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Nash equilibrium takes optimization as a primitive, but suboptimal behavior can persist in simple 
stochastic decision problems. This has motivated the development of other equilibrium concepts such 
as cursed equilibrium and behavioral equilibrium. We experimentally study a simple adverse selection 
(or “lemons”) problem and find that learning models that heavily discount past information (i.e. 
display recency bias) explain patterns of behavior better than Nash, cursed or behavioral equilibrium.  
Providing counterfactual information or a record of past outcomes does little to aid convergence to 
optimal strategies, but providing sample averages (“recaps”) gets individuals most of the way to 
optimality. Thus recency effects are not solely due to limited memory but stem from some other 
form of cognitive constraints. Our results show the importance of going beyond static optimization 
and incorporating features of human learning into economic models. 
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1. INTRODUCTION 

Understanding when repeat experience can lead individuals to optimal behavior is 
crucial for the success of game theory and behavioral economics. Equilibrium 
analysis assumes all individuals choose optimal strategies while much research in 
behavioral economics shows that people often have predictable biases in single-
shot decisions [Kahneman & Tversky 2000]. However, many important economic 
decisions involve repetition and the chance to learn from past mistakes and this 
may often alleviate the effects of behavioral biases. Two classes of economic 
models allow for persistent mistakes:  “self-confirming” models allow mistakes 
only about “off-path” events (for example: an individual may believe a particular 
restaurant serves terrible food, never patronize it and thus never learn about her 
mistaken belief). More “behavioral” models suppose that even “on-path” mistakes 
can persist long enough to be treated as equilibrium phenomena.  

We steer a middle course and argue that “on path” mistakes do occur and 
can sometimes persist. Importantly, the well-documented tendency to discount 
older information,  i.e. recency bias [Erev & Haruvy 2013],  plays a key role in 
determining whether mistakes are permanent or temporary. In particular, recency 
bias can imply behavior that looks very different from equilibrium predictions 
even in stationary stochastic environments. We demonstrate this experimentally. 
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We conduct a series of experiments in which participants face a simple stochastic 
decision problem. A simple learning model with high recency better organizes 
behavior across experiments than three well known equilibrium concepts. 
Additionally, insights gained from this model suggest an intervention that 
markedly improves payoffs and is generalizable to other situations.   

Our stochastic decision problem is the simplified version of classic lemons 
model [Akerlof 1970], the additive lemons problem (ALP) [Esponda 2008]. In 
the ALP a seller is endowed with an object with a value known to the seller and 
unknown to the buyer, and the object is worth a fixed amount more to the buyer 
than the seller. The buyer makes a single take-it-or-leave-it offer to the seller 
who accepts or rejects it. Buyers receive full feedback if their offer is accepted 
but receive no feedback if their offer is rejected. 

The ALP with subjects acting as buyers and computers playing sellers 
makes a useful laboratory model for studying the persistence of mistakes. The 
calculation of the buyer’s optimal strategy requires individuals to use conditional 
expectations, something that is generally unintuitive for many individuals, and 
leads to large deviations from optimal behavior in the first round. Allowing 
individuals to play the ALP repeatedly allows us to examine the persistence of 
these mistakes and the effects of manipulations on convergence to optimality.   

Our baseline ALP lets us generate predictions using Nash equilibrium (NE), 
cursed equilibrium (CE), behavioral equilibrium (BE), and a simple learning model, 
temporal difference reinforcement learning (TDRL) [Sutton & Barto 1998].1  In 
our first experiment subjects were randomly assigned to one of four conditions:  
two payoff structures for the lemons problem (high or low “value added”) were 
crossed with two information conditions. In the informed condition, participants 
were told the prior distribution of seller valuations; in the uninformed condition 
they were not given any information about this distribution of values other than 
its support.2 

These four conditions were chosen so that Nash, cursed and behavioral 
equilibrium have clear and distinct predictions. In our first experiment we find 
that neither Nash equilibrium, behavioral equilibrium, nor cursed equilibrium fit 
well with the data. In contrast, a very simple learning model with relatively high 
recency organizes the aggregate behavioral patterns relatively parsimoniously. In 
addition, we find direct evidence for recency:  Individuals react strongly to last 
period outcomes even after experience with the decision problem.  

We then consider a succession of treatments with different feedback 
structures. In a second experiment, buyers are informed of the object’s value 
regardless of whether their bid is accepted or rejected. This allows us to test 
whether behavior in the main treatment comes from incorrect expectations 
about the value of the rejected items. Providing this additional feedback has very 
little effect and our qualitative findings are unchanged.  Because this treatment 
makes the information subjects receive exogenous to their actions, it also 
permits a cleaner test of recency effects, which we again confirm. 

 
1 To use simulation methods, we need to fix a functional form for the learning model; we chose TDRL 
for its simplicity. 
2 This latter structure corresponds to the assumptions in [Esponda 2008], who argues that it seems 
a better description of many field settings. 



Recency effects are very powerful in the ALP because a single experience 
with a strategy contains very little information about whether that strategy is 
successful. Thus, when participants heavily discount the past’s information, they 
are not able to learn the optimal behavior. In our final experiment we ask whether 
this discounting of past information is a result of limited memory or of more 
complicated cognitive constraints.  

To answer this we consider two treatments. In the more information 
condition participants play the ALP against 10 sellers simultaneously. Each round 
buyers make a single offer decision that applies to all 10 sellers.  At the end of a 
round, participants receive feedback about each of the ten transactions:  what 
the seller’s value was, whether the offer was accepted and the buyer’s profits on 
that transaction. The simple information condition has identical rules. However, 
instead of receiving fully detailed feedback on each transaction, participants are 
told their average profit out of the 10 transactions and average values of the 
objects they actually purchased.  

Providing more information has little effect, but providing the information 
in the pithy, more readily understood form of averages (“recaps”) significantly 
improves the subjects’ payoffs. This suggests that recency effects may not 
simply be an issue of “memory space” but also the (lack of) computational 
resources to construct useful summary statistics from multiple pieces of data. 
Exploring these computational constraints is an important avenue for future 
research. 

2. THEORY 

2.1 Nash Equilibrium in the Additive Lemons Problem 

To investigate the effects of different information and feedback conditions on 
learning, payoffs, and convergence or non-convergence of behavior to optimality, 
we focus on the additive lemons problem (ALP) as introduced in [Samuelson & 
Bazerman 1985] and further studied by [Esponda 2008]. In this game: there are 
two players, a buyer and a seller. The seller begins with an object of value v 

drawn from a uniform distribution between 0 and 10; this value is known to the 
seller but is unknown to the buyer. The buyer makes a single take-it-or-leave-it 
offer b to the seller. If the seller accepts this offer, the buyer receives the object 
and pays b to the seller. The object is worth v+k to the buyer, thus there is a 
gain from the occurrence of trade. 

This game has a unique Nash equilibrium in weakly undominated 
strategies: It is weakly dominant for the seller to accept all offers below v and 
reject all offers above v. Because the seller has a dominant strategy, we 
transform the ALP into a single-person decision for the rest of our study. The 
buyer’s optimization problem is thus 

maxb P(b ≥ v) (E(v | b ≥ v) + k – b) 

Solving the maximization shows that the optimal bid bNE = k. Thus, in Nash 
equilibrium buyers offer k every round and sellers accept when v < k and reject if 
v > k.  

We chose the ALP for several reasons. First, lemons problems are familiar 
to economists. Second, the ALP is easy to describe to subjects but also tends to 



elicit suboptimal first responses due failures of probabilistic reasoning.3 
Additionally, the ALP can be played repeatedly in a short amount of time. We will 
focus on two payoff conditions: a “low added value” condition where k=3 and a 
“high added value” condition where k=6. 

The ALP is very similar to the Acquire a Company Game (ACG; [Samuelson 
& Bazerman 1985]). The ACG has the same extensive form, but the value to the 
buyer has the multiplicative form kv instead of the additive form v+k that we 
consider here.   In the ACG, for k>2 the optimal bid is 10 and for k<2 the optimal 
bid is 0.  There has been a large amount of research on this game which shows 
that when k<2, individuals fail to play the optimal strategy, even with learning 
opportunities [Ball et al. 1991]. However, the fact that the optimal bid is on the 
boundary is a significant confound here, given the aversion of individuals for 
corner solutions [Rubinstein et al. 1993]. Our specification of the ALP avoids this 
confound as for any value of k the optimal solution is interior.4  
 
2.2 Other Equilibrium Concepts 

Nash equilibrium requires that each player’s strategy is a best response to the 
true distribution of opponents’ play, and so implies that the buyers in the ALP 
should make the optimal bid. Some alternative equilibrium concepts maintain the 
assumption that players correctly interpret and process the information they 
receive and best respond to this information, while allowing players to have 
incorrect beliefs provided those beliefs are consistent with their observations, so 
that players can only have wrong beliefs “off the equilibrium path” [Battigalli & 
Guatoli 1997, Dekel et al. 1999, 2004,  Fudenberg & Levine 1993].  We focus 
here on a particular example of such a concept: behavioral equilibrium [Esponda 
2008]. 

A variety of behavioral experiments show that mistakes in probabilistic 
reasoning are fairly common [Samuelson & Bazerman 1985, Rubinstein et al. 
1993, Tor & Bazerman 2003, Guarnaschelli et al. 2000, Charness & Levin 2009]. 
This motivates equilibrium concepts that allow or require individuals to make 
mistakes in updating beliefs about opponents’ play and computing the associated 
best responses.  In particular, cursed equilibrium allows for a specific type of 
mistake in computing conditional expectations, without distinguishing between 
on-path and off-path errors [Eyster & Rabin 2000]. 

Behavioral equilibrium and cursed equilibrium make different predictions of 
behavior in the ALP. In addition, they suggest different causes for deviations 
from optimal play.  We now discuss these predictions.  
 

 

 

 
3 The key to this failure is that the expectation in the buyer’s maximization problem is a conditional 
expectation. To make an optimal decision the buyer needs to take into account that if a bid of b is 
accepted the item’s value must lie below v. There is a large amount of experimental evidence that 
individuals frequently fail to make this correction in many decisions of interest, including common 
value auctions [Kagel & Levin 1986], the Monty Hall problem [Tor & Bazerman 2003] and strategic 
voting games [Guarnaschelli et al. 2000].  
4 In the appendix we show the results of an experiment that confirm the presence of corner aversion 
in our experimental paradigm. 



Behavioral Equilibrium 

The solution concept of behavioral equilibrium (BE) is developed specifically for 
the ALP in [Esponda 2008]. This concept is meant to model settings where (1) 
individuals need to learn the distribution of Nature’s moves (i.e. values) at the 
same time that they learn the distribution of opponent’s play, and (2) buyers 
don’t see the seller’s value when the seller rejects the object.5  

In our setting BE can be expressed as a two-tuple (p*, bBE) where p* is a 
probability distribution on the interval [0,10]. BE imposes two conditions on this 
tuple. First, bBE must be optimal for the buyer given distribution p* and the belief 
that sellers play optimal strategies. Second, p* must be consistent with what 
buyers observe in equilibrium, so that p*(A) for any subinterval A of the interval 
[0, bBE] must coincide with the true probability (in this case, uniform) of A.  

However, no restrictions are placed on what probabilities p* may place on 
of the distribution of values that buyers never actually see. Given these two 
conditions, BE is a set valued solution concept with the property that bBE  bNE . 
Thus BE predicts that buyers cannot persistently overbid in either of the payoff 
conditions we examine in the ALP:  Were they were to do so, they would learn 
that it would be better to make the NE bid instead. However, buyers can 
persistently underbid if they have overly pessimistic beliefs about the distribution 
of values above their bid.  
 

Cursed Equilibrium 

Individuals often fail to deal correctly with conditional probabilities. This 
assumption is built into the equilibrium concept of fully cursed equilibrium (CE) 
[20].  Formally, CE assumes that when individuals in a Bayesian game optimize 
they completely ignore the correlation between their other players’ types and 
their strategies.6  

As in [Charness & Levin 2009] we adapt CE by supposing that 
participants treat the computer as a “player,” so that buyer’s maximization 
problem replaces the conditional expectation of the value v with its unconditional 

expectation 

maxb P(b ≥ v) (E(v) + k – b) 

and the cursed equilibrium bid is   

bCE = (5 + k)/2 

 
5  BE allows for two types of agents: naïve agents whose beliefs are only required to be self-
confirming but do not know the distribution of Nature’s move [Dekel et al. 2004] and sophisticated 
agents who know the payoff functions of the other players, as in rationalizable self confirming 
equilibrium [Dekel et al. 1999]. In our formulation of the ALP the buyers are told the seller’s strategy 
so the two type of agent are equivalent.  When the ALP is formulated as a game, the sophisticated 
agents deduce that the seller will not accept a price below their value, but the naïve agents need not 
do so.   
6 In applying cursed equilibrium to the lemons problem [Eyster & Rabin 2005] use a refinement to 
restrict off path play that is analogous to our assumption that the sellers do not use weakly 
dominated strategies. The same authors also propose the notion of partially cursed equilibrium, in 
which beliefs are a convex combination of the fully cursed beliefs and those in the Nash equilibrium. 



Note that this leads to overbidding (relative to the best response) if k<5 and 
underbidding when k>5. Thus CE predicts overbidding in the low added value 
conditions (k=3) and underbidding in high added value conditions (k=6). 

As noted above, the predictions of CE do not depend on whether or not 
players are told the distribution of Nature’s moves or on the sort of feedback 
they receive in the course of repeated trials. Another property of CE is that in 
many games, including the ALP, the payoff that players expect to receive in 
equilibrium does not match the actual payoffs they will receive. Thus, to the 
extent that CE is meant to describe behavior that persists when subjects have 
experience (as the “equilibrium” part of its name suggests), it implies that 
individuals have permanently incorrect yet stable beliefs about their expected 
payoffs. 
 
2.3 Learning Dynamics with Recency 

A common argument given for the use of equilibrium analysis is that equilibrium 
arises as the long-run result of a non-equilibrium learning process [Fudenberg & 
Kreps 1995, 1998].  However, there is a substantial amount of evidence both 
from the lab [Camerer 2003] and the field [Agarwal et al. 2008, Malmandier & 
Nagel 2011] that individuals react strongly to recently experienced outcomes 
and discount past information. Individuals who display such “recency effects” will 
not converge to using a single strategy in a stochastic environment, and so will 
be poorly described by an equilibrium model. Thus it is interesting to explore the 
use of learning dynamics to generate predictions in place of an equilibrium 
concept [Roth & Erev 1995].7 In general the details of those distributions depend 
on the specifics of the model, but it is easier to characterize the effect of 
recency in some limit cases. At one extreme, with very little recency, each of a 
large number of past outcomes has approximately equal weight, so in a 
stationary decision environment we expect each individual to obtain close to the 
optimal payoff.8  On the other hand, the most extreme case of recency is to play 
a best response to last period’s information. In the ALP if the seller’s value today 
is expected to be exactly the same as yesterday’s, then the optimal bid equals 
yesterday’s value; this implies that for both the k=3 and k=6 versions of the ALP 
the population average bid will be the unconditional expectation of the seller’s 
value, which is 5.9 

In practice we do not expect observed behavior to correspond to either 
of these limits but instead to reflect an intermediate weight on recency, so we 

 
7 Recency has been incorporated into both belief-based and reinforcement-based models of learning 

by adding a parameter that controls the speed of informational discounting (see e.g. [Cheung & 
Friedman 1997], [Fudenberg & Levine 1998], [Sutton & Barto 1998], [Camerer & Ho 1999], 
[Benaim et al. 2009]). Recency effects have also been modeled by supposing that individuals 
“sample” a set of experiences either with all experiences in the recent past weighted equally 
([Fudenberg & Levine 2013] relate this to informational discounting) or with more recent 
experiences being more likely to be sampled ([Nevo & Erev 2012]). Most of these learning models 
converge to an ergodic distribution. 

8 This assumes either that the agents play all actions with positive probability, as in smooth fictitious 
play, or that they receive counterfactual information about the payoffs of the actions they did not 
use.  

9 Note that if bids are restricted to be integers, the optimal response is to bid the smallest integer 
larger than the realized computer value; this predicts an average bid of 5.5 in the ALP. 



would like to know the aggregate implications of such intermediate weights in our 
two conditions. To get a sense of this we now specialize to a specific model that 
is easy to work with: the temporal difference reinforcement learning model 
(TDRL; [Sutton & Barto 1998]). This model has a single parameter that controls 
the rate at which information from past observations is discounted. Although 
more complex learning models fit various data better, variations of TDRL have 
been shown to fit human and animal learning behavior reasonably well ([Glimcher 
et al. 2008] provides a survey) we believe that the qualitative effect of recency 
on the aggregate distribution of play will be roughly the same for many of the 
alternative models.   

TDRL works as follows: for each action a the agent begins at time 1 with 
a valuation v1(a) which we assume is chosen randomly.10  In each period t, 
individuals use a logit choice function, so they choose action a with likelihood 
proportional to exp(Gvt (a)). Here G represents the degree of maximization; note 
that as G goes to infinity, the probability of the action with the highest value 
goes to 1, so the choice function approximates maximization, while as G goes to 
0 all actions are chosen with equal probability. 

After each choice, individuals receive feedback and update their 
valuations. In the case of the ALP, individuals receive different feedback 
depending on whether their offer is accepted or not. We deal with these cases in 
turn. 

First, suppose that the individual’s offer is accepted. The individual then 
sees the seller’s valuation for the object in that round. In our TDRL model 
individuals update their valuations for action a according to  

vt(a) = vt-1(a) + A(rt-1(a) – vt-1(a)) 

where rt(a) is what the payoff would have been from choosing action a in that 
round. The basic idea is simple, the function v(a) measures the value assigned to 
action a. The term in parentheses represents the prediction error.  If it is 
positive, this means a did better than expected and conversely if it is negative, 
then a did worse than expected; the value v(a) is then incremented upward or 
downward accordingly. Parameter A is the learning rate – the higher it is, the 
more responsive individuals are to recent rounds.  

Note that in our model, individuals generate payoffs and update 
valuations even for bids that they did not choose. This requires individuals to be 
able to compute the counterfactual payoffs when information sets are censored. 
Here we assume that if individuals bid a and are rejected they correctly infer that 
the computer’s value v was above their bid a, draw a random value v from the 
interval [a, 10] and update their valuations as if this hypothetical v was the true 
computer value. 11  

We simulate N=1000 agents playing 30 rounds of the ALP. Figure 1 
shows the average simulated behavior in the final round for two different k values 

 
10 With high recency the impact of the initial values dissipates in a few rounds. 
11 In the case where subjects do observe v even when their bid is rejected, we assume that they 

update with the observed value of v, Note that this generates exactly the same distributions of 
behavior. We will see in experiment 2 that providing the subjects with full feedback does not 
change the distribution of bids. 



as well as different values of A and G=1.12 We note that even at we still see 
average offers very close to optimal for k=6 but in the k=3 condition low levels 
of A are required for approximately optimal play. 

3. GENERAL EXPERIMENTAL DESIGN 

Subject Recruitment 

All of the experimental participants were recruited online using the labor market 
Amazon’s Mechanical Turk (MTurk).13 In all of the following studies individuals 
read the instructions for the games and answered a comprehension quiz. 
Individuals who failed the comprehension quiz were not allowed to participate in 
the study; reported participant numbers are for those who passed the quiz.14  

All experiments were incentive compatible: participants earned points 
during the course of the experiment that were converted into USD. Participants 
earned a show-up fee of 50 cents and could earn up to $2 extra depending on 
their performance. All games were played for points and participants were given 
an initial point balance to offset potential losses. Experiments took between 10 
and 17 minutes and each subject participated in only one experiment in this 
series. 

 
12 The simulation results are robust to changes in the noise parameter. Because we are concerned 

with the first moment of the distribution of bids and changing noise mostly affects the dispersion 
of bids, rather than the mean. 

13 Although one might worry about the lack of control in an online platform, a number of studies have 
demonstrated the validity of psychological and economics experiments conducted on the MTurk 
platform (see [Simons & Chabris 2012, Peysakhovich & Karmarkar 2013, Peysakhovich & Rand 
2013, Rand et al. forthcoming]). All recruited subjects were US based. 

14 In our studies, the failure rate on the quizzes was approximately 25%, which is slightly higher than 
the rate in the studies above (typically 10-20%). However, our game is much more complicated 
than simple games such as the one shot Public Goods Game (see online materials for instructions 
and example comprehension quizzes). 

 
Figure 1: TDRL mean predicted bid as a function of learning rate and condition. 



4. EXPERIMENT 1 

Design 

We recruited N=190 participants to play 30 rounds of the additive lemons 
problem. In each round participants made a bid, restricted to the integers 0 
through 10 to a computerized seller who played the dominant strategy. 
Participants were informed of the seller’s strategy in the instructions. If a 
participant’s bid was accepted, they received full feedback about the round 
including the value of v and their payoff. If a participant’s bid was rejected, they 
were informed about this and received no additional information.  

We varied two parameters to form 4 conditions. First, we varied the level 
of k, setting it equal either to 3 or 6. Second, we varied whether participants 
were informed of the distribution of seller values. In one case, they were told that 
v is distributed uniformly between 0 and 10. In the other, they were informed 
that there was a distribution, but not what it was. This gave us 4 conditions, 
which let us “score” the fit of each of the theories discussed above. Individuals 
were randomized into a single condition. 

The theories discussed above give clear hypotheses about what should 
happen in each of these treatments. CE predicts overbidding when k=3 and 
underbidding when k=6 (CE predicts bids of 4 and 5.5 respectively). BE is a set-
valued solution concept; it rules out overbidding, allows underbidding in the 
“uniformed” condition, and predicts optimal bids in the informed treatments. 
Finally, simulations of the TDRL model with high recency higher than CE-
overbidding in aggregate when k=3 and almost NE behavior when k=6 
treatments. Table 1 summarizes these hypotheses. 

 

Results 

Figure 2 shows time courses of average offers binned by 5 round blocks. 
Participants behave nearly optimally in k=6 conditions but even towards the end 
of the experiment they behave quite suboptimally in the k=3 conditions. To show 
that the misoptimization is economically significant we look at the payoff 
consequences of these decisions. We define the efficiency of an individual 
decision as the expected payoff as a percentage of the expected payoff of the 
optimal strategy. Figure 2 also shows that this misoptimization does affect 
earned payoffs substantially:  average efficiency in the last 1/3rd of the game is 
only approximately 10% in the k=3 conditions.15 

 
15 The overall bid distributions look are centered (see supplemental materials), and the aggregate 

overbidding in k=3 conditions reflects overbids by many subjects. In particular, the distribution of 

 
Table 1: Hypotheses by condition in the Baseline Experiment 
K=3, Informed 

CE BE TDRL 
> NE NE > NE  

K=3, Uninformed 

CE BE TDRL 
> NE  NE > NE  

K=6, Informed 

CE BE TDRL 
< NE NE Close to NE  

K=6, Uninformed 

CE BE TDRL 
< NE NE Close to NE  



There is no effect of being informed about the true distribution of values 
either in the averages (regressions show an insignificant effect of being informed, 
see supplement) or in the full distribution of behavior in the last round (pooled 
across k conditions, Kolmogorov-Smirnov test p=.68).16   

All reported statistics that do not include a specific test come from 
regression analysis with errors clustered at the participant level, we report full 
regression tables in the supplemental materials available on our websites. In 
addition, all error bars included in figures include the same cluster corrections.  

Bids are higher in the k=6 condition, as would be expected. This is true in 
even in the first round (t-test p<.001). Thus participants do condition their initial 
play on this payoff relevant parameter. To increase statistical power, we now 
pool across informed and uninformed conditions. 

We first focus on the k=3 condition. By the last 10 rounds aggregate 
behavior appears to have converged: in regressions the significance of round 
number on bid disappears when we restrict the sample to the last 1/3 of the 
game (mean first 5 rounds = 5.59, mean bid in last 10 rounds = 5.148). In 
addition, the distribution of bids in the first 10 rounds is significantly different 
from the distribution of bids in the last 10 rounds (Kolmogorov-Smirnov p<.001), 
but the distribution of behavior in rounds 11-20 is not significantly different from 
the distribution of behavior in rounds 21-30 (Kolmogorov-Smirnov p=.43). The 
average bid in the last 10 rounds is significantly above the optimal bid of 3 
(clustered 95% confidence interval [4.88, 5.41]). 

In the k=6 condition we see no experience effects. For symmetry with 
k=3, we focus on the last 10 rounds. Here bids are much closer to optimality and 
are not significantly different from the optimal bid of 6 (mean bid in last 10 
rounds = 6.02 with subject-level clustered 95% confidence interval given by 
[5.72, 6.27]).  

                                                                                                                                
behavior does not correspond to a mixture of some subjects optimizing and others choosing at 
random due to inattention. 

16 One possible explanation of this is that subjects who are not told the true distribution expect it to 
be uniform distribution.  

 
Figure 2: Results of experiment 1. A) Average bids by condition smoothed at 5 
round blocks. B) Mean expected payoff of offers in last 10 rounds by condition.  



We now turn to evaluating the performance of the theories, beginning 
with a comparison of the average bids with the predicted averages. There is 
substantial overbidding at k=3,17 no underbidding at k=6, and very little 
difference between the informed and uninformed conditions. Thus, BE does not 
fit well with our data, despite its substantial intuitive appeal. The substantial 
overbidding in the k=3 conditions is qualitatively consistent with CE, but the 
overbidding is even higher than CE predicts, and significantly so (mean bid in last 
10 rounds = 5.148, 95% confidence interval clustered at participant level [4.88, 
5.41]).18 In addition we do not see the underbidding in the k=6 conditions that 
CE predicts (mean bid in last 10 rounds = 6.02 with subject clustered 95% 
confidence interval given by [5.72, 6.27]). 

Finally, we turn to the TDRL model. We first discuss whether the model 
matches patterns in the aggregate data: as in TDRL simulations with high recency 
we see that aggregate behavior exhibits extreme overbidding in the k=3 
conditions and optimal behavior in the k=6 conditions.  

Next we look at the dynamics of behavior. Because both CE and BE are 
equilibrium concepts, they make predictions about aggregate behavior once 
subjects have enough experience/feedback for equilibrium to roughly 
approximate their behavior. However, these models do not make predictions 
about how behavior should change between rounds before the equilibrium is 
reached, and predict little change in play once subjects have enough experience. 
In contrast, any learning model with a high weight on recent outcomes predicts 
there should be non-random changes in individual behavior between rounds and 
that this non-stationarity should continue even when individuals have received 
feedback on a substantial number of past plays. 

To look for this individual-level effect, we define a variable called ∆bid as 
the offer in round t minus the offer in round t-1. We then look at how ∆bid is 
affected by what happens in round t-1, with the prediction that good outcomes 
of accepted bids should lead individuals to revise their bid upward, bad outcomes 
should lead individuals to revise their bids downward and rejections (which 
indicate that the computer had a high value that round) should lead individuals to 
(on average) revise their bid upward. Again, we restrict this analysis to the last 
1/3 of all rounds, where aggregate behavior has converged. 

Figure 3 shows ∆bid as a function of outcomes in a last round. We look at 
three bins: when an individual’s bid was accepted and earned a positive profit, 
when bids were accepted and yielded a loss, and when bids were rejected.  The 
figure shows that there is strong relationship between the previous period’s 
outcome and ∆bid. Regressions (see supplement) confirm the statistical 
significance of this effect. Additionally, we can look at what happens when an 
offer is rejected: individuals raise their offer by .405 points (95% confidence 
interval [.302, .508]) next round.  

 
17 This underbidding cannot be explained simply by relaxing individual best response to incorporate 

random utility: the payoff functions of the ALP are relatively symmetric so adding a small random 
utility term  does not change the mean bid much. In particular with logit best replies the mean bid 
is below 3.5 for all but the most extreme values of the logit parameter. 

18 [Eyster & Rabin 2005] find a similar effect when trying to fit CE models to some experimental data. 



Although the TDRL model with high recency describes first-order patterns 
in the data well, a high recency parameter implies a very strong behavioral 
response in the next round’s offer (1 for 1 in the limit case of extreme recency), 
and we do not see such a strong response in the individual-level regressions. We 
could improve the fit of TDRL by adding additional parameters, but we are 
content to sacrifice in-sample fit for portability and simplicity. TDLR does better 
than either of the equilibrium concepts at organizing the general patterns in our 
experiments, and can provide intuition about the effects of recency bias on the 
ALP and other learning scenarios.19 

To test whether this pattern is driven by a small subset of individuals or is 
representative, we define a step as moving a bid up or down 1 point. We then 
look at the number of steps that individuals take in the last 10 rounds of the ALP 
(Figure 3). If the recency results were driven by a small number of individuals 
then we should expect to see a large mass of individuals at 0. If the results are 
representative, we should expect to see a smaller mass at 0 and most people 
taking multiple steps. Between 65% (k=6) and 80% (k=3) of participants’ offer 
behavior exhibits persistent variance, even in the last 1/3 of experimental 
rounds. This finding is hard to reconcile with any sort of equilibrium analysis.20 

 
19 It is true that CE/BE/NE are zero-parameter models while TDRL has the learning rate as a free 

parameter.  However, TDRL makes additional predictions about how play changes over time so is 
“more falsifiable” than the equilibrium models. 

20 This variance does not appear to decrease during the course of the experiment. The average absolute 
value of ∆bid is 1.02 in the first 10 rounds and .98 in the last 10 rounds the difference is not 
significant (two-sided clustered t-test p=.58). We can also consider those individuals who show no 
variance in their behavior in the last 10 rounds. The fact that these individuals behavior is constant is 
consistent with some equilibrium notion, but even among this group there is substantial overbidding 
in the k=3 condition (see supplemental materials). Thus the assumption of rational Bayesians is a 
poor fit among this group as well. 

 

 
Figure 3: Learning in experiment 1 persists even in the last 10 rounds. A) 

Relationships between outcomes in a round and ∆bid. B) Distribution of steps 
taken by individuals in each experimental condition (smoothed density). 



In experiment 3 we show that our learning model is also useful in that it suggests 
particular interventions that can lead individuals closer to optimal behavior. 
Before turning to this, we present another experiment that tests the robustness 
of our results and further demonstrates the prevalence of recency-based 
learning. 
 
The next experiment is designed to control for a potential confound in 
experiment 1: we saw that the average ∆bid in a round in which an offer was 
accepted was -.270, so the observed overbidding primarily occurs due to 
individuals moving their bid upward after a rejected offer. One potential 
explanation for this is misperceptions about the value of v conditional on 
rejection. To check for this, as well as replicate our original results, we performed 
a second experiment. 
 

Design 

We recruited 75 new participants to play k=3 and k=6 conditions with one twist: 
whereas in experiment 1 participants simply received a rejected message if their 
offer was not accepted, participants now received full feedback about the seller’s 
value v whether their offer was accepted or not 
 

Results 

Comparing the data from experiment FF (Full Feedback) to the behavior from 
experiment 1, we see little difference between behaviors of individuals who have 
counterfactual information vs. those who do not (Figure 4). If anything, the 
individuals with counterfactual information do slightly worse (overbid more) in 
the k=3 condition, but this difference is not significant in regressions (see 
supplemental material). As before, the aggregate outcomes are not driven by 
outliers and there is large volatility in most individuals’ behavior (see 
supplemental materials on authors’ websites). 

The full feedback experiment lets us perform a reduced form test of 
recency effects. In the baseline experiment, information that individuals received 
was partially endogenous (high bids were much more likely to get accepted). 
However, with full feedback, the computer’s value v acts like an exogenous shock 
in round t. In a monotone learning model, higher values of v increase potential 
valuations of higher bids and low values of v decrease valuations of higher bids. 
Thus, we expect a monotone relationship between bids at time t and histories of 
observed computer values v.21  

We can see a recency effect very starkly even in the last 10 rounds. We 
first split realized computer values into very low (values of 3 or below, bottom 
30% of realizations) or very high (values of 7 or bigger, top 30% of realizations).  
We then take the average bid of each individual over the last 10 rounds and set 
that as the individual’s “baseline”. We then look for the effect of observing a 

 
21 To see the intuition behind this claim, suppose that an individual has observed a history of 

computer values (c1, c2, …, ct-1). The individual thus has valuations for each bid b and an 
associated expected bid that can be easily derived from the logit choice formulation. Now, consider 
marginally changing an observed valuation ci upward. This will increase the valuation of each bid b > 
ci and not affect the valuation of each bid b < ci (because the value of that bid in that period was 0 
anyway). Thus, this will increase the expected bid of the individual. 



very high or very low value in round t on round t+1, t+2 and t+3 deviations from 
this average bid. Here, a positive deviation represents a higher than average (for 
that individual) bid and a negative deviation represents a lower than average bid. 
Figure 4 shows there is a large effect on behavior in the t+1st round, and no 
statistically appreciable effect on the t+2nd or t+3rd round.   

An alternative way to quantify recency effects is to regress bids at time t on 
lagged experiences then use a model selection criterion to choose an “optimal” 
number of lags. If there are strong recency effects, the selected model should 
use a relatively small number of lags. Using either the Bayesian Information 
Criterion or lasso (see authors’ websites) selects a regression model with a single 
lag. This provides further evidence for strong recency-biased learning in our 
participants. 

 

5. EXPERIMENT 3 : RECAPS 

So far we have compared the predictions of various equilibrium concepts with 
that of a simple learning model and shown that learning with recency better 
organizes existing data. However, we do not build models just to organize 
existing data, rather good models help us gain intuition about situations we have 
not yet seen and give us the ability design welfare improving interventions. We 
now show that considering the dynamics of learning delivers insights that 
equilibrium models do not. 

Why does recency bias imply that suboptimal behavior should persist in 
our experiments? The ALP’s feedback structure is such that a relatively small 
sample of outcomes typically doesn’t reveal the optimal bid. Thus high recency 
acts as a barrier towards learning optimal behavior in this setting. This suggests a 
prescription for intervention: increasing the number of outcomes subjects 

  
Figure 4: Results of experiment 2. A) Counterfactual information does not help 
individuals optimize. B) Individuals respond to experiencing high/low outcomes in 

round t-1 but much less so to experiencing high/low outcomes in rounds t-2 or t-3. 



observe simultaneously should help them make better decisions. To test this 
hypothesis, we performed another experiment. 
 

Design 

We recruited N=273 more participants. In experiment 3 participants were 
assigned to one of 3 ALP conditions all with k=3. The control condition simply 
replicated the k=3 condition from experiment 2. In the more information 
condition participants played the ALP against 10 sellers simultaneously. Sellers’ 
object values were determined independently. Each round (of 30) buyers made a 
single offer decision that applied to all 10 sellers (who, as before played the 
optimal strategy). Participants were informed of all this. At the end of a round, 
participants received feedback about each of their transactions simultaneously: 
what the seller’s value was, whether the offer was accepted and the buyer’s 
profits on that transaction. 

There is much existing evidence that in addition to having limited 
memory, individuals also have limited computational resources [Miller 1956]. 
Thus one may expect that more information is only useful if it is in easily 
“digestible” form.  To look for evidence of computational constraints we added a 
simple information condition. This condition was almost identical to the more 

information condition; individuals played 30 rounds with 10 sellers simultaneously 
and made a single offer that applied to each seller. However, instead of receiving 
fully detailed feedback on each transaction, participants received pithy recaps: 
they were told their average profit out of the 10 transactions and average values 
of the objects they actually purchased (see online appendix for examples of 
feedback screens). 
 

Results 

Figure 5 shows the average offers in the experiment binned in 5 round 
increments. We see that the addition of more information doesn’t seem to help 
individuals converge to optimal behavior (round 21-30 mean offer in control = 

 
Figure 5: A) Average bids by condition smoothed at 5 round blocks. B) Mean 

expected payoff of offers in last 10 rounds by condition. 



5.02, mean offer in more info = 5.22). However, simple information in the form 
of pithy recaps does appear to be useful (rounds 21-30 mean offers = 4.02), 
which suggests that the learning problems caused by recency do not stem solely 
from limited memory.  

This latter finding is consistent with that of [Bereby-Meyer & Grosskopf 
2008], who find that recaps are helpful in their version of the ACG, though they 
do not compare recaps with the more-information condition. 

Though individuals in the simple information condition still offer above the 
NE offer in the final round (one sided t-test p<.01) they perform significantly 
better in economic terms (Figure 5) than in the control and more information 
treatments. In addition to comparing sample averages we can also see what 
effect the simple information condition has on the full distribution of behavior: 
we see that our treatment seems to drive the whole distribution of bids towards 
the optimum as well as decreasing their variance (test for equal variance in last 
10 rounds of baseline vs. simple info. condition rejects equal variance, p<.001, 
additional analyses available from authors’ websites). 

6. CONCLUSION 

Our results demonstrate that explicitly dynamic models of behavior can yield 
insights in ways that equilibrium models cannot. None of the equilibrium concepts  
(NE/CE/BE) we consider are able to capture the full variation of behavior in the 
ALP. By contrast, a learning model with high recency fits aggregate behavior 
across treatments well. In addition, thinking dynamically gives us intuition about 
interventions via feedback structure to help nudge individual behavior closer to 
optimum. 

Our experiments show that computational, not just memory, constraints 
may contribute to the persistence of suboptimal behavior. This reinforces earlier 
arguments that recency effects are in part driven by computational constraints 
[Hertwig & Pleskae 2010], and suggests that here at least memory load is not a 
primary driver of recency. Our results thus support incorporating more accurate 
representations of computational limits and other forms of bounded rationality 
into existing learning models.  

There is a debate about whether findings from learning experiments such 
as ours can be applied to understand behavior in the field. Individuals may have 
computational constraints, but in the field they often have access to 
technological aids. This is argued strongly in [Levine 2012]: 

“Even before we all had personal computers, we had pieces of 

paper that could be used not only for keeping track of information 

– but for making calculations as well. For most decisions of 

interest to economists these external helpers play a critical role…”  

Such technologies can provide recaps and thus help guide individuals towards 
optimal decisions. On the other hand, there is evidence of significant economic 
costs due to incomplete learning and recency bias in contexts such as credit card 
late fees [Agarwal et al. 2008], stock market participation [Malmendier & Nagel 
2011] and IPO investment [Kaustia & Knupfer 2008]. These findings suggest 
that even when recaps and record-keeping devices are available they may not be 
utilized. At this point, though, the case seems far from settled. Further studies of 



the effectiveness of recaps in the lab and the field could have both scientific and 
social benefit.  
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