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Abstract: Energy consumption in India is massive, and even the quantity used for household tasks is
substantial. The majority of the requirement is satisfied by using fossil fuels, which are the traditional
methods. Heating water is the most frequent home application. Accordingly, this article examines
studies from the previous ten years. The information in this article demonstrates that using renewable
energy is the greatest way to cut back on both the use of fossil fuels and carbon emissions while
heating water for residential use. Solar, hydroelectric, wind, and biofuels are the most significant
renewable sources for improving building efficiency that can be used for an extended period of
time. The solar water heater is a common example of how solar energy is being used in homes more
frequently. In order to identify key issues and solutions related to employing solar water heaters
as an effective water heating application in both commercial and residential buildings, this article
compiles research data from earlier studies (2012–2022). The literature survey was carried out using
Scopus, a specialized database. Sixty-six dedicated research publications having search keywords
plus recently published articles that matched the inclusion criteria were chosen for this review study.
The study’s findings show that there is a greater inclination of researchers towards research and
development in the field of domestic solar water heaters. The research publications that are being
presented are all from the past 10 years (2012–2022) and stress the use of solar energy in increasing
building efficiency. The study highlights how flat plate solar collectors with distilled water as the
heat transfer fluid and a phase-changing substance as the thermal energy storage could potentially
be enhanced. The thermal conductivity of paraffin wax and distilled water was improved by 75%
of the researchers by using 0.05 to 0.5% concentrations of Al and Cu oxide nanoparticles, making it
useful in solar water heaters. A total of 78% of researchers are interested in domestic water heating
applications since they use a lot of energy in both urban and rural settings.

Keywords: solar water heater (SWH); phase changing material (PCM); nano fluid (NF) and thermal
energy storage (TES); building efficiency; thermal energy

1. Introduction

Energy is used in some way by our daily activities. The main energy sources in the past
were coal, wood, and animal manure. The biggest drawback of these sources is that they
will eventually run out, which will make renewable energy sources even more crucial [1].
New energy types have been created to solve this problem. The most important long-term
sustainable energy sources are solar energy, hydroelectric energy, wind energy, biofuels,
and ocean wave energy. With the potential to be a viable renewable resource in the future,
solar energy is a significant source of energy for both domestic and commercial applications.
Due to its clean, abundant reserves, and pollution-free properties, solar energy has been
addressing key interests as a type of renewable energy [2]. For engineering applications,
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solar energy provides a sizable reserve that may be gathered at a reasonable cost. Several
countries rely on solar energy to meet their energy needs. The solar water heater is one of
the most widely used household applications of solar energy (SWH).

The main issue with solar energy is that it is intermittent, and therefore unavailable
during the night. As a result, thermal energy storage is required to store solar energy
so that it can be used at night or when it is cloudy. One of the most intriguing ways to
store solar thermal energy is through phase-changing materials (PCMs) [3]. Various PCMs,
including organic and inorganic materials, eutectic mixes, and salt hydrates, are currently
available for heat energy storage. The choice of PCM is influenced by thermal properties
such as high latent heat, high heat capacity, and thermal conductivity in both solid and
liquid phases [4,5]. Phase equilibrium, low vapor pressure, high sensitivity to volume
change, and very high density are all desirable physical properties of PCMs [6]. According
to previous research, PCMs have low thermal conductivity, undergo significant volume
change, excellent cooling properties, and low heat-exchanging capabilities. Some of the
inorganic PCMs, such as salt hydrates, show excellent thermal properties, but at the same
time, these PCMs show super cooling and phase separation issues [7].

The use of nanometer-sized solid particles dispersed in common liquids is one method
that has been developed to deal with these restrictions. Nanofluid (NF) is a term that refers
to the suspension of particles ranging from one to one hundred nanometers in a typical base
fluid. Choi and Eastman [8] were among the first researchers that utilized nanoparticles
(NP) to enhance the thermal conductivity of fluids. In addition to exhibiting superior
characteristics after suspension in a base liquid, NP also demonstrate greater stability
compared to other millimeter- or micron-sized particles. The thermal conductivity of NF is
substantially higher. Numerous studies have been conducted recently on a variety of NFs
to enhance, experimentally and theoretically, the heat transmission in thermal engineering
devices. In order to determine the thermophysical parameters of NFs, such as their density,
viscosity, and specific heat, they have also used a number of production, characterization,
and modeling techniques [9]. The improved thermophysical behavior of NF could present
an excellent opportunity to intensify innovation in heat transfer, which can play a key
role in HVAC application, power generation, microfabrication, thermal therapy for cancer
treatment, and chemical and metallurgical sectors. Recent research on NF has focused on
identifying methods to measure thermal conductivity [10]. Recently, Abouali, Ahmadi, and
Kamyar looked at computer simulations and CFD-based model systems that used NFs and
analyzed them [11,12]. Saidur et al. [13] noticed how NFs could be used in various areas,
such as cooling electronics, heat exchangers, medical applications, fuel cells, and nuclear
reactors. NF is also essential in SWH applications. We have examined the problems with
using NF, such as how stable the nanoparticle dispersion is over time and how expensive it
is.

In the literature, researchers have targeted finding the best way to use alternative
energy sources to reduce the consumption of fossil fuels and CO2 emissions. As the price
of fossils fuels-based energy is increasing day-by-day, renewable energy (solar) will be the
energy of the present and the future. The amount of solar energy transferred to the earth in
one hour is more than the entire world uses in a year [14]. Several changes were considered
in order to find the best way to improve solar system efficiency while also making energy
more stable and long-lasting. This paper examines the research that has been conducted on
how NF can be used in SWH systems. According to the articles reviewed, SWH has a lot of
potential for using solar energy, with a thermal energy storage (TES) system. Even after
the sun goes down, the TES can keep the heat on [15,16]. Researchers can obtain a stable
energy output from PCMs as TES for buildings applications. The low thermal conductivity
of PCMs primarily influences how they absorb and emit heat. It is crucial for future studies
because of the behavior and PCM impact relationship that was discovered [17]. In this way,
tiny pieces of metal oxide, known as NPs, improve the thermal properties of PCMs. As
a result, the majority of this review focuses on how NPs and NFs affect the efficiency of
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domestic SWH systems, as well as how they affect the economy and the environment when
these systems are used.

The study’s main objectives can be divided into three categories: (a) to classify solar
energy’s application-based driving force; (b) to study the techniques for boosting SWH
with different designs of solar collectors; and (c) to study the application of PCM with
different concentrations of NPs.

2. Methodology

A direct search of the literature is incorporated into the technique for article selection
and country-wise distribution, as outlined in Figure 1.
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2.1. Search of the Literature

This study aims to present the most recent developments in thermal efficiency en-
hancement methodologies used to augment SWH and eliminate the obstacles that stand in
the way of utilizing the SWH system in a variety of domestic and industrial applications by
providing an overview of those developments. To compile the most recent research articles,
the Scopus database was utilized. “Solar water heater”, “Phase changing materials”, “Ther-
mal energy storage”, and “Nanofluid” were among the search terms that brought up a total
of 3066 articles, conference papers, and review papers (Figure 1). All of the articles that
were published in the journals with peer reviews were considered. The current analysis
draws on a total of 56 different pieces of literature (Table 1). To familiarize the reader with
the performance of SWH, nanocomposite PCMs were studied.

Table 1. Search terms and combinations used.

Rejection Criteria for the Study 440 Papers N Found Not Suitable after
Reading Abstract

6 Papers Were N Found Not Suitable
After Reading the Full Text

Review papers 45 1
Applications of PCM without NF 171 4

SWH applications without NF and PCM 198 -
NF applications with water heaters

without solar energy usage 26 -

No full text is available - 1

The selection of papers was based on the following criteria: (a) the paper had to
discuss the usage of PCMs as TES in SWH application; (b) the PCMs reported in the article
had to be thermally enhanced with the application of NF. The following were among the
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factors for dismissal: (a) the study evaluated SWH without employing any TES technique;
(b) the SWH application did not incorporate NF.

2.2. Data Extraction

According to the predetermined objectives, the information gathered from the research
papers is organized into factors such as country and application. Table 2 was created to
see if there was a pattern in the use of SWH across the country. It is worth noting that
India has one of the highest rates of research in this field. Another categorization was
performed in order to compile the various methods that are commonly used to evaluate
thermal performance. When compared to existing strategies, these are just as effective at
bringing about performance improvements.

Table 2. Country-wise research trend of solar water heater from 2012–2022 and major research findings.

Authors Country Year Application Performance Enhancement

Swaroop Kumar Mandal et al. [7] India 2020 SWH It has been found that better results can be achieved using 1.00 wt%
CuO-PCM Nanocomposite.

Ansu et al. [8] Hungary 2020 SWH An increment of 52.09% in thermal conductivity has been observed.

Hawwash et al. [9] Egypt 2017 SWH
Increasing the percentage of the alumina NF improves the thermal

efficiency of the flat plate solar collector. 0.5% volume fraction of alumina
NF was found optimum.

Ahmadi et al. [10] Iran 2016 SWH An increment in thermal efficiency up to 18.87% has been observed.
Mahbubul et al. [11] Pakistan 2018 SWH Up to 66%, thermal efficiency was achieved with 0.2% NF.

Munuswamy et al. [12] India 2015 SWH Overall thermal performance improved with NF.

Sadeghi et al. [13] The Netherlands 2021 SWH It enhanced the volume fraction of Cu2O/distilled water and improved
the thermal characteristics.

Sundar et al. [14] India 2017 SWH An increment in thermal performance has been observed.
Sivakumar et al. [15] India 2013 SWH An increment in thermal efficiency has been observed.

He et al. [16] China 2015 SWH The thermal efficiency of the flat plate collector increases up to 23.83%.

El-Shafai et al. [17] Egypt 2020 SWH Maximum enhancement in thermal conductivity (22.56%) has
been achieved.

Ouyahia et al. [18] Algeria 2016 SWH An enhancement in heat transfer rate has been observed.

Sheikh et al. [19] Vietnam 2017 SWH With aluminum oxide NPs, the efficiency of solar collectors may be
enhanced by 5.2%.

Maustafa Mahdi et al. [20] Iraq 2020 SWH With NF, the thermal value improved by about 10% higher than without
NF load conditions.

Michael and Iniyan [21] India 2015 SWH NF significantly improved the thermal performance compared to distilled
water alone.

Singh Rajput et al. [22] India 2019 SWH There is a 21.32% enhancement observed in solar collector efficiency.

Ram Kumar et al. [23] India 2019 SWH The maximum efficiency attained with TiO2 NF plane tube collector
is 58%.

Rajput et al. [24] India 2017 SWH There is a maximum of 30.58% improvement observed in collector
efficiency with NF.

Darbari and Rashidi [25] Iran 2021 SWH It is found that thermal efficiency increases with the addition of Cu
and CuO NPs.

Kabeel et al. [26] Egypt 2015 SWH Efficiency enhancement of up to 11% was obtained by increasing the NPs
to 3% concentration.

Sundar et al. [27] Portugal 2021 SWH The thermal efficiency of the collector is further enhanced up to 68.48% at
0.3% NF concentration with a wire coil.

Delfani et al. [28] Iran 2016 SWH NFs improve the collector efficiency by 10.29% more than the base fluid.

Owolabi et al. [29] Malaysia 2016 SWH The embodied energy emission rate, collector size, and weight can be
reduced by 9.5% using NFs.

Ling et al. [30] China 2017 SWH The eutectic + SiO2 composite has a thermal conductivity of 5% higher
than pure eutectics.

Gupta et al. [31] India 2020 SWH Thermal conductivity improved by 45–127% with different NPs and
PCM+TiO2 combinations, giving better results.

Sobhansarbandi et al. [32] USA 2017 SWH Observed constant day output and prolonged supply of hot water
until night.

Kumar and Mylsamy [33] India 2020 SWH 1% combination of nano-enhanced PCM given better
thermal performance.

Shabtay and Blackc [34] USA 2014 SWH 60% charging and discharging time of PCM reduced with graphite.
Manirathnam et al. [35] India 2020 SWH Thermal conductivity improved by 22.53%.

Manoj Kumar and Mylsamyc [36] Hungary 2019 SWH Thermal efficiency increased up to 22.78% with Nanocomposite.
Mirzaei [37] Iran 2017 SWH Thermal efficiency increased up to 29.5% with NF.

Saw et al. [38] Malaysia 2013 SWH Thermal efficiency increased up to 8.4% with Nano-enhanced PCM.

Vinet and Zhedanovc [39] USA 2019 SWH NPs displayed capabilities to increase the specific heat capacity up
to 46.15%.

Pasupathi et al. [40] India 2021 SWH The thermal conductivity of paraffin was amplified up to 33.34%
with NPs.

Manoj Kumar et al. [41] India 2020 SWH Maximum efficiency up to 65.56% has been attained with a 2.0% mass
fraction of NPs.

S. K. Mandal et al. [42] India 2020 SWH The maximum heat transfer rate and Rayleigh number are obtained as
5.7 KW and 8.84 × 107 pertaining to CuO nano-doped PCM composite.

Al-Kayiem and Lin [43] Malaysia 2014 SWH The best performances analyzed were at 10-degree inclination with the
highest efficiencies up to 52%.

Swaroop Kumar Mandal et al. [44] India 2018 SWH Observations show that the presence of CuO NPs is ineffective during
the night.
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Table 2. Cont.

Authors Country Year Application Performance Enhancement

Liu et al. [45] China 2019 SWH Combining expanded graphite with the alloy can improve the composite
PCM’s thermal conductivity, which is 162.4% higher than the pure alloy.

Sobhansarbandi et al. [46] USA 2017 SWH The result shows more constant output, even on a cloudy day, and
prolonged heat output until nighttime.

Alshukri et al. [47] Iraq 2021 SWH Increase in the thermal efficiency with a range of (33.8% to 45.7%) and
(23.8% to 26.7%).

Dhinakaran et al. [48] India 2020 SWH The nanofiller improved the distilled water temperature by 33%.

Li et al. [49] China 2019 SWH The melting time of Stearic acid/expanded graphite was shortened by
63.3% compared with that of expanded graphite.

Sahota and Tiwari [50] India 2017 Solar Still CuO NF has given better results and better annual performance of
solar still.

Mahian et al. [51] Iran 2017 Solar Still NF heat exchangers can enhance the performance indices by about 10%.

Rabbi and Sahin [52] Hungary 2020 Solar Still Thermal efficiency and exergy efficiency with water–Al2O3–SiO2 hybrid
NF resulted in 37.76% and 0.82%, respectively.

El-Said et al. [53] Egypt 2016 Solar Still The observed output shows an increment in freshwater production at
decreasing cost.

Khairat Dawood et al. [54] Egypt 2020 Solar Still Thermal efficiency increased by 250%, which reduces the cost of water.
Muraleedharan et al. [55] India 2019 Solar Still Maximum efficiency of 53.55% is obtained at 0.1% nano heat transfer fluid.

Mishra et al. [56] India 2021 Heat Exchanger The thermal conductivity of beeswax improved from 0.25 to 0.76 w/mK.
Tlili et al. [57] Vietnam 2020 Heat Exchanger Mass flow improved by 34%.

Khoshvaght-Aliabadi et al. [58] Iran 2017 Heat Exchanger Up to 14 % enhancement in heat transfer coefficient with NF.
Chaurasia and Sarviya [59] India 2021 Heat Exchanger Nusselt number improved by 421%, as well as thermal performance.

Misale et al. [60] Italy 2012 Heat Exchanger A slight improvement was observed with NF.
Lin et al. [61] China 2020 Heat Exchanger Heat power transfer improved by 50%.

Wu et al. [62] China 2018 Heat Pump
Water Heater The volume of hot water increased up to 194%.

To consider the goal, the information gathered from the articles was further classified
in Table 3, such as the specified design of the solar collector and the flow methodology
used. The employment of various NPs concentrations with PCMs/distilled water was the
subject of the next classification. This classification was also necessary to understand the
role of PCMs in various solar collectors. Table 3 shows different NPs used for thermal
conductivity improvement, i.e., CuO and Al2O3 are used in 38% of the previous literature
research [7–9,12–17,19,21,22,25–27,35,37–39,42–44,48,50,52–55,57–60]. Authors have used
other nanoparticles, such as graphene [10,20], CNT/MWCNT [11,24], and TiO2 [18,23],
to improve heat transfer characteristics. From Table 3 it was concluded that 71–75% of
researchers took 0.005–0.5%, and 25–29% took 1–5 percent of NPs by weight. Other NPs,
such as SiO2, FeO2, ZnO, and expanded graphite, were also used by the researchers
(Table 3).
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Table 3. Application of nanoparticles (with concentration) in solar water heating applications (2012–2022).
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1 1 1 0.25/0.5/0.75/1 [7]
2 1 1/2/3/4/5 [8]
3 1 1 0.005/0.01/0.015/0.02/0.025 [9]
4 1 1 0.01/0.02 [10]
5 1 1 0.05/0.1/0.2 [11]
6 1 1 0.2/0.4 0.2/0.4 [12]
7 1 1/2/3/4 [13]
8 1 1 0.1/0.3 [14]
9 1 1 0.4 [15]

10 1 1 0.01/0.02/0.04/0.1/0.2 [16]
11 0.0625/0.125/0.2 0.0625/0.125/0.2 [17]
12 0.05/0.1 [18]
13 0.02 0.04 0.01 [19]
14 1 1 0.2 [20]
15 1 1 0.05 [21]
16 1 1 0.1/0.2/0.3 [22]
17 1 1 0.3 [23]
18 1 1 0.1/0.2/0.3 [24]
19 1 1 1/2/3/4/5 1/2/3/4/5 1/2/3/4/5 [25]
20 1 1 1/2/3 [26]
21 1 1 0.1/0.3 [27]
22 1 1 0.015/0.02/0.025 [28]
23 1 1 0.5 [29]
24 5/10/15/20 [30]
25 1 1 0.2/0.5/1 0.5 0.5 0.5 [31]
26 1 1 Y [32]
27 1 1 0.5/1/2 [33]
28 1 1 Y [34]
29 1 1 0.4/0.5 0.4/0.5 [35]
30 1 1 1 [36]
31 1 1 0.1 0.1 [37]
32 1 1 1 [38]
33 1 1/2/3 1/2/3 1/2/3 1/2/3 [39]
34 1 1 0.5/1/2 [40]
35 1 1 0.25/0.5/1 0.25/0.5/1 [41]
36 1 1 0.25/0.5/0.75/1 [42]
37 1 1 1 [43]
38 1 1 0.25/0.5/0.75/1 [44]
39 10 [45]
40 1 1 Y [46]
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Table 3. Cont.
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41 1 1 5 5 [47]
42 1 1 0.3/0.4 [48]
43 1 1 2/6/10 [49]
44 1 1 0.03–0.2 0.03–0.2 0.03–0.2 0.1 [50]
45 1 0.5/1/2 [51]
46 1 0.1 0.1 0.1 [52]
47 01/02/03 [53]
48 1 1 1 3 [54]
49 1 0.025/0.05/0.075/0.1/0.2 [55]
50 7.5/15 [56]
51 1 1 Y Y [57]
52 1 1 0.1/0.3 [58]
53 1 Y [59]
54 0.5/3 [60]
55 Y [61]
56 25 [62]

MWCNT—multiwall carbon nanotubes; Y—NP available, but concentration not disclosed.
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2.3. Obtained Results from the Reviewed Works

To find the relevant documents, the search terms “solar water heater”, “PCM”, and
“Nanofluid” were directly entered into the Boolean formula. The majority of the papers
discussed how PCM affects domestic SWH performance, but only a few looked at how
NF can be used to improve SWH. The procedure extracted 503 documents, which were
then re-filed based on the full text, yielding 56 papers, which are further extended up to
110+ articles. We will go over the information from these articles in greater detail in the
following sections.

2.3.1. Distribution of Research Articles

When the article was distributed by country, India received the greatest share (36%),
followed by China and Iran (nearly 11% each). The main suppliers were Egypt, the United
States of America, Malaysia, and Hungary. China, Iran, and the United States of America
all have more than a hundred days of sunshine per year [63]. In contrast, India has access to
solar energy more than 300 days out of the year [64]. The majority of the articles discovered
during the search process are from recent years. These data indicate that researchers see a
bright future for solar energy harvesting.

2.3.2. Water Heating Applications by Utilizing Solar Energy

In this study, 78% of the articles were based on domestic SWH applications. In com-
parison, 11% were based on solar stills and other heat-exchanging devices. The deviation
of 78% of articles towards domestic SWH applications gives hope of reducing a significant
amount of carbon emission in water heating energy applications. A survey found that
more than 80% of SWH applications are installed in residential buildings, and the rest (20%)
belongs to public buildings and industries [65]. This survey shows that domestic SWH has
more potential to harness this renewable energy source. The cost-effective appliances for
solar water heating present an excellent view of solar energy utilization. However, low
heat transfer rates and limited availability are still big hurdles in the path of SWH, which
has drawn the attention of researchers [47].

2.3.3. Solar Collectors

These reviewed data point to the extensive adoption of flat plate collectors, accounting
for 65% of all research articles. SWH systems that use evacuated tubes made of borosilicate
glass with a special coating to absorb solar energy are called evacuated tube collector
systems (ETC). Most flat plate collectors are used for low-temperature applications, while
ETC is used for high-temperature applications. Nowadays, ETC is also very popular in
domestic SWH. About 33% of the investigators have used ETC. An ETC has better thermal
performance compared to a flat plate collector. Some of the earlier research reported
that the cost of a NF-integrated heat collector is almost the same as a conventional heat
collector [66–70]. In contrast, a NF-integrated solar collector is thermally more efficient
than a conventional one. This becomes even more important considering the year-wise
distribution of sunshine and the article percentages in those countries (Table 4).

Table 4. Country-wise distribution of article share having maximum yearly sunshine hours.

Country Articles Share Sunshine Hours (Yearly) Reference
India 36% 2684 [68]
China 11% 2990 [69]
Iran 11% 2826 [70]

Egypt 9% 3958 [66]
United States 7% 4015 [67]

2.3.4. Thermal Energy Storage

The reviewed articles found that 38% of researchers used paraffin wax as the TES. In
comparison, only 4% of researchers used hydrates and eutectic mixtures. PCMs as heat
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accumulators work with the idea of absorbing and releasing thermal energy throughout the
day during the charging and discharging process. Paraffin wax plays a vital role to achieve
the desired objective in SWH application. The melting point of paraffin wax is 53 ◦C to
60 ◦C with latent heat storage of approx. 190 kJ/kg-K and thermal conductivity of 0.20
W/mK [71] (Table 5). PCMs change phases from solid to semi-liquid and then to liquid.
The phase change process can also occur in the reverse direction when heat is removed
from PCMs. When solar energy is available during the day, the paraffin wax absorbs
heat and the temperature of the paraffin wax rises. The intensity of the sun’s radiation
increases throughout the day, and the paraffin begins to change phase from solid to liquid
(semi-solid) by absorbing more thermal energy, i.e., latent heat. As a result, the liquid-
phase heat absorption process continues as sensible heating and behaves like a thermal
reservoir [72,73]. About 52% of researchers used distilled water with NP as NF to improve
domestic SWH and solar distillation. Between the temperature ranges of 40 ◦C to 52 ◦C,
the PCM unit can store 5 times more energy than water. The appropriate amount of energy
is delivered in a stable and consistent manner by the phase-change process. The sensible
energy required to heat the PCM to 48 ◦C is only half that required to heat water. The choice
of the fin pitch and the usage of expanded surfaces in the shape of aluminum fins resulted
in an equivalent thermal conductivity of 23W/m-K. During sunshine, excess energy can be
used in PCM thermal storage technology; this is called charging. The discharge process
takes place when solar radiation is not accessible. Paraffin wax continuously loses heat to
create a warming effect [74–77].

Table 5. Comparison of thermal properties of paraffin wax found in the literature [72–75].

Melting
Temperature (◦C)

Latent Heat
(kJ/kg)

Specific Heat
(Liquid) (kJ/kg-K)

Specific Heat
(Solid) (kJ/kg-K)

Thermal Conductivity
(W/m-K) Reference

55 176 2.9 2.7 0.21 [74]
52 210 2.1 2.9 0.24 (solid) [71]

59.9 190 2.0 2.15 0.24 (solid) [73]
53 189 - 2.5 0.20 [72]

2.3.5. Nanoparticles-Embedded Nanofluid

Table 3 shows exhaustive applications of NPs to improve heat transfer characteristics.
In the literature, authors used different NPs and evaluated how well they improve the
thermal properties of base fluids. In contrast, in most research applications, CuO and Al2O3
are used alone (38%) or with other NFs (36%). About 71–75 percent of these researchers
took 0.005–0.5 percent, and 25–29 percent took 1–5 percent of NPs’ weight. Other NPs, such
as TiO2, SiO2, FeO2, ZnO, expanded graphite, and Carbon nanotube/multiwall carbon
nanotube, were also used to speed up the rate at which the fluid transferred heat. As can be
observed in Table 6, Al2O3, CuO, TiO2, and carbon nanotubes are very cheap nanoparticles
with the best thermal conductivity, costing between INR 2,000 and 15,000 per 25 g. This is
the reason why 73 percent of researchers used these NPs to improve the thermal properties
of the SWH [78,79].

Table 6. Thermal conductivity and cost comparison of NPs.

Sl. No. Nano Particles Thermal Conductivity (W/mK) Cost Per Gram

1 Aluminum Oxide (Al2O3) 40 80
2 Copper Oxide (CuO) 76 622
3 Titanium dioxide 8.5 129
4 Carbon Nano Tubes 3000–6000 78

3. Discussion

Researchers are motivated to develop renewable energy-based water heating systems
and to improve its efficiency. The efficiency of an SWH rises gradually from morning to
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noon, peaks at noon, and then progressively declines after midday as solar radiation drops.
Higher productivity can be gained if the number of sunny days in a year is increased. In
India, a higher amount of solar radiation in the summer months (May, June, and partial
July), results in a higher fluid temperature, which can be highly beneficial for domestic
SWH and solar still.

3.1. Effect of Collector

The efficiency of the collector determines how much energy is gathered from the
radiation. The solar collector’s energy efficiency is determined by the amount of energy
it receives and the amount of energy it transmits to the fluid. The solar energy collected
was utilized to boost the thermal energy of the tank’s storage medium. In earlier research
it was just water, but in later stages researchers have used PCM/nanocomposite PCM to
improve the SWH thermal efficiency [80] (Table 5). The ability to maximize efficiency is
a significant feature of the solar flat plate collector. One of the most important aspects of
the collector is that it improves the heat transfer rate with the collecting area [81]. The
evacuated tube is made up of double-layer borosilicate glass tubes that are thermally and
chemically resistant. To ensure strong absorption of sunlight, the internal tube (absorber) is
coated in a dark navy-blue tint. The entire mechanism is covered by the external glass tube.
To obtain insulation, the air between the two layers of glass was vacuumed to create an
evacuated space between the two tubes. This effect decreases the convection heat transfer
loss [82–84].

3.2. Effect of PCM and Nanocomposite PCM

The thermal energy transfer characteristics of PCM and PCM nanocomposite can be as-
sessed using a typical heating system to compare their melting (charging) and solidification
(discharging) cycles. Melt mixing was used to prepare PCM-metal oxide nanocomposite.
PCM-metal oxide nanocomposites have opened new research areas. In the first stage,
PCM was heated on a hot plate to its phase transition temperature and then molten PCM
was mixed extensively with the produced NPs for 20 min using a magnetic stirrer to
create a stable PCM nanocomposite. Finally, a homogenous dispersion of PCM nanopar-
ticle nanocomposite was obtained by ultrasonically treating the produced composite for
15 min [85]. By substituting NF for water, efficiency can be increased. These additions
increased the PCM’s conductivity, increasing the quantity of solar energy transported from
the absorber to the heat pipe through the PCM. The findings reveal that for the collector
system with NF, the water temperature in the storage tank rises faster than for the system
with only water working fluid. The maximum temperature is also higher than the pure
water-based SWH system when NF is utilized as the working fluid in SWH [86,87].

Nano-enhanced PCM accumulates thermal energy in a shorter time in comparison to
pure PCM. Due to their low cost, availability, limpness to the collector material and tank,
low corrosiveness, easy dispersion in water, minimal scaling and fouling, and high thermal
conductivity, Al2O3 and CuO-based NFs could be chosen as the best alternative as working
fluids. In further research, it was concluded that TiO2 nanoparticles, due to their high
surface area and less agglomeration in the composite, are suitable for maximum thermal
conductivity. TiO2 also has a lower interfacial thermal resistance across the interface.
Therefore, TiO2 aids in better heat transfer within the percolation network than SiO2, ZnO,
and Fe2O3 metal oxide NPs [88,89].

3.3. Energy Movement through Nanoparticles

It was observed in the literature that solar panels with small NPs have a higher
performance level in comparison to larger NP solar panels. This is due to the fact that
NP-based NFs have higher thermal conductivity, resulting in a quick heat transfer, which
contributes to the increased efficiency of the flat plate collectors [90–92]. Two different
interpretations could be applied to this fact. On the one hand, when both the mass fraction
and the number of particles are held constant, the number of small particles exceeds that
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of large particles. As a consequence of this, the small particles have a greater interface
between the liquid and the particles than the large particles. As a result, there is a rapid and
very effective exchange of heat. On the other hand, because of the tiny size effect caused
by NPs, suspended NPs move in a random pattern. The micro-convection phenomenon
occurs between particles and the liquid caused by the higher motion of the NPs. Due to
micro-convection, there is an enhancement in the energy transfer process, which results in
a thermal conductivity enhancement of NFs [93–95].

4. Conclusions

India is a country that produces solar energy. Currently, there are two major solar
applications: electricity generation via photovoltaic cells and SWH. Solar energy is the
most vital source of renewable energy that can be used for water heating applications in
industry and residential buildings. Because of its low cost and high thermal efficiency,
SWH is increasingly being used. However, many limitations have drawn the attention of
researchers and have been thoroughly reviewed in this article. The critical points identified
during the study are listed below:

1. It was observed that in the past decade (2012–2022) researchers are more focused
towards renewable energy-based technologies to improve building efficiency and
reduce CO2 emissions. The most suitable example is SWH. Different methods and
percentage improvements in thermal efficiency of SWH are evaluated in this article
using the relevant articles available.

2. Huge energy consumption was seen in domestic water heating applications in rural
and urban areas attracting 78% of researchers toward domestic SWH.

3. Most of the articles are based on flat plate solar collectors.
4. Distilled water is the first choice of the researchers as most of the articles used it as

the heat transfer fluid, and paraffin wax is extensively used as TES in domestic SWH.
5. Cu and Al are the most popular nano particles due to their low cost and optimum

thermal conductivity used in base fluids for improving thermal characteristics.

In the future, the study area can be extended to evaluate the use of advanced tools, such
as ANN, fuzzy logic to analyze flow sensor application in buildings [96–102], advanced
coating materials for photovoltaic applications and their thermal contact conductance
analysis for rooftop solar plants and window paneling [103–108], and nano techniques
for energy conversion and storage devices with a special emphasis on high performance
piezoelectric nanogenerator for energy harvesting [109–111] in sustainable buildings.
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