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Abstract 

Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials 
that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein 
complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the 
plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, 
include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and 
position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and sig-
nificant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize 
the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the 
development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine 
antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been 
achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation 
technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection 
and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic 
plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with 
special focus on the different traits of economic interest.
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Background
World population is expected to rise to 9.2 billion in 2050. 

In order to feed the rising population food production 

has to grow in parallel. �e problem is that arable land 

is exploited to its potential (High Level Expert Forum, 

FAO, October 2009; http://www.fao.org). Advancement 

in agricultural biotechnology particularly plant genetic 

engineering is believed to boost crop productivity. Due 

to enormous rewards crucial traits have been engineered 

via chloroplast genome instead of nuclear genome. It is 

amazing that more than 120 genes from various sources 

have been well integrated and expressed via the chlo-

roplast genome for various applications. Aims of these 

applications include, developing crops with high levels of 

resistance to insects, bacterial, fungal and viral diseases, 

different types of herbicides, drought, salt and cold tol-

erance, cytoplasmic male sterility, metabolic engineer-

ing, phytoremediation of toxic metals and production of 

many vaccine antigens, biopharmaceuticals, industrial 

enzymes and biofuels [1–5].

Chloroplasts originated from endosymbiosis around 

1.5 billion years ago, when a cyanobacterial cell was 

engulfed by heterotrophic eukaryote [6, 15]. Chloroplast 

organelle of plants and algal cells evolved from photo-

synthetic bacteria living inside the primitive ancestors 

of plant cells [7, 8]. Chloroplast gene products are not 

only homologus to the present-day cyanobacteria but 

the arrangement and expression of genes also reflect the 

prokaryotic ancestry of chloroplasts. �ey possess multi-

ple copies of a small circular genome with 100–250 genes 

and their genome size varies between species, ranging 

from 107 kb (Cathaya argyrophylla) to 218 kb (Pelargo-

nium) and maternally inherited in angiosperm plants [5]. 
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�ere is a strong believe that the action of gene transfer 

and genome streamlining resulted into a drastic shrink-

age of the genome of cyanobacterial endosymbiont where 

thousands of genes disappeared and were either trans-

ferred to nucleus or lost. Consequently, modern-day 

chloroplast genomes of photosynthetic eukaryotes are 

much reduced [9, 10].

�e high ploidy number of the plastid genome and 

compartmentalization of proteins allow high levels of 

foreign protein expression from 5 to 40% total solu-

ble protein [11] and up to 70% total soluble protein in 

Tobacco [2, 3, 12]. Moreover, nuclear encoded proteins 

are also accumulated at high level inside the chloroplast, 

although the ploidy level is not as high as chloroplast 

encoded proteins. �at is why recent advancement in 

plant biotechnology has proved the use of chloroplasts 

as excellent ideal host for conferring agronomic traits 

and production of biopharmaceuticals, biomaterials and 

industrial enzymes [13]. Chloroplast genetic engineering 

has enormous advantages over nuclear transformation as 

well explained in Table 1 [1, 5, 14–25].

Chloroplast transformation

Multistep processes are involved to achieve chloro-

plast transformation. Species specific or heterologous 

chloroplast transformation vectors are developed in 

a manner that flanks the foreign genes and insert them 

through homologous recombination at predetermined 

and precise location in the plastome [26]. When the for-

eign DNA is delivered into plasmids, initially only a few 

copies of the plastome are transformed resulting in-to 

heteroplasmic state. �en, through sub-culturing the 

bombarded explants in vitro under selection all copies of 

the plastome contains the transgene leading to the state 

of homoplsamy, where all the plastomes of the chloro-

plasts present in the cell are transformed (Fig. 1). Gener-

ally, three key conditions have to be full-filled to achieve 

plastid transformation: (1) a robust method of DNA 

delivery into the chloroplast, (2) the presence of active 

homologous recombination machinery in the plastid, and 

(3) the availability of highly efficient selection and regen-

eration protocols for transplastomic cells [11, 27].

Transformation is highly efficient when there is com-

plete homology of plastid DNA flanking sequences. 

For successful transformation, it is critical to iden-

tify promoters, 5′-UTRs, 3′-UTRs and insertion sites 

as indicated in Table  2. Complete chloroplast genome 

sequences are essential for integration of the transgene at 

optimal site via homologus recombination and to identify 

endogenous regulatory sequences for optimal transgene 

expression [28, 29].

Plastid transformation was first achieved in unicel-

lular algae called Chlamydomonas reindhartii [30]. 

Tobacco was the first higher plant in which chloro-

plast transformation was successfully performed [31, 

32]. Similarly, a protocol for plastid transformation of 

an elite rapeseed cultivar (Brassica napus L.) has been 

developed [33].

Traits of interest for chloroplast transformation

Conferring agronomic traits

Researchers have successfully engineered different genes 

on chloroplasts to confer agronomic traits of interest. For 

instance simultaneous expression of protease inhibitors 

and chitinase have been employed to develop multiple 

biotic and abiotic stresses resistant plants, particularly 

tobacco [34]. Economical agronomic traits, such as herbi-

cide resistance, insect resistance and tolerance to drought 

and salt, have already been engineered via the plastid 

genome [35]. �e dominant trait that attracted the most 

attention for plastid transformation has been herbicide 

tolerance [11, 36–38]. �e production of plants resistant 

to high level of glyphosate was achieved through biolistic 

transformation of plastids by introduction of a mutated 

herbicide-tolerant gene coding for EPSP synthase [11] 

(Table 3). 

Table 1 Comparative advantages of chloroplast genome over nuclear genome

Chloroplast transformation Nuclear transformation

Reduced of gene dispersal in the environment due to maternal inherit-
ance

There is gene dispersal in the environment due to its parental nature

Multiple copy (high ploidy) of plastids results higher expression and 
accumulation of foreign proteins

Nuclear is not in high ploidy results lower expression and accumulation of 
foreign proteins

Efficient multiple gene expression in single transformation event Efficiency of single transformation for multiple gene expression is very poor

Single promoter for expression of multi-subunit complex protein from 
polycistronic mRNAs

Several promoters for each genes to drive expression of respective subunits

Simultaneous expression of several genes as it contains prokaryotic gene 
expression system

Do not have prokaryotic expression system can’t undergo simultaneous 
expression of several genes

Homologous recombination avoids position effects and gene silencing Random integration presents position effects and gene silencing
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Production of vaccine antigens and biopharmaceuticals

It is believed that more than 90% of the global population 

cannot afford insulin, a drug needed to treat the global 

diabetes epidemic [5]. �e high cost of protein drugs is 

due to their production in prohibitively expensive fer-

mentation systems, prohibitively expensive purification 

from host proteins, the need for refrigerated storage and 

transport, and the short shelf-life of the final product [66, 

67]. Protein drugs made by plant chloroplasts overcome 

most of these challenges as they do not require such 

expensive production process and can be stored without 

losing efficacy [68, 69] As listed in Table 4 numerous vac-

cine antigens and biopharmaceuticals have been engi-

neered via chloroplast genome of higher plants.

Among plant plastids, tobacco plastid has been engi-

neered to express the E7 HPV type 16 protein, which is 

an attractive candidate for anticancer vaccine develop-

ment [83]. �e main factor why plant plastids are chosen 

Fig. 1 Diagrammatic representation of the processes for chloroplast genome transformation. a Basic design of a typical vector for transforming 
the plastid genome. Both the expression cassette and the selection cassette are placed between the two plastid regions. These flanking regions are 
taken from the wild-type plastid genome of a plant species whose plastome is to be manipulated, to allow a crossover event take place to integrate 
DNA sequences between them. Green arrows in the chloroplast expression vector represent promoters (P) and the direction of transcription, 
whereas terminators (T) are indicated by red rectangles. The untranslated regions are represented by white circles. The thin dotted lines with arrows 
indicate homologous recombination. b Delivery of transforming plasmids into chloroplasts in leaf cells using a particle delivery system. The plasmid 
DNA is coated on the surface of the microparticles of either gold or tungsten and then shot on to the abaxial surface of 4- to 6-week-old sterile 
leaves using a gene gun. The bombarded leaves are incubated for 48 h in the dark, cut into small discs and placed on regeneration medium sup-
plemented with the appropriate antibiotic and hormones. Primary shoots generally arise within 2–3 months. c The process of recovering a stable 
homoplasmic transplastomic plant line. Initially, only a few copies of the plastome are transformed, and therefore the explant contains a mixture 
of both transformed as well as untransformed copies, a state known as heteroplasmy. The wild-type copies (indicated by light-coloured ovals) are 
sorted out gradually by repeating two or three regeneration cycles under selection to reach homoplasmy, a state where all copies of the plastome 
are transformed (indicated by dark grey ovals). Adopted from Ref. Ahmad et al. [113]
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as better bioreactors is due to the ability of plants to cor-

rectly carry out post-translation modifications such as 

phosphorylation, amidation, proper folding, formation of 

disulfide bonds and the assembly of complex multi-subu-

nit proteins. Microorganisms are also used for large-scale 

industrial applications of recombinant protein produc-

tion, but cannot carryout post-translational modifica-

tions [35]. �e hyper-expression of vaccine antigens or 

therapeutic proteins in transgenic chloroplasts (leaves) 

or chromoplasts (fruits/roots) and antibiotic-free selec-

tion systems available in plastid transformation systems 

became successful in the oral delivery of vaccine anti-

gens against cholera, tetanus, anthrax, plague, and canine 

parvovirus [17, 28, 69, 84]. Although higher level protein 

production is vital of chloroplast, too much expression of 

foreign proteins in chloroplasts is causing toxicity on host 

plant. Temporary immersion bioreactors (TIBs) using 

Alka Burst technology has produced leafy biomass that 

expressed OspA at levels of up to 7.6% total soluble pro-

tein to give a maximum yield of OspA (about 108 mg/L). 

�ese results show that TIBs offer an alternative method 

for the production of transplastomic biomass proteins, 

which are non-toxic for plants and particularly useful 

when absolute gene dispersion control is required [85] 

From a single plant Chlanydomonas reinhadtii various 

recombinant therapeutic proteins have been produced 

(Table 5).

Phytoremediation

It is strongly believed that phytoremediation is a safe and 

cost-effective system for cleaning up contaminated envi-

ronments using plants. Organomercurial compounds 

are the most toxic forms of mercury and chloroplast 

genome is a primary target of mercury damage in plants. 

It is, thus, an ideal site to engineer resistance and detoxi-

fication of organomercurials and metallic mercury [93]. 

Chloroplast genetic engineering of plants for synthesis of 

metal chelators has improved the capability of plants for 

metal uptake [94, 95].

Two bacterial genes encoding two enzymes, mercuric 

ion reductase (merA) and organomercurial lyase (merB), 

were expressed as an operon in transgenic tobacco chlo-

roplasts. �is demonstrated accumulate of mercury in 

roots to levels surpassing the concentration in soil, up to 

200 μg/g, without any detrimental effect and could accu-

mulate 100-fold more mercury in leaves than untrans-

formed plants [96]. Phytoremediation of toxic mercury 

was achieved by engineering of tobacco chloroplast with 

metallothionein enzyme [53].

Production of industrial enzymes and biomaterials

Chloroplast genome has been successfully engineered to 

produce important enzymes and biomaterials. Despite 

the diversion of major metabolic intermediate, metabolic 

engineering using chloroplast genomes produced the 

highest level of the poly (p-hydroxybenzoic acid (pHBA) 

polymer (25% dry weight) in normal healthy plants [97]. 

Optimized genetic construct for plastid transformation 

of tobacco (Nicotiana tobacum) for the production of the 

renewable biodegradable plastic poly hydroxy butyrate 

(PHB) was designed using an operon extension strategy 

[98]. Lots of efforts have been made to produce PHB in 

different systems, but to date, the highest levels of PHB 

have been achieved in plastids. �is was due to the high 

flux of the PHB pathway substrate acetyl-CoA through 

this organelle during fatty acid biosynthesis [99, 100] 

Typical examples of biomaterials and enzymes that have 

been engineered via chloroplastgenome of Tobacco are 

mentioned in (Table 6).

Production of biofuels

�e most important and first requirement for lingo-cellu-

losic biofuels production is to develop an efficient enzyme 

production system for economical and rapid biomass 

depolymerization. High levels of expression and com-

partmentalization of toxic proteins within chloroplasts 

enables to protect transgenic plants from pleiotropic 

effects, making chloroplast an ideal bioreactor for indus-

trial enzyme production [25]. Although it was possible to 

have single biofuels enzymes expressed whole biomass 

hydrolysis was not effective because of the requirement 

of more number of enzymes [94, 95]. �e development 

of chloroplast derived cocktails of enzymes for produc-

tion of fermentable sugars from different ligno-cellulosic 

biomass become major fresh breakthrough in biofuels 

Table 2 Commonly used promoters, un-translated regions  

and insertion sites for chloroplast transformation as avowed  

in [25, 117]

Promoter 5′-UTRs 3′-UTRs Popular insertion sites

PpsbA Ggagg rbcL rbcL-accD

Prna T7G10 rps16 Trnl-trnA

PrbcL rbcL petD rp132-trnL

psaA atpB psbA petA-psbJ

atpI psbA 3’rps12/7-trnV

cry2a Trn16/V-3’rps12/7

23srrnA-16srrnA

trnfM-trnG

atpB-rbcL

trN-trnR

Ycf3-trnS

rps7-ndhB
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Table 3 Agronomic traits engineered via chloroplast genome

Site of integration Regulatory sequences Transgene/s E�ciency of expression Enhanced traits References

rbcL/accD Prrn/rbcL 3′ panD >4-fold β-alanine Tolerance to high-tempera-
ture stress

[39]

trnI/trnA Prrn/ggagg/psbA tps1 >169-fold transcript Drought tolerance: growth 
in 6% polyethylene glycol 
and rehydration after 
24 days of drought

[40]

rbcL/rbcL psbA/psbA/3′rbL Hppd 5% TSP Resistance to herbicide [41]

trnI/trnA Prrn/T7 10/rps16 Badh 93–101 μM g−1 FW Salt tolerance: carrot plants 
survived up to 400 mM 
NaCl

[42]

trnfM/trnG atpI/rps16 Lycopene β-cyclase 0.28 mg g−1 DW Herbicide resistance and 
triggers conversion of 
lycopene

[43]

rbcL/accD Prrn/ggagg/psbA EPSPS/aroA NR Resistance to glyphosate 
(>5 mM)

[32]

prs14/trnG Prrn/T7 g10/TrbcL HTP, TCY, TMT NR Cold-stress tolerance and 
increase in vitamin E in 
fruit

[44]

trnV/rps7/12 Prrn/Trps16 EPSPS >10% TSP Resistance to the herbicide 
glyphosate

[45]

trnV/rps12/7 Prrn/TrbcL b-bar1 >7% TSP Resistance to the herbicide 
phosphinothricin

[46]

trnI/trnA Prrn/psbA/psbA phaA 14.71 β-ketothiolase  mg−1 
FW

Engineered cytoplasmic 
male sterility

[47]

trnI/trnA Prrn/T7 g 10/TpsbA γ-TMT >7.7% TSP Increased salt tolerance and 
enhanced accumulationof 
ɑ-tocopherol in seeds

[48]

trnI/trnA T7g10 or psbA RbcS >150-fold RbcS transcript Restoration of RuBisCO 
activity in rbcS mutants

[49]

rbcL/accD Prrn/ggagg/psbA cry2Aa2 2–3% of TSP Resistance to Heliothis vires-
cens, Helicoverpa zea, and 
Spodoptera exigua

[50]

trnV/3′rps12 prrn T7G10/rps12 Trx f, Trx m NR Starch synthesis [51]

trnI/trnA 5′psbA/3′psbA ubiC 25% DW 250-fold higher pHBA poly-
mer accumulation than 
nuclear transgenic lines

[52]

rbcL/accD PpsbA/Trsp16 TC, γ -TMT 3 nmol h−1 mg−1 FW Vitamin E accumulation in 
tobacco and lettuce

[53]

trnV/orf708 psbA/psbA/psbA BicA ~0.1% TSP CO2 capture within leaf 
chloroplasts

[54]

trnV/rps12/7 Prrn/rbcL/rps16 cry1A(c) 3–5% of TSP Resistance to larvae of 
Heliothis virescens, Helicov-
erpa zea, and Spodoptera 
exigua

[55]

rbcL/accD Prrn/Trps16 CrtZ, CrtW NR Accumulation of astaxan-
thin fatty acid esters in 
lettuce

[56]

trnV/rps12/7 Prrn/T7gene10/rbcL cry1Ab NR Resistance to caterpillar of 
Anticarsia gemmatalis

[57]

trnI/trnA Prrn/Trps16 MSI-99 89.75 μg g−1 FW Resistance against rice blast 
fungus

[30]

trnI/trnA Prrn/TpsbA sporamin1, CeCPI2, and 
chitinase2

0.85–1% TSP Resistance against Spodop-
tera litura and Spodoptera 
exigua leaf spot, as well as 
soft rot diseases

[58]

trnI/trnA Prrn/ggagg/psbA Bt cry2Aa2 operon 45.3% TSP 100% mortality of cotton 
bollworm, beet army-
worm; cuboidal Bt crystals 
formation

[59]
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research. Different enzymes from bacteria or fungi, 

namely β-1,4-endoglucanase, Beta glucosidase, Swol-

lenin, esterase, cutinase, endoglucanases, exoglucanase, 

pectate lyases, xylanase, lipase, acetyl, Acetyl xylan ester-

ase and xylan were expressed in tobacco chloroplasts for 

production of fermentable sugars [107–111].

Endoglucanase Ce19A, β-glucosidase Bg11C, Exoglu-

canase Ce16B and xyloglucanase Xeg74 from Tricho-

derma fusca were highly active and hydrolyzed their 

synthetic test substrates in a dose dependent manner. �e 

cocktail of these enzymes triggered efficient sugar release 

from straw [107]. Treatment of cotton fiber with chloro-

plast derived cutinase showed enlarged segments and the 

intertwined inner fibers were irreversibly unwound due 

to expansion activity of cutinase. Chloroplast derived 

cutinase showed esterase and lipase activity [110]. 

Β-1,4-endoglucanase from Pyrococcus horikoshii which 

drives EPGh from chloroplast was able to recover from 

Table 3 continued

Site of integration Regulatory sequences Transgene/s E�ciency of expression Enhanced traits References

trnI/trnA Prrn/ggagg/psbA msi-99 21–43% TSP Resistance to in planta chal-
lenge of Aspergillus flavus, 
Fusarium moniliforme, 
Verticillium dahlia, and 
Colletotrichum destruc-
tivum

[60]

trnI/trnA Prrn/ggagg/rbcL Bt cry9Aa2 ~10% of TSP Resistance to Phthorimaea 
operculella

[61]

trnI/trnA Prrn/psbA/psbA Cpo NR Resistance to fungal patho-
gens in vitro (Fusarium 
verticillioides, and Verticil-
lium dahliae) and in planta 
(Alternaria alternata)

[62]

trnI/trnA 5′psbA/3′psbA PelB1, PelD2 ~2.42 units  mg−1 FW Resistance against Erwinia 
soft rot

[63]

trnI/trnA 5′psbA/3′ RC1011, PG12 17–38% TSP Resistance to Erwinia soft 
rot and tobacco mosaic 
virus

[64]

trnI/trnA 5′psbA/3′psbA Pta 7.1–9.2% TSP Broad-spectrum resistance 
against viral/bacterial/
phloem-feeding insects

[51]

trnI/trnA 5′psbA/3′psbA Bgl-1 >160-fold enzyme Resistance against whitefly 
and aphid

[65]

Table 4 Vaccine antigens and biopharmaceuticals engineered via chloroplast genome of higher plants

Traits Gene Expression Host plant References

HIV/AIDS gp120, gp41 16 μg g−1 FW Tobacco [70]

Human papiloma virus GUS-E7 3–4% TSB Tobacco [71]

Polio virus CTB-VP1 4–5% TSP Tobacco [72]

Tuberculosis antigens CTB-SAT6CTB-Mtb72F 7.5% TSP Tobacco [73]

CTB-ESAT6 0.75% TSP Lettuce [73]

Bacterial Pa 2.5–4% TSP Tobacco [74]

Dengue virus EDIII 0.8–1.6 TSP Tobacco [75]

Bacterial phage lytic `protein plyGBS >70% TSP Tobacco [76]

Pompe disease CTB-GAA 0.1–0.2 TLP Tobacco [77]

Thioredoxin 1 hTx1 15 TSP Lettuce [78]

Insulin liken growth factors IGF-1n 32% TSP Tobacco [79]

Endolysin Cpl-1 Cpl-1 10% TSP Tobacco [80]

Interferon-α2b(IFN-α2b) IFN-a2b 21% TSP Tobacco [81]

Basic fibroblast growth factor (bFGF) bFGF 0.1% TSP Tobacco [82]
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dry leaves and digested carboxylmethyl cellulose(CMC) 

substrate [56]. β-Mannanase enzyme from Trichoderma 

reesei showed sixfold to sevenfold higher enzyme activ-

ity than E. coli. β-Mannanase enzyme cocktail with chlo-

roplast derived mannanse yielded 20% more glucose 

equivalents from pinewood than the cocktail without 

mannanase [111]. Catalytic activity of chloroplast pro-

duced Xylanase was detected with birch wood xylan as 

substrate [112]. Chloroplast enzymes (Endoglucanase, 

Swollenin, Acetyl xylan esterase, Xylanase enzymes origi-

nated from T. reesei, Endoglucanase exoglucanase from 

C. thermocellum, Lipase from M. tuberclosis, Cutinase 

and Pectate lyase A from F. solani) showed wider pH and 

higher temperature stability than enzymes expressed in 

E. coli. Chloroplast derived crude extract enzyme cock-

tails yielded more than 36-fold glucose from citrus peel, 

filter paper or pine wood than commercial cocktails 

[113].

Conclusion and prospects
Chloroplast genome has become the target of many 

plant genetic transformation efforts due to its enormous 

advantages over nuclear genome of the plant. �e nuclear 

transgenic approach is incapable to develop products 

when higher-level transgene expression and multigene 

engineering is a requirement. Chloroplast transformation 

is expected to offer unique advantages in the advance-

ment of different biotechnological applications; includ-

ing, phytoremediation, production of industrial enzymes, 

biofuels, biomaterials, molecular farming for the pro-

duction of antibiotics, vaccines, biopharmaceuticals and 

conferring agronomic traits. Chloroplast transformation 

has been achieved only to tobacco, lettuce, Arabidopsis, 

tomato, carrot, oilseed rape, potato, cabbage, cotton, 

petunia, soybean, sugarcane, sugar beet, rice, eggplant, 

cauliflower and poplar [114].

Although successful progresses have been made, full 

potential exploitation of chloroplast technology requires 

addressing critical challenges. �ese include: recalcitrant 

nature of cereal species to existing regeneration protocols 

is daunting so developing efficient shoot regeneration sys-

tem is very critical [115], optimizing the level of expres-

sion as massive expression of foreign proteins is resulting 

in phenotypic alterations of transplastomic plants [116], 

lack of appropriate tissue specific regulatory sequences 

[117, 118], problem of gene expression in non-green plas-

tids [119], unintended homologus recombination that 

hinder efficient recovery of transplastomic transformants 

containing the desired transgene [120], degradation of 

foreign proteins is a limiting factor for accumulation of 

foreign proteins in transgenic chloroplasts [50, 121, 122] 

low frequency transgene dispersion might occur due to 

occasionally parental/biparental transmission of plastids 

and via transgene transfer to nuclear genome [115]. To 

ease public concern and increase public acceptance pro-

duction of marker free transplastomic plants is also very 

important. As chloroplast genome is capable of express-

ing more than 120 foreign genes originated from dif-

ferent organisms (bacteria, animals, viruses, fungi and 

Table 5 Recombinant therapeutic proteins produced in the chloroplast of Chlanydomonas reinhadtii

Therapeutic protein Expression References

αCD22HCH23PE40; dimeric version of αCD22PE40 0.2–0.3% TSP [86]

Human glutamic acid decarboxylase (hGAD65) 0.25–0.3% TSP [87]

Escherichia coli phytase gene (appA) Not detected [88]

CtxB-Pfs25; Plasmodium falciparum surface protein 25 fused to the β subunit of the choleratoxin from Vibrio cholera 0.09% TSP [89]

Mammary associated serum amyloid (M-SSA) 3–5% TSP [90]

αCD22CH23Gel; dimeric version of αCD22Gel 0.1–0.2% TSP [91]

Infectious burial disease virus (IBDV-VP2) 0.8–4% TCP [92]

Table 6 Biomaterials and enzymes engineered via chloro-

plast genome of Tobacco

Enzymes/bioma-
terials

Gene Yield References

β-glucosidase Bgl1 20 mg g−1 TSP [101]

Elastin-derived 
polymer

Eg121 Not detected [102]

Fibronectin extra 
domain A

EDA 2% TCP [68]

Xylanase xynA 6% TSP [101]

Xyn 35% TSP [103]

Endo-glucanase celB 60–70% TSP [103]

Superoxide dis-
mutase

Cu/ZnSOD 9% TSP [97]

Polyhydroxybu-
tyrate

phb operon 18.8% TSP [104]

p-Hydroxybenzoic 
acid

ubiC 13–18% TSP [97]

Cellulases bgl1C, cel6B, cel9A, 
xeg74

5–40% TSP [105]

CelA, CelB 22–23 mg g−1 TSP, [106]
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humans), addressing the above barriers will make chlo-

roplast genome very attractive site for various biotechno-

logical applications with incredible impact on human life.
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