for these cases, it can be seen that a
cross-layer feedback can improve the performance consid-
erably even when compared to operating at the optimum
ΥT of scenario#2. Furthermore, it can be seen that keeping
all the packets will result in minimum average estimation
error variance for scenario#3. Finally, the stability condition
of scenario#3 is confirmed to be the same as predicted by
Theorem 2.

V. SUMMARY

In this paper we considered estimation over mobile
communication channels using a Kalman filter. We showed
that the communication protocols suitable for other already-
existing applications like data networks may not be entirely
applicable for estimation and control of a rapidly changing
dynamical system. We provided receiver design principles
for such delay-sensitive applications. More specifically we
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Fig. 3. Effect of cross-layer feedback: compare scenario#2 and 3

derived stability conditions and investigated the perfor-
mance of different receiver designs. We showed that sta-
bility condition is only a function of packet loss and is
independent of the shape of the communication noise profile
or availability of a cross-layer feedback. Therefore, in order
to maximize the stability range, the receiver should keep
all the packets independent of the quality of the link or
availability of a cross-layer feedback. In the presence of
a cross-layer feedback, this design will also minimize the
estimation error variance. However, in the absence of such a
feedback, we proved that packet drop should be designed to
balance information loss and communication noise in order
to optimize the performance.
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