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Receiver Operating Characteristic (ROC)
Curve: Practical Review 
for Radiologists

The receiver operating characteristic (ROC) curve, which is defined as a plot of

test sensitivity as the y coordinate versus its 1-specificity or false positive rate

(FPR) as the x coordinate, is an effective method of evaluating the performance

of diagnostic tests. The purpose of this article is to provide a nonmathematical

introduction to ROC analysis. Important concepts involved in the correct use and

interpretation of this analysis, such as smooth and empirical ROC curves, para-

metric and nonparametric methods, the area under the ROC curve and its 95%

confidence interval, the sensitivity at a particular FPR, and the use of a partial

area under the ROC curve are discussed. Various considerations concerning the

collection of data in radiological ROC studies are briefly discussed. An introduc-

tion to the software frequently used for performing ROC analyses is also present-

ed.

he receiver operating characteristic (ROC) curve, which is defined as a

plot of test sensitivity as the y coordinate versus its 1-specificity or false

positive rate (FPR) as the x coordinate, is an effective method of evaluat-

ing the quality or performance of diagnostic tests, and is widely used in radiology to

evaluate the performance of many radiological tests. Although one does not necessar-

ily need to understand the complicated mathematical equations and theories of ROC

analysis, understanding the key concepts of ROC analysis is a prerequisite for the

correct use and interpretation of the results that it provides. This article is a nonmath-

ematical introduction to ROC analysis for radiologists who are not mathematicians or

statisticians. Important concepts are discussed along with a brief discussion of the

methods of data collection to use in radiological ROC studies. An introduction to the

software programs frequently used for performing ROC analyses is also presented.

What is the ROC Curve?

Sensitivity and specificity, which are defined as the number of true positive

decisions/the number of actually positive cases and the number of true negative

decisions/the number of actually negative cases, respectively, constitute the basic

measures of performance of diagnostic tests (Table 1). When the results of a test fall

into one of two obviously defined categories, such as either the presence or absence of

a disease, then the test has only one pair of sensitivity and specificity values. However,

in many diagnostic situations, making a decision in a binary mode is both difficult and

impractical. Image findings may not be obvious or clean-cut. There may be a consider-

able variation in the diagnostic confidence levels between the radiologists who

interpret the findings. As a result, a single pair of sensitivity and specificity values is
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insufficient to describe the full range of diagnostic perfor-

mance of a test.

Consider an example of 70 patients with solitary

pulmonary nodules who underwent plain chest radiogra-

phy to determine whether the nodules were benign or

malignant (Table 2). According to the biopsy results and/or

follow-up evaluations, 34 patients actually had malignan-

cies and 36 patients had benign lesions. Chest radiographs

were interpreted according to a five-point scale: 1

(definitely benign), 2 (probably benign), 3 (possibly

malignant), 4 (probably malignant), and 5 (definitely

malignant). In this example, one can choose from four

different cutoff levels to define a positive test for

malignancy on the chest radiographs: viz. 2 (i.e., the

most liberal criterion), 3, 4, and 5 (i.e., the most

stringent criterion). Therefore, there are four pairs of

sensitivity and specificity values, one pair for each cutoff

level, and the sensitivities and specificities depend on the

cutoff levels that are used to define the positive and

negative test results (Table 3). As the cutoff level

decreases, the sensitivity increases while the specificity

decreases, and vice versa.

To deal with these multiple pairs of sensitivity and

specificity values, one can draw a graph using the sensitivi-

ties as the y coordinates and the 1-specificities or FPRs as

the x coordinates (Fig. 1A). Each discrete point on the

graph, called an operating point, is generated by using

different cutoff levels for a positive test result. An ROC

curve can be estimated from these discrete points, by

making the assumption that the test results, or some

unknown monotonic transformation thereof, follow a

certain distribution. For this purpose, the assumption of a

binormal distribution (i.e., two Gaussian distributions: one

for the test results of those patients with benign solitary

pulmonary nodules and the other for the test results of

those patients with malignant solitary pulmonary nodules)

is most commonly made (1, 2). The resulting curve is called

the fitted or smooth ROC curve (Fig. 1B) (1). The estima-

tion of the smooth ROC curve based on a binormal distrib-

ution uses a statistical method called maximum likelihood

estimation (MLE) (3). When a binormal distribution is used,

the shape of the smooth ROC curve is entirely determined

by two parameters. The first one, which is referred to as a,

is the standardized difference in the means of the distribu-

tions of the test results for those subjects with and without

the condition (Appendix) (2, 4). The other parameter,

which is referred to as b, is the ratio of the standard

deviations of the distributions of the test results for those

subjects without versus those with the condition (Appendix)

(2, 4). Another way to construct an ROC curve is to

connect all the points obtained at all the possible cutoff

levels. In the previous example, there are four pairs of FPR

and sensitivity values (Table 3), and the two endpoints on

the ROC curve are 0, 0 and 1, 1 with each pair of values
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Table 2. Results from Plain Chest Radiography of 70 Patients with Solitary Pulmonary Nodules

Reference Radiologist’s Interpretation

Standard Result Definitely Benign Probably Benign Possibly Malignant Probably Malignant Definitely Malignant Total

Benign 8 11 8 7 2 36

Malignant 3 4 4 16 7 34

Total 11 15 12 23 9 70

Note. Data are numbers of patients with the given result in a fictitious study of plain chest radiography in which 34 patients had malignancies and 36 had

benign lesions.

Table 1. The Decision Matrix. Sensitivity and Specificity of a

Test are Defined as TP/D+ and TN/D , Respectively

True Condition Status

Test Result Positive Negative Total

Positive TP FP T+

Negative FN TN T

Total D+ D

Note. TP: true positive = test positive in actually positive cases, FP:

false positive = test positive in actually negative cases, FN: false negative

= test negative in actually positive cases, TN: true negative = test negative

in actually negative cases

Table 3. Sensitivity, Specificity, and FPR for the Diagnosis of

Malignant Solitary Pulmonary Nodules at Each Cutoff

Level from the Plain Chest Radiography Study

Test Positive If Greater 

Than or Equal To
Sensitivity Specificity FPR

2: Probably benign 0.912 (31/34) 0.222 (8/36)0 0.778

3: Possibly malignant 0.794 (27/34) 0.528 (19/36) 0.472

4: Probably malignant 0.676 (23/34) 0.750 (27/36) 0.250

5: Definitely malignant 0.206 (7/34)0 0.944 (34/36) 0.056

Note. These data are obtained from the results in Table 2. FPR is

1-specificity.



corresponding to the FPR and sensitivity, respectively. The

resulting ROC curve is called the empirical ROC curve (Fig.

1C) (1). The ROC curve illustrates the relationship between

sensitivity and FPR. Because the ROC curve displays the

sensitivities and FPRs at all possible cutoff levels, it can be

used to assess the performance of a test independently of

the decision threshold (5). 

Area Under the ROC Curve: a Measure of Overall
Diagnostic Performance

Several summary indices are associated with the ROC

curve. One of the most popular measures is the area under

the ROC curve (AUC) (1, 2). AUC is a combined measure

of sensitivity and specificity. AUC is a measure of the

overall performance of a diagnostic test and is interpreted

as the average value of sensitivity for all possible values of

specificity (1, 2). It can take on any value between 0 and 1,

since both the x and y axes have values ranging from 0 to

1. The closer AUC is to 1, the better the overall diagnostic

performance of the test, and a test with an AUC value of 1

is one that is perfectly accurate (Fig. 2). The practical lower

limit for the AUC of a diagnostic test is 0.5. The line

segment from 0, 0 to 1, 1 has an area of 0.5 (Fig. 2). If we

were to rely on pure chance to distinguish those subjects

with versus those without a particular disease, the resulting

ROC curve would fall along this diagonal line, which is

referred to as the chance diagonal (Fig. 2) (1, 2). A diagnos-
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A B

Fig. 1. ROC curves from a plain chest radiography study of 70
patients with solitary pulmonary nodules (Table 3).
A. A plot of test sensitivity (y coordinate) versus its false positive
rate (x coordinate) obtained at each cutoff level.
B. The fitted or smooth ROC curve that is estimated with the
assumption of binormal distribution. The parametric estimate of the
area under the smooth ROC curve and its 95% confidence interval
are 0.734 and 0.602 ~ 0.839, respectively.
C. The empirical ROC curve. The discrete points on the empirical
ROC curve are marked with dots. The nonparametric estimate of
the area under the empirical ROC curve and its 95% confidence
interval are 0.728 and 0.608 ~ 0.827, respectively. The nonpara-
metric estimate of the area under the empirical ROC curve is the
summation of the areas of the trapezoids formed by connecting the
points on the ROC curve.
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tic test with an AUC value greater than 0.5 is, therefore, at

least better than relying on pure chance, and has at least

some ability to discriminate between subjects with and

without a particular disease (Fig. 2). Because sensitivity and

specificity are independent of disease prevalence, AUC is

also independent of disease prevalence (1, 5).

AUC can be estimated both parametrically, with the

assumption that either the test results themselves or some

unknown monotonic transformation of the test results

follows a binormal distribution, and nonparametrically

from the empirical ROC curve without any distributional

assumption of the test results (Figs. 1B, C). Several

nonparametric methods of estimating the area under the

empirical ROC curve and its variance have been described

(6 8). The nonparametric estimate of the area under the

empirical ROC curve is the summation of the areas of the

trapezoids formed by connecting the points on the ROC

curve (Fig. 1C) (6, 7). The nonparametric estimate of the

area under the empirical ROC curve tends to underesti-

mate AUC when discrete rating data (e.g., the five-point

scale in the previous example) are collected, whereas the

parametric estimate of AUC has negligible bias except

when extremely small case samples are employed (2, 4).

For discrete rating data, the parametric method is,

therefore, preferred (2). However, when discrete rating

data are collected, if the test results are not well distributed

across the possible response categories (e.g., in the

previous example, those patients with actually benign

lesions and those patients with actually malignant lesions

tend to be rated at each end of the scale, 1 = definitely

benign and 5 = definitely malignant, respectively), the data

may be degenerate and, consequently, the parametric

method may not work well (2, 4). Using the nonparametric

method is an option in this case, but may provide even

more biased results than it normally would (2). For contin-

uous or quasi-continuous data (e.g., a percent-confidence

scale from 0% to 100%), the parametric and nonparamet-

ric estimates of AUC will have very similar values and the

bias is negligible (2). Therefore, using either the parametric

or nonparametric method is fine in this case (2). In most

ROC analyses of radiological tests, discrete rating scales

with five or six categories (e.g., definitely absent, probably

absent, possibly present, probably present and definitely

present) are used, for which the parametric method is

recommended unless there is a problem with degenerate

data. Data collection in radiological ROC studies is further

discussed in a later section.

AUC is often presented along with its 95% confidence

interval (CI). An AUC of a test obtained from a group of

patients is not a fixed, true value, but a value from a

sample that is subject to statistical error. Therefore, if one

performs the same test on a different group of patients

with the same characteristics, the AUC which is obtained

may be different. Although it is not possible to specifically

define a fixed value for the true AUC of a test, one can

choose a range of values in which the true value of AUC

lies with a certain degree of confidence. The 95% CI gives

the range of values in which the true value lies and the

associated degree of confidence. That is to say, one can be

95% sure that the 95% CI includes the true value of AUC

(9, 10). In other words, if one believes that the true value

of AUC is within the 95% CI, there is a 5% chance of its

being wrong. Therefore, if the lower bound of the 95% CI

of AUC for a test is greater than 0.5, then the test is statis-

tically significantly better (with a 5% chance of being

wrong or a significance level of 0.05) than making the

diagnostic decision based on pure chance, which has an

AUC of 0.5.

Comparing the Areas Under the ROC Curves:
Comparing Overall Diagnostic Performance

Since AUC is a measure of the overall performance of a

diagnostic test, the overall diagnostic performance of

different tests can be compared by comparing their AUCs.

The bigger its AUC is, the better the overall performance

of the diagnostic test. When comparing the AUCs of two

tests, equal AUC values mean that the two tests yield the
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Fig. 2. Four ROC curves with different values of the area under
the ROC curve. A perfect test (A) has an area under the ROC
curve of 1. The chance diagonal (D, the line segment from 0, 0 to
1, 1) has an area under the ROC curve of 0.5. ROC curves of
tests with some ability to distinguish between those subjects with
and those without a disease (B, C) lie between these two
extremes. Test B with the higher area under the ROC curve has
a better overall diagnostic performance than test C.



same overall diagnostic performance, but does not

necessarily mean that the two ROC curves of the two tests

are identical (3). Figure 3 illustrates two ROC curves with

equal AUCs. The curves are obviously not identical.

Although the AUCs and, therefore, the overall perfor-

mances of the two tests are the same, test B is better than

test A in the high FPR range (or high sensitivity range),

whereas test A is better than test B in the low FPR range

(or low sensitivity range) (Fig. 3). The equality of two ROC

curves can be tested by using the two parameters, a and b,

instead. Because the shape of a binormal smooth ROC

curve can be completely specified by the two parameters,

a and b, the equality of the two ROC curves under the

binormal assumption can be assessed by testing the

equality of the two sets of parameters, a and b, i.e. by

comparing the two sets of values from the two ROC

curves. The null hypothesis and alternative hypothesis of

the test are H0: a1 = a2 and b1 = b2 versus H1: a1 a2 or

b1 b2, respectively, where 1 and 2 denote the two differ-

ent ROC curves (2, 3). According to this method, the ROC

curves and, consequently, the diagnostic performances of

different tests are considered to be different, unless the

ROC curves are identical: in other words, unless they yield

equal sensitivities for every specificity between 0 and 1 or

equal specificities for every sensitivity between 0 and 1 (4).

Sensitivity at a Particular FPR and Partial Area Under
the ROC Curve

In some clinical settings, when comparing the perfor-

mances of different diagnostic tests, one may be interested

in only a small portion of the ROC curve and comparing

the AUCs and the overall diagnostic performance may be

misleading. When screening for a serious disease in a high-

risk group (e.g., breast cancer screening), the cutoff range

for a positive test should be chosen in such a way as to

provide good sensitivity, even if the FPR is high, because

false negative test results may have serious consequences.

On the other hand, in screening for a certain disease,

whose prevalence is very low and for which the

subsequent confirmatory tests and/or treatments are very

risky, a high specificity and low FPR is required. If the

cutoff range for a positive test is not adjusted accordingly,

almost all of the positive decisions will be false positive

decisions, resulting in many unnecessary, risky follow-up

examinations and/or treatments. In Figure 3, although the

AUCs and overall performances of the two tests are the

same, in the former diagnostic situation requiring high

sensitivity, test B would be better than test A, whereas in

the latter situation requiring a low FPR, test A would be

better than test B. AUC, as a measure of the overall

diagnostic performance, is not helpful in these specific

diagnostic situations. The diagnostic performance of a test

should be judged in the context of the diagnostic situation

to which the test is applied. And, depending on the specific

diagnostic situation, only a portion of the overall ROC

curve may need to be considered.

One way to consider only a portion of an ROC curve is

to use the ROC curve to estimate the sensitivity at a partic-

ular FPR, and to compare the sensitivities of different ROC
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Fig. 3. Two ROC curves (A and B) with equal area under the
ROC curve. However, these two ROC curves are not identical. In
the high false positive rate range (or high sensitivity range) test B
is better than test A, whereas in the low false positive rate range
(or low sensitivity range) test A is better than test B.

Fig. 4. Schematic illustration of a comparison between the
sensitivities of two ROC curves (A and B) at a particular false
positive rate and comparison between two partial ROC areas. For
this example, the false positive rate and partial range of false
positive rate (e1 e2) are arbitrarily chosen as 0.7 and 0.6 ~ 0.8,
respectively.



curves at a particular FPR (Fig. 4). Another way is to use

the partial area under the ROC curve (Fig. 4) (11, 12).

Partial ROC area is defined as the area between two FPRs

or between two sensitivities. The partial area under the

ROC curve between two FPRs, FPR1 = e1 and FPR2 = e2,

can be denoted as A(e1 FPR e2) (2). Unlike AUC,

whose maximum possible value is always 1, the magnitude

of the partial area under the ROC curve is dependent on

the two FPRs chosen. Therefore, the standardization of the

partial area by dividing it by its maximum value is

recommended and Jiang et al. (12) referred to this

standardized partial area as the partial area index. The

maximum value of the partial area between FPR1 = e1 and

FPR2 = e2 is equal to the width of the interval, e2 e1. The

partial area index is interpreted as the average sensitivity

for the range of FPRs or specificities chosen (1, 2). 

Data Collection in Radiological ROC Studies

Unlike in the case of many laboratory tests, the interpre-

tation of most radiological tests is qualitative and there are

several ways to express the reader’s confidence in the

presence of a disease, namely a binary result which is

either positive or negative for the disease, a discrete rating

scale such as a five-point scale, and a continuous or quasi-

continuous scale such as a percent-confidence scale from

0% to 100% (2). The first approach is inadequate for ROC

analysis, however, the second and third approaches are

appropriate (2). In most of the ROC analyses of radiologi-

cal tests which have been conducted to date, a discrete

rating scale with five or six categories has been used.

Rockette et al. (13) performed a study to assess how the

estimates of performance on ROC curves are affected by

the use of a discrete five-point scale versus a continuous

percent-confident scale. They compared the AUCs

obtained with the two different scales in the case of

abdominal CTs used for detecting abdominal masses and

suggested that the discrete rating or continuous scales are

often not significantly different, and can be used

interchangeably in image-evaluation ROC studies,

although they recommended continuous scales for routine

use in radiological ROC studies, because of their potential

advantages in some situations (13). Having as many

categories as possible or using a continuous or quasi-

continuous scale is desirable theoretically (14) and has

been shown to produce results essentially equivalent to

those of discrete scales, when the latter produce well-

distributed operating points (15).

Software for ROC Analysis

Several software programs that are frequently used for

ROC analysis are available on the Internet.

ROCKIT, which is available at http://xray.bsd.uchicago.

edu/krl/roc_soft.htm (accessed December 31, 2003), is a

program for parametric ROC analysis that combines the

features of ROCFIT, LABROC, CORROC2, CLABROC

and INDROC. It estimates the smooth ROC curve and its

AUC, 95% CI of AUC, and the parameters a and b on the

basis of a binormal distribution. ROCKIT tests the statisti-

cal significance of the differences between two paired (i.e.,

two ROC curves from the same group of patients),

partially paired, or unpaired (i.e., two ROC curves from

two different groups of patients, viz. one curve each from

each group of patients) ROC curves. The difference

between two AUCs (i.e., the difference in the overall

diagnostic performance of the two tests) is tested with the z

test. Differences in the parameters a and b of two ROC

curves (i.e., the equality of the two ROC curves) are tested

using the bivariate chi-square test, as presented by Metz et

al (2, 4). ROCKIT also estimates the sensitivity at a particu-

lar FPR and tests the statistical significance of the differ-

ence between the two sensitivities on the two curves at a

particular FPR by means of the z test.

PlotROC.xls, which is available at http://xray.bsd.

uchicago.edu/krl/roc_soft.htm (accessed December 31,

2003), is a Microsoft Excel 5.0 (Microsoft, Redmond, WA,

U.S.A.) macro sheet which takes the a and b parameter

values based on the assumption of a binormal distribution

to plot a smooth ROC curve.

MedCalc (MedCalc Software, Mariakerke, Belgium),

which is available at http://www.medcalc.be (accessed

December 31, 2003), is a statistical package that offers

nonparametric ROC analysis. It provides the empirical

ROC curve and nonparametric estimate of the area under

the empirical ROC curve with its 95% CI, based on the

method developed by Hanley et al. (7). A comparison

between two paired ROC curves is available and the statis-

tical significance of the difference between two AUCs is

calculated with the z test, as described by Hanley et al.

(16). SPSS version 10.0 (SPSS Inc., Chicago, IL, U.S.A.)

also provides the empirical ROC curve and nonparametric

estimate of the area under the empirical ROC curve and its

95% CI, which are calculated using a method similar to

that of Medcalc. However, it does not provide a statistical

comparison between ROC curves.

Partarea.for, which is available at http://www.bio.ri.

ccf.org/Research/ROC (accessed December 31, 2003), is a

Park et al.
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FORTRAN program designed to estimate the partial area

under the smooth ROC curve between two FPRs, based on

the method developed by McClish (11). It also tests the

statistical significance of the difference between the two

partial areas of two ROC curves using the z test. This

program should be used in conjunction with a parametric

program such as ROCKIT. To estimate the partial area, it

requires the a and b parameter estimates, along with the

variances (a) and (b) and the covariance (a, b) of an ROC

curve, which can be obtained by means of a parametric

program. When comparing two partial areas of two ROC

curves it also requires the covariances (a1, a2), (a1, b2), (b1,

a2) and (b1, b2), which can be obtained using a parametric

program (note : the subscripts 1 and 2 denote two different

ROC curves). This program needs to be compiled before it

can be used on a DOS or Windows-based computer.

Summary

The ROC curve is a plot of test sensitivity along the y

axis versus its 1-specificity or FPR along the x axis.

In ROC analyses of radiological tests, discrete rating

scales with five or six categories are widely used,

however, it would be preferable to have as many

categories as possible or to use a continuous or quasi-

continuous scale for data collection.

AUC, which is interpreted as the average value of

sensitivity for all possible values of specificity, is a

measure of the overall performance of a diagnostic

test. AUC can take on any value between 0 and 1,

where a bigger value suggests the better overall

performance of a diagnostic test.

The nonparametric estimate of the area under the

empirical ROC curve tends to underestimate AUC

when discrete rating data are collected, whereas the

parametric estimate of AUC has negligible bias, except

when extremely small case samples are employed.

Therefore, when discrete rating scales are employed,

the use of a parametric method is recommended.

The diagnostic performance of a test should be judged

in the context of the diagnostic situation to which the

test is applied. The partial ROC area and sensitivity at

a particular FPR are useful indicators, when only a

portion of the entire ROC curve needs to be consid-

ered.

Appendix

Parameters a and b under assumption of binormal

distribution (2)

If the data are actually binormal or if a known function

can transform the data so that it follows a binormal distrib-

ution, parameters a (the standardized difference in the

means of the distributions of the test results for those

subjects with and without the condition) and b (the ratio of

the standard deviations of the distributions of the test

results for those subjects without versus those with the

condition) can be estimated directly from the means and

standard deviations of the distributions of those subjects

with and without the condition. Thus, we will have

a = (u1 u0) / 1; b = 0 / 1

where ui is the mean and i is the standard deviation of the

test results, i = 0 (without the condition), 1 (with the

condition).

For discrete rating data, we hypothesize discrete rating

scale test results, T0 (without the condition) and T1 (with

the condition) as a categorization of two latent continuous

scale random variables, T*0 and T*1, respectively, each of

which has a normal distribution. For a discrete rating scale

test result, Ti, which can take on one of the K-ordered

values, where i = 0 (without the condition) or 1 (with the

condition), we assume that there are K 1 unknown

decision thresholds c1, c2, ..., cK 1, so that

If T*i c1, then Ti = 1

If cj 1 < T*i cj, then Ti = j, j = 2, 3, ..., K - 1

If T*i > cK 1, then Ti = K

Because we assume that both T*0 and T*1 have normal

distributions, then

T*0 ~ N ( 0, 0
2); T*1 ~ N ( 1, 1

2)

where 0, 1 are the means and 0
2, 1

2 are the variances of

the normal distributions. Therefore, we will have

a = ( 1 0) / 1; b = 0 / 1
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