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Receiver-Operating Characteristic (ROC) Plots: A Fundamental Evaluation Tool in

Clinical Medicine

Mark H. Zweig’ and Gregory Campbell2

The clinical performance of a laboratory test can be

described in terms of diagnostic accuracy, or the ability to

correctly classify subjects into clinically relevant sub-

groups. Diagnostic accuracy refers to the quality of the

information provided by the classification device and

should be distinguished from the usefulness, or actual

practical value, of the information. Receiver-operating

characteristic (ROC) plots provide a pure index of accu-

racy by demonstrating the limits of a test’s ability to

discriminate between alternative states of health over the

complete spectrum of operating conditions. Furthermore,

ROC plots occupy a central or unifying position in the

process of assessing and using diagnostic tools. Once the

plot is generated, a user can readily go on to many other

activities such as performing quantitative ROC analysis

and comparisons of tests, using likelihood ratio to revise

the probability of disease in individual subjects, selecting

decision thresholds, using logistic-regression analysis,

using discriminant-function analysis, or incorporating the

tool into a clinical strategy by using decision analysis.

Indexing Terms: receiver-operating characteristic cuives data

analysis . diagnostic accuracy . likelihood ratio diagnostic

threshold test efficiency . predictive value

Reports evaluating some clinical aspect of laboratory test

performance frequently appear in this and many other

journals. However, the elements of performance that are

addressed vary. What is clinical performance? Terms com-

monly used include sensitivity and specificity, efficiency,

accuracy, utility, value, worth, effectiveness, usefulness,

and efficacy. Often the word diagnostic precedes the term,

i.e., diagnostic value or diagnostic efficiency. Other terms

such as predictive value (positive and negative), likelihood

ratio, odds ratio, and likelihood quotient have been used.

The meaning of these terms is often vague and variable,

particularly utility, worth, value, usefulness, and effective-

ness, but even diagnostic accuracy seems to mean different

things to different people.

As laboratorians, we are often interested in how well a

test performs clinically, because we are considering replac-

ing an existing test with a newer one, adding a new test to

our laboratory’s menu, eliminating tests where possible, or

just because we want to know something about the value of

what we are doing. In the first six issues of Clinical

Chemistiy during 1991, at least 18 studies addressed ques-

tions about clinical performance. Some of these studies

assessed test performance merely by calculating the mean

test results for the various sample groups they studied.

Others calculated sensitivity, specificity, efficiency, and (or)

predictive value. Five of the 18 studies included receiver-

(or relative-) operating characteristic (ROC) plots to repre-

sent test performance.3

It is apparent that both the concepts and the measures of

performance varied from study to study. The lack of a

standardized approach to performance makes for a confus-

ing situation in which the investigators and readers fail to

communicate and understand clearly the information of

interest to both groups. Without agreement about the

concept of performance and how it should be measured and

represented, the struggle to understand the meaning of the

data gathered is likely to continue.

Here we offer a definition of accuracy to be used as a

measure of performance, and review the principles and

application of the ROC plot as an index of diagnostic

accuracy (1). ROC plots are fundamental; their pivotal

position provides a unifying concept in the process of test

evaluation (Figure 1). Once the data are collected and the

plots generated, numerous other assessments, compari-

sons, indices, and analyses can follow. Even clinical deci-

sion analysis (not shown), a complex but important tool for

medical decision making, involves the use of data gener-

ated for ROC plotting. It is this central position of ROC

plots that we will describe in this review (Figure 1).

ROC methodology is based on statistical decision theory

and was developed in the context of electronic signal

detection and problems with radar in the early 1950s (2).

An ROC-type plot was used in the late 1950s to describe the

abffity of an automatedPap smear analyzer to discriminate

between smears with and without malignant cells. Curves

of true-negative vs false-negative results were used to

select an operating point for the instrument that would

provide an optimum trade-off between false-positive and

false-negative results (3).

By the mid-1960s, ROC plots had been used in experi.

mental psychology and psychophysics (2). Following work

in psychophysics by Green and Swets (4), Leo Lusted, a

radiologist, suggested using ROC analysis in medical deci-

sion making in 1967 and began using it in studies of

medical imaging devices in 1969 (5, 6). Others wrote about

it (7), and eventually ROC analysis made its way into other

areas of medicine.

Laboratory tests are ordered to help answer questions

about patient management. How much help an individual

test result provides varies and, in any case, is a highly
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complicated issue. Management decisions and strategies

are complex activities requiring the physician to consider

probabilities of disease, quality of the data available, effec-

tiveness of various treatmentimanagement alternatives,

probability of outcomes, value (and cost) of outcomes to the

patient, etc. Many types of clinical data (including labora-

tory results) are usually integrated into a complex decision

process. Most often, a single laboratory test result is not the

sole basis for a diagnosis or a patient-management deci-

sion. Therefore, some have criticized the practice of evalu-

ating the diagnostic performance of a test as if it were used

alone. However, each clinical tool, whether it is a clinical

chemistry test, an electroencephalogram, an electrocardio-

gram, a nuclide scan, a roentgenogram, a biopsy, a view

through an orifice, a pulmonary-function test, or a sono-

gram, is meant to make some definable discrimination. It is

important to know just how inherently accurate each

diagnostic discriminator (test) is. We emphasize that as-

sessing accuracy, without engaging in comprehensive clin-

ical decision analysis, is a valid and useful activity for

clinical laboratories. It is far more feasible and less labori-

ous than decision analysis, the latter being important in

devising strategies and policies for patient management

but unnecessary for addressing a number of clinical labo-

ratory issues.

Diagnostic Accuracy and Usefulness

Accuracy: Quality of the information

Diagnostic accuracy is the most fundamental character-

istic of the test itself as a classification device; it measures
a test’s ability to discriminate among alternative states of

health. In its simplest form, it is the ability to distinguish

between just two states of health or circumstances. It

involves distinguishing between health and disease, be-

nign and malignant disease, responders and nonresponders

to therapy, and predicting who will and who will not get

sick.

Indeed, the ability of the test to distinguish between the

relevant alternative states or conditions of the subject (i.e.,

diagnostic accuracy) is the most basic property of the test as

an aid in decision making. This property is the place to

start when assessing what contribution a test can make to

the patient-management process. If the test cannot provide

the relevant distinction, it will not be valuable for patient

care. On the other hand, once we establish that a test does

discriminate well, we can explore its role in the process of

patient management to determine the practical usefulness

of the information in a management strategy. This explo-

ration is clinical decision analysis, and measures of test

accuracy are part of the important input used to carry out

such analysis.

Usefulness: Practical Clinical Value of the Information

Usefulness refers to the practical value of the informa-

tion in managing patients [Swets and Pickett term this

efficacy (8)]. A test may have considerable ability to dis-

criminate, yet be of little practical value for patient care.

This could happen for several reasons: the cost or undesir-

ability of false results may be so high that there is no

decision threshold for the test for which the trade-off

between sensitivity and specificity is acceptable; there may

be a less invasive or less expensive means to obtain

comparable information; the test may be so expensive or

technically demanding that its availability is limited; or

the test could be so uncomfortable or invasive that subjects

will not submit to it.

We note that exploration of the usefulness of medical

information, such as test data, involves many factors or

considerations that are not properties of the test system or

device, but rather properties of the circumstances of the

clinical application. These include the prior probability of

disease (prevalence), the possible outcomes and relative

values of these outcomes, the costs to the patient (and

others) of incorrect information (false-positive and false-

negative classifications), and the costs and benefits of

various treatment options. These factors may affect the

usefulness of the test; therefore, it is helpful to separate,

conceptually, the characteristic that is fundamental and

inherent in tests themselves, discrimination ability, from

the interaction that results when this discrimination abil-

ity is affected by external factors in the course of patient

management.

Accuracy vs Usefulness

Therefore, we define diagnostic accuracy as the ability to

discriminate between two subclasses of subjects, when

there is some clinically relevant reason to do such. This

concept of accuracy refers to the quality of the information

(classification) provided by the test and should be distin-

guished from the practical usefulness of the information (2).

Both are aspects of test performance. Second, we suggest

that assessment of accuracy is the place to start in evalu-

ating test performance. If a test cannot discriminate be-

tween clinically relevant subclasses of subjects, there is

little reason to explore a possible clinical role. If, on the

other hand, a test exhibits substantial ability to discrimi-

nate, then by examining the degree of accuracy of the test

or by comparing its accuracy with that of other tests, we

can decide whether to continue with a more complex

assessment of its role in management of patient care

(decision analysis).

Assessing Test Performance in the Clinical Laboratory

How does this concept of accuracy relate to laboratory

medicine? Consider some questions about test performance

raised in the 18 reports in Clinical Chemistry mentioned

earlier

1. How well do serum amylase or lipase results discrim-
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inate between acute pancreatitis and other causes of ab-

dominal pain?

2. How well can assay of human papillomavirus DNA in

exfoliated cervical cells by nucleic acid hybridization detect

papillomavirus infection?

3. Can urinary neopterin concentration discriminate be-

tween active and inactive systemic lupus erythematosus?

4. Can parathyrin-related protein concentration dis-

criminate hypercalcemia of malignancy from other causes

of hypercalcemia?

5. How do total human chorionic gonadotropin and its

free a-subunit compare in screening maternal sera for

Down syndrome?

6. How does serum troponin T compare with creatine

kinase (CK), CK-MB, and myoglobin in the diagnosis of

acute myocardial infarction (AMI)?

7. How does carbonic anhydraae m in serum compare

with CK in the detection of muscular dystrophy?

In all of these examples, a question of discrimination is

being posed; this is obvious in items 1, 3, and 4, but is also

true in the others. In patients presenting to an emergency

room with chest pain, we try to discriminate between AMI

and other causes of chest pain. When screening pregnant

women for Down syndrome, we are distinguishing between

the presence and absence of the condition. Most clinical

questions involve distinction or discrimination between

two or more alternatives. Although very often there are

more than two alternative states of health at issue, the

clinical question can still be framed in terms of a dichot-

omy: the presence or absence of some state. For example,

among elderly persons with anemia, we may want to

discriminate between iron deficiency and all other causes.

In assessing the performance of a test, the question is: Do

the test result distributions from the two (or more) sub-

groups differ? If they do not differ, obviously the test results

cannot discriminate between the two subgroups; accuracy

is nil. If the test results do not overlap at all, then there is

perfect discrimination, i.e., perfect accuracy for those sub-

jects. Most often the distribution of results partially over-

lap.

As clinical chemists operating a clinical laboratory, we

are required to make practical decisions: Which of the new

automated CK-MB assays should we use in our laboratory?

Should we replace our electrophoretic assay with a faster,

easier immunometric assay? Should we offer plasma apo-

lipoprotein determinations? Should we offer an immunoas-

say for prostatic acid phosphatase instead of a conventional

enzymatic assay? Should we replace prostatic acid phos-

phatase with prostate-specific antigen?

Adding tests, replacing tests, or updating methodology

may require some judgment about diagnostic performance.

These are some of the reasons why such studies appear

frequently in this journal. Assessing accuracy helps ad-

dress these practical questions. If a study indicates that an

automated CK-MB assay discriminates between patients

with and without AM! as well as or better than an existing

electrophoretic method, we would consider adopting the

new method. If an enzymatic acid phosphatase assay is

shown to be as accurate as an RIA of prostatic acid

phosphatase in identifying prostatic cancer in elderly men

with suspicious signs, we would retain the simpler, less

expensive technology.

Laboratorians considering replacing one methodology

with another will often compare test results from the two

assays by using linear-regression analysis of the split

sample data. Take CK-MB, for example. A laboratory

considering using an automated enzyme immunometric

assay instead of electrophoresis may run a comparison by

assaying patients’ specimens by both systems to determine

the degree of agreement between the existing method and

the putative replacement. Underlying this approach is the

assumption that the existing method gives good results and

is the standard against which the new candidate is as-

sessed. However, suppose the candidate method is actually

a more accurate discriminator. Where the newer test is

more accurate, it will disagree with the older. Unless the

cause for the disagreement is discovered, the new test may

be judged less accurate and undesirable when, in fact, it

might be more accurate. A more valid approach to deter-

mine which is superior is to assess the accuracy of both

methods against the truth. (At times, expressing truth in

terms of outcome rather than diagnosis may be more

feasible or relevant. This is particularly appealing when a

good gold standard for diagnosis is lacking, such as for

AM!.) This assessment against the truth is more difficult to

perform, but yields far more relevant and valid informa-

tion. The value of the study justifies the greater time and

effort required, and the study, if published and available to

all, need not be performed in every laboratory every time

this conversion is considered.

Diagnostic Sensitlvfty/Specificity

We have defined diagnostic accuracy and tried to indi-

cate its usefulness to laboratorians, but how is it measured

and expressed? It is measured as diagnostic sensitivity and

specificity, concepts well known for years in laboratory

medicine (9). (Sensitivity and specificity in this review

always refer to the diagnostic, rather than analytical,

type.) Currently, laboratorians regularly think about per-

formance of tests in these terms; they are commonly calcu-

lated, reported in the scientific literature, and may appear

in manufacturer’s literature as well. Thus, the importance

of the underlying concept of test accuracy is already recog-

nized. However, reporting only one value for sensitivity

and specificity provides a possibly misleading and even

hazardous oversimplification of accuracy. Tests do not have

only one sensitivity or specificity, but many. Therefore,

calculating one or just a few sensitivity/specificity pairs

provides only a brief glimpse at a test’s performance, a

glimpse that may be far from revealing a test’s real

diagnostic abilities.

Indeed, tests can and do exhibit the complete spectrum of

sensitivities or of specificities; it is the pairs that are

limited and describe the accuracy of a test in discriminat-

ing between states of health. One can always identify a

decision threshold (decision level, decision criterion, “cut-

ofi” value) that corresponds to a diagnostic sensitivity of

100%, or one that yields sensitivities of -95% or 90%, etc.

For one test, however, the specificity corresponding to 95%

sensitivity might be 97%, whereas for another test applied

to the same clinical question the corresponding specificity

might be only 70%. For any test in which the distributions

of results from the two categories of subjects overlap, there

are inevitable trade-offs between sensitivity and specificity.

As the decision threshold, used to classify the subjects as

positive or negative based on test results, is varied over the

spectrum of possible results, the sensitivity and specificity

will move in opposite directions. As one increases, the other

decreases. For each decision threshold, there is a combina-

tion of sensitivity and specificity. Which one(s) describe(s)

the tests’ accuracy? Only the entire spectrum of sensitivity/

specificity pairs provides a complete picture of test accu-

racy.

Graphical Displays of Diagnostic Accuracy

HOC plots provide a view of this whole spectrum of

sensitivities and specificities because all possible sensitiv-
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ity/specificity pairs for a particular test are graphed (2, 7,

10-15). A decision threshold must be chosen for a test to be

used in patient care, but there is no need to choose any

particular decision threshold for assessing accuracy. In

fact, it is undesirable to do so, because assessing perfor-

mance at a single point may result in misleading impres-

sions about test performance, or in erroneous comparisons

between tests (11, 13). The HOC plot provides a compre-

hensive picture of the ability of a test to make the distinc-

tion being examined over all decision thresholds.

Two other commonly used ways to represent the clinical

results of a test are the dot diagram and the frequency

histogram. Like ROC, both report all of the data; we

strongly recommend that one of these three approaches be

used. Figure 2 shows a dot diagram of serum CK-BB

concentrations in two groups of subjects (16). All subjects

had presented to an emergency room with typical chest

pain suggestive of AM!. The obvious overlap in the distri-

bution of results from those who had an AM! and those who

did not results in trade-offs between sensitivity and speci-

ficity. If a decision threshold of 6 �g/L is chosen, the test

exhibits a sensitivity (correct identification of AM!) of

100%, but the specificity (identification of non-AM!) is only

-50%. Specificity can be raised by increasing the decision

threshold, but at CK-BB concentrations >7 �gfL, the

sensitivity decreases. For example, at 11 or 12 ug/L, spec-

ificity is 100%, but sensitivity falls to 48/50 or 96%. Al-

though it is apparent from this overlap that the test is not

perfectly accurate in discriminating between subjects with

AM! and those without, it is difficult to characterize the

degree of inaccuracy by using only this plot.

Figure 3 shows another commonly used representation, a

frequency histogram instead of a dot diagram. This Figure

is taken from a study of the ability of four assays to

discriminate between subjects with and without acute

pancreatitis (17). The two tests shown exhibit overlap in

non-

AMI AMI

FIg. 2. Dot diagram of serum CK-BB concentrations 16 h after onset
of symptoms in 70 subjects presenting to an emergency room with
typical chest pain

Fifty were eventually considered to have had myocardlal infarctIon; 20 were

not

Fig. 3. Frequency histograms of serum enzyme concentrations in 41

patients with pancreatitis (open bars, above the line) and 40 without

(19 gastrointestinal disease, 21 miscellaneous disorders; striped
bars, below the line)

Repnnted with permission from Loft and Lu (17)

results, but it is difficult to describe or characterize the

extent of overlap (accuracy) or to compare the accuracies of

the two tests. Figure 4 shows two HOC plots corresponding

to the two frequency-distribution histograms in Figure 3.

The frequency histograms for each test are reduced to one

HOC plot on a common scale.

The ROC Plot

The ROC graph is a plot of all of the sensitivity/specific-

ity pairs resulting from continuously varying the decision

threshold over the entire range of results observed. In each

case, the HOC plot depicts the overlap between the two

distributions by plotting the sensitivity vs 1 - specificity

for the complete range of decision thresholds. On they-axis

is sensitivity, or the true-positive fraction [defined as (num-

ber of true-positive test results)/(number of true-positive +

number of false-negative test results)l. This has also been

referred to as positivity in the presence of a disease or

condition. It is calculated solely from the affected subgroup.

On the x-axis is the false-positive fraction, or 1 - specificity

[defined as (number of false-positive results)/(number of

true-negative + number of false-positive results)]. It is an

index of specificity and is calculated entirely from the

unaffected subgroup. (Note that some authors plot specific-

ity, rather than 1 - specificity, on the x-axis.) Because the

true- and false-positive fractions are calculated entirely
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0

TRUE NEGATIVE FRACTION (1-SPECIFICITY)

Fig. 4. Nonparametrlc ROC plots of two serum enzyme assays,

based on the binned data as shown in Fig. 3

See text (FlOG analysis) for discussion of circled point on ROC curve for lipase

separately, by using the test results from two different

subgroups, the ROC plot is independent of the prevalence of

disease in the sample. Each point on the ROC plot repre-

sents a sensitivity/specificity pair corresponding to a par-

ticular decision threshold. A test with perfect discrimina-

tion (no overlap in the two distributions of results) has an

HOC plot that passes through the upper left corner, where

the true-positive fraction is 1.0, or 100% (perfect sensitivi-

ty), and the false-positive fraction isO (perfect specificity).

The theoretical plot for a test with no discrimination

(identical distributions of results for the two groups) is a

450 diagonal line from the lower left corner to the upper

right corner. Most plots fall in between these two extremes.

(If the ROC plot falls completely below the 450 diagonal,

this is easily remedied by reversing the criterion for “poe-

itivity” from “greater than” to “less than” or vice versa.)

Qualitatively, the closer the plot is to the upper left corner,

the higher the overall accuracy of the test.

Comparing Tests Visually with ROC Plots

When results from multiple tests have been obtained, the

HOC plots can be graphed together, as in Figure 4. The

relative positions of the plots indicate the relative accura-

cies of the tests. A plot lying above and to the left of another

plot indicates greater observed accuracy. In Figure 4, the

lipase assay exhibits greater observed accuracy than does

the amylase assay. In Figure 5, the ratio of high-density

lipoprotein (HDL) to total cholesterol is apparently more

accurate than total cholesterol in identifying coronary

artery disease (CAD) in a group of men. The ratio has a

lower false-positive fraction at any given true-positive

fraction; likewise, it has a higher true-positive fraction at

any particular false-positive fraction. Figure 6 illustrates

the ROC plots for two tests with greater accuracy than

those in Figures 4 and 5. The plots pass closer to the upper

left corner. The ability of dexamethasone suppression of

urinary free cortisol excretion and of urinary 17-hydroxy-

TRUE NEGATIVE FRACTION (1-SPECIFICITY)

Fig. 5. Nonparametrlc ROC plots of the ratio of high-density llpopro-
tern (HDL) to total cholesterol and of total cholesterol concentration
in 304 consecutive male patients who underwent coronary angle-

graphy for evaluation of suspected coronary artery (CAD) disease

(255 had clinically significant CAD; 49 did not)

All were classified as having clInically significant CAD or not, based on

anglographlc findings. Data from Kottke at at. (18)

1

0

FALSE POSITIVE FRACTION (SPECIFICITY)

1 0.8 0.6 0.4 0.2 0

0 0.2 0.4 0.6 0.8

TRUE NEGATIVE FRACTION (1-SPECIFICITY)

FIg. 6. Nonparametrlc ROC plots for dexamethasone suppression of

the urinaryexcretionof free cortisol (UFC) and 17-hydroxysterolds

(1 7HS) In distinguishing between pituitaty (94) and nonpituitary (24)
etiologiesIn 118 patients with Cushing syndrome

steroid excretion to discriminate those subjects with Cush-

ing syndrome having a pituitary etiology from those hay-
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ing a nonpituitary etiology is assessed here. (Diagnostic

accuracy was evaluated by using surgical or histopatholog-

ical diagnosis for the definitive classification of subjects.)

The plots are virtually identical. It is easy to appreciate

visually from Figure 6 that these two tests have essentially

the same accuracy in making the intended discrimination.

This assessment suggests that urinary free cortisol, a more

convenient assay, could replace the older, more traditional

17.hydroxysteroid determination for addressing this clini-

cal issue. Thus, the position of the plot (i.e., closeness to the

upper left corner vs closeness to the 450 diagonal) provides

qualitative information about the accuracy of a given test.

The relative positions of two or more plots (e.g., Figures 4,

5, and 6) provide a qualitative comparison of accuracies of

multiple tests. (The quantitative comparison with use of

statisticswill be discussed later.)

Generating the ROC Plot; Ties

Clinical data usually occur in one of two forms: discrete

or continuous. Most clinical laboratory data are continu-

ous, being generated from a measuring device with suffi-

cient resolution to provide observations on a continuum.

Measurements of electrolytes, therapeutic drugs, hor-

mones, enzymes, and tumor-marker concentrations, etc.,

are essentially continuous. Urinalysis dipstick results are

discrete data, as are rapid pregnancy-testing devices,

which give positive/negative results. Scales in diagnostic

imaging generally provide (discrete) ratings data with

categories such as definitely abnormal, probably abnormal,

equivocal, probably normal, and definitely normal.

A tie in laboratory data is of interest when a member of

the diseased group has the same result as does a member of

the nondiseased group. Such ties are more likely to occur

when there are few data categories (i.e., different results),

such as with coarse discrete data, rather than when the

number of different results is large, as with continuous

data. In radiology, where it may be convenient to categorize

radiographs on a five-point rating scale, ties may be com-

mon; such discrete ordinal data are called ratings data.

Both diseased and nondiseased individuals may have re-

sults in the “equivocal” category, for example. This tie

comes from grouping or “binning” the data into ordered

categories. In clinical laboratories, when observations are

made on a continuous scale, ties are much less likely unless

grouping into “bins” has occurred. Theoretically, if mea-

surements are exact enough, no two individuals would

have the same result on a continuous scale. However, the

resolution of results in the clinical laboratory is often not so

fine as to prevent this, and thus some ties will occur even

with continuous data. Binning continuous data increases

the chance for ties. Ties can be caused, then, either by the

intentional binning of data or by the degree of analytical

resolution of the method of observation. Figure 2 is an

example of continuous data displayed in a dot diagram with

no ties between AMI and non-AMI subjects. The interval or

category size was small because concentrations were esti-

mated to 0.1 pg/L and all results were considered individ-

ually. In Figure 3, however, where continuous data have

been binned into a few intervals, the frequency histogram

has introduced many ties. If individual results are used,

fewer ties are likely.

For both tied and untied data, one merely plots the

calculated (1 - specificity, sensitivity) points at all the

possible decision thresholds (observed values) of the test. It

is the graph of these points that is the ROC plot. For data

with no ties, adjacent points can be connected with hori-

zontal and vertical lines in a unique manner to give a

staircase figure (Figure 7). As the threshold changes, in-

clusion of a true-positive result in the decision rule pro-

duces a vertical line; inclusion of a false-positive result

produces a horizontal line. As the numbers of individuals in

the two groups increase, the steps in the staircase become

smaller and the plot usually appears less jagged. Because

this ROC plot uses all the information in the data directly

through the ranks of the test results in the combined

sample, it can also be called the nonparametric ROC plot.

The term nonparametric here refers to the lack of param-

eters needed to model the behavior of the plot, in contrast to

parametric approaches, discussed later, which rely on mod-

els with parameters to be estimated.

When there are ties in continuous data, both the true-

positive and false-positive fractions change simultane-

ously, resulting in a point displaced both horizontally and

vertically from the last point. Connecting such adjacent

points produces diagonal (nonhorizontal and nonvertical)

lines. For tied data, the correct path (if it exists) between
the two adjacent points is unknown. It could be the mini-

mal path (horizontal first, then vertical) or the maximal

path (vice versa). The straight diagonal line segment is the

average of the two most extreme paths and tends to

underestimate the plot for a diagnostically accurate test.

Often, ties are intentionally introduced in the display of

the test results (Figure 3). A common approach often

adopted in the clinical literature is to plot the ROC at only

a few points, by using only a few decision thresholds,

connecting adjacent points with straight line segments.

This may be convenient, but when the data are collapsed

into discrete categories with the number observed in each

one being listed, the original measurcinent scale and the

values of the individual test results are no longer used

except through these counts. The data are reduced to a 2 x

k table of counts, where k is the number of intervals. The

originally continuous amylase data in Figure 3 has been

collapsed into 25 intervals or categories of -40 U/L each,

not all of which contain data. The figure is essentially a 2 x

1
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Fig. 7. Nonparametric ROC plot of serum apolipoprotein A-I to B
ratios from same subjects as in Fig. 5

All results considered indMdually, with no binning. Data from Kottke et at. (18)
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16 table of counts or observations, because 9 of the inter-

vals contain no data. Figure 8 shows ROC plots for the ratio

apolipoprotein A-JIB. If, for ease of plotting, the continuous

data are grouped into intervals of 0-0.50, 0.51-1.00 g/L,

etc., the data are reduced to a table of counts of observa-

tions in these bins, and the ROC plot reflects only these

counts. Although this bin approach has the advantage of

plotting ease, it discards much of the data and introduces

many ties in the data (all data in the same bin are treated

as tied). If the points are few and far between, this approx-

imation can be poor and misrepresent the actual plot. Note

in Figure 8 that the eight-bin ROC plot connected with

diagonal lines is generally dominated from above by the

more exact and accurate unbinned staircase ROC plot.

Using all the data is more cumbersome; perhaps it is the

lack of readily available software for using the original

continuous data that encourages the display of such sim-

plified ROC plots.

A more analytical method, usable only with tied data

from the 2 x k table of counts, employs some parametric

model for fitting a curve. There are several good sources of

information for parametric ROC curve construction and

analyses based on such discrete data, including books by

Green and Swets (4) and Swets and Pickett (8). One

assumes that these counts are modeled by some paramet-

ric family of distributions and then estimates the param-

eters of the two distributions as well as the cutoffs that

define the intervals. A popular model is the so-called

binormal model, which assumes that the distributions are

the normal (gaussian) parametric family, with usually

different means and possibly different variances. (Note

that this does not imply that the distributions of the

original test results are gaussian.) Such assumptions

cannot be completely verified because the imagined dis-

tributions are usually not observed directly but are re-

flected only through the counts. Authors have disagreed

concerning the adequacy of these assumptions (19-24).

Other theories, involving different distributions such as

the logistic or negative exponential (25) to model the

counts, suffer similar drawbacks. Many software packages

facilitate the parametric approaches (see Table 2, later).

Although these parametric approaches may be appropri-

ate for radiologists dealing with ratings (discrete) data,

they are much less so for clinical laboratorians, who

usually already have a continuous scale for the data. In

contrast to ratings data, it makes much less sense to

collapse continuous data and introduce (or increase) ties

simply to use the parametric modeling theory of signal

detection, which was evolved to produce smooth curves for

ratings data. A different approach is to fit the plotted ROC

points directly to some mathematical function on the scale

of the ROC plot. Such an approach implicitly presumes a

parametric model. If this fit of the function to the ROC

plotted points is least squares, an additional flaw is that

the fit is based only on vertical errors, but here the errors

are in both the horizontal and vertical directions of the

ROC plot.

Table 1 lists the advantages and disadvantages of the

nonparametric as well as the parametric ROC plots. Ap-

proaches that introduce ties in essentially continuous data

from the laboratory have serious disadvantages. For con-

tinuous data, the nonparametric ROC is preferred. It

passes through all the observed points. This is attractive

because, for each observed threshold, the best (unbiased)

guesses of sensitivity, specificity, and area are the nonpa-

rametric ones. (This issue of unbiasedness will be discussed

later.) No data are discarded, unlike with the bin approach.

There is no need to impose a model, either directly by

picking a parametric family or indirectly by fitting a

function to the points on the ROC plot. Although one would

0

0 0.2 0.4 0.6 0.8

TRUE NEGATIVE FRACTION (1-SPECIFICITY)

Fig. 8. Nonparametric ROC plots of ratios of serum apolipoprotein

A-I to B, unbinned (“staircase”) and grouped into eight bins (diago-
nals)

Same subjects as in Fig. 5. Data from Kottke at at. (18)

Table 1. Advantages and Disadvantages of Two ROC

Approaches for Laboratory Data
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expect fewer ties with the nonparametric than with the

discretized parametric approach, a substantial number of

ties of test values between the diseased and the nondis-

eased groups may nonetheless occur. (For a few ties, the

nonparametric plot with diagonal line segments is still

very informative, especially if the diagonal line segments

are short, e.g., as in Figures 5-7.)

Advantages of ROC Plots

The ROC plot has the following advantages: It is simple,

graphical, and easily appreciated visually. It is a compre-

hensive representation of pure accuracy, i.e., discriminat-

ing ability, over the entire range of the test. It does not

require selection of a particular decision threshold because

the whole spectrum of possible decision thresholds is in-

cluded. It is independent of prevalence: No care need be

taken to obtain samples with representative prevalence; in

fact, it is usually preferable to have equal numbers of

subjects with both conditions. It provides a direct visual

comparison between tests on a common scale, whereas both

dot diagrams and frequency histograms require different

plots if the scales differ. It requires no grouping or binning

of data, as do frequency histograms. Its specificity and

sensitivity are readily accessible, in contrast to dot dia-

grams and frequency histograms.

Disadvantages of ROC Plots

Of the 18 papers mentioned earlier, only 5 included ROC

plots. Others had some data on sensitivity, specificity,

efficiency, and/or predictive value, but without ROC plot-

ting. Why such an elegant but simple tool has been under-

utilized by laboratorians is a puzzle. It is widely recognized

in medicine as a powerful way to represent the accuracy of

a signal detection system. Clinical laboratorians have writ-

ten about it and utilized it for years. Nevertheless, al-

though they embrace the concept, the laboratory commu-

nity has been slow to use this tool. Even when authors

include ROC plots in their publications, they frequently

underutilize them or even present them without further

comment, basing conclusions on other data.

There are apparent disadvantages of the ROC plot.

Unlike dot diagrams and frequency histograms, actual

decision thresholds are usually not displayed in the plot,

though they are known and used to generate the graph.

They are hidden from easy view. The number of subjects is

also not shown on the display (although it is in the dot

diagram), and as the sample sizes decrease, the ROC plots

tend to become increasingly jagged and bumpy. However,

even with large numbers of subjects, the plots may be

bumpy. The generation of plots and calculation of param-

eters is cumbersome without computer software. With

appropriate software, ROC plotting is quite readily done,

but friendly, flexible software is not widely available.

ROC AnalysIs

Confidence Intervals for Sensitivity and Specificity

Because different groups of patients selected at random

from a population can yield different ROC plots, such

sampling variability for a single ROC plot is often indi-

cated by reporting the variance or constructing a confi-

dence interval about a point or points on the ROC plot.

Moreover, because ROC plots can be treated either nonpa-

ranietrically or parametrically, the statistical estimation

(including confidence intervals) for points on the ROC plot

is treated likewise.

For a chosen threshold, a point on the nonparainetric

ROC has the advantage of being an unbiased estimate of

sensitivity and of 1 - specificity for that decision threshold.

This means that, on average, the point neither over- nor

underestimates the true (but unknown) values of sensitiv-

ity or specificity for that threshold. (This may not be true in

the parametric approaches.) One could report a confidence

interval about the sensitivity or a confidence interval about

the specificity. Calculations of these nonparametric confi-

dence intervals for the sensitivity and specificity have been

described elsewhere (14, 26). For example, in the total

lipase plot in Figure 4, at the circled ROC point with

observed 1 - specificity = 0.250 and sensitivity = 0.805

(which corresponds to the threshold >800 U/L), a -95%

confidence interval for sensitivity is (0.684, 0.926). Of

course, the variances and confidence intervals for the

sensitivity and specificity shrink as the group sizes in-

crease. A different but also correct approach fixes not the

decision threshold but the true (theoretical) specificity at,

say, 80% and then constructs a 90% confidence interval for

the sensitivity (or vice versa) (27).

The parametric approach to confidence interval estiina-

tion relies on the initial estimation of the parameters.

Under the assumption that the underlying distributions

that give rise to the counts are normal (gaussian), a

computer-intensive approach based on mayimum likeli-

hood estimation yields estimates of the parameters as well

as their variances (28,29). Computer programs are avail-

able to perform this complicated estimation. The output

can be applied to a theory for doing inference (confidence

interval and hypothesis testing) for specificity and for

sensitivity, even for unobserved values (30).

Area under a Single ROC Plot

One convenient global way to quantify the diagnostic

accuracy of a laboratory test is to express its performance

by a single number. The most common global measure is

the area under the ROC plot. By convention, this area is

always �:0.5 (if it is not, one can reverse the decision rule to

make it so). Values range between 1.0 (perfect separation of

the test values of the two groups) and 0.5 (no apparent

distributional difference between the two groups of test

values). The area does not depend only on a particular

portion of the plot such as the point closest to the diagonal

or the sensitivity at 90% specificity, but on the entire plot.

This is a quantitative, descriptive expression of how close

the ROC plot is to the perfect one (area = 1.0). The

statistician readily recognizes the ROC area as the Mann-

Whitney version of the nonparametric two-sample statistic

(31, 32), introduced by the chemist Frank Wilcoxon. An

area of 0.8, for example, means that a randomly selected

individual from the diseased group has a laboratory test

value larger than that for a randomly chosen individual

from the nondiseased group 80% of the time. It does not

mean that a positive result occurs with probability 0.80 nor

that a positive result is associated with disease 80% of the

time.

When there are no ties between the diseased and nondis-

eased groups, this area is easily computed from the plot as

the sum of the rectangles under this graph. Analytical

formulas to calculate the area are in reports by Bamber

(31) and Hanley and McNeil (32). Alternatively, the area

can be obtained indirectly from the Wilcoxon rank-sum

statistic (33). Also, the area is related to the overlap index

of Hartz (34) by the formula area = 1 - (overlap index/2).

The area is an unbiased estimate of the true area under the

theoretical ROC curve.

It is possible to test whether the diagnostic test is at all

effective in distinguishing the two populations as well as to

estimate the ROC area by a confidence interval. In partic-
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ular, the rejection of the hypothesis that the theoretical

area is 0.5 provides evidence that the laboratory test does

have the ability to distinguish between the two groups. For

example, for the data in Figure 7, the area is 0.747, with a

standard deviation of 0.038. Here, the statistical test con-

firms that this area is significantly different from 0.5 (P

<0.001). It is also possible to form nonparametric confi-

dence intervals about the area (14); the 95% confidence

interval for the area in Figure 7 is (0.673, 0.821).

With clinical data, one must often contend with the

possibility of ties, even though if the data were truly

continuous, ties would not occur. If there are only a few tied

values, it is reasonable to connect the adjacent points on

the ROC plot (producing some diagonals) and to calculate

the area in one of several ways: merely add up the areas

under the trapezoids that comprise the entire area or use

the Mann-Whitney version of the Wilcoxon statistic with

average ranks. However, if the number of ties is consider-

able, this trapezoidal area tends to be a biased underesti-

mate of the true area. This can be illustrated for continuous

data that have been discretized. For example, Figure 8

presents the ROC plot based on the discretization of the

data of Figure 7 into eight bins. Note that the eight-bin

ROC plot generally lies below the unbinned ROC plot.

Whereas the unbiased area estimate is 0.747 for the un-

binned plot, the area under the eight-bin discretization is

smaller (0.718). This is because the actual ROC plot tends

to be convex and therefore to lie above, rather than below,

the diagonals (30,32,35-37). lithe number of ties is large,

it is advisable to report not only the trapezoidal area but

the maximal area where all diagonals are replaced by

mnximal vertical, then horizontal possible paths. For ex-

ample, in Figure 8, whereas the unbinned m�imsd area =

0.747 (only one small diagonal), the maximal area for the

eight-bin plot is much larger (0.854). Introduction of ties by

binning the data biases the trapezoidal area estimate and

increases the difference between that estimate and the

maximal-area estimate. The standard deviation of the

trapezoidal area estimate is always increased with discret-

ization; in this case, it is 0.036 for the unbinned area and

0.041 for the eight-bin area.

For the parametric approach, there is a graphical method

that estimates the parameters of the binormal model to

obtain an area estimate (2, 4). A more exact approach

involving the above maximum likelihood estimation pro-

vides not only an area estimate but also its standard error

(8, 28, 29). The latter permits hypothesis testing and

confidence interval estimation of the area. However, if a

parametric model such as the binormal has been applied,

the area obtained by estimation of the parameters can also

be biased, unless the parametric assumptions on the counts

are well satisfied. A comparison of nonparainetric and

binormal parametric areas has been done by Center and

Schwartz (38).

Area is in some sense an imperfect measure of the

performance of the diagnostic test. For one thing, it is a

single global measure-there is necessarily a loss of infor-

mation in reducing the overall performance of the diagnos-

tic test to a single number. A less global alternative is to

restrict the area to a relevant portion, e.g., the area under

the curve for observed specificity >0.6 or for sensitivity

�0.7. This restriction analysis has been accomplished non-

parametrically (39) as well as under the bin#{243}rmal model

(40). Because the area under the ROC plot condenses the

information of the graph to only a single number, it is

usually undesirable to consider area without evRmining

the plot itself� As Figure 9 illustrates, two ROC plots can be

quite different in shape and yet have similar areas. At

TRUE NEGATIVE FRACTION (1-SPECIFICITY)

Fig. 9. Nonparametrlc ROC plots of serum apollpoproteln A-I con-
centrations and the ratio of HDL to total cholesterol

Same subjects as in Fig. 5 (data from Kottke et al, 18). Areas under the ROC

plots are 0.753 and 0.743, respectIvely

sensitivities below -0.65-0.70, the HDL/total cholesterol

ratio has better specificity (lower false-positive fraction),

whereas at higher sensitivities apolipoprotein A-I has bet-

ter specificity.

Statistical Comparison of Multiple Tests by Use
of ROC Plots

Direct statistical comparison of multiple diagnostic

tests is frequent in clinical laboratories. Two (or more)

tests are usually porformed on the same subjects, as in a

split-sample comparison. In such cases, the results from

two tests are usually correlated or associated. It is also

possible, but less common, to have different individuals for

the two tests, in which case the test results are indepen-

dent (and hence uncorrelated). Of these two designs, the

paired (split) design using the same individuals for the

two tests is more efficient and also controls the patient-to-

patient variation. For example, it may be possible to

detect a real difference by exsrn’ining 50 individuals with

test A and another 50 with teat B, whereas only 40

patients given both tests might have been sufficient. When

comparison of test performance is accomplished statisti-

cally by using ROC plots or curves, it is referred to as ROC

analysis. (See below for other ways to compare diagnostic

tests.) ROC graphs for the two diagnostic tests, either

nonparametric or parametric, can differ in shape but still

may agree at a single point or have the same areas.

Therefore, it is always advisable to visualize the entire

performances through the ROC graphs.

Note that with only a single (specificity, sensitivity) pair

for each test (i.e., only one point on the ROC plot for each

test), a comparison of the performance of the two tests is

usually impossible. Only if the two points (one for each test)

are on the same vertical or same horizontal line on the

nonparametric ROC plot can they be compared (i.e., at a

common sensitivity or specificity). In such cases, McNe-
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mar’s test can be used for the paired data and a chi-squared

test or Fisher’s exact test can be used on the 2 x 2 tables if

different subjects are used for the two tests (14). However,

because this applies to only one decision level, this compar-

ison is not global and the conclusions are consequently

limited. Unlike the nonparametric approach, the paramet-

ric approach is able to compare two ROC curve sensitivities

at a common (usually unobserved) specificity (or vice versa)

(30).

A global approach is to compare entire ROC plots by

using an overall measure such as area under the plot; this

can be done either nonparametrically or parametrically.

This can be especially attractive to laboratorians because

the comparison does not rely on the selection of a particular

decision threshold (which should consider prevalence and

cost trade-off information).

For comparison of ROC plots by nonparametric area, the

independent case (of different individuals for the two tests)

is straightforward (41). The more difficult case occurs when

all test results come from the same patients (paired data).

Here the visual impression of the ROC plots may be

misleading, because the determination depends on how

correlated the two tests are; unfortunately, this correlation

is invisible on the graph of the two ROC plots. Correlation

is important because the more associated the two labora-

tory tests are, the sharper the ability of the hypothesis

testing to pick out small area differences as statistically

significant. (There may be statistically significant differ-

ences that are not clinically significant.) The computations

are much more involved because one must estimate the

correlation or covariance between either the two tests or

the two areas (39,42,43). A computer program is essential

for this sort of analysis. There is also an approximate

procedure from Hanley and McNeil (41) for correlated test

data in which Pearson (not Kendall) correlations of the test

results are used to estimate the correlation of the two

areas. For example, in Figure 5, the correlated analysis of

the difference in the areas (0.743 - 0.606, two-sided

P-value <0.0015) provides evidence that total cholesterol

and the ratio of HDL to total cholesterol differ in the ability

to detect CAD, based on the approximate procedure. Here

the correlations of total cholesterol with the ratio of HDL to

total cholesterol are -0.532 for the CAD patients and

-0.367 for the non-CAD patients. The ROC areas are

positively correlated because large total cholesterol values

and small ratios both lead to the diagnosis of CAD. If the

correlation of the two variables were zero, as would happen

if different subjects were used for the two ROC plots, the

P-value would be larger (0.014). For the same area differ-

ence, more subjects would have been required for the

uncorrelated case to achieve the statistical significance

that was obtained in the correlated case. In Figure 6, there

is no indication, based on the area difference 0.9439 -

0.9302, that measurement of urinary free cortisol and of

17-hydroxysteroids differ, even though the correlations of

these two measurements are large (0.777 and 0.720), be-

cause the areas are so close.

For using the parametric ROC approach to discrete data,

whether the data have been intentionally discretized or are

inherently ratings (discrete) data, areas can be compared in

the independent case and for paired data. The comparison

of multiple tests is important for discrete data, especially if

one wishes to compare two diagnostic tests that are each on

a different (ratings) scale or to compare two raters that are

apparently using the same discrete scale but may have

totally different definitions of what the categories repre-

sent. For independent tests, this comparison based on areas

is straightforward (30). For paired tests, an extension of the

m�imum likelihood estimation for the parameters of two

bivariate normal distributions is computer intensive and

relies heavily on computer software (44). A simpler ap-

proach uses an approximate parametric procedure based on

correlations (41).

Other Analyses: RelatIon to ROC Plots

Ukelihood Ratios and the ROC Plot

Use of the likelihood ratio has been discussed in several

publications (5,12,45-48). Of interest here is the relation-

ship between likelihood ratios and the ROC plot. Like ROC

plots, likelihood ratios do not depend on prevalence or on

the ratio of the costs of false-positive and false-negative

results.

Likelihood ratio can be defined as the ratio between the

probability of a defined test result given the presence of a

disease and the probability of a defined test result given the

absence of a disease. Here defined result can mean a single

result or a group of results. This is because the likelihood

ratio can be calculated for a particular single test value, for

results in a defined interval, or for results on one side of a

particular threshold. Each of these represents results in

some interval. If the interval is very narrow, e.g., >99 to

<101 units, then the likelihood ratio is for the single result,

100, included in that interval. At the other extreme, the

interval can be very large, e.g., >100, which includes all

results >100 units. The likelihood ratios correspond to

slopes on the ROC plot. For results on the diseased side of

a particular threshold, this slope is simply the ratio of the

true-positive fraction to the false-positive fraction, i.e.,

sensitivity/i - specificity. More generally, the slope re-

flects the change in sensitivity divided by the change in

specificity over the defined interval of test results.

In the discussion of CK by Radack et al. (47), likelihood

ratios were calculated for the specific intervals or “slices”

1-120, 121-240, 241-360, 361-480, and >480 U/L. They

also calculated the likelihood ratio for >120 U/L, because

120 was considered the upper limit of normal for their

hospital. (Likewise, with sufficient data, a likelihood ratio

could be calculated for a very small interval such as

239-241.) The likelihood ratio for the interval 241-360 UIL

was 4.13 and represented the slope of the ROC plot between

the two points on the plot corresponding to the decision

thresholds 241 and 360 (Figure 10, line segment “a”). The

likelihood ratio for the interval >120 was 1.57 and repre-

sented the slope of ROC plot between the origin and the

point corresponding to the threshold of 121; in this case, it

is the ratio of the true-positive fraction to the false-positive

fraction (segment “b,” Figure 10). All likelihood ratios are

slopes that can be calculated from the ROC plot. In fact, the

nonparametric ROC curve is a concise graphical way of

presenting information that is ordinarily presented in the

tables of likelihood ratios.

We have defined likelihood ratio, but what does it mean?

The conceptual meaning of likelihood ratio is tricky and

can be confusing. Like sensitivity and specificity (and also,

then, the ROC plot), it is an expression of probability of test

results, given the presence (and absence) of disease. In the

case above, a CK concentration of 241-360 U/L (LR = 4.13)

was about four times as likely to occur in a patient with

AMI as in a patient without AMI. This does not necessarily

mean that, given a result in that interval, the result is four

times as likely tobe froma patientwith AMI as it is to be

from a patient without an AMI. If the likelihood ratio is 4,

then the fraction of diseased subjects having a test result of

241-360 UIL is four times as high as the fraction of

nondiseased subjects having such a result. For example, of

100 subjects with acute appendicitis, 80(0.8) might have a
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Furthermore, of the 773 patients studied, only 23(3%) had

CK concentrations >480 U/L. Thus, although the probabil-

ity of a person having an AMI will be increased consider-

ably by a result in this interval (>480 UIL), only a small

fraction of affected subjects will have such results (and

some unaffected ones will, too). Because it does not locate

the operating point on the curve, a likelihood ratio without

an ROC plot may be misleading, no matter how high the

ratio is. For example, Figure 11 contains the ROC plots of

two hypothetical tests that have identical interval likeli-

hood ratios (slopes) for the four segments shown. However,

these two tests have very different diagnostic accuracy, as

is evident from the ROC plot. The likelihood ratio is not a

particularly good tool for assessing test performance or for
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It is important to note that the likelihood ratios referred

to above are estimated nonparametric likelihood ratios

because the true (theoretical) ratios are not known. (One

can calculate parametric likelihood ratios by using an

assumed binormal model.) Variability is associated with

these estimated likelihood ratios; for a discussion of confi-

dence intervals, see Center (49).
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FIg. 10. Nonparametric ROC plot of serum creatine kinase activity in

identifying acute myocardlal infarction in patients presenting with
chest pain

Fifty-one patients had infarct; 722 did not. a and b show differences in

likelihood ratios for two different intervals for Cl( activity

positive result (falling in some defined interval) for test X.

Of 100 subjects with abdominal pain not due to acute

appendicitis, 20 (0.2) might have a positive test X. The

likelihood ratio, true-positive fraction/false-positive frac-

tion, is 0.8/0.2, or 4. However, this does not necessarily

mean that a patient with abdominal pain and having a

positive test result is four times as likely to have appendi-

citis as not. In other words, a likelihood ratio of 4 does not

mean that the probability of appendicitis, given a positive

result, is 0.8. To determine this probability (i.e., posttest

probability, the probability of the presence of disease given

a specific test result), the prior probability of disease

(prevalence) must be included in the calculation. Such a

calculation would be an expression of probability of disease

given a positive test result, rather than the probability of a

positive test result given the presence (or absence) of

disease. The likelihood ratio is the latter, not the former. If

at a particular hospital the prevalence of acute appendicitis

among patients presenting with acute abdominal pain is

20%, then by Bayes’ theorem, given a patient with a

positive test result, the posttest probability of appendicitis

is 50%. On the other hand, if the prevalence of appendicitis

were actually 50% as in the example above with 200

subjects, then, given a positive result, the posttest proba-

bility of appendicitis is indeed 80%. The likelihood ratio

itself is independent of prevalence. It is only when the

likelihood ratio is used to calculate posttest probability

from pretest probability (prevalence) that prevalence plays

a role.

What is the usefulness, then, of the likelihood ratio? The

likelihood ratio for a particular result or for an interval in

which the result falls enables the revision of the pretest

probability of disease. It is primarily a tool for calculating

posttest probability of disease from pretest probability of

disease, by using Bayes’ theorem. In fact, the likelihood

Choosing Decision Thresholds: Trading off Sensitivity,

Specificity,Prevalence, and Costs

The ROC plot may be used to observe the effect of

different prevalences and different costs, and eventually to

1

0.8

0.6

0.4

0.2

0

FALSE POSITIVE FRACTION (SPECIFICITY)

1 0.8 0.6 0.4 0.2 0

0 0.2 0.4 0.6 0.8 1

TRUE NEGATIVE FRACTION (1-SPECIFICITY)

Fig. 11. ROC plots of two hypotheticaltests that have Identical
likelihood ratios (four lIne segments with Identical slopes), but
differentdiagnosticaccuracies
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select a decision threshold (5, 7). As discussed above, each

possible decision threshold for a test corresponds to a

particular sensitivity/specificity pair. All of these pairs are

graphed in the ROC plot. However, to use the test for

patient management, a decision threshold must be se-

lected. Two major elements determine which of the possible

sensitivity/specificity combinations (and the corresponding

decision threshold) is most appropriate for a particular

application of the test (7): (a) The relative cost or undesir-

ability of errors, i.e., false-positive and false-negative clas-

sifications; the value or benefits of correct classifications

may also be considered (6). (b) The relative proportions of

the two states of health that the test is intended to discrim-

inate between. This is related to prevalence, or prior

probability of disease� as shown below.

Assessing or assigning cost to false-positive or false-

negative classifications is complex. This can be expressed
in terms of financial costs or health costs and can be viewed

from the perspective of the patient, the care providers, the

insurers, dependents, society, etc. Nonetheless, some judg-

ment about the relative costs of false results should be

made when selecting rationally an operating decision

threshold.

We use the simplified approach incorporating the ratio of

the costs of false results (termed mininhi7ing expected costs)

to illustrate the relationship between ROC plots and select-

ing decision thresholds.

If, for example, the relative cost of a false-positive result

is very much greater than the cost of a false-negative

result, the appropriate sensitivity/specificity pair would

favor specificity rather than sensitivity. However, to pick a

sensitivity/specificity pair that yields false-negative and

false-positive results in the optimal proportion, one must

also incorporate the second factor, prevalence, because it

interacts with the sensitivity and specificity, determining

the actual probabilities of false-positive and false-negative

results occurring in the population of interest.

The two elements a and b above are combined to calcu-

late a slope (m) as follows (7, 50):

- (false-positive cost \ (i-P
m \false-negative cost) X �

where P = prevalence or prior probability of disease. The

point on the ROC plot where a line with this slope touches

the curve is the best operating point, given the prevalence

and the false-positive/false-negative cost ratio. lithe ROC

plot is smooth, as in the parametric model, the operating

point is where the line is tangent to the curve. On the other

hand, the nonparametric ROC plot for continuous data

with no ties is a “staircase” of line segments having

alternating slopes of zero and infinity. The operating point

can be determined by the point where a line (with the above

calculated slope), moving down from above and to the left,

intersects the ROC plot. In both cases, this operating point

corresponds to the decision threshold that will yield the

optimal mix of false-positive and false-negative results,

given P and the relative weights assigned to false results in

the cost ratio. In Figure 12 the line with a slope m = 0.75
corresponds to a false-positive/false-negative cost ratio of

1/4 and a prevalence of 0.20. The line touches the plot at the

point with a sensitivity of 0.890 and 1 - specificity ofO.551,

corresponding to the following decision rule: a result is

considered to indicate the presence of CAD if it is �0.192.

Changing either P or the coat ratio changes the slope, lithe

prevalence were to be 0.10 instead of 0.20, or if the cost

ratio were to be 3/4 instead of 1/4, then m = 2.25. Now this

TRUE NEGATIVE FRACTION (1-SPECIFICITY)

Fig. 12. Nonparametric ROC plot of the ratio of HDL to total

cholesterol, showing optimal operating points for two sets of preva-
lence and costs (see text)
Subjects same as �n Fig. 5 (data from Kottke et at., 18)

line touches the ROC curve at a sensitivity of 0.404 and

false-positive fraction of 0.061, corresponding to a shift of

the threshold from 0.192 to 0.117. Thus, the ROC plot

shows the effect of changing the false-positive/false-nega-

tive cost ratio or the prevalence and indicates the actual

optimal operating point corresponding to a given set of

circumstances (specified prevalence and cost ratio).

The operating point on the ROC plot as described above

is the specificity, sensitivity pair that m�imizes the func-

tion [sensitivity - m(1 - specificity)], where mis the above

slope. If m = 1, the special case of the differential positive

rate (PDR) as cited in a report by Pellar et al. (51) occurs.

Grouping results into a small number of bins may yield a

jagged plot that may, in turn, cause errors in locating the

point where the line touches the curve, an issue noted by

Pellar et al. (51). This is another reason to use the complete

nonparametric ROC plot without binning data.

Efficiency and Predictive Value

If ROC analysis is the preferred approach to examine

basic test performance, then how do concepts such as

efficiency (percentage of correct results) and predictive

value fit in? Whereas sensitivity and specificity describe

the ability of the test to correctly distinguish between

affected and unaffected subjects, respectively, predictive

value and efficiency combine sensitivity, specificity, and

prevalence to address the meaning of the results at one

particular decision threshold. Sensitivity and specificity

are properties inherent to the test; predictive value and

efficiency are properties of the application once the context

(decision threshold and prevalence) is established. Effi-

ciency describes, for a given decision threshold and a

particular prevalence, what fraction of all results are

correct (true-positive and true-negative results). Predictive

value of a positive result, PV(+), describes what fraction of

all positive results are correct. Similarly, the predictive
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value of a negative result, PV(-), describes what fraction of

all negative results are correct results. Because prevalence

is incorporated, efficiency and predictive value are not

properties of the test alone, but the results of applying the

test in one particular way. Predictive value, especially, is

more an aid in interpreting a given test result than a

measure of performance.

Efficiency has three important limitations:

#{149}It is usually calculated at one decision threshold, al-

though there are actually many efficiencies, one for each

possible decision threshold (holding prevalence constant).

It may be misleading to consider only one (or a few) because

other, perhaps better, operating points may be overlooked.

#{149}It is also highly dependent on disease prevalence in the

study sample, and may appear high even when there is

poor diagnostic sensitivity or specificity. The prevalence in

the study sample may not be representative of the preva-

lence in the target population. Therefore, the prevalence

used (or assumed) to calculate efficiency must be carefully

chosen.

#{149}It is defined as the percentage of true (or correct)

results. Inherent in this definition is the concept that all

true results are equally valuable and all false results

(false-positive and false-negative results) equally costly or

undesirable. This is often not true, however, and the

greater the difference in the cost of a false-positive vs a

false-negative result, the more the calculation of efficiency

distorts the apparent clinical usefulness of the test.

Therefore, when efficiency is used or interpreted we must

be mindful of the effect of prevalence and the possibility of

misleading impressions if an inappropriate prevalence is

being used. However, even when the correct prevalence is

used, efficiency may present a distorted picture of test

performance. Of the 18 papers in Clinical Chemistry men-

tioned earlier, one examining the use of fructosamine

assays to distinguish between diabetic and nondiabetic

workers involved a prevalence of diabetes of 2.3% in the

study group (52). Merely by setting the decision threshold

so high as to classify all subjects as negative, efficiency at

that operating point would have been 97.7% despite a

sensitivity of 0%! This result is due simply to the low

prevalence. Whenever prevalence is high or low, it is

possible to have a high percentage of correct results merely

as a result of classifying one of the groups correctly. The

farther prevalence is from 50%, the more this plays a role

in observed efficiency.

Furthermore, when two tests are being compared, as in

the above paper on fructosamine assays, and the preva-

lence is very low, both tests will have the potential for these

very high efficiencies resulting from the effect of preva-

lence. This may mask real differences in accuracy between

tests. Fortunately, in that paper ROC plots were generated,

which provided a comprehensive picture of accuracy inde-

pendent of prevalence for both assays.

Predictive value is essentially a calculation of the per-

centage of correct negative or of correct positive results. It

shares, with efficiency, the first two of the above limita-

tions. Whereas efficiency considers all results together,

predictive value looks at only one class of results, either

positive or negative, at a time. Therefore, when prevalence

is low and the chosen decision threshold is high enough to

classify most or all of the unaffected subjects correctly as

true negatives, there will be so few false negatives (because

there are so few affected subjects) that the PV(-) will be

high even if every affected subject is incorrectly classified

as negative (zero sensitivity)! Likewise, when prevalence is

very high and the decision level is set low enough to

classify all or most affected subjects correctly as true

positives and all or most unaffected subjects incorrectly as

false positives (poor specificity), the PV(+) will be very

high. In this case, there are so few false-positive results,

because the prevalence of unaffected individuals is so low,

that the vast majority of positive results are correct! Thus,

high efficiencies or predictive values may distort one’s

impression of the test’s performance and may obscure a

poor sensitivity or specificity.

In Figure 12, we examined two separate points on the

ROC plot because when we changed either prevalence (P)

or the false-positive/false-negative cost ratio, the slope (m)

changed. Let’s now examine the effect of this change in m

on efficiency and predictive value. In the first case, where

the line with m = 0.75 and prevalence = 0.20 touches the

plot at a threshold of 0.192, the efficiency is 54% and PV(+)

is 29%. However, when the prevalence changes to 0.10 from

0.20, it affects the calculation of m in the equation to

optimize the decision threshold. The slope m changes from

0.75 to 2.25, and the line with that new slope touches the

plot at a new point (and therefore a different specificity/

sensitivity pair). Here the efficiency is 89% and PV(+) is

43%. As noted above, we can obtain the second slope (m =

2.25) by changing either prevalence to 0.10 or the false-

positive/false-negative cost ratio from 1/4 to 3/4. When the

second approach is used to change m to 2.25, the false-

positive/false-negative cost ratio changes to 3/4 whereas

prevalence remains at 0.20; now efficiency is 83% and

PV(+) is 62%. Both efficiency and predictive value are

derived from the interaction of the operating point on the

ROC plot (sensitivity/specificity) with prevalence.

In smnmRry, predictive value and efficiency provide

limited information about the interaction of a particular

point on the ROC plot with prevalence; in contrast, the

ROC plot provides a more global comprehensive view of the

test, independent of prevalence. Predictive value is more

useful for interpreting a given result than for describing

test performance.

Other Statistical Approaches

Other approaches besides predictive value and efficiency

include discriminant analysis and logistic regression. The

relationship of these to ROC plots is briefly discussed.

In logistic regression, the diagnostic test (and any cova-

riates) is used in a prediction model that uses the logistic

distribution to optimize the probability of a patient belong-

ing to the diseased group. ROC plots are sometimes dis-

cussed in the context of logistic regression (53, 54). At the

least, nonparametric ROC analysis can be used, in the

absence of parametric assumptions, to evaluate the perfor-

mance of logistic models. For a single test with no covari-

ates, the ROC plot based on the logistic regression is

identical to that for the original diagnostic test. The addi-

tion of other variables (covariate information) would create

an improved ROC plot of the logistic model; these various

ROCs could be examined by nonparametric ROC analysis

to determine whether overall these other variables improve

the predictive performance of the model. Here the logistic

distribution is used to evaluate the predictive performance

of the diagnostic test and other variables; an ROC plot of

the logistic model could be used visually to describe its

behavior as well as to aid in the identification of a decision

threshold at which to operate.

Discriminant analysis is a statistical technique designed

to arrive at a decision rule and is also related to the ROC

plot. In fact, discriminant analysis for a single test variable

can be thought of as a statistical device used, after making

the visual ROC plot, to decide where on the ROC plot to

select a decision rule. Discriminant analysis in its most
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familiar form relies on the assumption that the (multiple)

diagnostic test values are (multivariately) normally dis-

tributed for the two groups of patients. As such, it imposes

a parametric model and then attempts to find the linear

combination of the test values that best separates the two

groups. Discriminant analysis is usually implemented so

that one can control the prevalence and the trade-off of the

errors in the decision rule in this model, as is also done in

the ROC approach. In the case of a single variable (one

diagnostic test), classical discriminant analysis is equiva-

lent to assuming that both group distributions are normal

(gaussian)-or in logistic-discriminant analysis, assuming

that the ratio of densities is logistic-estimating the para-

metric ROC curve for this model, and then selecting a

single optimal ROC point (decision threshold) based on the

trade-off of error cost and prevalence. In contrast, the

nonparametric ROC plot assumes no such parametric

model and yet provides information on the entire perfor-

mance of the diagnostic test. In the multivariate case (more

than a single test on each subject), whereas the ROC plot

can represent only the performance of one particular func-

tion (linear or quadratic) of the variables, classical or

logistic-discriminant analysis is advantageous because it

provides the linear- or quadratic-discriminant function

that defines the optimal decision rule.

Importance of Study Design

One benefit of this concept of diagnostic accuracy, and of

ROC plotting and analysis in particular, is that it calls

attention to the issue of study design. Whether a test is

being assessed alone or being compared with other tests,

several aspects of study design have important influence on

the outcome (13, 55, 56). The clinical question being ad-

dressed should be clearly defined and stated to help prevent

misleading conclusions about what discrimination the test

is capable of achieving and to aid in the proper selection of

subjects to study. lithe test is to be used to identify subjects

with AM! among subjects presenting to an emergency room

with typical chest pain and other symptoms suggestive of

AM!, then the study group should be composed of a sample

of just such subjects. Healthy laboratory workers or blood

donors would not be appropriate because the clinical issue

was not identification of AM! in asymptomatic volunteers.

Similarly, if a test is being evaluated for identification of

prostatic cancer in men older than 50 years or symptomatic

men, then the subjects should not include younger men in

the former case or asymptomatic men in the latter case.

Once the proper group is selected, each member should be

classified (e.g., AM! or no AM!; presence or absence of

prostatic cancer) definitively and independently of the test.

The true-positive fractions are then calculated from the

group having AMIs, and the false-positive fractions are

calculated from the subjects who did not have an AM!.

Improper selection of subjects and inaccurate diagnostic

classification of these subjects may distort the apparent

accuracy of the tests and result in erroneous conclusions. A

major source of bias is the so-called verification bias, in

which attention is restricted only to confirmed (or verified)

cases and controls (57-60). If only the easily diagnosed

cases are classified and the others are discarded, then

specificity and sensitivity are generally overestimated and

hence the ROC plot is biased. There has been considerable

effort in the literature to compensate for verification bias;

some success has been obtained by using a logistic-regres-

sion model for the verified data on the covariates to predict

the verification probability in the unconfirmed subjects

(61). Generally, generating ROC plots or performing so-

phisticated statistical ROC analysis will not compensate

for design flaws. The validity or usefulness of the ROC

approach depends, ultimately, on the soundness of the

study design.

Earlier, we noted that sensitivity and specificity (and

thus the ROC plot) were properties of the test itself and

independent of factors, particularly prevalence (prior prob-

ability of disease), that are properties of the circumstances.

However, sensitivity and specificity do depend on the na-

ture of the subjects selected for evaluating the test. For

instance, in the above discussion referring to prostatic

cancer, prostate-specific antigen may exhibit different sen-

sitivities and specificities in symptomatic elderly men than

in younger, asymptomatic men. In these two groups, the

type and extent of symptoms will be different, and the

prevalence and severity of both malignant and nonmalig-

nant disease will differ. Thus, it may appear that sensitiv-

ity and specificity depend on prevalence; in fact, however,

they depend on the spectrum of disease in the subjects

studied. This effect of composition of the study sample will

not introduce bias if the subjects recruited for the study are

representative of the subjects relevant to the question

being posed. Lachs et al. (62) clearly note this in their study

of the performance of the leukocyte esterase and bacterial

nitrite dipstick tests for detecting urinary tract infection.

Sensitivities and specificities were higher in a group of

patients with numerous and typical signs and symptoms

(and a higher prevalence of infection) than in a group with

fewer signs and symptoms (lower prevalence of infection).

This was due to the spectrum of disease in each group,

rather than to prevalence (13,55, 63). Information such as

age or number of symptoms can also be used to model

specificity and sensitivity and hence the ROC plot based on

the logistic regression model (53).

Some researchers have considered what to do if there is

no gold standard; i.e., no errorless identification of disease

and nondisease. One strategy is to define the diagnostic

problem in terms of measurable clinical outcomes (64). A

second approach is to use some sort of consensus, majority

rule, or expert review to arrive at a less error-prone

identification process (65). A third solution that is more

applicable for parametric models is to assume for the

comparison of several accurate tests that the subject popu-

lation consists of some unknown mixture of diseased and

control subjects and then to estimate this mixture param-

eter as well as the other parameters (66). A fourth ap-

proach, rather than definitively assigning each such pa-

tient to one of the groups, say, diseased or nondiseased

(reference), is to assign to each a value between 0 and 1

that corresponds to the (subjective) assessment of how

likely it is that this patient belongs to the diseased group

(this could be accomplished by logistic regression). Then

there is no need to discard the data from these gray, fuzzy

cases where group assignment is not unequivocal. An

outgrowth of the fuzzy approach is that one no longer needs

to treat as the same two test results of, e.g., 16 and 80, for

a test for which the decision threshold is 15. A fuzzy or

probabilistic analysis for ROC plots has been undertaken

(67-69).

Computer Software for ROC PlottIng and Analysis

There are several commercial and public domain soft-

ware products for ROC analysis. Table 2 lists most of these

and highlights their capabilities. Contacts for these prod-

ucts are as follows:

CLINROC. Henry T. Sugiura and George A. Herm�inn,

R. Phillip Custer Laboratories, Presbyterian University of

Pennsylvania Medical Center, 39th & Market St., Phila-

delphia, PA 19104. CLINROC dces not produce its para-



RULEMAKER

C

SIGNAL

B(21)

Table 2. CharacteristIcs of ROC Software

CUNROC Mstz ROC ANALYZER ROCLAB

C(14) B(11), C(20) B(17) C

- P - NP

NP - NP,P NP

NP NP,P NP,P NP

NP NP,P NP,P -

G G

P NP

P NP

NP

P NP,P

Y V V

PD PD S PD

PC, MF M, PC, MF PC PC

NP NP,P NP

NP NP,P NP

NP - NP

NP - NP

NP - NP

G G,O -

- - NP#{176}

NP P NP

- NP

NP

V Y V

C C S

M PC PC,MF

Cl, confidenceinterval; NP, nonparametric; P. parametric; 0, gaussIan (normal) distrIbution; 0, other; V. yea.

C(n) denotes continuous input, binned into a maximum of n categoriesfor the analysis; B(n) denotes binned(ordered categorical) Input, wfth up to n bins for

parametric analysts.
b Shareware Implies a small fee but the enterprise is not commercial.

Cm = 1.

Continuous or Bin dataa

Cl for sensitivity

ROC plot

ROC area estimate

SD of area

CI for area

Test if area = 0.5

MLE estimation

Choice of decision
threshold

Likelihood ratio (LR)

CI for LR

Compare two ROC
areas

Output file for ROC

graph

Commercial, public

domain, or

sharewareb

Macintosh, PC, or
mainframe (MF)

TEP-UN

C

NP

metric analysis of likelthood ratios through maximum

likelihood methods but rather based on the assumption of

normality in the original or log-transformed scale.

Metz programs: LABROC1, CLINROC, ROCFIT, COR-

ROC. Charles E. Mets, Department of Radiology, MC2026,

The University of Chicago Medical Center, 5841 S. Mary-

land Ave., Chicago, IL 60637-1470 [FAX (312)702-6779,

Internet address: c-metz[@]uchicago.edu]. The Mets pro-

grams are, for a single diagnostic test, LABROC1 for

continuous data and ROCF1T for discrete data, and, for two

correlated tests, CLABROC and CORROC, respectively.

There are slight differences in Table 2 entries for versions

on the different computer platforms. Program requesters

are asked to specify platform and to include for microcom-

puter requests two appropriate floppy disks.

ROC ANALYZER. Robert M. Centor, 10806 Stoney-

creek Drive, Richmond, VA 23233 [Bitnet address:

Centor[@]VCUVAX on BITNETI. This program is de-

scribed by Centor and Keightley (70).

ROCLAB. James M. DeLeo, Bldg. 12A, Room 2013,

Division of Computer Research and Technology, National

Institutes of Health, Bethesda, MD 20892 [Bitnet address:

deleo.nihdcrt[@]cu.nih.gov]. ROCLAB provides maximal

as well as trapezoidal areas for ties. It has the ability to do

ROC plots for fuzzy data as well.

RULEMAKER. Digital Medicine, Inc., Hanover, NH

03755 [FAX (603) 643-3686]. RULEMAKER has an inter-

active capability that enables one to point to a location on

the ROC plot and obtain the exact sensitivity and specific-

ity and the decision level to which it corresponds. New

decision rules can be formed by combining results from two

or more diagnostic tests and the corresponding ROC plot

can be displayed. A release version is anticipated in the

second half of 1993.

SIGNAL. SYSTAT, Inc., 1800 Sherman Ave., Evanston,

IL 60201. SIGNAL is a module of a much larger commer-

�cial package SYSTAT.

TEP-UH (Test Evaluation Program-University Hospi-

tal). Thomas G. Pellar, Department of Clinical Biochemis-

try, University Hospital, P.O. Box 5339, 339 Windemere

Road, London, Ontario, Canada N6A 5A5. Running

TEP-UH requires the parent program MUMPS (Micronet-

ics Design Corp., Rockville, MD).

Note that only three of the programs are designed to

treat the continuous data directly, without binning (forcing

into discrete intervals) the data.

Examples from the Literature

Van Steirteghem et al. (16) compared the accuracies of

myoglobin, CK-BB, CK-MB, and total CK in discriminat-

ing among persons presenting to an emergency room with

typical chest pain, with and without AM!. ROC plots could

be constructed for any sampling time by using measure-

ments on multiple closely sequential serum samples timed

from the onset of pain. The plots showed clearly the

superior accuracy of myoglobin at early times such as 5 or

8 h, as well as the impressive accuracy of CK and its

isoenzymes at 18 h after the onset of pain. More recently,

Leung et al. (71) performed a similarly detailed evaluation

of total CK and CK-2 in 310 patients admitted to a cardiac

care unt with chest pain. These authors also used ROC

plots to describe the changing accuracy at various time

intervals after the onset of pain.

Carson et al. (72) investigated the abilities of four assays

of prostatic acid phosphatase to discriminate between those

subjects with prostatic cancer and those subjects with

either some other urologic abnormality or no known uro-

logic abnormality. They concluded from comparisons of

ROC plots and areas under the plots that there is little

difference in diagnostic accuracy among the four assays.

Because ROC was used, the conclusions were not influ-

enced by choice of “upper limit of normal.” They cited

previous studies that had claimed superior performance of
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certain assays of prostatic acid phosphatase, noting that

these reports had generally not considered the influence of

upper limits and may have overstated the differences

between assays.

Hermann et al. (73) compared the diagnostic accuracies

of two versions of a commercial assay for thyrotropin to test

a claim that the newer one was superior for discriminating

between euthyroidism and hyperthyroidism. On the basis

of ROC plots and areas under the plots, the authors

concluded that the newer version exhibited a small but

significant superiority in diagnostic accuracy.

Kazmierczak et al. (74) used ROC plots in a study of the

accuracies of lipase, amylase, and phospholipase A in

discriminating acute pancreatitis from other diseases in

191 consecutive patients seen with abdominal pain. ROC

plots clearly demonstrated that, in this group of subjects,

amylase and lipase performed similarly and both were

superior to phospholipase A.

Flack et al. (75) used ROC plots and areas to compare the

abilities of urinary free cortisol and 17-hydroxysteroid

suppression tests to discriminate between Cushing disease

and other causes of Cushing syndrome. Evaluating sensi-

tivity and specificity by conventional decision criteria sug-

gested differences, whereas ROC plots showed clearly that

the diagnostic accuracies of the two tests were essentially

equivalent.

Guyatt et al. (76) studied the ability of seven tests

including ferritin, transferrin, saturation, mean cell vol-

ume, and erythrocyte protoporphyrin to discriminate be-

tween iron-deficiency anemia and other causes of anemia in

subjects older than 65 admitted to the hospital with ane-

mia. ROC plots showed that serum ferritin “performed far

better than any of the other tests.” In calculating areas, a

factor was used to correct for correlation because all plots

were generated from the same cohort of subjects. Beck (77),

studying iron-deficiency anemia, also used ROC plots to

compare several tests for “predicting the presence or ab-

sence of bone marrow iron stores.”

In summary, the ROC plot, representing the fundamen-

tal ability of a test to discriminate between two states of

health, is an index of pure accuracy. A nonparametric ROC

plot is an unbiased view of a test’s performance (accuracy)

in a defined clinical setting. The ROC plot itself and ROC

analysis provide information useful to the clinical labora-

torian in making practical decisions about laboratory op-

eration. Furthermore, the ROC plot is a springboard to

several pathways (Figure 1) to further exploring test per-

formance and to clinical application.
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