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Abstract: Metallic materials such as stainless steel (SS), titanium (Ti), magnesium (Mg) alloys, and
cobalt-chromium (Co-Cr) alloys are widely used as biomaterials for implant applications. Metallic
implants sometimes fail in surgeries due to inadequate biocompatibility, faster degradation rate
(Mg-based alloys), inflammatory response, infections, inertness (SS, Ti, and Co-Cr alloys), lower
corrosion resistance, elastic modulus mismatch, excessive wear, and shielding stress. Therefore,
to address this problem, it is necessary to develop a method to improve the biofunctionalization
of metallic implant surfaces by changing the materials’ surface and morphology without altering
the mechanical properties of metallic implants. Among various methods, surface modification on
metallic surfaces by applying coatings is an effective way to improve implant material performance.
In this review, we discuss the recent developments in ceramics, polymers, and metallic materials
used for implant applications. Their biocompatibility is also discussed. The recent trends in coatings
for biomedical implants, applications, and their future directions were also discussed in detail.

Keywords: bioceramics; metallic implants; biomedical applications; coatings; surface modification;
biocompatibility; Mg-alloys; Ti-alloys

1. Introduction

Bioimplants are defined as engineered medical devices that are developed to replace
the non-functional or broken biological structural parts of the human body, providing
support to the given host. Biomaterial surface modification plays a key role in determin-
ing the outcome of the interaction between human biology and materials. Substantial
development in research in the field of biomaterials has increased the scope of use for a
wide range of orthopedic and dental implants that include total bone replacement, fracture
fixation, dental screws, joint arthrodesis, and so on [1]. Essentially, the success of bioim-
plants depends not only on their bulk properties but also on the properties of their surfaces,
which interact with human body tissues. As a result, the evolution of bioimplants has
reached a level of choice of materials based on specific properties on the basis of selected
specific materials [2]. Though alloys and metallic substances meet many of the biomedical
requirements, their interfacial bonding between the surrounding tissue or bone and the
metallic surface ranges from poor to virtually absent. The failure of the metallic implant
originates at the implant-tissue interface due to poor bonding at the interface, which leads
to the formation of a nonadherent layer and movement at the tissue-implant interface [3].

Corrosion in biometallic implants can affect the surface and biocompatible behavior
that induce tissue reactions, which lead to the release of corrosion byproducts from the
implant surface and result in premature failure. A minimum durability of 15 to 20 years for
older patients and more than 20 years for younger patients is expected from a bioimplant [4].
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However, there are problems associated with the use of metallic implants due to the lack
of poor implant fixation, lack of osteoconductivity, corrosion, and wear resistance leading
to the formation of wear debris and release of corrosive ions [5–7]. These problems are
mostly associated with the surface of the metallic implants. In view of this, the surface
of the bioimplant plays a major role in the biological environment because the reactions
occur directly on the surface of the implant after implant fixation. Hence, it is necessary to
modify the surface of the metallic substrate with specific properties that are different from
those in bulk [8,9]. This modification is required to accomplish good bone formability and
desired biological interactions. In some applications, biocompatibility, wear, and corrosion
resistance are also required.

Surface modifications of bioimplants are explored intensively with many bioactive
materials to avoid adverse effects such as lack of biocompatibility, post-surgery infections,
long-term survivability, and risks related to implant surface corrosion [10,11]. At first,
the research in this field was focused on the improvement in biomechanical properties of
metallic implants, but in recent days, it has turned towards improvement in the biological
properties of these biomedical devices [12,13]. By applying the appropriate modification on
the surface of the material, one can tailor and improve the biocompatibility, cell interactions,
and adhesion [14]. Thus, the development and design of biomaterials rely on surface modi-
fication. For that, it is necessary to develop techniques for functionalization of the surface
of metallic implants through changing the materials’ surface composition, morphology,
and structure without losing their mechanical properties. By adopting this, the service life
and performance of orthopedic and dental implants can be significantly increased. This
can be achieved by applying suitable biocompatible coatings with a unique combination of
properties.

In view of reliability and performance, the best way to functionalize the implants
in direct contact with bones and tissues is ceramic coatings owing to their excellent os-
teoconductive properties and high stability [15,16]. Surface modification by coating can
enhance the antibacterial activity of a bioimplant. The coated surfaces facilitate grafting
of cell-binding peptides, directed mutations of the cellular host, protein of extracellular
matrix (ECM), and growth of tissues to improve the acceptance of a bioimplant further.
Ceramic coatings on bioimplants show promising results in orthopedics with improved
bone regeneration and repair [17]. The overview of applications of ceramic coatings used
for metallic implants is listed in Table 1.

Table 1. Ceramic coatings used for biomedical applications [18].

Coatings Applications Advantages

Oxides (TiO2, ZrO2)
Oral implant application

Maxillofacial reconstruction
Ophthalmic implants

Good regenerative capability
Corrosion resistance

Antibacterial activities

Nitrides (TiN, ZrN, TiCN, ZrCN, TiAlN) and
Oxynitrides (TiON, ZrON)

Dental implants
Fracture fixation devices

Components of joint endoprostheses

Resistance to corrosion
Low frictional coefficient

Better adhesion to the substrates

Carbon Based Coatings (a-C, DLC, NCD, carbides,
and carbontirides)

Artificial heart valves
Orthopedic fixation devices

Sensors
Artificial ligaments

Low frictional coefficient
Excellent biocompatibility
High blood compatibility

Hydrophobicity

Calcium phosphates (CaP, HAp) and
bioactive glass

Spinal implants
Orthopedic implants

Maxillofacial reconstruction
Skull plates

High osteointegration capability
Excellent biocompatibility

Bioactivity

The major requirements for the selection of coating materials are (a) biocompatibility
and nondetrimental effects such as allergy, inflammation, and toxicity, (b) adequate fracture
toughness, fatigue, and mechanical strength to withstand the forces, and (c) resistance to
corrosion in the human body fluid atmosphere, which contains many constituents such as
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amino acids, chlorine, water, proteins, sodium, and plasma acids. The choice of coatings,
by considering their degeneration and surface properties, plays a major role in terms of
reliability and performance of bioimplants. The coatings for biomedical applications can be
subdivided into three groups: (a) bioinert, (b) bioactive, and (c) bioresorbable coatings [19].
The coatings having a minimum interaction with the surrounding tissues after implantation
in the human body are considered as bioinert coatings. The typical examples of bioinert
coatings are metal oxides, nitrides, carbides, carbonitrides, and oxynitrides. Transition
metal nitrides (TiN, ZrN, TiAlN, NbN), carbides (TiC), oxides (ZrO2, Al2O3, TiO2), or
oxynitride (TiON) coatings find a wide range of applications in bioceramic coatings due to
their remarkable properties such as wear, tear, hardness, biocompatibility, and corrosion
resistance [20,21].

The current review incorporates a description of the biomaterials and coatings that are
commonly used in the manufacturing of different orthopedic and dental implants.

2. Biomaterials for Biomedical Applications

Biomaterials are used to make devices that interact with the biological systems in the
human body and coexist for a long time with minimal failure. The type of material used
in implant applications shows specific properties that make them primary candidates for
specific applications. The key requirements for the selection of biometallic materials consist
of (a) cost effectiveness, (b) mechanical behavior equal to that of the human skull and bones,
and (c) their biocompatibility [22,23]. In addition, the major requirement for the bioimplant
materials is that it should be compatible with the human body, i.e., it should integrate
with the human body without negative impacts. Moreover, it must possess corrosion and
wear resistance in the human body environment. These properties will determine the
effectiveness of the implant materials.

If a metallic material experiences wear and corrosion, the surrounding tissues present
at the implant area can become inflamed, causing unfavorable biological reactions within
the human body [24]. The ions and toxins released from the metallic substrates as a
byproduct may be potentially harmful and can cause life threatening diseases and increase
the risk of using metallic implants. Therefore, it is important to choose correct material
for correct applications while performing bioimplants. In addition to that, the mechanical
performance of the biomaterial should be close to that of the replacing material where it
must sustain complicated and varying mechanical loading cycles [25]. Typical examples
for implanting areas are teeth, knee joints, and hips. The selection of biomaterial based on
mechanical properties is important to ensure no implant failures within the body when
subjected to numerous loading cycles during service life. Moreover, the material should be
biocompatible with the surrounding tissues and economically viable. Finally, it is essential
that the choice of material should be cost effective, efficient, and able to integrate with the
human body. Based on the requirements defined above, several materials were developed
in recent years to be used as biomaterials for implant applications. Still, it is hard for a
single metallic material to fulfill the desired properties. Biomaterials used for biomedical
applications are broadly classified into ceramics, polymers, and metallic systems.

2.1. Ceramics

Ceramics are inorganic compounds formed at high temperatures. Typical examples
are bioactive glass (BG), zirconium oxide (ZrO2), aluminum oxide (Al2O3), hydroxyapatite
(HAp), and other calcium and silica-based ceramics. These ceramics are noted for their
great biocompatibility, which makes them an excellent candidate for biomedical implant
applications. Depending on the reactivity with the human body, ceramic implants are
classified into three categories: (a) bioactive, (b) bioinert, and (c) bioresorbable ceramics [26].
Bioactive ceramics are used to interact with the surrounding cells and exhibit a higher
level of reactivity within the implant sites. Typical examples for bioactive ceramics are HA
and fluorapatites [27]. In an opposite trend, bioinert ceramics do not show any reactivity
with the host tissues at the implant sites but form a physical bonding when implanted [28].
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Bioresorbable ceramics exhibit a low level of reactivity with the host body tissues [29]. After
implantation, these ceramics are gradually resorbed and finally replaced with the bone
tissue. These bioresorbable ceramics are widely used in orthopedics and dentistry due to
their better biocompatibility and chemical interactions [30].

No risk of transmitting disease plus immunogenicity after implantation are the major
advantages of the ceramics [31]. Other remarkable advantages are higher resistance to
compressive force, low toxicity, good corrosion resistance, and promotion of the formation
of new hard tissues. For example, hydroxyapatite-based ceramics exhibit higher Ca/P
ratios, which are desirable due to similar chemical properties of bone and teeth hard
tissues [32–35]. Due to these attractive properties, ceramics are increasingly utilized for
bioimplant applications.

Ceramics are known for their high hardness and stress-shielding effects due to their
high elastic moduli, and slow initiation of crack growth over time, which significantly
decrease the reliability of the implants [36]. In addition, brittleness, fracture toughness,
and fabrication issues limit their use as bioimplants. The ceramics share the brittleness
factor, which limits the performance in terms of load-bearing applications (hip implants). If
the difference in mechanical properties of ceramic and bone is large, the load will not be
transmitted through the bone, thus leading to failure of the bone [37].

Ceramic composite materials provide superior properties compared to single materials.
The inferior mechanical properties of monolithic ceramics can be overcome by composite
ceramics while diminishing the limitations of each component. The remarkable properties
of composites such as the weight to strength ratio enable them to be used extensively for the
restoration of bones, ligaments, and dental fillings [38]. Moreover, the composites prepared
through the combination of bioactive and bioinert ceramics show better bioactivity and
mechanical strength [39]. Typical examples are HA and Al2O3 composites which show
better osteointegration with bone, good bioactivity, and high yield strength [40,41].

2.2. Polymers

The most widely used materials in biomedical applications are polymers. Polymers are
the building blocks of small repeating units’ monomers and are classified into two categories
called biodegradable and non-biodegradable. Typical examples for biodegradable polymers
are polyacetal, chitosan (CS), alginate, polylactide, and polycaprolactone, whereas non-
biodegradable polymers include polypropylene, polytetrafluoroethylene, polyethylene
terephthalate, polymethylmethacrylate, etc. Polymer implants are mostly used in replacing
heart valves, kidneys, bone, skin, contact lens, and artificial blood vessels, in addition as
pacemakers [42]. Among biodegradable polymers, CS shows remarkable properties such
as biocompatibility, biodegradability, wound healing, and antibacterial activity [43]. It is
also environmentally friendly and hence acts as a capping agent [44,45]. Polymers show
lower strength and elastic moduli as compared to metals and ceramics. Therefore, they are
not generally used for load-bearing applications such as joint and knee prostheses. The
polymers are also degraded in the body environment due to biochemical factors.

Polymer implants are quite interesting as bioimplants due to their low cost while
offering sufficient mechanical properties. For example, Polyether ether ketone (PEEK),
composed of 20% TiO2 particles and an additional ketone group results in 80% higher
compressive strength and better fatigue properties than pure PEEK [46]. Depending upon
the replacement anatomy to which the polymer is being applied, a wide variety of polymers
can be applied. Polymers have the advantage of complete degradation over time, leaving
no signs of their presence at the implant locations in a body. This was possible with the
subsequent research and development in biodegradable polymer materials, where the
proteins and extracellular matrix mimic the cell signaling functions of the surrounding
tissue, permitting better bio-integration [47].

Though polymers show exceptional properties and are cost-efficient and easy to
manufacture, they show different forms of cytotoxicity: depending on the host body
conditions, inflammatory reactions can occur within the implant region. This will induce
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bone degeneration, abnormalities, rapid rate of corrosion, and decreases in mechanical
properties over time. Moreover, the elastic modulus of polymers is extremely low compared
to human bone (between 10 and 30 GPa) [48]. This will create an impact while applying
load. Another major issue that is being faced is that the polymer implant degrades as
the bone heals. If the process is too fast, the neighboring tissues feel more stress, which
causes potential discomfort. These limitations prevent them from being widely used
as bioimplants.

Polymeric Gels

Natural polymers such as collagen are the main components of natural bone due
to their hydrophilic nature, enabling the formation of hydrogels with aqueous solutions
that exhibit several desirable characteristics for bone-tissue engineering [49]. Polymeric
gels are often referred to as hydrogels owing to their ability to hold water inside their
networks [50]. These hydrogels swell upon water intake and shrink upon drying [51].
Taking advantage of this property, water soluble drugs, growth factors, and other biological
entities such as proteins and even live cells can be incorporated into these hydrogels [52].
These gels can be designed for delivery systems based on certain external stimuli such
as pH [53,54], temperature, or the presence of specific chemicals or target molecules [55].
Many researchers choose collagen because it is the most important organic component of
human bone [56–58].

Hydrogels are attractive soft biomaterials because of their soft consistency (stiffness
and viscoelasticity are essential in directing the immune response), high water content,
porosity, and biocompatibility [59]. They are widely used in 3D cell cultures for modeling
the biological extracellular matrix or as coatings for promoting cell attachment. Other
natural polymer-based hydrogels used as bone tissue engineering (BTE) materials include
polysaccharides (e.g., cellulose) and polypeptides (e.g., alginate). Compared with natural
polymeric gels, synthetic polymeric gels offer more possibilities for molecular alterations
that facilitate tailoring the candidate properties to specific requirements, i.e., tuning me-
chanical properties and biophysical and biochemical cues. For instance, Poly(ethylene
glycol) (PEG) hydrogels, modified with adhesion ligand arginine–glycine–aspartic acid
(RGD), offer tunable mechanical properties as well as improved cell attachment and cell
differentiation [60]. However, generally, the poor mechanical strength of hydrogels lim-
its their usage and needs further improvement for bone regeneration. Recent emerging
technologies such as 3D printing in the manufacturing of hydrogel-based components may
offer entirely new possibilities for addressing the challenges [61].

2.3. Metals and Alloys

Even though ceramics show excellent biocompatible performance, they have poor
fracture toughness and exhibit brittle behavior, and their use in load-bearing applications
is limited. Thus, metals and alloys are generally used for implants where high strength
and load-bearing capacity are required. Most medical industrial segments rely on metallic
implants. They are generally used to replace some load-bearing applications such as the hip,
plates, knee prostheses, pins, dental materials, screws, and cardiovascular applications [62].
Though metals show high strength and durability, they can lose their properties under
physiological conditions with a potential release of various ions and debris which may
trigger a biological response. Most of the alloys release metal ions to the plasma in the
blood [63]. The excessive release of ions in the blood has a high risk of accumulation
in organs such as the spleen and liver that later form particulates, affecting the normal
functioning of these organs. This phenomenon leads to cytotoxicity followed by organ
failure upon prolonged accumulation.

Metallic materials are not fully accepted by the human body, and the tissue growth is
impaired because of inadequate attachment of the implant, leading to discomfort or pain in
the implant region [64]. As compared to ceramic materials, the risk of infection is higher,
and the healing time is slower in the case of metallic implants. Although metallic implants
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have some limitations, preference should be given based on their corrosion resistance, cost
effectiveness, and mechanical strength. The chemically inert platinum and gold do not
show any corrosion in situ, and these materials can be used as bioimplants, but they are
expensive. Hence, recent biomedical industries use Ti-based alloys and Mg-based alloys
due to their better biocompatibility and good mechanical strength under human body
conditions [65]. The widely used metallic materials used as biomedical devices are stainless
steel and Ti- and Co-based alloys [66,67].

2.3.1. Stainless Steels (SS)

In India, SS 304 and 316L are the most used implant materials for biomedical ap-
plications due to their cost effectiveness, wide resource availability, reliability, and ease
of fabrication as compared to Ti- and Co-based alloys. Among various grades of SS, the
primary recommended grade for implant applications is AISI type 316L SS. The presence
of chromium (minimum content of 10.5 wt. %) yields a thin and passive oxide layer and
protects the implant surface against corrosion [68]. The presence of carbon (min. 0.03 wt. %)
in SS increases its mechanical properties, especially fracture toughness, corrosion resis-
tance, and tribological performance of the implants. Their load-bearing capability makes
them a suitable orthopedic implant material [69]. However, almost 90% of 316L grade SS
implants lose their properties due to a pitting corrosion attack and the release of nickel
and chromium ions, which cause allergic reactions in the implant region. Hence, a small
addition of molybdenum (2 to 4 wt. %) improves the corrosion resistance and strengthens
the 316L SS grade.

The 316L SS used in biomedical devices is classified into two categories: (a) conven-
tional SS and (b) Ni-free stainless steels [70]. The primary use of conventional stainless
steels is to provide a load-bearing property to the implanted surfaces: they are often used
as fracture plates, nails, screws, and stents in the implant process. In addition, the Ni-free
SS provides higher corrosion resistance and biocompatibility [71]. When compared to other
bioimplants, the chemical composition of SS alloys offers an advantage when good me-
chanical properties are desired. Moreover, they have a high cost-to-benefit ratio and exhibit
a linear relationship with the manufacturing processes and final structure/properties.

Its elastic modulus (200 GPa), which is higher than that of the human bone (10–30 GPa),
results in high stress-shielding effect at the tissue/implant interface leading to the failure
of the implanted SS [72–74]. In recent days, SS was modified with hydroxyapatite (HAp)
which improves its bio-integration and osteointegration properties. Typical implanted
materials are screws, pins, sutures, bone plates, steel threads, and medullary nails, which
are used in fracture fixation. However, the corrosion resistance, biocompatibility, and
osseointegration of SS are lower compared to Ti-based alloys, where implant success rates
are much higher [75].

2.3.2. Co-Cr Alloys

Co-based alloys are considered as one of the most successful materials used for
implant applications. This alloy was first used in the early 1900s, where it was used as an
implant material for hip replacement. Co-based alloys show better corrosion, wear, and
mechanical properties and are used in bioimplant applications. The in vivo and in vitro
studies confirmed that Co-based alloys show better biocompatibility and can be used for
the manufacturing of surgical implants such as in the hip, knee, shoulder, and fractured
bone surfaces [76,77]. The most widely used combination of Co alloys are Co-Cr-Mo owing
to their unique combination of strength and ductility. By comparing with other metallic
implants, this alloy shows a better elastic modulus, density as well as stiffness, becoming
an ideal material for the implant process [78]. This alloy is primarily focused on permanent
implant fixation procedures because these alloys maintain their initial properties for a
long time after implantation. The cumulative likelihood of endurance reached 96% at
12 years for patients aged above 60 years [79]. A Co-Cr-Mo alloy combined with ultra-high
molecular weight polyethylene (UHMWPE) is used in artificial ankles and knees [80,81].
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Other major alloying elements of Co-based alloys include Ni, Mo, and Cr. These
elements were proven to be toxic to the human body when leached out from the metal
surface to the body fluid during corrosion of Co alloys and can lead to skin-related diseases.
An excessive leaching of these trace elements leads to damage to organs such as the liver,
kidney, blood cells, and lungs [82,83]. The addition of nickel into Co-Cr-Mo improves
corrosion resistance and mechanical properties, but due to the cytotoxicity of Ni, the use of
this alloy in bioimplants is limited [84]. The elastic modulus (200–250 GPa) and ultimate
tensile strength (400–1000 GPa) of Co-based alloys are 10 times higher than those of the
human bone. The use of these implants manufactured from Co-based alloys thus results in a
stress-shielding effect at the tissue/implant interface. The surface modification of Co-Cr-Mo
alloys under plasma treatment improves hardness, wear, and corrosion resistance [85–87].
However, they are still not recommended for joint fixtures due to their inferior frictional
and tensile properties. Apart from their biocompatibility and corrosion behavior, Co-based
alloys are not ideal materials for bearing and joint surfaces due to their sub-par frictional
properties [88].

2.3.3. Ti Alloys

Commercially pure titanium (Ti) and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-5Al-6Nb,
and Ti-13Nb-13Zr) have become major assets in the biomedical field owing to their superior
biocompatibility, low density, and suitable mechanical properties. At first, it was intended
to be used for aerospace applications, but later in the 1970s, the discovery of its biocompati-
bility led to a demand for Ti and Ti alloys in biomedical applications. If commercial pure
titanium (Cp Ti) is used to replace its alloys, the mechanical properties lost due to alloying
elements must be compensated for [89,90]. The alloys of Ti show enhanced mechanical and
biocompatibility properties in comparison to pure titanium. Depending on the presence of
the iron and oxygen content in the Ti alloy, four different grades of alloys are used. The
most widely used Ti alloy is Ti-6Al-4V, comprising an estimated 50% of total titanium alloys’
usage for bioimplants of this grade [91,92]. By comparing with other grades of Ti alloys, it
offers excellent corrosion resistance, biocompatibility, formability, structural stability, and a
better weight to strength ratio. The applications of Ti alloys as bioimplants include heart
valves, dental prostheses, osteosynthesis, artificial joints, and bone replacements [93].

Biomedical grade titanium alloys are generally categorized as alpha (α, Ti-6Al-4V),
near-α, α-β, and metastable β (Ti-6Al-7Nb) [94,95]. These alloys are widely used as
biometallic implants, but they cause stress shielding issues at the implant-tissue interface
due to their high elastic modulus values. The elastic modulus of Ti and α-β Ti-alloys
(100–110 GPa) is higher than that of human bone which limits its usage in joints. The
presence of vanadium and aluminum compounds results in the release of toxic ions of
vanadium (oxidovanadium (IV) and vanadate (V)) and aluminum (Al3+) under the physio-
logical environment, leading to adverse health issues [96–98]. Therefore, much interest has
been paid to β alloys in combination with Zr, Nb, Ta, or Mo to replace V and Al in the alloy.
Such alloys possess better mechanical properties, ductility, good structural stability, higher
wear resistance, a lower elastic modulus, and improved corrosion resistance [99–101].

One of the disadvantages of using Ti alloys is their below par tribological properties,
due to their high friction and abrasive wear nature [102,103]. Moreover, the formation of
TiO2 during exposure protects the surface of the Ti alloy, which hinders the bioimplant-
tissue relationship. The formation of titanium compounds around the surrounding tissues
of the implant causes failure of the implant [104].

2.3.4. Mg Alloys

Metal-based biodegradable orthopedic implants nullify the complications associated
with the long-term existence of implants inside the human body. In recent days, biodegrad-
able metallic implants were investigated as biomedical implants [105]. Magnesium (Mg) is
present in the human body as the fourth most abundant cation and is essential to the human
metabolism. Mg corrodes faster in the chloride containing physiological environment; thus,
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it has emerged as biocompatible and biodegradable material for use as implants [106].
Moreover, Mg and its alloys have received much attention in the category of biodegradable
alloys due to their leading properties such as low density, an elastic modulus close to that
of bones, light weight, biocompatibility, and excellent mechanical properties [107,108]. The
revision surgeries performed to remove hardware components in implants such as screws
and plates from the implanted site after healing are often discomforting and expensive
for the patients. The revision surgery can also lead to complications such as nosocomial
infection and delay the patient’s recovery to a normal lifestyle. Mg-based biodegradable
metallic implant components can overcome the revision surgery by degrading in situ,
thus also eliminating the need for the procedure to remove the implant components after
healing [109].

The high mechanical strength of metallic materials limits the use as bioimplants,
whereas the Mg implant shows a reduced elastic modulus and prevents the mismatch
between a bone and the Mg-based implant. This leads to the reduction in stress shielding
at the bone/implant interface. Their mechanical and corrosion properties can be enhanced
by alloying with Al, Zn, and other elements [110,111]. Current research is focused on the
development of Mg-based alloys with zero or low cytotoxicity. Alloying Mg with other
metals must be selected carefully to avoid metal-related toxic issues and corrosion. Different
type grades of Mg alloys such as Mg-Ca and Mg-Y-Nd were studied as biodegradable
bioimplants for orthopedic applications [112].

The major limitation associated with Mg and Mg-based alloys is their rapid corrosion
in physiological conditions. Rapid corrosion results in quick release of byproducts such
as hydrogen gases due to fast in vivo degradation. This indicates the necessity for surface
modification. To overcome the rapid corrosion, alloying with various elements has been
explored. For example, elements such as calcium (Ca), zinc (Zn), silver (Ag), aluminum
(Al), zirconium (Zr), yttrium (Y), and Neodymium (Nd) were added to Mg to enhance the
corrosion and mechanical properties [113–117]. Typical examples are Mg-Ca, Mg-Zn, and
Mg-Zn-Ca. By carefully selecting a suitable element and its composition, the microstructure
can be tailored to meet mechanical properties such as bone. This makes them ideal for
bone replacement. Table 2 shows the overall comparison of materials used for biomedical
applications and their applications.

Table 2. The pros and cons of various biomaterials used in the biomedical industry [118].

Materials Advantages Disadvantages Applications

Polymers
Good performance in cyclic load
applications, degrade completely

over time.

Different cytotoxicity mechanism,
inflammatory reactions, bone

degradation, show higher
corrosion rate.

Bearing surfaces [119]

Ceramics

Zero risk of transmitting
diseases/immunogenicity,

compression force resistance,
corrosion resistance.

Low mechanical properties, high
stress-shielding effects, lower rate

of biodegradation, fracture
toughness is poor.

Bearing surfaces

Stainless Steels
Better mechanical strength, high
ductility, flexibility in bending,

low manufacturing cost.

High stress-shielding effects, low
resistance to corrosion,
less osseointegration,

biocompatibility issue.

Bone plates, pins, nails, screws,
threads, steel threads, and sutures

Co-Cr based alloys High strength, ductility, elastic
modulus, stiffness, and density.

Higher modulus than bones,
stress-shielding effects, not ideal

for bearing surfaces in a joint, low
frictional properties.

Orthopedic implants for knee,
ankle, hip, shoulder, and fracture

fixation devices

Titanium and its alloys
Good corrosion resistance, light

weight, low density, good
mechanical strength.

Poor tribological performance,
high frictional coefficient,
adhesive wear, and low

abrasion resistance.

Total knee, hip
replacement, bone plates, and

screws for fixation and
maxillofacial applications

Mg and its alloys Low Young’s modulus, no stress
shielding, biodegradable.

Biocompatibility issue, corrosion
resistance, low

mechanical integrity.

Mesh cage for segmental defects
in bone, 3D scaffold design
for better bone regeneration
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3. Need for Surface Modification of Bioimplants

In an implant operation, any material inserted into the human body is treated as
a foreign substance. If the foreign substances are not biocompatible, layers of fibrous
tissues, also known as scar tissues, begin to develop between the tissue and implant. Even-
tually, due to scar tissue development, the implant fails to osteointegrate with the host
bone, leading to implant failure. Therefore, the primary requirement for the successful
implant process is to have a complete integration between bioimplants and human body
tissues [120]. The biological responses of biomedical devices to the lifespan and perfor-
mance are better controlled by their surface morphology and chemistry. To achieve better
biocompatibility and osteoconductivity, surface modification on biometallic materials has
been recommended to achieve the desired properties (Figure 1) to increase the success rate
of implants. When the surface is effectively modified, the bulk functionality and properties
of the biomedical implant device will remain unaffected for a long time [121,122]. With the
advantage of bio-integration and the load-bearing capability of biomaterials, the success
rate for bioimplants can be greatly increased.

In recent years, researchers tried to enhance the bio-integration of implants by modi-
fying the implant surface that is in contact with the body environment. Two approaches
are considered for modifying the surface of the implants. The first approach is to deposit
organic/inorganic-based coatings on the metallic surface without modifying the implant
substrate [123]. The second approach is to use conversion coatings or surface modified
layers, where the chemical surface modification of a substrate results in a slight increase in
thickness [124]. In this case, the substrate elements are involved in developing conversion
coatings. For conversion coating, surface preparation by grinding and polishing is required
to improve the surface roughness for better mechanical interlocking of coatings. This
process is critical, and surface modification by depositing an overlay coating is recom-
mended [125]. Recently, a combination of both surface modification and deposition of thin
films was performed to achieve the synergy of both properties.

In a modern biomedical implant industry, surface modification of metallic implants
with an appropriate coating material is used to enhance biocompatibility, corrosion re-
sistance, antimicrobial behavior, and mechanical properties. Although there are many
methods for the deposition of bioactive surface coatings, an optimal coating technique
for biomedical applications has not been developed yet. Currently, the coatings on im-
plant materials are deposited by one of the deposition techniques such as physical vapor
deposition (PVD), chemical vapor deposition (CVD), electrophoretic deposition (EPD),
electrodeposition (ED), or sol-gel methods [2]. Among these, PVD is recommended to
deposit metal/ceramic materials over the implant surface and provide exact stoichiometry,
excellent adhesion, high density, and good uniformity. Another method for surface modifi-
cation other than coating methods is chemical etching to prevent bacterial adhesion and
improve osseointegration [126].

The success of an implant is dependent on the stability of the coating, which provides
better biocompatibility. This section is focused on the recent advancements in various types
of ceramic and polymer coatings to improve bioimplant performance and reliability.
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Figure 1. The role of bioactive coated metallic implants as a potential implant material [127]. The
qualities of coated implants are superior to those of uncoated metallic implants.

3.1. Polyether Ether Ketone (PEEK)

PEEK is a thermoplastic material that shows a combination of excellent stiffness, chem-
ical and physical properties, and toughness and offers a wide range of applications [128].
Therefore, it is widely used as a bone substitute in orthopedic and dental implants, and in
clamps for removable dental prostheses [129]. The PEEK coated substrates show better tri-
bological properties, which are useful for the development of coatings on light weight alloys
which lack tribological performance. Most of the sliding and bearing implant materials are
coated with PEEK due to its better wear resistance and thermal stability [130,131]. Generally,
PEEK coating and its composites are prepared using thermal spraying or electrophoretic
processes [132–135]. PEEK coating (70–90 µm thick) deposited through electrophoretic
deposition on the Ti-13Nb-13Zr titanium alloy showed excellent wear resistance, 200 times
higher than the uncoated alloy [136].

PEEK in combination with other bioactive materials shows better antibacterial activ-
ity than PEEK alone [137]. Many authors reported on PEEK-based composite coatings
on metallic substrates. These coatings enhance bioactivity and electrochemical corrosion
resistance, especially for implant structural components. Typical examples for the compos-
ite coatings are TiO2/PEEK [138], sol-gel glass/PEEK [139], bioactive glass/PEEK [140],
h-BN/PEEK [141], Ag/bioactive glass/PEEK [142], and h-BN/bioactive glass/PEEK coat-
ings [137]. A combination of bioactive glass embedded in a polymeric matrix of PEEK
makes it an interesting material for orthopedic applications as it meets biological and
biomechanical requirements for the application. A cold sprayed Bioglass/PEEK composite
prepared by Garrido et al. [143] showed an increase in wear resistance by more than 70%,
higher hardness, and a lower coefficient of friction compared to pure PEEK. Coatings
based on Bioglass/PEEK on porous Ti substrates resulted in higher adhesion between
Bioglass/PEEK coating and Ti substrates [144].

Flame sprayed hexagonal boron nitride (h-BN) incorporated PEEK coating on low-
carbon steel substrate increased the hardness and decreased wear and frictional coefficient
values for the composite coating containing 8 wt. % h-BN due to its self-lubrication prop-
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erties [145]. The coefficient of the friction value can also be reduced by the addition of
alumina. The Al2O3/PEEK composite coating deposited on a Ti alloy using electrophoretic
deposition showed increased corrosion resistance and significantly improved wear resis-
tance under dry sliding conditions. The viability test revealed that the Al2O3/PEEK coating
was found to be cytocompatible with MG-63 osteoblast cells [146]. The scratch resistance
of PEEK coatings can be increased with the addition of amorphous Si3N4 nanoparticles.
Tomasz et al. [147] performed the electrophoretic deposition of the PEEK/Si3N4 nanocom-
posite using a chitosan stabilizer: the coating showed higher scratch resistance than PEEK
coating alone. This suggests that PEEK-based nanocomposite coatings potentially improve
the bioactive as well as bio-tribological performance of Ti-based alloys used in biomedical
applications. The use of PEEK with HAp as a coating can reduce the stress shielding effect.
The combination of PEEK/HAp offers similar stiffness to that of the bone tissue. Recent
studies suggest that the incorporation of HAp into PEEK coating improves bioactivity
and mechanical properties [148]. PEEK coating prepared by different methods and their
properties are summarized in Table 3.

Table 3. Methods and properties of PEEK-based composite coatings.

S. No. Coatings Deposition Method Significance Ref.

1 PEEK coating on Ti alloy
(Ti-13Nb-13Zr) Electrophoretic deposition (EPD)

Excellent wear resistance
Very good adhesion

Low frictional coefficients
[136]

2 HAp/PEEK composite coating on
PEEK substrate Cold Spray coating

Better biocompatibility and
osseointgration for
clinical applications

[149]

3 SiC/PEEK composite coating on SS electrostatic spray coating method Scratch resistance
Hardness increases [150]

4 h-BN/bioactive glass/PEEK coating
on SS 316L Electrophoretic deposition (EPD) Good adhesion strength

Wetting behavior [137]

5 PEEK/HAp on 316L SS Electrophoretic deposition (EPD) Good antibacterial activity [151]

6 PEEK coating on Ti implant Thermal spraying
Improved stability and

fracture resistance
Abrasion resistance

[152]

7 PEEK/ Bioglass composite coating
on PEEK substrates Cold gas spray Better wear resistance

Biomechanical performance [143]

8 ZrO2/PEEK coating on
Ti6Al4V substrates Thermal spraying

Improved wettability
Blood compatibility
Great potential for

medical applications

[153]

9
Al2O3/PEEK,

SiO2/PEEK coatings on
Ti6Al4V substrates

Thermal spraying

High hardness
Optimum tribological properties

Potential candidate for
bearing material

[154]

3.2. Titanium Dioxide (TiO2)

TiO2 coatings are the most important materials in biomedical applications that are
known for their antibacterial properties along with good mechanical properties. The
applications of TiO2 coating include drug delivery systems [155], orthopedic [156], and
dental applications [157]. It also shows high catalytic activity, antibacterial activity, and
long-term stability under photo and chemical corrosion [158]. TiO2 promotes the formation
of bone-like apatite or calcium phosphate on its surface. This property makes it a suitable
candidate for reconstruction and bone replacement [159].

TiO2 coated metallic substrates show better antibacterial properties. Gartner et al. [160]
observed the same biocidal effect by applying TiO2 coating on glass substrates by a sol-gel
method. Photocatalytic activity of TiO2 coating received much attention as a potential
material for anti-bacterial coatings. The antibacterial effects of TiO2 coating involve both a
reduction in bacteria’s viability and their destruction [161]. Park et al. [162] showed that the
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antibacterial effect against S. aureus could be improved by adjusting the nucleation time of
TiO2 film during the deposition process. The antibacterial effect of TiO2 was explained by
the formation of reactive oxygen species. Apart from antibacterial properties, the antiviral
properties of the TiO2 coating are also studied [163]. Table 4 summarizes the use of TiO2
and its composite coatings for bioimplant applications.

Yetim [164] prepared TiO2 coating with different concentrations of Ag using the sol-gel
process on the commercially pure titanium substrate. Electrochemical corrosion properties
obtained from electrochemical impedance spectroscopy measurements and potentiody-
namic polarization tests in simulated body fluid (SBF) suggest that Ag doped TiO2 enhances
corrosion resistance over that of the bare Ti substrates as well as undoped TiO2 coated
samples [165]. The silver doped TiO2 (Ag/TiO2) nanocomposite coated glass substrate with
varying Ag content synthesized by the sol-gel route showed antiviral properties against
E. coli, enterovirus, and influenza A virus (H1N1) [166]. The highest level of photocatalytic
degradation under irradiation with either visible or ultraviolet light was observed at an
optimum Ag:TiO2 weight ratio of 1:100. The antibacterial effectiveness was greater than
99.99% against E. coli and other infectious diseases after visible light illumination.

Sol-gel derived TiO2-PTFE nanocomposite coating on stainless steel substrates was
prepared by Zhang et al. [164] and their bacterial adherence were tested against two
pathogens, namely S. aureus and E. coli. The bacterial adhesion and bacterial growth studies
were evaluated by fluorescence microscopy after 2 h, 6 h, 12 h, and 24 h of incubation
(Figure 2a,b). The TiO2-PTFE coated substrate shows the lowest bacterial adhesion when
compared with the uncoated substrate. The bacterial inhibition increases with the increasing
TiO2 concentration (Figure 2c,d). It is also observed that Gram-positive bacteria are less
sensitive due to their cell wall thickness.

1 
 

 

Figure 2. Effect of bacterial adhesion (a,b) and bacterial growth of E. coli and S. aureus pathogens on
TiO2-PTFE coated and uncoated substrates [164]. TiO2-PTFE coated substrates exhibit lower bacterial
adherence and a significant reduction in bacterial growth (c,d) as compared to uncoated substrates.
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Table 4. Uses of TiO2 and its composite coatings in bioimplant applications.

S. No. Coatings Deposition Method Significance Ref.

1 TiO2 coating on Ti substrates Anodic oxidation Potential rehabilitation to internal
bone fracture [167]

2 TiO2 coating on PEEK substrate Dip coating Recommended for maxillofacial and
oral implants applications [168]

3 TiO2/MoSe2/chitosan coating on
Ti implants Micro-arc oxidation process

Excellent in vivo and in vitro
antibacterial property against

S. mutans
Better biocompatibility and

hydrophilicity
Better antibacterial properties

[169]

4 Poly(epsilon-caprolactone)/titania
(PCL/TiO2) coating on Ti implants Electrospinning technique

Good bioactivity against
osteoblast cell

Superior antibacterial against
S. aureus

Promoting cell attachment

[170]

5 TiO2 coating on Ti substrates Direct lithographic anodic
oxidation Corrosion resistant [171]

6 TiO2 nano coating Anodizing oxidation technique Better cell proliferation and adhesion
Better osseointegration [172]

7 Graphene/TiO2 coating on
Ti substrate Drop casting method Better cell adhesion and

proliferation behavior [173]

8 TiO2/HAp bilayer coating on
Ti substrate MOCVD/Plasma spraying Better hardness

In vitro bioactivity [174]

9 Y-doped TiO2 coating on Ti alloy Plasma electrolytic oxidation
method

Better antibacterial activity against
E. coli and S. aureus [175]

10 Fe3O4/TiO2 composite coating on
Ti implants Micro-arc oxidation process Prevent inflammatory

Better fibroblast response [176]

3.3. Transition Metal Nitrides

Earlier, transition metal nitrides and carbides were widely used to protect the metal-
lic components against wear, tear, and corrosion, potentially offering high-temperature
stability. Titanium nitride (TiN) coatings were used as decorative coatings in earlier days.
In the last decade, nitride coatings for orthopedic implants were also proposed to protect
the implants against wear and tear and to act as a diffusion barrier layer preventing the
toxic ion release from the implant metal surfaces to the human body fluids [177–180]. The
physical properties of TiN coated substrates show high scratch resistance, hardness, and
low frictional coefficients. These properties make them a potential candidate for use as
coatings on different metals used in arthroplasty. TiN-based coatings used for orthopedic
applications show better biological properties as compared to other nitrides [181]. TiN coat-
ings show better blood tolerability properties with a hemolysis percentage near zero [182].
TiAlN is another biocompatible nitride that has proven to be a promising alternative to TiN
in biomedical applications despite its aluminum (Al) content [183].

Transition metal carbonitrides (TiCN, ZrCN) were found to increase the service life of
orthopedic implants in terms of wear resistance in biological media [184–186]. Recently,
quaternary carbonitrides-based coatings (TiAlCN, TiCrCN, TiNbCN, etc.) were found to
show increased anticorrosive, mechanical, and tribological properties compared to ternary
carbonitride-based coatings [187–189]. The tribological properties of these carbonitride
coatings are very complex. However, the carbon-based carbonitride coatings show good
biocompatibility, better wear resistance, and low friction [190]. Much attention has been
paid to developing MeSiC-, MeSiCN-, and MeSiN- (where Me is a transition metal, and Si
is an alloying element) based hard coatings [191–194]. These types of coatings show high
thermal stability, a low frictional coefficient, excellent wear resistance, and good mechanical
properties (hardness, Young’s modulus). Moreover, in many investigations, TiSi-based
carbide and carbonitride coatings proved to be a potential candidate for a metallic implant
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which combines the mechanical, tribological, and anticorrosive properties of TiN and TiC
with the biocompatibility behavior of SiC and SiCN [192,195–197].

TiN coating shows plastic deformation at the coating/surface interfaces due to dis-
similarities in the hardness of the substrate and coating [198]. Thus, TiN coating cannot
accommodate the fracture and deformation that creates flakes, and defects in the coatings
cause deterioration of the coatings from the substrate. Therefore, chromium nitride (CrN)
and chromium carbonitride (CrCN) coatings are recommended, which act as a better diffu-
sion barrier for ion release from the alloys. These coatings also exhibit higher toughness,
higher cohesive strength, and lower wear debris than TiN coatings [199].

TiN and TiCuN coatings were prepared by the axial magnetic field enhanced arc ion
plating (AMFE-AIP) technique, and the in vitro angiogenic response of human umbilical
vein endothelial cells was studied by Liu et al. [200]. The TiCuN coating showed better
antibacterial activity, and both coatings showed no cytotoxicity to human umbilical vein en-
dothelial cells (HUVECs). TiCuN coatings promote early cell apoptosis, which is important
for vascular tissue modeling (Figure 3).
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FITC/PI double staining kit was used to evaluate the apoptosis rate of these coatings [200]. TiCuN
coating promoted the early cell apoptosis rate more than TiN coating. *: Denotes TiCuN coating
superior performance.

Transition metal oxynitrides have been considered as interesting materials due to their
known mechanical properties, chemical stability, and corrosion resistance in simulated
body fluid. Zirconium oxynitride (ZrON) and titanium oxynitride (TiON) based coatings
were recently used in biomedical applications for their better corrosion resistance than
TiN coating and their anti-fouling ability [201,202]. The magnetron sputtered ZrON and
TiON coated 316L SS specimen show better hardness and wear resistance behavior than the
uncoated substrate [203]. In addition, both coatings show better anti-fouling performance
against Pseudomonas aeruginosa bacterial adhesion than uncoated substrates. The coated
substrates also show better corrosion protection with or without the addition of hydrogen
peroxide (H2O2) in artificial blood plasma (ABP) solution [203].

Surface modified coatings prepared from ternary nitrides such as TiZrN, TiCrN, and
TiAlN gained considerable attention because they retain their physiochemical properties,
such as oxidation resistance, hardness, corrosion resistance, biocompatibility, and structural
stability after implantation [204,205]. Magnetron sputtered TiZrN coated 316L SS substrates
showed less bacterial adhesion, increased corrosion protection, and negligible human blood
platelets activity than uncoated substrates [206]. Recent developments in binary, ternary,
and quaternary systems of transition metal nitrides and carbide coatings are tabulated in
Table 5.
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Table 5. Recent work on binary, ternary, and quaternary systems of transition metal nitride and
carbide coatings for implant applications.

S. No. Coatings Deposition Method Significance Refs.

1 Nano-TiN coating on Ti-6A1-4V Magnetron sputtering
Enhanced hardness and anti-wear

resistance, good hemocompatibility,
and biocompatibility

[207]

2 TiN coating on Ti alloy Cathodic arc deposition
Better corrosion protection

Low wear rate
Reduced coefficient of friction

[208,209]

3 TiON coating on 316L SS Magnetron sputtering Better adhesion
Good resistance to corrosion [210]

4 TiON coating on Ti substrates Magnetron sputtering Better biological activity
Highly biocompatible [211]

5 TiCN coating on Ni-Cr alloy Magnetron sputtering Good adhesion of fibroblasts
Less cytotoxic [212]

6 TiZr/a-C coatings on Ti substrate Cathodic arc deposition

Good compatibility with human skin
fibroblast cells

Good human skin fibroblast
cell viability

[213]

7 TiZrCN, TiNbCN, and TiSiCN
coatings on steel substrates Cathodic arc deposition Better adhesion to the substrate

Corrosion resistance [214]

8 TiAlN coating Multi arc ion plating technique Better tribological performance [215]

9 Nanolayer CrAlN/TiSiN coating on
steel substrates Magnetron sputtering Excellent tribological performance [216]

10
TiCN/TiAlN and TiAlN/TiCN

bilayer nitride coatings on cemented
carbide substrates

Cathodic arc deposition Higher hardness
High scratch resistance [217]

11
CoCrMoC/CrN and CrN/CoCrMoC

coatings on medical grade
SS substrates

Magnetron sputtering Better tribo-corrosion behavior [218]

3.4. Carbon Based Coatings

Carbon based materials are categorized under bioinert coatings. These coatings are
used in load-bearing applications and wear components to improve elevated corrosion
resistance, wear, and frictional effects [219]. Besides, carbon-based coatings show minimum
protein adhesion and very good biocompatibility due to the hydrophobic nature of carbon-
coated surfaces. Three different types of carbon-based coatings are used for biomedical
applications. They are (a) nanocrystalline diamond (NCD), (b) pyrolytic carbon (PyC), and
(c) diamond-like carbon (DLC) [220]. Some of the coatings are commercially available,
while others are under development.

Most of the PyC coatings in biomedical applications are found in the heart valves
due to their thromboresistant qualities and biocompatibility [221]. Most of the artificial
heart valves are lined with a thick PyC coating. PyC biocompatibility in heart valves is
well established. PyC coatings have also been used in orthopedic applications [222]. By
varying the process parameters of the PyC (such as temperature, surface area, gas flow
rate, precursor) in the CVD process, a variety of the structures can be produced. The
most interesting structure for biomedical applications is lamellar, isotropic, granular, and
columnar [223–225]. PyC coated orthopedic implants are used to replace small joints such
as wrist joints, knuckles, and arthroplasty of proximal interphalangeal joints [226].

Carbon coatings, including nanocrystalline diamond and DLC coating, show many
remarkable biological properties and are considered as coatings for medical implants. NCD
coatings deposited by the CVD process consist of sp3-hybridized carbon bonds and show
grain sizes in the range of a few nanometers. NCD coatings generally show very low
surface roughness and possess the properties of a diamond, such as hydrophobicity and
excellent biocompatibility with blood [227,228]. This makes them an ideal coating choice
for wear-resistant implant applications and cardiovascular devices. NCD coating can also
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be used as hard antibacterial coatings that reduce the risk of infections. The electrically
active NCD coating surfaces can establish a chemical bond with the biomolecules in the
surrounding environment. Medina et al. [229] observed that the NCD coating surfaces
react with the cell wall or membrane of Gram-negative P. aeruginosa bacteria and establish
a chemical bond that alters the bacteria morphology, hindering bacterial adhesion and
colonization on the surface of the coating. The properties of NCD films are utilized in
biosensing and neurochemical sensing applications [230].

More experimental studies have been reported on DLC based coatings, which are
considered as the most promising materials for bioimplant applications [231–234]. Medical
grade PEEK samples were coated with DLC using plasma immersion ion implantation
and deposition (PIII & D) technique, and their in vitro cytocompatibility and osteogenesis
studies were carried out by Mo et al. using human bone marrow mesenchymal stem cells
(hBMSCs) [235]. DLC coated substrates show better surface coverage of cells and show
high cell viability on the seventh day, which indicates better biocompatibility of DLC-PEEK
coatings than PEEK coating (Figure 4). However, DLC suffers from residual stress arising
from the substrate/coating thermal expansion mismatch and lattice misfit, which cause
poor substrate adhesion and delamination of the coating from the substrate. Another
major concern about DLC coatings is their instability in the aqueous environment, which
promotes delamination of the coating [236]. To avoid this issue, it is recommended to use
interlayers (called buffer layer) such as CrC, Ti, and Si3N4 at the interface of the substrate
and DLC coating [237]. Another approach is to dope DLC coating with N, F, Ag, Zr, or Ti
to avoid a thermal expansion mismatch and residual stress [238].
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The properties of DLC such as chemical inertness, surface smoothness, and hydropho-
bicity are important for providing better compatibility with blood, reducing platelet activa-
tion in contact with the blood, which could trigger thrombosis. DLC can act as a protective
coating under the conditions of the human blood environment, which limits the release
of nickel ions from metallic implants such as SS 316L. Several studies suggest that DLC
coating prepared by various routes is biocompatible and does not induce any inflammation
reaction both under in vivo and in vitro conditions [235,239]. Because of these remarkable
features, DLC coatings found various applications as coatings in many implant devices
such as cardiovascular stents, heart valves, surgery needles, medical wires, contact lenses,
etc. DLC coatings can also be used as protective coating in knee replacement because of
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their high corrosion resistance, hardness, and low wear rate. Generally, DLC films are used
to reduce the frictional coefficient and offer better wear resistance [238]. Carbon based
coatings and their significance in biomedical field are summarized in Table 6.

Table 6. Different carbon coatings and their properties.

S. No. Coatings Deposition Method Significance Ref.

1 DLC on Ti alloy Plasma immersion ion deposition
(PIID)

Improvement in tribo-corrosion
behavior [240]

2 Si-DLC on Polyethylene
(PE) substrates

Plasma and laser-based
processing methods

Improvement in hydrophobicity,
lubricity, and electrical conductivity [241]

3 Carbon coatings on X39CR13 and
316LVM steels Magnetron sputtering Improved adhesion and

wettability properties [242]

4
Amorphous carbon/diamond-like

carbon (a-C:H) coatings on
PEEK substrate

Plasma enhanced chemical vapor
deposition

No toxicity issues and better
biological performance [243]

5 DLC with Zr interlayers on Ti alloy Magnetron sputtering Reduced coefficient of friction [244]

6 Si-DLC Coatings on Ti alloy Magnetron sputtering High level of biocompatibility due to
the presence of Si [245]

7 a-C:H coating on Co-Cr alloy PVD/PE-CVD Excellent mechanical properties,
high hardness, and elastic modulus [246]

8 Si doped DLC on Ti alloy Magnetron sputtering Reduced microbial colonization of
E. coli [247]

9 DLC on stainless steel Pulsed DC PE-CVD Improved biocompatibility and
corrosion resistance [248]

10 DLC with TiO2 on stainless steel PE-CVD Better biocompatibility and
antimicrobial activity [249]

3.5. Calcium Phosphates

Calcium phosphate (CaP) ceramics are widely used as implants since they have a
chemical composition similar to the inorganic composition of the bone. By controlling the
surface properties such as roughness and porosity of CaP, one can regulate the biomineral
formation and cell/protein adhesion. Bioactivity properties are varied depending on the
type of calcium phosphates (HAp, tricalcium phosphate (TCP)) because of the differences
in crystallinity, solubility, stability, ion release, and mechanical properties. At first, CaP
coatings were deposited through the vapor phase process, but in recent years, biomimetic
and solution-based methods were developed. Each synthesis approach has its own intrinsic
properties, but in general, CaP based coatings are promising to improve implant longevity
and biocompatibility. Many studies have been focused on the development of CaP ceramic
coatings on metallic substrates to achieve the biological properties identical to a bulk and
to enhance the implant durability and fixation [250–253].

Presently, atmospheric plasma spraying (APS) is currently employed to develop CaP
coating on implant surfaces [2]. The CaP phases in the coatings exhibit higher solubility in
an aqueous medium than HAp which is desirable for activating bone formation. However,
faster dissolution reduces the stability and can cause loosening of the implant. A highly
crystalline HAp phase dissolves in human physiological conditions at a lower rate which
provides long-term stability of the implants. Thus, for the development of implants with
required properties, one must control the purity and crystallinity of the coatings. CaP
coatings with a denser microstructure lower the risk of delamination of the coating during
in vivo tests with human body fluids. Coating surface roughness affects its dissolution and
bone apposition and growth. Porous surfaces may enhance cell attachment or formation
of the extra-cellular matrix, but the accumulation of macropores at the coating/substrate
interface weakens the coating adhesion [254].

CaP in the form of HAp is widely used in implant applications due to its superior
biological response. The HAp composition is Ca10(PO4)6(OH)2 (Ca/P = 1.67), which resem-
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bles the chemical composition of hard tissues such as bone and teeth [255]. Hence, HAp
is considered as a primary candidate material due to its exceptional biological properties
such as excellent biocompatibility, osteoconductivity, osteoinductivity, and bioactivity [256].
HAp coatings release calcium and phosphate ions and regulate the activation of osteoclasts
and osteoblasts, facilitating bone regeneration [257]. The use of HAp ceramics enhances
the regeneration of bones, improves osteoconductivity for bone growth, and promotes
mineralization through ion release control and encapsulating growth factors. HAp ceramic
coating enhances bone apposition in orthopedic implants through the formation of an
extremely thin bonding layer with the existing bone. Due to such tissue bonding charac-
teristics, Hap-based ceramics are considered as bioactive-based coatings. The continuous
effort to improve the durability of the HAp ceramic coatings has led to development of
high-quality HAp coatings and the development of Hap-based composite coatings.

Highly porous or highly crystalline HAp coating shows poor adhesion to the sub-
strate. Sankar et al. [258] studied the corrosion behavior of HAp coatings prepared by
electrophoretic deposition (EPD) and the pulsed laser deposition (PLD) method. The
corrosion results suggest that the HAp coatings show lower corrosion protection than
the coatings prepared by the PLD method due to the formation of denser and pore-free
coating [258]. Corrosion protection can also be enhanced by the addition of antimicrobial
dopants. For example, Yugeswaran et al. [259] prepared HAp-TiO2 nanocomposite coat-
ings by APS. The coating shows better corrosion performance in SBF medium than HAp
coating without dopants due to its high compactness and the presence of TiO2 [259]. Silver
(Ag) containing HAp coatings prepared by Trujillo et al. [260] show better antibacterial
activity than HAp coating alone against P. aeruginosa and S. epidermidis pathogens due to
the antibacterial activity of Ag. The antimicrobial activity of the Ag-doped HAp composite
against E. coli and S. aureus was tested by Lett et al. [261]. The results indicated that the
Ag-doped HAp composite has better inhibition of bacterial growth and shows a stronger
ability against S. aureus bacteria to fight against toxic responses (Figure 5). The absence of
Ag in the composite results in lower antibacterial activity of HAp composites. The variation
in antibacterial activity was attributed to a thinner cell wall response of S. aureus (Figure 5b)
to Ag ions than E. coli (Figure 5a) [261].
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Figure 5. Demonstration of antimicrobial activity of HAp and Ag doped HAp composites against
E. coli (Gram-negative) (a) and S. aureus (Gram-positive) (b) bacteria [261]. The photograph shows
that Ag-doped HAp inhibits S. aureus bacteria more effectively than E. coli.

In biomedical implants, the major challenge for the performance of implants is bacte-
rial invasion. During surgical operation, the bacteria may enter the surface of the implants
through surgical equipment or cross contamination which form a biofilm. Once the sur-
rounding implant is infected, the infection causes implant loosening. To overcome this
issue, antimicrobial agents are used as dopants in ceramics, protecting implant material
from bacterial invasion and improving their durability. Zinc doped HAp composites pre-
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pared by the sol-gel route and annealed at different temperatures (500 ◦C and 700 ◦C) show
higher antimicrobial activity against C. albicans fungal cells and S. aureus bacteria [262].

Multiple doping of ions into HAp coatings was also attempted to improve their
structural stability, partial dissolution, and biocompatibility. Wang et al. [263] prepared Sr
and F− doped hydroxyapatite and studied the properties of the coating. The addition of
the dopant improves the structural stability of the HAp lattice and promotes osteogenic
cell differentiation. Moreover, the addition of F− ions potentially arrests the formation of
S. aureus. Dopants such as Cu, Zn, Mg, Ag added to HAp enhance antibacterial activity and
decrease the toxic effects towards the human body cells [264–267]. For example, Mg-doped
HAp shows better osteoblast cell adhesion than pure HAp [268].

The differences in the thermal expansion coefficient of HAp and metallic alloys result
in residual thermal stress. The stress accumulation increases with the increase in the coating
thickness, which promotes cracking or delamination of the coating. For a thicker coating,
the outer layer may detach from the implant, whereas a thin HAp coating can prematurely
resorb during bone regeneration. Various HAp composites and their biological properties
are summarized in Table 7.

Table 7. Hydroxyapatite and its composites’ coatings for implant applications.

S. No. Coatings Deposition Method Significance Ref.

HAp nanowire coating on glass substrate Solvothermal method Excellent apatite-forming ability [269]

Fe doped HAp on Si substrate Co-precipitation method Promote better proliferation and adhesion of
the osteoblast cells [270]

Ce doped HAp/collagen coating on
Ti surface Biomimetic method

Better antibacterial efficacy against Escherichia
coli and Staphylococcus aureus bacteria than

HAp coating
[271]

Si substituted HAp coating on
Ti substrate Precipitation method Favorable regeneration of crystalline

Si-HA layer [272]

HAp/CaSiO3/Chitosan Porous coating
on Ti substrate EPD Improved bioactivity and biocompatibility [273]

Bioactive glass/HAp coatings on
Ti substrate Pulsed laser deposition Significant bioactivity, cytocompatibility, and

hemocompatibility [274]

PyC/SiC/HAp coating on carbon fibers Chemical vapor deposition/pulsed
electrochemical deposition

Excellent corrosion resistance, induces the
nucleation process and growth of

bone-like apatite
[275]

PEEK/HAp composite coating on 316L
SS substrate Electrophoretic deposition Enhanced in vitro bioactivity [148]

Ag/HAp coating on Ti substrate Sol-gel route Enhanced antibacterial activity and better
corrosion protection [276]

TiO2/HAp coating on Ti substrate High velocity oxy fuel (HVOF) method Improved corrosion resistance [277]

B2O3/Al2O3/HAp coating on
Ti substrate High velocity oxy fuel (HVOF) method Improved adhesion strength [278]

TiO2/HAp nanocomposite coating on
316L SS substrate Electrophoretic deposition Excellent corrosion protection under

SBF medium [279]

3.6. Zirconia

Zirconia (ZrO2) is a ceramic material that can withstand high temperatures as well
as higher stresses. It has widespread applications in dental implants and in the coatings
on metallic implants to increase their corrosion resistance [280]. ZrO2 ceramics offer many
advantages, including mechanical strength, chemical stability, biocompatibility, good aes-
thetics, and better wear resistance. Zirconia stabilized with yttria (YSZ) has been used
as a dental implant due to its excellent mechanical strength and fracture toughness [281].
YSZ coatings show better hardness and scratch resistance than HAp coating [282]. Gobi
Saravanan et al. [283] observed that the YSZ coated Ti substrates show improved hemocom-
patibility, activating blood platelets with pseudopods. In addition to that, superior in vitro
biomineralization behavior was observed and documented through the weight gain on
YSZ coating.

Zirconia stabilized with different weight fractions (0, 4, 10 wt. %) of yttria yields differ-
ent phases (monoclinic, tetragonal, and cubic): zirconia ceramics with tailored mechanical
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properties and biocompatibility can be thus prepared. Attempts were made to deposit
different phases of zirconia (m-ZrO2, t-ZrO2, and c-ZrO2) with the use of electron beam
physical vapor deposition (EBPVD) [284]. All the coatings show lower surface roughness
than coating prepared through the APS method and reduce pathogen bacterial invasion.
Particularly, t-ZrO2 shows superior hardness over the other two zirconia phases. All the
allotropes show better blood plasma protein adhesion and enhanced resistance to corrosion
in comparison to uncoated medical grade stainless steel substrates in ABP solution.

Antibacterial activity of ZrO2 coating can be enhanced by the addition of Ag. Ag-ZrO2
composite coatings were prepared by Pradhaban et al. [285]. The results suggest that
the coating shows antimicrobial activity against E. coli. Santos et al. [286] prepared glass
ceramic composites with different concentrations of ZrO2 particles (0–50 vol. %) and carried
out a ball-on-plate tribology test. ZrO2 glass ceramic composite (30 vol. % of ZrO2) shows
optimal wear properties (coefficient of friction is 0.3) and is recommended for load-bearing
applications. Bermi et al. [287] deposited YSZ coating through pulsed plasma deposition,
and the tribological behavior of the coating in both dry and wet conditions was tested.
YSZ coating deposited on a Ti6Al4V alloy ball sliding against the UHMWPE disk shows
a reduction in wear rate (17% and 4% in dry and lubricated conditions) than uncoated
alloy substrate.

Kaliaraj et al. [288] prepared zirconia coatings on a 316L SS substrate by electron beam
physical vapor deposition (EBPVD), and a bacterial adhesion study with P. aeruginosa was
carried out. Epifluorescence microscopy analysis of live/dead cells after incubation of 1, 2,
3, and 4 days showed a drastic reduction in bacterial adhesion on ZrO2 coatings, along with
retardation in biofilm formation (Figure 6). This observation was attributed to the decrease
in surface roughness obtained through coating deposition and the surface chemistry of
ZrO2 that inhibits bacterial adhesion. Electrochemical impedance corrosion results show
that ZrO2 exhibited superior corrosion resistance in the presence of H2O2 in an artificial
blood plasma electrolyte solution. [288].
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and ZrO2 film (e–h) after 1, 2, 3, and 4 days incubation [288]. The used acridine orange staining
shows orange color for live cells and green color for dead cells. The reduction in bacterial adhesion
was seen on ZrO2 coated substrate compared to uncoated 316L SS.



Gels 2022, 8, 323 21 of 35

3.7. Bioactive Glass Coatings

Hench pioneered bioactive materials research and revolutionized the fields of bioac-
tive materials and ceramics with his discovery of bioactive glass (45S5 composition), com-
mercially known as Bioglass [289]. In the wake of Bioglass, various compositions and
composites of bioactive glasses or silicates prepared both by melt quench and sol-gel tech-
niques were investigated. Although bioactive glasses exhibit excellent bioactivity, because
of their amorphous or semi-crystalline nature, they often fail as an implant material due
to their poor mechanical strength. To overcome the shortage in mechanical properties,
bioactive glasses are often composited with various metal oxides such as TiO2, Al2O3,
ZrO2, and 2-D materials such as graphene and its derivatives (graphene oxide and reduced
graphene oxide) [290]. These composites were reported to improve the corrosion resistance,
antibacterial activity, and angiogenic properties of bioactive glass coatings without losing
the bioactivity [291]. Similar to many ceramic materials, bioactive glasses can also be
prepared in the form of particles of nano and micron size, as mesoporous particles, fibers,
3D scaffolds or monoliths, and thin films or coatings [292].

In this section, various types of coating technologies that can be used for the coating
of bioactive glasses and their composites on different types of metals, alloys, and certain
specific surfaces are discussed. One of the most simple and economical coating processes
is the sol-gel dip-coating process. However, the coatings are often porous because of
the solvent evaporation leading to poor corrosion resistance and mechanical properties.
Nevertheless, this problem can be solved by incorporating metal oxides such as B2O3 as
reported by Pinki Dey et al. [293]. According to their report, by replacing the silica weight
percentage in the 45S5 system by 1% to 5 wt. %, they were able to decrease the porosity in
the particles. Thermal spray coating, an industrial coating process, can also be employed for
bioactive glass coating preparation. This process involves the coating of bioactive glasses
as fine droplets or as plasma and sprayed over metal surfaces. Porous and non-porous
layers with varying coating thicknesses can be achieved by the thermal spray process by
tuning the deposition parameters such as velocity, size of the droplets, and temperature of
the substrates [294].

Bioactive glasses can also be coated by physical deposition techniques such as radio-
frequency magnetron sputtering (RF-MS) and pulsed laser deposition. In a recent study
conducted by Qaisar Nawaz et al. [295], silver nanoclusters embedded in a silica matrix
were deposited over the PEEK/BG layer using RF co-sputtering. They report a uniform 100
nm of the Ag-SiO2 layer that showed slower and sustained release of silver ions compared
to the electrophoretically deposited coating. Although the physical deposition techniques
are very robust and highly reproducible, their shortcoming is often the expensive experi-
mental setup and precursors when compared to wet chemical sol-gel coating techniques.
On the other hand, electrophoretic deposition (EPD) combines both the advantages and
disadvantages of sol-gel coating and physical deposition methods. EPD is both a versatile
and cost-effective method for coating ceramic materials on conducting surfaces.

Ashokraja et al. [296] reported bioactivity in simulated body fluid (SBF) and reactive
oxygen production using the XTT assay for reduced graphene oxide (rGO), sol-gel derived
bioactive glass rods (BGNR) followed by different methods for developing composites of
rGO and BGNR such as under constant stirring (COL), under constant sonication (SOL), and
with a simultaneous reduction in graphene oxide-BGNR composites (RED). In their study,
they report the role of pH changes in the sol-gel process facilitating one-dimensional rod-
shaped bioactive glass formation, and their immersion studies exhibited a 50-micron thick
HAp layer on the seventh day for rGO/BG composites [297]. Their work also reports that
the different methods employed to prepare the composites influence the HCA formation,
antibacterial efficacy, hemocompatibility, and cell proliferation as shown in Figure 7.
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Figure 7. Schematics for HCA formation, antibacterial activity, hemocompatibility, and cell prolif-
eration of bioactive glass rods (BGNR) and their composites with rGO (COL, SON, and RED) [297].
Figure also shows the bioactive behavior of the BGNR-rGO composites. It is noticed that the RED
composites showed better HCA layer formation, cell proliferation, and hemocompatibility.

A recent comparative study reported results between pure BG and rGO/BG thin
films deposited over the anodized surface of titanium by EPD. The deposited bioactive
coatings (both pure and composites) were 2 µm thick and exhibited very good HAp
formation in simulated body fluids along with super hydrophilicity in pure bioactive glass
coatings [298]. Table 8 summarizes a brief list of bioactive glass coatings, their compositions,
coating processes: important features are elucidated.

Table 8. Composition, the substrate used, coating process, and their salient features of bioactive glasses.

S. No. Coatings Substrate Deposition Method Significance Ref.

1

Titanium, HAp, Bioactive glass
wt.% (57–60 SiO2, 21–24 CaO,

9–11 Na2O, 2–3P2O5,
0.5–1.5 TiO2, and 2–3B2O3)

Ti-alloy—Ti6Al4 V Laser engineered
net shaping

Improved hardness and
wear resistance [299]

2

58S Bioactive glass (molar
composition of 35% CaO,

60% SiO2, and 5% P2O5) seeded
in HAp

Commercial AISI 316L SS Cold uniaxial pressing
Seeding of HAp increased

the hardness as well as
apatite layer formation

[300]

3 Bioglass with silver
nanoparticles and Chitosan Ti-alloy—Ti6Al4 V Electrophoretic deposition

Increased coating
uniformity and nanoscale
roughness for bioactivity

[301]

4

(1) 65% SiO2, 5% P2O5, and
30% CaO,

(2) 45% SiO2, 5% P2O5, and
50% CaO

Carbon foam Dip Coating
Compact and dense coating

is reported in 65% rather
than 45% SiO2

[302]

5 Manganese modified
Bioglass/alginate 316L SS Electrophoretic deposition

Increase in manganese
improves the corrosion

resistance in SBF
[303]

6
Bioglass composite with

chitosan and iron
oxide nanoparticles

Ti-alloy—Ti–13Nb–13Zr Electrophoretic deposition
Better corrosion resistance,

coating adhesion,
and hydrophilicity

[304]
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Table 8. Cont.

S. No. Coatings Substrate Deposition Method Significance Ref.

7 Silver incorporated HAp
and Bioglass Nickel titanium alloy Dip coating

Increased corrosion
resistance and

coating adhesion
[305]

8 Bioglass AISI 304L SS APS
Improved mechanical

strength and
corrosion resistance

[306]

9 Bioglass, TiO2, Al2O3, and Hap
composite with PMMA Stainless steel 304 Dip coating

PMMA-TiO2 coating
exhibited higher corrosion

resistance than other
composites coatings

[307]

10
58S bioactive

glass-gelatin-polycaprolactone
composite

316L SS Electrospinning

Increase in bioactive glass
weight % improved surface

Roughness and adhesion
strength, exhibited good

corrosion resistance, apatite
formation and cell viability

[308]

11 58S Bioactive glass Vitallium alloy Dip coating Decreased porosity and
increased bioactivity [309]

12 Bioglass Ti6Al4V alloy Electrophoretic deposition
Scratch resistance, hardness,

and coating
bonding strength

[310]

13 HAp-Bioglass-Iron oxide
composite Ti-alloy—Ti-13Nb-13Zr Electrophoretic deposition Corrosion resistance and

non-toxic effects [311]

14
Reduced graphene

oxide—Bioglass sol-gel
composite

Grade 2 titanium Electrophoretic deposition
rGO facilitated low

hemolysis and improved
cell proliferation

[298]

4. Summary and Future Directions

This paper reviews different biomaterials and explains their significant characteristics
that influence their bioactivity. Bioimplant manufacturing involves an integrated process
of selection of materials, design, fabrication, and surface modification through micro/nano
texturing or coating application. Engineering of native metals by converting them into
alloys yields desired properties and provides flexibility in designing the needs as per
implant requirements. For a long-term application of bioimplants, surface characteristics
and their biological functions are considered as key factors. Engineering the surface of the
biomaterials by applying suitable coatings provides flexibility in tailoring the properties as
per the requirements.

Bioceramic coatings hold great potential by tailoring the biological properties that suit
our needs: the choice of the coating depends on the interaction between the cells with the
coatings and substrates that are being used. Coatings on metallic implants are invaluable
due to their functionality, biocompatibility, durability, and stability. Bioactive coatings are
used to enhance the biological fixation between the bone and metallic implant despite their
poor tribological and mechanical properties. Hence, they are often improved by developing
composites with materials that possesses good mechanical strength. These improved
coatings can be also used for durable load-bearing implants. All these properties lead to a
better clinical success rate in long-term use in comparison to uncoated metallic implants.
The bioactive ceramic coated biodegradable implants provide synergistic properties of both
the implants and coating. Thus, these coatings find applications in cardiovascular stents,
heart valves, orthopedic applications, tissue engineering, drug delivery, and biosensors.
The current trends of ceramic coatings coated metallic implants are more focused on
orthopedic applications.

Feasibility studies on complex structures, designing, fabrication of metallic alloys to
form complex shapes without losing mechanical properties and surface integrity are a
challenging task and should be attempted. The degradation mechanism of coatings on
metallic implants changes in the human body environment. Moreover, lattice mismatch
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and the accumulation of residual stress cause degradation of the implant after implantation.
Thus, there is a need to develop mathematical models for the prediction of degradation
mechanisms. Another approach to reducing the residual stress is to deposit a functionally
graded multi-layered or nanocomposite coating with multifunctional properties.
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