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ABSTRACT:12 
Early Warning Systems (EWS) and Early Warning Indictors 
(EWI) have recently emerged as an attractive domain for states 
and school districts interested in predicting student outcomes 
using data that schools already collect with the intention to 
better time and tailor interventions. However, current 
diagnostic measures used across the domain do not consider the 
dual issues of sensitivity and specificity of predictors, key 
components for considering accuracy. We apply signal 
detection theory using Receiver Operating Characteristic 
(ROC) Area Under the Curve (AUC) analysis adapted from the 
engineering and medical domains, and using the pROC package 
in R. Using nationally generalizable data from the Education 
Longitudinal Study of 2002 (ELS:2002) we provide examples 
of applying ROC accuracy analysis to a variety of predictors of 
student outcomes, such as dropping out of high school, college 
enrollment, and postsecondary STEM degrees and careers. 
 
Keywords: ROC, AUC, Early Warning System, Early 
Warning Indicator, signal detection theory, dropout, college 
enrollment, Postsecondary STEM Degree, hard STEM career, 
soft STEM career 
 
BACKGROUND and LITERATURE REVIEW: 
Using Early Warning Systems (EWS) and Early Warning 
Indicators (EWI) to predict student outcomes has become an 
emerging domain of interest (Agasiti & Bowers, 2017; 
Allensworth, 2006; Allensworth, & Easton, 2007; Allensworth, 
Nagaoka, & Johnson, 2018; Allensworth, Gwynne, Moore, & 
de la Torre, 2014; Bowers, Sprott, & Taff, 2013; Faria et al., 
2017; Kemple, Segeritz, & Stephenson, 2013; Ocumpaugh et 
al., 2017). EWS and EWI are defined as “an intentional process 
whereby school personnel collectively analyze student data to 
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monitor students at risk of falling off track for graduation and 
to provide the interventions and resources to intervene” (Davis, 
Herzog, & Legters, 2013, p. 84). EWS and EWI have been 
applied to predicting education outcomes, such as high school 
dropout (Knowles, 2015; Stuit et al., 2016; Tamhane, Ikbal, 
Sengupta, Duggirala, & Appleton, 2014), successful middle 
school to high school transition (Allensworth et al., 2014; Faria 
et al., 2017), college readiness (Hughes, & Petscher, 2016; 
Koon, & Petscher, 2016; Phillips et al., 2015), and academic 
performance (Ikbal et al., 2015; Lacefield & Applegate, 2018; 
Lacefield, Applegate, Zeller, & Carpenter, 2012; Macfadyen, & 
Dawson, 2010) to name but a few. EWS and EWI are becoming 
increasingly popular because they can identify a small set of 
variables that allow educators to make timely decisions 
(Frazelle, & Nagel, 2015; Macfadyen, & Dawson, 2010), that 
can inform personalized interventions and help to reduce 
student retention and dropout (Ikbal et al., 2015; Tamhane, 
Ikbal, Sengupta, Duggirala, & Appleton, 2014), and that “often 
prompt[s] improvements in a district’s system of supports” 
(Supovitz, Foley, & Mishook, 2012, p. 2). For example, 
randomly assigning 73 schools to treatment and control groups 
to use an Early Warning Intervention and Monitoring System 
(EWIMS), Faria et al. (2017) found that EWIMS was helpful 
for improving course completion and student attendance, each 
of which are major indicators of students being off track for 
graduation (Allensworth & Luppescu, 2018). 
 
Soland (2013) examined the accuracy of an EWS with the 
nationally representative National Education Longitudinal 
Survey (NELS) data of high school students, teachers, and 
parents from 1988-2000, predicting dropout and college going. 
After doing several longitudinal logistic analyses, Soland 
(2013) found that 

…EWS forecasts could be valuable both as 
organizational tools and for their precision. 
For example, model predictions of college 
going were more accurate than teacher 
predictions and remained accurate for 
students about whom teachers were unsure 
or disagreed. (p.259) 
 

Soland’s (2013) study is a recent and robust investigation into 
the performance of an EWS. However, as with the vast 
majority of the literature in this domain, missing from this 
conversation is an examination of the accuracy of the predictors 
used in the early warning system. More recently, in a follow-up 

https://doi.org/10.1080/10824669.2018.1523734


2 
 

Bowers & Zhou (2019) 

 

study Soland (2017) used a decision tree and a lasso regression 
analysis framework with n=9,601 students from the NELS 
sample from 1988-2000. In this study, the author worked to 
reduce thousands of measures with cross-validation techniques 
down to a set of variables measuring SES, postsecondary 
aspirations, academic readiness, and teachers’ perceptions of 
readiness. The author then used the reduced set of variables to 
predict students enrolling in college and persisting for a 
semester, noting that his model achieved almost 90% accuracy. 
However, Soland (2017) calculated classification accuracy with 
two separate measures, one dividing the number of correct 
predictions by the total number of students, the other dividing 
false positives by false negatives. Although the second method 
used false positives and false negatives, the two metrics do not 
take into account the current literature on accuracy of predictors 
from the research domain of signal detection theory. The core 
issues of signal detection theory in assessing predictor accuracy 
is a central missing detail across almost all of the current 
research in the EWI/EWS domain. 
 
Signal detection theory is a domain of research which 
originated in engineering and medicine (Gönen, 2007; Hanley 
& McNeil, 1982; Swets, 1988; Swets, Dawes, & Monahan, 
2000; Zwieg & Campbell, 1993) and has more recently been 
applied to domains such as law, education, and youth 
development to understand the accuracy of at-risk indicators 
and predictors (Bowers, Sprott & Taff, 2013; Knowles, 2015; 
Olver, Stockdale, & Wormith, 2009; Rice & Harris, 2005; Vivo 
& Franco, 2008). A core measure of accuracy within signal 
detection theory is the Receiver Operating Characteristic 
(ROC) Area Under the Curve (AUC), in which the sensitivity 
of a predictor (the true-positive proportion) is compared to the 
specificity (the true-negative proportion), a calculation which is 
the central concern of the present study and which we review 
and provide example applications in more detail below. 
Although there have been some reviews of metrics for 
evaluating the accuracy of student at-risk prediction models 
(National Center on Response to Intervention, 2010; Pelánek, 
2014; Pelánek, 2015) or case studies on the use of Receiver 
Operating Characteristic (ROC) Area Under the Curve (AUC) 
in human computer interaction research (Fogarty, Baker, & 
Hudson, 2005), only a few studies have used ROC to examine 
the accuracy of diagnostic measures for predictors of outcomes 
in education research (e.g., Carlson, 2018; D'Agostino, 
Rodgers, & Mauck, 2018; Johnson & Semmelroth, 2010; 
Jordan, Glutting, Ramineni, & Watkins, 2010; Liao, Yao, 
Chien, Cheng, & Hsieh, 2014; Nicholls, Wolfe, Besterfield-
Sacre, & Shuman, 2010; Stuit et al., 2016). Research studies in 
education have rarely tested the accuracy of flags that are used 
to predict students at risk of specific outcomes (Bowers, Sprott, 
& Taff, 2013), which has resulted in a lack of reported accuracy 
for predictors across this domain.  
 
Thus, the question for EWI and EWS in education is how to 
identify and report accurate predictors of students at-risk. 
Education researchers, policymakers, and practitioners need a 
means to measure the accuracy of diagnostic systems, as 
misidentification of students at risk of negative outcomes has 

two broad drawbacks. As Gleason and Dynarski (2002) noted 
in reference to this issue of accuracy with early warning 
indicators of dropping out of high school, low accuracy EWIs 
lead to students who are identified as at risk of dropping out but 
who would have never dropped out. These students receive 
dropout interventions, but as noted by the authors, if the 
students would have not dropped out, perhaps these resources 
could be spent in better ways, in addition to the problem of 
negatively labeling a student as at risk with an inaccurate 
predictor. Conversely, students who will drop out but are never 
identified by the indicator do not receive needed resources and 
interventions that could help them persist in school. Importantly 
for this domain, in reviewing 110 dropout flags from the 
literature, Bowers et al. (2013), showed that the vast majority of 
EWIs in the dropout domain were not much better than a 50-50 
guess, thus misidentifying large percentages of students as 
dropping out when they would not have dropped out, as well as 
missing a large percentage of students who will drop out but are 
never identified. The authors term this second set of students 
the “quiet dropouts” (Bowers & Sprott, 2012a, 2012b).  
 
In the present study, we detail the use of a measure of accuracy 
known as the Receiver Operating Characteristic (ROC) Area 
Under the Curve (AUC), drawn from Signal Detection Theory 
in the Engineering and Medical domains. Whereas ROC AUC 
is commonly used to evaluate the accuracy of predictors in 
fields such as medicine, radiology, engineering, data mining, 
and machine learning, it is a relatively new concept for 
education early warning systems.  

 
Signal Detection Theory 

Signal detection theory deals with sensitivity and specificity. In 
Figure 1 we adapt a contingency table from the previous 
literature, noting how to compute sensitivity, specificity, and 
other related diagnostics (Swets, 1988, p. 1286; Bowers, Sprott, 
& Taff, 2013, p. 83  
 
The upper part of the figure is a contingency table, with rows as 
predictions and columns as events. The table also shows the 
row and column marginal sums and total sum. The lower part 
of the figure is the calculation of measures of interest for 
accuracy. Discussing the contingency table in Figure 1 using 
Type I error and Type II error can help to understand the 
calculations for sensitivity and specificity. Here Sensitivity is 
analogous to “1-Type II error” is defined as the probability of 
identifying positive events as positive (True-positive 
Proportion), so 1-Sensitivity is analogous to “Type II error” as 
the probability of identifying positive events as negative (False-
negative Proportion). Specificity analogous to “1-Type I error” 
is defined as the probability of identifying negative events as 
negative (True-negative Proportion), so 1-Specificity analogous 
to “Type I error” is the probability of identifying negative 
events as positive (False-positive Proportion). Another related 
concept precision (Positive Predictive Value) is defined as the 
probability of correctly predicting positive events. In other 
words for example, for an EWI predicting dropping out of high 
school, sensitivity can be thought of as the “hits” where it is the 
proportion of students predicted to drop out who actually did  
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         Observation 
  Positive Negative 
Prediction Positive True-positive (a) False-positive (b) 

Negative False-negative (c) True-negative (d) 
 

Accuracy  (a + d)  / N 

Precision a / (a + b) 
Sensitivity (Recall / True-positive Proportion) a / (a + c) 
Specificity (True-negative Proportion) d / (b + d) 
1- Specificity (False-positive Proportion) b / (b + d) 
Kappa (Accuracy – R) / (1 – R) 

R = ((a + c)(a + b) + (b + d)(c + d)) / N2 
 

Figure 1: Confusion Table for Calculating Contingency Proportions  

drop out, while 1-specificity can be thought of as the “false 
alarms” which is the proportion of students who had the 
dropout predictor but still graduated. 
 
As noted in the signal detection theory literature (Gönen, 2007; 
Hanley & McNeil, 1982; Swets, 1988; Swets et al., 2000; 
Zwieg & Campbell, 1993), the central issue in the accuracy of 
predictors of outcomes is that both the sensitivity and 
specificity must be taken into account, as these two dimensions 
of the true-positive proportion (sensitivity) and the false-postive 
proportion (1-specificity) act in concert when discussing 
accuracy (Bowers et al., 2013). Said another way, for an early 
warning indicator to be accurate, the net that is cast should 
catch the intended targets (it must be sensitive) while not 
misidentifying the wrong targets (1-specificity, the opposite of 
specificity). Interestingly, these two dimensions of accuracy 
can then be plotted in an x,y coordinate plane, with the 
sensitivity and 1-specificity for each early warning indicator 
plotted in these two dimensions. In this way, a Receiver 
Operating Characteristic (ROC) plot incorporates sensitivity 
and specificity into one figure, making it possible for 
researchers to visually compare the accuracy of different 
indicators (Allensworth et al, 2014; Bowers et al., 2013; 
Knowles, 2015; Swets, 1988; Swets et al., 2000). The false-
positive proportion (1-specificity) is on the x-axis and the true-
positive proportion (sensitivity) is on the y-axis. For any 
predictor, a change in specificity leads to a corresponding 
change in sensitivity, and this relation is plotted as a curve in 
the ROC plot. The Area Under the Curve is called ROC AUC, 
and ranges from 0 to 1.0, with 0.5 as a 50-50 guess and 1.0 as a 
predictor that is 100% accurate. As a diagnostic measure, the 
AUC calculation takes into account both the true-positive 
proportion and the false-positive proportion, and can be 
compared to identify which predictors are more accurate than 
others, and which are closest to a 50-50 guess, or worse. An 
accurate predictor should have a large AUC (closer to point 0,1 
on the ROC AUC plot with an AUC above 0.5 and closer to 
1.0), which means that the predictor performs well in both 
dimensions of sensitivity and specificity. While the broader 
ROC AUC literature encourages researchers and practitioners 

to compare AUCs of individual diagnostic predictors within the 
same ROC analysis to identify the most accurate predictors 
(Bowers et al, 2013; Hanley & McNeil, 1982; Swets, 1988; 
Swets et al., 2000; Zwieg & Campbell, 1993) certain fields 
have established rules of thumb for levels of accuracy as 
determined by AUC. For example, in screener validity analysis 
in the Response to Intervention field (RTI) (D'Agostino, 
Rodgers, & Mauck, 2018), the National Center on Response to 
Intervention (2010) (NCRTI) as their “Technical Standard 1” 
has indicated that for classification accuracy of screening tests 
for RTI, that an AUC above 0.85 is considered “convincing 
evidence” of classification accuracy, between 0.75 and 0.85 is 
“partially convincing evidence” and less than 0.75 is 
“unconvincing evidence”. 

 
Framework and Research Questions 

Currently, there are only a small number of studies in education 
using ROC or AUC as a diagnostic measure for evaluating 
predictors in the EWI/EWS literature. Even for those studies 
that do use ROC (Allensworth et al., 2014; Torres, Bancroft, & 
Stroub, 2015) or AUC (Becker et al., 2014; Cummings, & 
Smolkowski, 2015; Laracy, Hojnoski, & Dever, 2016; 
Knowles, 2015; Vivo, & Franco, 2008; Wilson et al., 2016) to 
evaluate predictors, researchers used the technique among 
several other measures and did not necessarily consider ROC as 
more accurate than other measures in terms of measuring a 
predictor’s accuracy. One exception is the research by Horn 
and Lee (2017) who advocated the use of sensitivity, 
specificity, and precision together to judge the accuracy of their 
performance indicators. Bowers, Sprott and Taff (2013) provide 
a comprehensive study aimed to demonstrate the accuracy of 
ROC as a diagnostic measure in which the authors analyzed 
110 high school dropout flags from the dropout prediction 
literature using a ROC analysis. They illustrated the possibility 
of visually comparing predictor accuracy in terms of both 
sensitivity and specificity. The Bowers et al. (2013) study 
demonstrated how researchers and practitioners could use a 
ROC plot to graphically display and compare the accuracy of 
dichotomous flags as a point in the ROC space (such as high 
suspensions, failed English, failed mathematics, high absences). 
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For example, the study concluded that the most accurate cross-
sectional single time point dropout flag in the literature was the 
Chicago on-track indicator which includes low course credits 
and failing at least one core course in ninth grade (Allensworth, 
2013; Allensworth & Easton, 2007), while more accurate 
predictors each used longitudinal predictors and growth mixture 
modeling to identify significantly different trajectories of 
student performance (Bowers et al, 2013), such as declining 
trajectories of non-cumulative grade point average in the first 
three semesters of high school (Bowers, 2019; Bowers & 
Sprott, 2012b; Brookhart et al., 2016). However, a critical 
missing component for use of these measures in EWS was that 
Bowers et al. (2013) did not consider the use of AUC in the 
ROC accuracy analysis. The signal detection theory literature 
(Swets, 1988) demonstrates that indicator accuracy can be 
better compared through plotting continuous variables (rather 
than just dichotomous indicators) within the ROC space and 
then assessing the area under the curve (AUC) for each 
continuous variable in which a larger AUC indicates a higher 
level of accuracy. Additionally, AUC provides a means to 
statistically compare the AUC of two different indicators to 
assess the extent to which they are statistically significantly 
different (DeLong, DeLong, & Clarke-Pearson, 1988; Hanley 
& McNeil, 1983). 
 
With increasing attention in the education analytics literature to 
creating and analyzing early warning indicators and systems 
(Agasisti & Bowers, 2017; Bowers, 2017; Piety, Hickey, & 
Bishop, 2014), there is a need to provide a discussion of how to 
assess and compare accuracy of indicators in the EWI/EWS 
domain using ROC AUC with examples and code to help 
inform current and future research, policy and practice. In this 
study we select a range of early warning predictors and 
outcomes of interest using publically available nationally-
generalizable data from the U.S Department of Education 
National Center for Education Statistics and drawing on the 
EWI/EWS literature noted above, and provide the ROC AUC 
analysis for each using open source software, comparing 
multiple early warning indicators for dropping out of high 
school, post-secondary college enrollment, and high school 
students eventually choosing a career in STEM (science, 
technology, engineering, or mathematics) by age 26. 

 
METHODS: 
Data 

This study is a secondary analysis of the publically accessible 
Education Longitudinal Study of 2002 (ELS:2002), a US high 
school student sample collected by the National Center for 
Education Statistics (NCES) from 2002 to 2012 (Ingles et al., 
2014). ELS:2002 includes a nationally generalizable sample of 
about 16,000 students who were in grade 10 in 2002 across 750 
high schools. For the present analysis the sample sizes of our 
selected variable range from 10,511 (college enrollment) to 
16,197 (dropout, one or more flags). We selected ELS:2002 as 
it is currently the most recent comprehensive ten-year 
longitudinal U.S. high school student survey of its type. 
Appendix A lists the descriptive statistics and labels of the 
variables analyzed in this study. 

 
Variables included in the Analysis: Predictors of Dropout, 

College Enrollment, Postsecondary STEM Degree, and 

Hard/Soft STEM Occupation 

We drew on the current EWI/EWS literature to inform our 
variable selection for this study, including the outcomes of 
interest of 1) dropping out of high school, 2) college 
enrollment, and 3) postsecondary STEM degree, 4) STEM 
career occupation at age 26, as well as the indicators used to 
predict these outcomes. We selected to focus on both secondary 
and post-secondary schooling indicators and outcomes for our 
examples of ROC AUC as the EWI/EWS literature is 
developing rapidly for K-12 and colleges and universities in the 
education analytics, learning analytics, education data science, 
and academic analytics domains, especially in relation to 
student STEM outcomes, as researchers and practitioners wish 
to identify accurate indicators of positive transitions from high 
school, through college, into careers (Agasisti & Bowers, 2017; 
Baker, 2013; Bowers, 2017; Knight & Shum, 2018; Krumm, 
Means, & Bienkowski, 2018; Piety, Hickey, & Bishop, 2014; 
Siemens, 2013). Nevertheless, as noted above, across this 
literature there are few examples of providing accuracy 
analysis, however as the literature across these domains uses 
multiple predictors for early warning indicators in each of the 
four outcomes of interest in this study, we draw on this 
literature to inform our variable selection.  
 
The first education outcome we examine is high school 
dropout. Following Bowers et al. (2013), our first set of 
indicators to predict high school dropout mirrors the 
dichotomous indicators from Balfanz, Herzog, and Mac Iver 
(2007) of students in sixth grade, including attendance, 
suspension, misbehavior, failed math, failed English, any one 
or more of these flags, any one flag, any two flags, any three 
flags, and all four flags. The Balfanz et al. (2007) study is an 
important study to start with as a focus, as it examines a large 
sample of sixth graders from Philadelphia, is widely cited, and 
these dropout flags are used in many state policy 
recommendations for at-risk prediction systems (Rumberger et 
al., 2017). However, currently there are no public national 
datasets that include the sixth grade as well as overall high 
school and career outcomes, thus we adapted the Balfanz et al. 
(2007) dropout flags to the ELS:2002 dataset. As we selected 
the ELS:2002 dataset for this study, ELS:2002 includes a 
representative sample of students in grade 10 from across 750 
high schools in 2002. To provide an example of ROC AUC 
accuracy analysis with similar variables to Balfanz, Herzog, 
and Mac Iver (2007) using the public ELS:2002 data, we 
included the variables “1st quantile standardized math score” 
where we dichotomized students’ standardized math scores 
with the cutoff point being the 1st quantile score. To follow 
Balfanz et al. (2007), we dichotomized both “absent” and 
“suspension” to derive composite flags with Boolean operators 
such as and and or. In addition to the Balfanz et al. (2007) 
predictors of dropout, we examined the accuracy of multiple 
continuous predictors of dropout from the literature, such as 
attendance (Adelman, 2006; Allensworth, Gwynne, Moore, & 
de la Torre, 2014; Allensworth, Nagaoka, & Johnson, 2018; 
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Balfanz & Boccanfuso, 2007; Bowers, & Sprott, 2012a, 2012b; 
Geiser & Santelices, 2007; Kemple et al., 2013; Neild, Balfanz, 
& Herzog, 2007; Noble & Sawyer, 2004; Quadri & Kalyankar, 
2010; Soland, 2013; Soland, 2017), suspension (Balfanz, 
Herzog, & Mac Iver, 2007; Bowers & Sprott, 2012a; Soland, 
2013), extracurricular activities (Mahoney, & Cairns, 1997; 
Renzulli, & Park, 2000; Soland, 2013), and standardized test 
scores (Bowers, 2010; Kemple et al., 2013; Soland, 2013; 
Soland, 2017).  
 
As for accurate predictors for college enrollment, researchers 
find that high school grades (Allensworth et al., 2018; Bowen, 
Chingos, & McPherson, 2009; Geiser, & Santelices, 2007; 
Kemple et al., 2013; Soland, 2013; Soland, 2017), attending at 
least one Advanced Placement (AP) program (Becker et al., 
2014; Soland, 2013), and extracurricular activities (Soland, 
2013) are significant predictors for four-year college 
enrollment. As shown in Appendix A, the sample size for the 
outcome variable is 10,511. For the outcome variables, "Item 
legitimate skip/NA" and "Survey component legitimate 
skip/NA" were considered as in the comparison group, coded as 
0 because students having these two options did not receive 
college education and should be included in the comparison 
group. pROC, the analysis package used below, carries out 
listwise deletion on the missing values of both the outcome 
variable and the predictor before calculating AUC. 
 
For predictors of postsecondary STEM degree (Science 
Technology Engineering Mathematics), researchers have 
shown that STEM course selection is a strong predictor of if a 
student graduates from a postsecondary institution with a 
STEM degree (Dutta-Moscato, Gopalakrishnan, Lotze, & 
Becich, 2014). Specifically, we examine the accuracy of the 
number of STEM courses (Chen, 2013). We also evaluate the 
accuracy of standardized math score in high school (Chen, 
2013; Crisp, Nora, & Taggart, 2009) and STEM course GPA 
(Chen, 2013; Crisp et al., 2009) in predicting if a student 
graduates with a postsecondary STEM degree. As shown in 
Appendix A, the sample size for the outcome variable is 6,936. 
For the outcome variables, "Item legitimate skip/NA" and 
"Survey component legitimate skip/NA" were coded as missing 
data because students having these two options did not receive 
postsecondary education and should not be included in the 
comparison group. 
 
We are mixing college and high school variables in predicting 
occupations at age 26 because previous research literature 
(Perna et al., 2009) has shown that variables at both high school 
and college levels are significant predictors of STEM careers. 
We evaluate the accuracy of standardized math score at grade 
10 (Robnett & Leaper, 2013), college STEM course number 
(Perna et al., 2009), and STEM course GPA in college (Clark 
Blickenstaff, 2005) in predicting the occupation of a student as 
in either a “hard STEM” or “soft STEM” career by age 26 at 
the third follow-up for ELS:2002 in 2012. We draw on the 
literature in this domain for the definitions of STEM, hard 
STEM and soft STEM. Here we use the “S.M.A.R.T.” 
definition of STEM courses as courses related to technical 

fields, foreign languages critical to national security, or 
qualifying liberal arts (U.S. Department of Education, 2014). 
We selected this definition for STEM courses in our study as 
NCES adopted this definition of STEM for ELS:2002. 
Following the recommendations of the previous literature 
(Willis, 2013; Whittaker, 2014), typical hard STEM courses 
include engineering and computer science, whereas typical soft 
STEM courses include forensic and archaeological science, and 
the social sciences. As shown in Appendix A, the sample size 
for the variable of either hard STEM occupations or soft STEM 
occupations at age 26 is 12,796. For the outcome variables, 
"Item legitimate skip/NA" and "Survey component legitimate 
skip/NA" were coded as 0 because students having these two 
options did not enter STEM careers and should be included in 
the comparison group. 
 
Receiver Operating Characteristic (ROC) Analysis  
The signal detection theory literature (Hanley & McNeil, 1982; 
Swets, 1988; Swets et al., 2000; Vivo & Franco, 2008; Zwieg 
& Campbell, 1993) recommends that studies calculate 
precision, sensitivity, and specificity (see Figure 1). In the 
contingency table of Figure 1, an event indicates if a student 
experiences the at-risk outcome (columns), whereas a predictor 
predicts if the student will have the outcome (rows). According 
to the signal detection theory literature, precision is defined as 
the true-positives divided by the number of students predicted 
to have the flag, and the true-positive proportion (sensitivity) as 
the true-positives divided by the actual number of students at 
risk. The true-negative proportion (specificity) is defined as the 
true-negatives divided by the number of students without the 
risk, and the false-positive proportion (1-specificity) as the 
false-positives divided by the number of students without the 
risk. Indeed, as noted above in this literature (Swets, 1988), two 
crucial measures of the accuracy of predictors are true-positive 
proportion (“hits”) and false-positive proportion (“false 
alarms”). Any detection system will always have a trade-off 
between “hits” and “false alarms”, as when one maximizes the 
number of hits by “casting a wider net”, one tends to also 
increase the number of false alarms (Bowers et al, 2013, p. 83).  
 
Area Under the Curve (AUC) 

The focus of the present study is AUC, which has rarely been 
addressed in the education diagnostics literature. AUC is a step 
further over ROC analysis, and the purpose of the present study 
is to encourage the consistent use of AUC for predictors of 
outcomes in education, with illustrative examples of different 
variables of risk. AUC is calculated by summing the area under 
the ROC curve, and the bigger the area, the more accurate the 
predictor. Formally, the formula for calculating AUC is 
 

  (1) 

 
where f(x) is the function of the ROC curve. However, since 
f(x) tends not to have an integratable shape like a parabola, 
methodologists suggest using approximation methods to 
calculate AUC. For example, Robin et al. (2011) imputed AUC 
by connecting “empirical ROC points on linear probability 
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scales” via straight lines and calculating “the subtended area by 
the trapezoidal rule” (Swets, & Pickett, 1982, p. 31). In other 
words, Robin et al. divide the x axis to k equally spaced 
intervals, cut the AUC into k trapezoids, and add the areas of 
the trapezoids to approximate the AUC. For feasibility of 
computation, the approximation approach to calculating AUC 
or its variants is what is commonly used as the algorithm in 
ROC AUC software packages. 
 
Significance Testing for AUC Difference 

To test if an AUC is significantly different from another one, 
we need a measure to test AUC difference. One such statistic 
for significance testing between two continuous predictors is 
discussed in Hanley and McNeil (1983), with the formula for 
calculating the z score as 
 

  (2) 

 
where  and  are the AUC’s of the first and second 
predictors; where and are the standard errors 

of  and ; and where r is the correlation between 

 and . By comparing the calculated z score with 
corresponding critical z value of the standard normal 
distribution, we will know if the AUC difference of two 
predictors is significant.  
 
However, the z score is suitable only for continuous variables 
(DeLong et al., 1988), and for non-continuous variables, we 
need to use other statistics, such as 
 

(3) 
 

where  and are true and estimated AUC vectors; 

where  is a row vector of coefficients; where p and q are the 
numbers of positive and negative cases in reality; and where 

is the estimated covariance matrix for  

Equation (3) has a chi-square distribution with the degrees of 

freedom equal to the rank of . Similar 

to equation (2), equation (3) has an AUC difference as the 
numerator and pooled covariance as the denominator. Again, 
we can compare equation (3) to the corresponding value of the 
chi-square distribution to test significance of the AUC 
difference. In the present study, as we discuss below, we use 
the open source R software with the pROC package (Robin et 
al, 2011), as pROC adopts this statistic and readers may refer to 
DeLong et al. (1988) for a more in-depth discussion on the 
derivation of equation (3). 
 
Comparison with Mann–Whitney–Wilcoxon Test 

If approximated by the trapezoid method, then AUC is 
equivalent to the Mann–Whitney U-statistic, or the Mann–
Whitney–Wilcoxon, which compares distributions of different 

samples (Bamber, 1975; DeLong et al., 1988). Since the 
trapezoid rule underestimates AUC when the number of values 
of a variable is small (DeLong et al., 1988; Hanley & McNeil, 
1983; Swets & Pickett, 1982), DeLong et al. (1988) used the 
generalized U-statistic theory to develop a nonparametric 
approach to calculating and comparing AUCs with equation 
(3). Simulation studies (Fanjul-Hevia & González-Manteiga, 
2018) show that DeLong et al.’s method produces the best 
power than other resampling methods when one ROC curve 
dominates over the other curve. DeLong et al.’s (1988) method 
is incorporated into pROC (Robin et al., 2011) and the present 
study selected DeLong et al.’s (1988) approach in the pROC 
package to compare predictors’ AUCs.  
 
AUC vs. Kappa 

In the education data mining and learning analytics literature, 
researchers tend to use Kappa rather than ROC AUC (Baker, 
2014; Ocumpaugh, Baker, Gowda, Heffernan, & Heffernan, 
2014). Kappa measures the degree of agreement between 
events and predictors. With no agreement, Kappa equals 0 and 
the relationship between events and predictors is random. With 
perfect agreement, Kappa equals 1 (Langenbucher, Labouvie, 
& Morgenstern, 1996).  
 
For the present study, following the recommendations of the 
signal detection theory literature noted above, we used AUC as 
the diagnostic measure for evaluating predictors as AUC has 
advantages over Kappa. First, the meaning of AUC is invariant 
for different datasets, so a higher value is always better than a 
lower value (Baker, 2015). Second, AUC provides a more 
straightforward statistical interpretation (Baker, 2015). Third, 
AUC can calculate confidence intervals, allowing researchers 
to compute whether two AUC’s are significantly different from 
each other (Baker, 2015), as we show below in the application 
examples. Fourth, AUC can compare variables that have some 
categories dominate over other categories while Kappa cannot 
handle such variables (Baker, 2015). Fifth, AUC is robust to 
skewed data, whereas Kappa calculations can be distorted for 
skewed data (Jeni, Cohn, & De La Torre, 2013). 
 
R Packages  

To provide accessible example applications of the use of ROC 
AUC for education EWI/EWS we rely on the open source 
statistical R software (R Development Core Team, 2018) and 
the pROC R package (Robin et al, 2011). Among the several 
open source R packages for calculation of AUC, we selected 
the pROC package by Robin et al. (2011) as this R package 
plots ROC curves, calculates AUC, and tests significance of 
AUC difference. We provide the R markdown code for the 
present study in Online Appendix S1 
http://doi.org/10.7916/D8K94RDD. pROC allows for 
significance testing between two predictors and we used 
OptimalCutpoints (López-Ratón et al., 2014) in R to calculate 
cutoff points along the ROC curves.  

 

http://doi.org/10.7916/D8K94RDD
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(A)                                                                       (B) 

 
 

Predictor: AUC 

Any one flag:  0.729 
One or more flags:  0.700 
Any two flags:  0.685 
1st quantile Math t score (2002):  0.647 
Absent:  0.643 
Misbehavior :  0.593  
Suspension:  0.584 
Any three flags:  0.551 
All four flags:  0.509 

 
Figure 2: ROC Curves for Predicting Dropout. Panel (A) replicates Balfanz et al. (2007) research on predictors 
of dropout with ELS:2002 data. The curves in black are for composite flags and those in gray are for raw flags. 
Panel (B) uses continuous variables to predict dropout with ELS:2002 data. 
 
RESULTS: 
The purpose of this study is to provide an overview and 
introduction of the ROC AUC literature to help inform EWI 
and EWS research and practice in determining the accuracy of 
at-risk predictors, and then provide example applications in 
education using open source software and publically available 
data. In the below results section, we provide four main 
examples of ROC AUC using the NCES ELS:2002 dataset and 
the variables noted in the methods from high school and college 
to compare the accuracy of at-risk predictors for 1) high school 
dropout, 2) post-secondary college enrollment, 3) STEM 4-year 
degree attainment, and 4) hard STEM and soft STEM career 
outcomes at age 26. 

 
High School Dropout 

Figure 2 illustrates the ROC curves for predictors of high 
school dropout. Panel (A) replicates Balfanz et al.’s (2007) 
research on predictors of dropout with ELS:2002 data. Some 
curves, such as misbehavior and suspension, are very close and 
difficult to distinguish. This is because the predictors are 
dichotomous, as we wished to attempt to mirror the Balfanz et 
al. (2007) predictors as closely as we could using the public 
ELS:2002 dataset to provide a link and entry point from the 
previous dropout indicator literature to the ROC AUC 
framework. We can evaluate the accuracy of each predictor 
through calculating the AUC for each (see methods) and  

Predictor:  AUC 

Math t score (2002):   0.722 
Reading t score (2002):  0.706 
Extrac. activities (2002):  0.672 
Absence:   0.647 
Suspension:   0.584 
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Table 1: Significance of AUC Difference for Predictors of Continuous Dropout 
Predictor 1 Predictor 2 Z p-value 
Reading t score (2002) Math t score (2002) 3.220 0.001 
Reading t score (2002) Extracurricular activities (2002) -3.641 <0.001 
Reading t score (2002) Absent -33.716 <0.001 
Reading t score (2002) Suspension -32.105 <0.001 
Math t score (2002) Extracurricular activities (2002) -5.744 <0.001 
Math t score (2002) Absent -34.194 <0.001 
Math t score (2002) Suspension -34.840 <0.001 
Extracurricular activities (2002) Absent -28.758 <0.001 
Extracurricular activities (2002) Suspension -28.183 <0.001 
Absent Suspension 5.846 <0.001 

 
comparing the results. As detailed in the signal detection theory 
literature discussed above (Bowers et al, 2013; Swets, 1988) in 
a ROC plot such as Figure 2 Panel A, each predictor or 
indicator is plotted in two dimensions of 1-specificity versus 
sensitivity. The 45 degree line across the plot indicates a 50-50 
random guess, whereas predictors that approach the point 0,1 in 
the upper left-hand corner approach a more perfect prediction, 
as point 0,1 indicates a predictor that had no false positives and 
captured only true positives. For our example here in Figure 2, 
this would indicate that a predictor perfectly predicted 100% of 
all students who dropped out, and did not misidentify any 
students who eventually graduated as dropouts. As noted in the 
previous literature (Bowers et al, 2013), the vast majority of the 
predictors in the high school dropout literature fall close to the 
45 degree random guess line. For AUC calculations, this is the 
area under the curve for each indicator and predictor, which 
ranges from a random guess of 0.5 (half the area of the plot), to 
1.0 as a perfect prediction. Predictors with a higher AUC are 
more accurate. As discussed in the methods, we also provide 
the statistical pair-wise comparisons for each AUC to 
determine if each indicator is significantly different from the 
others in the analysis (see Appendix B). 
 
As shown in Figure 2 Panel A, the composite flags in which 
dropout flags are combined with Boolean operators were more 
accurate than individual flags alone by the ROC AUC, as “any 
one flag” and “one or more flags” each had an AUC of 0.729 
and 0.700 respectively. For the other dropout flags these are 
listed in decreasing order of accuracy with “all four flags” 
being close to a random guess. These results mirror the 
previous findings for these flags at grade six (Balfanz et al. 
2007; Bowers et al. 2013), and replicate and extend the results 
to the grade 10 context while calculating the AUC for each 
predictor for the first time. Appendix B provides the p-values 
for which predictors are significantly different from each other 
in Figure 2 Panel A. Most pairwise comparisons among the 
nine predictors are significant, with p values less than 0.001. 
Exceptions are those for “absent” and “1st quantile Math t 
score”, “1st quantile Math t score” and “any two flags”, 
“misbehavior” and “suspension”, and “one or more flags” and 
“any one flag”, as each of these is not significantly different 
from the other in their accuracy to predict dropping out of high 
school (see Appendix B).  
 

In comparison to the dichotomous predictors in Figure 2A, in 
Figure 2 Panel B continuous variables are used to predict 
dropout with ELS:2002 data. Although predictors of 
“suspension” and “absent” are continuous variables, each with 
five and four categories respectively, their ROC curves look 
like dichotomous variables as students in the dataset are 
suspended or absent on average about once (see Appendix A). 
As in Figure 2A, the AUC of each curve is provided below the 
plot of the ROC curves in Figure 2B. The most accurate 
predictor of dropout in Figure 2B is the Mathematics 
standardized assessment score with an AUC of 0.722. Table 1 
provides the pair-wise AUC comparisons, showing that each 
predictor is significantly different from each of the others in 
Figure 2B. 

 
College Enrollment, Postsecondary STEM Degree, and 

Hard STEM/Soft STEM Occupations 

Next, drawing on the prior research noted in the literature 
review and methods, we provide a series of example 
applications to provide a range of examples of using ROC AUC 
across K-12, post-secondary, and occupational prediction 
outcomes. Our goal is to provide a series of illustrative 
examples to provide a ready means for K-12 and post-
secondary EWI/EWS researchers and practitioners to find 
accessible examples of the method that may relate to their 
practice. Figure 3 illustrates ROC curves predicting college 
enrollment (Figure 3 Panel A) and postsecondary STEM degree 
attainment (Figure 3 Panel B). Figure 3A compares the 
accuracy for predicting college enrollment with three variables 
including overall high school Grade Point Average (GPA), 
number of extracurricular activities, and if a student ever was 
enrolled in an Advanced Placement (AP) course. As 
demonstrated in Figure 3A, overall high school GPA is the 
most accurate predictor when comparing these three early 
warning indicators with an AUC of 0.767, which as shown in 
Table 2 is significantly different than the other two predictors 
(p<0.001).  
 
In Figure 3B we plot the ROC AUC accuracy for predictors of 
if a student graduates with a postsecondary STEM degree using 
three continuous variables, number of STEM courses, math t 
score (2002), and STEM course Grade Point Average (GPA). 
As demonstrated in Figure 3B, number college STEM courses 
is the most accurate predictor when comparing these three early  
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(A)                                                                                       (B) 

 
 

 

 

 

Figure 3: ROC Curves for Predicting College Enrollment and Postsecondary STEM Degree 
 
 
 
 
Table 2: Significance of AUC Difference for College Enrollment Predictors and STEM Career Predictors 

Predictor 1 Predictor 2 Z p-value 
College Enrollment Predictors 
  GPA AP 32.679 <0.001 
  GPA Extracurricular activities (2004) 17.070 <0.001 
  AP Extracurricular activities (2004) -10.939 <0.001 
Postsecondary STEM Degree Predictors 

  Number of STEM Courses STEM course GPA 39.649 <0.001 
  Number of STEM Courses Math t score (2002) 31.625 <0.001 
  STEM course GPA Math t score (2002) -8.712 <0.001 

 

 
 
 

Predictor:  AUC 

GPA:  0.767 
Extracurricular. activities (2004):  0.642 
AP: 5 0.565 

Predictor:  AUC 

Number of STEM Courses:  0.957 
Math t score (2002):  0.663 
STEM course GPA:  0.566 
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Figure 4: ROC Curves for Predicting Soft STEM Career and Hard STEM Career 
 
 
 

Table 3: Significance of AUC Difference for Soft and Hard STEM Career Predictors 
Predictor 1 Predictor 2 Z p-value 
Soft STEM Career Predictors 
  Number of STEM Courses STEM course GPA 15.055 <0.001 
  Number of STEM Courses Math t score (2002) 8.943 <0.001 
  STEM course GPA Math t score (2002) -7.401 <0.001 
Hard STEM Career Predictors 

  Number of STEM Courses STEM course GPA 0.846 0.397 
  Number of STEM Courses Math t score (2002) 10.523 <0.001 
  STEM course GPA Math t score (2002) 11.111 <0.001 

 
 
 

Predictor:  AUC 

Number of STEM Courses:  0.799 
Math t score (2002):  0.712 
STEM course GPA:  0.593 

Predictor:  AUC 

Number of STEM Courses:  0.693 
STEM course GPA:  0.673 
Math t score (2002):  0.611 
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warning indicators with an AUC of 0.957, which as shown in 
Table 2 is significantly different than the other two predictors 
(p<0.001). Additionally, the R package OptimalCutpoints 
(López-Ratón et al., 2014) allows us to calculate the optimal 
cutoff point along the ROC curve of college STEM course 
number, at 23 (at the apex of the curve), although some 
students took up to 56 STEM courses in college. This shows 
that the optimal number of courses in predicting a 
postsecondary STEM degree is 23 STEM courses. Also, this 
result shows that in comparison to STEM course grades, the 
number of STEM courses is more accurate in predicting overall 
STEM degree completion. 
 
And finally, in Figure 4 we plot the ROC curves predicting 
hard and soft STEM career occupation at age 26. Figure 4A 
compares the accuracy for predictors of hard STEM careers of 
three continuous variables including the Number of STEM 
Courses, math t score (2002), and college STEM course Grade 
Point Average (GPA). As demonstrated in Figure 4A, the 
Number of STEM Courses is the most accurate predictor when 
comparing these three early warning indicators with an AUC of 
0.799, which as shown in Table 3 is significantly different than 
that of math t score (2002) (p<0.001). In addition, the AUC of 
STEM course GPA (0.593) is significantly different than that of 
math t score (2002) (p<0.001).  
 
In Figure 4B we plot the accuracy of predictors of soft STEM 
careers with three continuous variables, college STEM course 
number, math t score (2002), and college STEM course Grade 
Point Average (GPA). In contrast to hard STEM, we show that 
there is no statistical difference in the accuracy of using either 
of the predictors of Number of STEM Courses or STEM course 
GPA in predicting if a student worked in a soft STEM 
occupation at age 26 (Z=0.846, p=0.397). However, these two 
predictors are significantly different from the mathematics t-
score, each with higher AUC. 

 
DISCUSSION: 
The purpose of this study is to provide a means for researchers, 
policymakers, and practitioners to evaluate and compare the 
accuracy of educationally relevant predictors of educational 
outcomes to help inform the EWI/EWS literature through the 
application of signal detection theory. We demonstrate the 
applicability of the technique using open source code in R with 
public data from ELS:2002. Our intention is to help build 
capacity and inform future EWI/EWS research and applications 
as having a means to know and correctly compare the accuracy 
of early warning flags, predictors, and indicators is critical as 
researchers and educators rely evermore on early warning 
systems to help identify which students may need additional 
supports and resources to help them persist and succeed in 
school. When early warning systems rely on “at risk” indicators 
that have low accuracy, students are misidentified, resources 
are expended inefficiently, and many students who could use 
the resources are missed, at times as many as 40-50% of the 
students at risk (Bowers et al., 2013). Additionally, it is 
difficult to improve the indicators and the research for work in 
the EWI/EWS domain without a rigorous means to assess and 

compare the accuracy of the predictors, as how are we to know 
if the predictors and indicators are getting any better without 
strong accuracy metrics. Our findings in this study show that 
the application of signal detection theory through ROC AUC 
and open source R code works well to help identify which 
indicators are most accurate for an outcome. Our 
recommendation is that any research or tool that uses a 
predictor or indicator to identify students at risk provide the 
ROC plot and AUC data with the significance tests to 
demonstrate that the indicator under discussion is more 
accurate than the standard practice as well as similar variables. 
A strong recent example in this domain is Sullivan, Marr, & Hu 
(2017), in which the authors used ROC AUC as the criterion to 
compare logistic regression models and decision tree models in 
terms of predicting standardized test performance in the 
Michigan Educational Assessment Program, determining that 
decision tree models were more accurate with an AUC of 0.92. 
 
Our findings of the accuracy of predictors for high school 
dropout provide a context to understand results from previous 
studies. First, our study concurs with Bowers, Sprott, and Taff 
(2013) as both demonstrate ROC as an accurate diagnostic 
measure for predictors of dropout. However, whereas Bowers, 
Sprott, and Taff (2013) use predictor point-estimate positions 
on the x and y coordinates to compare predictor accuracy, we 
use AUC to compare predictors, allowing for easy, vivid 
comparisons. Second, our study provides a new perspective to 
evaluate predictors of previous studies (e.g., Balfanz et al., 
2007). For instance, we show that “absent” has relatively low 
sensitivity, “any one flag” has low specificity, and “all four 
flags” and “any three flags” have both low sensitivity and low 
specificity. The finding that “any one flag” has the highest 
accuracy of the dichotomous predictors replicates the previous 
research (Balfanz et al., 2007; Bowers et al., 2013) and 
demonstrates the utility of an ensemble approach to 
constructing accurate predictors of dropout using Boolean 
operators such as “or” versus “and”.  
 
Third, our findings indicate that some continuous predictors 
considered as an accurate means to predict dropout, such as 
absence and suspension (Adelman, 2006; Allensworth, 
Nagaoka, & Johnson, 2018; Balfanz et al., 2007; Bowers, & 
Sprott, 2012a, 2012b; Kemple et al., 2013; Quadri & 
Kalyankar, 2010; Soland, 2017), actually have low accuracy in 
comparison to the other predictors. For these continuous 
predictors of high school dropout, it is interesting that grade 10 
mathematics and reading standardized test scores were the two 
most accurate predictors, with mathematics having the highest 
accuracy. Across the research on dropout flags (Bowers et al., 
2013), standardized test scores have not received a large 
amount of attention (Bowers, 2010; Kemple et al., 2013; 
Soland, 2013; Soland, 2017), as previously authors have 
focused on a wide constellation of dropout predictors, having 
previously lacked a useful means to compare the accuracy of 
predictors (see literature review). However, here, the NCES 
ELS:2002 standardized mathematics and reading scores are test 
scores equated to the national NAEP (National Assessment of 
Educational Progress) standardized tests (Ingles et al., 2014). 
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NAEP, known colloquially as “the nation’s report card” is well-
known to be a difficult assessment in reading and mathematics, 
and that state standardized test scores have a poor history of 
alignment with NAEP (Bandeira de Mello, Bohrnstedt, 
Blankenship, & Sherman, 2015). Thus, the finding that the 
ELS:2002 grade 10 mathematics and reading test scores 
perform well in comparison to the other continuous dropout 
flags tested here does not necessarily mean that most or any 
other state standardized test score will perform in the same 
way. We encourage future research in this area to further 
include standardized subject assessments in dropout flag and 
predictor research. 
 
Our findings of the accuracy of college enrollment predictors in 
terms of ROC AUC provide a means to identify differences 
between the accuracy of these predictors. To date, as noted in 
the literature review above, a central problem in this research 
domain is that researchers tend to depend on regression 
outcomes and the statistical significance of individual 
coefficients, rather than on magnitude of effect, to make claims 
that a variable “significantly predicts” an outcome. Indeed, 
using this style of a regression coefficient framework, 
researchers are hampered in their ability to assess the 
differences in predictor accuracy for variables such as GPA, 
AP, and extracurricular activities, as all three predictors are 
significant in predicting if high school students will enter 
college. Nevertheless, from the perspective of signal detection 
theory and sensitivity and specificity, we find that these three 
predictors do have significant differences in their accuracy in 
predicting college enrollment. For instance, high school GPA 
was significantly more accurate in predicting college 
enrollment than students having taken Advanced Placement 
courses (AP), with extracurricular activities lying between 
these two in accuracy. The point that AP courses are the lowest 
of these three makes sense, as given that AP is billed as 
preparation for college, taking AP courses may not particularly 
differentiate between students enrolling in post-secondary 
institutions (Ackerman, Kanfer, & Calderwood, 2013; Sublett 
& Gottfried, 2017). That high school GPA performs well in the 
accuracy of predicting college enrollment corresponds with the 
research on grades and GPA (Bowers, 2009; Bowers, 2011; 
Bowers, 2019; Brookhart et al., 2016) which indicates that 
grades represent a valid assessment of engaged participation in 
the education system, and thus present a strong signaling effect 
for advancing through the system or not (Pattison, Grodsky, & 
Muller, 2013). 
 
Likewise, our findings of using ROC AUC to examine the 
accuracy of predictors for postsecondary STEM degrees, hard 
STEM careers, and soft STEM careers allow for comparing 
predictors from the perspective of sensitivity and specificity. 
First, we identify Number of STEM Courses as a highly 
accurate predictor for postsecondary STEM degrees, with an 
AUC above 0.9. While this result makes sense, as the total 
number of STEM courses is strongly related to the 
requirements to graduate with a STEM degree in college, the 
point we show here is that it is the total number of STEM 
courses that is highly accurate, in comparison to STEM GPA, 

and that the optimal number of STEM courses students need to 
graduate from a postsecondary institution with a STEM degree 
is 23, aligning with previous research (Chen, 2013). 
Additionally, this finding aligns well with the previous research 
in postsecondary STEM degree attainment that has highlighted 
the number of STEM courses as a central component of 
successful STEM degree attainment (Crisp, Nora, & Taggart, 
2009; Engberg & Wolniak, 2013).  
 
Second, for predicting a hard STEM career or a soft STEM 
career at age 26, we demonstrate interesting differences in the 
accuracy of the predictors, finding that the total number of 
courses is the most accurate predictor for hard STEM, but that 
there is no statistical difference in the accuracy of the number 
of STEM courses versus STEM GPA for predicting soft STEM 
careers. Additionally, while grade 10 mathematics standardized 
test score sits between number of STEM courses and STEM 
course GPA for predicting hard STEM careers, mathematics 
standardized test score has the lowest accuracy of these three 
predictors for a soft STEM career. This work extends the 
previous research on STEM college experiences that lead to 
careers that has shown that number of STEM courses, STEM 
GPA, and mathematics scores are all related to STEM career 
outcomes (Chen, 2013; Sithole et al., 2017). Additionally, it is 
interesting to note the STEM course GPA AUC between hard 
STEM and soft STEM, as studies have shown that for STEM 
overall in college, students receive lower GPAs overall than 
non-STEM students (Chen, 2013; Sithole et al., 2017). Overall, 
our results may suggest that while number of STEM courses in 
college is an important variable in predicting STEM career 
outcomes, there may be significant differences for STEM 
course GPA and mathematics scores between the hard STEM 
and soft STEM disciplines. Thus, overall, while we provide 
these findings as illustrative examples for the application of 
ROC AUC to EWI/EWS, the reasons for the differences in the 
accuracy of the predictors is of further interest, but outside the 
scope of the present study. We encourage future research in 
these areas. 
 
Limitations: 
While we believe our results are rigorous and applicable, this 
study is limited in three main ways. First, we note that the auc 
function of pROC gives the AUC of a predictor, but sometimes 
this AUC is slightly different from the one from the function 
roc.test where the AUC of this predictor is being compared 
with the AUC of another predictor. The deviation may be as 
large as 0.05, unsubstantial in practice, and we have not found 
researchers to have mentioned this point elsewhere. This is 
most likely due to Delong et al.’s trapezoid rule dividing the 
AUC differently when calculating the AUC of a single 
predictor from when calculating the AUCs of two correlated 
predictors. Second, since pROC does listwise deletion on both 
the predictor and the outcome variable, the sample sizes of the 
ELS:2002 dataset for the outcomes  listed  in Appendix A were 
shrunk for calculations of the AUC, making the results of the 
present study generalizable to only the data included in the 
analyses. In the future, we encourage researchers to delve more 
deeply into the missing values issue, such as multiple 
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imputations, before using pROC to calculate AUC so that the 
results will be more generalizable. As we were attempting to 
provide an example in practice with data similar to what a 
school district may have, this type of missing data imputation is 
outside the scope of the present study. Third, the 
generalizability of the present student is limited as we refrained 
from using the probabilistic weights of the ELS:2002 dataset in 
either calculating AUC’s or comparing the AUC’s of different 
predictors. Thus, the current study should be considered as a 
descriptive rather than an inferential analysis. Again, we 
encourage future researchers to take our study as a starting 
point for ROC AUC analysis and work to incorporate 
normalized weights on data similar to ELS:2002 data to 
compute AUC. 

 
Practical Implications and Conclusion: 

Our findings have three main practical implications. First, with 
the need to report accuracy of outcomes, education researchers 
can calculate AUC with R packages such as pROC. 
Practitioners and analysts can build models on the data in 
institutions and build ROC plots and calculate AUC for each 
predictor, with the R code provided here for reference (see 
Online Appendix S1 http://doi.org/10.7916/D8K94RDD). 
Second, ROC AUC allows policymakers to check and confirm 
the accuracy of predictors currently in use to make decisions on 
which at-risk predictors are the most accurate to predict 
important educational outcomes, and which predictors have low 
accuracy. Third, ROC AUC helps policymakers to identify 
accurate EWIs for the outcomes that are most important to their 
communities such that policies may cover the largest possible 
proportion of students at risk through using the most accurate 
predictors and maximizing the “hits” while minimizing the 
“false-alarms”. For education administrators and policymakers, 
this type of accuracy information is crucial in their work to 
provide the limited resources of the education system to help 
support specific student needs. 
 
Overall, we believe that the present research contributes to 
promoting AUC as an accurate measure to evaluate predictors 
of Early Warning Systems (EWS) and Early Warning Indictors 
(EWI), having shown the advantages of AUC in comparing the 
accuracy of predictors of different education outcomes. The 
findings of this study suggest that in the future, education 
researchers should 1) calculate the AUC of each predictor to 
give a baseline indication of the predictor’s accuracy; and 2) 
carry out pairwise significance tests on the AUCs of different 
predictors to show if the predictors are significantly different in 
terms of accuracy.  
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APPENDIX: 

 

Appendix A: Variable Descriptive Statistics and Labels 
Variable Name N M SD Min. Max. ELS:2002 Variable 

Dropout 16,197 0.113 0.317 0 1 F2EVERDO; 1=Evidence of a dropout episode 
Absent 12,286 0.130 0.336 0 1 BYP52E; 1=School contacted parent about poor attendance 1- 4 times 
Suspension 14,476 0.081 0.272 0 1 BYS24F; 1=Suspended/put on probation 1- 5 times 
Misbehavior 12,457 0.072 0.259 0 1 BYP51; 1= Ever had behavior problem at school 
1st quantile Math t score (2002) 15,892 0.250 0.433 0 1 BYTXMSTD; 1=Math test standardized score below 1st quantile 
One or more flags 16,197 0.371 0.483 0 1 1= One or more flags (absent, lowest quantile reading score, suspension, misbehavior) 
Any one flag 13,506 0.445 0.497 0 1 1= Any one flag 
Any two flags 12,381 0.124 0.330 0 1 1= Any two flags 
Any three flags 13,949 0.025 0.155 0 1 1= Any three flags 
All four flags 15,580 0.004 0.059 0 1 1= All four flags 
Extracurricular activities (2002) 14,446 4.773 5.700 0 21 BYS42; Hours/week spent on extracurricular activities 
Math t score (2002) 15,892 50.710 9.912 19.380 86.680 BYTXMSTD; Math test standardized score 
Reading t score (2002) 15,892 50.526 9.885 22.570 78.760 BYTXRSTD; Reading test standardized score 
College enrollment 10,511 0.546 0.498 0 1 F2PS0601; 1= Enrolled in a 4-yr institution 
GPA 14,796 3.912 1.543 0 6 F1RGPP2; GPA for all courses taken in the 9th - 12th grades 
Extracurricular activities (2004) 14,073 3.182 1.898 1 8 F1S27; Hours/week spent on extracurricular activities 
AP 14,368 0.182 0.386 0 1 BYS33A; 1= Ever in Advanced Placement program 
Postsecondary STEM degree 6,936 0.167 0.373 0 1 F3TZSTEM1CRED; 1= Ever earned a postsecondary credential in a STEM field as of 

June 2013 (SMART grant definition) 
Number of STEM Courses 11,540 9.257 10.39

6 
0 56 F3TZSTEM1TOT; Transcript: Number of known STEM courses taken (using SMART 

Grant definition of STEM) 
STEM course GPA 10,755 2.586 0.938 0 4 F3TZSTEM2GPA; Transcript: GPA for all known STEM courses (using NSF definition 

of science, engineering, and related fields) 
Hard STEM career 12,796 

 
0.063 0.243 0 1 F3STEMOCCCUR; 1= Life and Physical Science, Engineering, Mathematics, and 

Information Technology Occupations 
Soft STEM career 12,796 0.078 0.268 0 1 F3STEMOCCCUR; 1=Social Science Occupations/ Health Occupations 
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Appendix B: Significance of AUC Difference for Balfanz et al. (2007) Dropout Predictors 
 Absent 1st quantile 

Math t score 
(2002) 

Suspension Misbehavior One or more 
flags 

Any one flag Any two flags Any three flags 

1st quantile Math t score 0.330        
Suspension <0.001 <0.001       
Misbehavior <0.001 <0.001 0.719      
One or more flags <0.001 <0.001 <0.001 <0.001     
Any one flag <0.001 <0.001 <0.001 <0.001 1.000    
Any two flags <0.001 0.089 <0.001 <0.001 <0.001 <0.001   
Any three flags <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  
All four flags <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 
 


