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	 Abstract: Medical imaging plays a vital role in medical diagnosis and clinical treatment. The biggest 
challenge in the medical field is the correct identification of disease and better treatment. Multi-modal 
Medical Image Fusion (MMIF) is the process of merging multiple medical images from different mo-
dalities into a single fused image. The main objective of the medical image fusion is to obtain a large 
amount of appropriate information (i.e., features) to improve the quality and make it more informative 
for increasing clinical therapy for better diagnosis and clear assessment of medical-related problems. 
The MMIF is generally considered with MRI (Magnetic Resonance Imaging), CT (Computed Tomog-
raphy), PET (Positron Emission Tomography), SPECT (Single Photon Emission Computed Tomogra-
phy), MRA (Magnetic Resonance Angiography), T1-weighted MR, T2-weighted MR, X-ray, and ul-
trasound imaging (Vibro-Acoustography). This review article presents a comprehensive survey of ex-
isting medical image fusion methods and has been characterized into six parts: (1) Multi-modality 
medical images, (2) Literature review process, (3) Image fusion rules, (4) Quality evaluation metrics 
for assessment of fused image, (5) Experimental results on registered datasets and (6) Conclusion. In 
addition, this review article provides scientific challenges faced in MMIF and future directions for 
better diagnosis. It is expected that this review will be useful in establishing a concrete foundation for 
developing more valuable fusion methods for medical diagnosis. 
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1. INTRODUCTION 

 In past decades, medical image fusion provides an ex-
traordinary improvement in medical imaging aspects. MMIF 
is the combination of different modalities of medical images 
into a single image with more quality and visualization [1]. 
The multi-modal medical images are MRI, T1-weighted 
MR, T2-weighted MR, CT, PET, SPECT, MRA, X-ray, and 
ultrasound imaging, which can be obtained from various 
sensors with different geometry. The ultimate goal of MMIF 
is to extract more complementary and relevant information 
from source images for better diagnosis. In medical image 
fusion, image registration plays a significant role in better 
image analysis. Image registration is the first step in image 
fusion to register the source images. It is defined as the pro-
cess of alignment of source images with respect to the refer-
ence image. This process requires two images as input: the 
original image is called a reference image, and the image 
that will be aligned with the reference image is called a 
sensed image. The purpose of this type of alignment is to 
match related images based on particular features to help in 
the fusion process. In general, the registration framework is 
viewed as an optimization issue with the goal of increasing  
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similarity or lowering cost. In medical imaging, the registra-
tion process enables to merge information from various mo-
dalities such as MRI, T1-T2 weighted MR, CT, PET, 
SPECT, MRA, X-ray, and ultrasound to get complete in-
formation about the patient, and aid in identifying the dis-
ease, to facilitate treatment verification.      
 Therefore, the image registration process is required in 
the medical field because these registered images are well-
suited for medical image fusion to achieve a better diagno-
sis, and complete the fusion process successfully [2, 3]. 
 An MRI image is created by radio waves, which pro-
vides the delicate tissue data related to human organs with 
high spatial resolution and plays an important role in the 
investigation of non-invasive diagnosis of the human body. 
An MRI image is used to detect and diagnose various medi-
cal-related issues such as traumatic brain injury, brain tu-
mours, multiple sclerosis, blood vessels, bones, pelvis, 
joints, developmental anomalies, brain hemorrhage, demen-
tia, infection, stroke, and the causes of headache, spinal tu-
mours, spinal cord compression, herniated discs, and frac-
tures.  In addition, the application area of MRI image is col-
or extraction, shape and structure of specimen, lung cancer 
disease treatment, surgical planning and training, liver dis-
ease, etc. The main advantage of the MRI image is its clarity 
in providing information about the fetus of the pregnant 
woman without exposing them to any kind of radiation. But 
it can not provide tumour-related information of the fetus if 
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any. MR-T1 image provides soft tissue information but does 
not detect the abnormalities. However MR-T2 image can 
provide information of the thickness of the tumour region. 
 A CT image provides hard tissue information and it is an 
important imaging technique in the medical diagnosis and 
evaluation field. CT scans are preferred by doctors for diag-
noses of various diseases, namely, colonography, vascular 
condition, muscle diagnosis, bone fractions and tumours, 
and blood clot. It also helps in surgery, radiation therapy, 
and the detection of the location and size of the tumour, as 
well as the internal bleeding and injuries.  The other applica-
tion areas of CT images are head cancer detection, neck and 
vulvar cancer diagnosis, bone cancer identification and 
treatment, liver tumour diagnosis, esophageal cancer diag-
nosis, lung cancer diagnosis, and surgical treatments. The 
short scanning time with high resolution and greater depth 
of penetration are the advantages of CT imaging, but it faces 
difficulty in tissue characterization.  
 PET image is a molecular imaging technique with high 
sensitivity, which provides the functionality of tissues and 
organs with low resolution. The PET scan is used to diag-
nose dementias (Alzheimer’s disease), and other neurologi-
cal conditions such as Parkinson's disease, Huntington's 
disease, Epilepsy, Cerebrovascular accident (stroke), hema-
toma (blood clot), and bleeding. The application areas of 
PET image are cancer treatment, tumour detection and 
treatment, and lung and breast cancer diagnosis. The ad-
vantage of PET image is its greater depth of penetration, but 
it is a highly expensive technique. 
 SPECT image is a nuclear imaging technique and mainly 

used for studying the flow of blood to organs and tissues. 
The SPECT images are commonly used to diagnose brain 
disorders, heart problems, and bone disorders. The other 
applications include prostate cancer treatments, pelvis irra-
diation detection and treatment, colorectal and vulvar cancer 
treatment, assessment of breast cancer, tumour detection, 
liver cancer diagnoses, neck and head cancer diagnosis, 
brain diagnosis, and treatment, etc. The advantage of 
SPECT image is its greater depth of penetration, but the 
major challenging issue is its improving sensitivity without 
loss of image quality. MRA image consists of a powerful 
magnetic field, used to evaluate blood vessels and identify 
abnormalities in the brain, but does not provide soft tissue 
information [4-13].  
 William Rontgen discovered X-rays on 8th November 
1895 and used them to create the body's "shadow grams". 
Radiography is the use of X-rays to image the internal or-
gans. An X-ray image can provide bone and fractural infor-
mation of the human body. Mammography is one of the X-
ray-based methodologies, which is used to assess breast 
cancer but does not provide the thickness of the disease ob-
ject.  The ultrasound image is a sonar-based imaging tech-
nique, used in different diagnostic application areas such as 
breast cancer detection, prostate cancer treatment, liver tu-
mour, and esophageal cancer diagnosis, etc. The greater 
spatial resolution and low cost are the advantages of ultra-
sound imaging, but the limitations are operator dependent 
and challenging images of lungs and bones.  
 Vibro-Acoustography is another type of ultrasound im-
aging methodology, which is useful for detecting the thick-
ness of the disease object and abnormalities in the breast but 

Table 1. Various application domains in the medical field [9, 13, 14].  

Organs The Functionality of Medical Images Fusion Combinations 

Brain 

MRI: It provides soft tissue information. 
CT: It provides bone information, i.e., hard tissue. 

PET: It is used to measure the activity of the brain by showing the blood flow in functional brain tissues. 
SPECT: It is utilized to quantify the progression of blood in the human brain. 

CT-MRI, 
MRI-PET, 
PET-CT, 

MRI-SPECT, 
CT-SPECT,  
MR-T1-T2 

Breast 

MRI: Identification and detection of breast cancer. 
PET& SPECT: It is used to accurately identify breast tumours and detect early breast cancer. 

Ultrasound: Detects the abnormalities in the breast. 
X-ray: It is used for the assessment of breast cancer. 

 
MRI- PET, 
X-ray -VA. 

Prostate 

MRI: Location and visualization of the prostate area. 
CT: Pretreatment evaluation and identification of cancer nodes. 

Ultrasound: Identifies the location of cancers in the gland.  
PET: It is used to detect ambiguous metastases in prostate patients’ cancer by measuring the metabolic rate of tissue 

 
CT-MRI, 
CT-PET. 

Lungs 

MRI: It is used for a better diagnosis of pulmonary hypertension. 
CT: It is used for tumour detection. 

X-ray: It is used for better diagnosis. 
PET: It is used for the diagnosis of non-little cell bronchial carcinoma. 

 
CT-PET, 

MRI-PET. 

Liver  

MRI: It is used to detect the lesion. 
PET: It is used for the early detection of tumuor abnormalities and localization. 

CT:  It is used to acquire various phases of tissue for lesion identification.  
Ultrasound: Offers a fast-noninvasive technique for observing suspected liver metastases 

CT-PET 
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does not provide fraction information. Above all, the cost 
involved is one of the important criteria in the medical field. 
MRI and CT images are of intermediate cost; PET and 
SPECT are of high cost, while X-ray and ultrasound images 
are of comparatively low cost. The MR-T1 and MR-T2 are 
of intermediate cost [13, 14]. Regarding this information, 
each medical image has its own merits and limitations, as 
shown in Table 1. 
 The combination of various multimodal medical images 
is a required criterion in the medical field, as shown in Fig. 
(1) because each modality provides limited information, 
which is not suitable for better diagnosis. In Fig. (1), the 
source images are obtained from the whole brain atlas web-
site, and the fused image is suitable for better diagnosis, 
such as clear identification of tumour regions and abnormal-
ities of the brain.  
 Three levels of operations are performed in image fusion 
techniques [15, 16]. In the pixel level, the images of indi-
vidual pixels are directly combined. In the feature level, the 
extract of an image is featured through the region-based 
scheme, and in the decision level, the operations between 
the regions of images with consideration of detection and 
classification of the object are considered. The representa-
tions of three levels are observed in Fig. (2). 
 In this review article, various examples of medical im-
age modalities have been presented and discussed, as shown 
in Fig. (1). The first row of medical images shows MRI and 
CT, which are taken from the image fusion toolbox for 
Matlab 5.x [17]. The second row of medical images shows 
MRI and PET, which represent the disease, namely, neo-
plastic disease (brain tumour). The third row of medical 
images shows MRI & SPECT, which represent Degenera-
tive Disease (Alzheimer's disease) [18]. The fourth row of 
images shows CT and PET, which are used for lung cancer 
diagnosis [19]. The fifth row of medical images shows T1-
MR and MRA, which are used for the identification of le-
sion locations with structure data [20]. The sixth row of 
medical images shows vibro-acoustography (VA) and X-ray 
mammography images that help in breast cancer diagnosis 
[21]. The seventh row of medical images shows T1-T2 
weighted MR images, which are used for sarcoma diagnosis 
[18].    

2. LITERATURE REVIEW   

 This section provides a detailed review of MMIF re-
search and the author’s contributions. Medical image fusion 
is classified into various fusion methods that are shown in 
Table 2. In this literature study, methodologies such as IHS 
(Intensity-Hue-Saturation) fusion, pyramid, transform relat-
ed methods, salient feature detection, sparse representation 
methods, deep learning, fuzzy set, hybrid and optimization 
based fusion methods have been studied and discussed in 
detail for better diagnosis of medical related problems. 

2.1. Intensity-Hue-Saturation 

 The IHS-based fusion method [22-24] provides a better-
quality image with beautiful color visualization and spatial 
resolution. The procedure for HIS image  fusion  has  two  

 
Fig. (1). Examples of MMIF with fused images [17-21]. (A higher 
resolution / colour version of this figure is available in the electronic 
copy of the article). 
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Fig. (2). A Dynamic classification of image fusion levels. 
 
steps: i) Converting the colored RGB image into the IHS 
model by using Eq. (1, 2) to get a new intensity image. ii) 
Obtaining the fused image by IHS-RGB transformation by 
using Eq. (3), i.e., reconstruction process.  The diagrammat-
ic representation of IHS-based medical image fusion is 
shown in Fig. (3). 

 The color space method is performed in two steps: 

(1) The mathematical modelling of RGB- IHS: 
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(2) IHS–RGB transformation to get the final image:  

R1 = I1 1+ 2S1 − 3S1 × H( ) , G1 = I1 1− S1 + 3S1 × H( ) , B1 = I1 1− S1( ) , if B1 < R1,G1
R1 = I1 1− S1( ) , G1 = I1 1+ 5S1 − 3S1 × H( ) , B1 = I1 1− 4S1 + 3S1 × H( ) , if R1 < B1,G1

R1 = I1 1− 7S1 + 3S1 × H( ) , G1 = I1 1− S1( ) , B1 = I1 1+8S1 − 3S1 × H( ) , if G1 < R1,B1

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

 (3) 

 Here, R1, G1, and B1 are red, green, and blue components, 
and H1, S1, and I1 are the Hue, Saturation, and Intensity 
components, respectively. In color-based image fusion, re-
searchers propose various combinations with IHS to get a 
valid visual quality image for a better diagnosis of tumours 
and their possible treatment. 

2.2. Pyramid Based Fusion Methods 

 Pyramid based methods [25, 26] have been used in med-
ical image fusion to represent better spectral information. 
The quality of a fused image depends on its decomposition 
levels. As the decomposition levels increase, the image 
quality also increases and vice-versa. Jiao Du et al. [25] 
proposed a Laplacian pyramid with multiple features based 
on medical image fusion. Initially, the input images are de-
composed into multi-scale representations by using the La-
placian pyramid that is used to extract outline feature maps. 
Those features are to be fused with the weighted fusion rule. 
Finally, the fused image is obtained by inverse Laplacian 
and provides an enhanced outline, but it fails in terms of 
visualization. In morphological pyramid-based medical im-
age fusion [26], the fused image is generated with more 

Table 2. Classifications of MMIF methods. 

Methods Techniques References 

Image Decomposition and 
Reconstruction 

Ø Intensity-hue-saturation (IHS) [22-24] 

Ø Pyramid based fusion methods [25-26] 

Ø Transform domain-based methods:  

1. Discrete wavelet transforms (DWT) 

2. Redundant wavelet transforms (RWT) 

3. Multi wavelet Transform (MWT) 

4. Lifting wavelet transform (LWT) 

5. Dual-tree complex wavelet transform (DT-CWT) 

6. Curvelet Transform (CVT) 

7. Contourlet Transform (CONT) 

8. Non-Subsampled Contourlet Transform (NSCT) 

9. Shearlet Transform (ST) 

10. Non-Subsampled Shearlet Transform (NSST) 

Ø Sparse representation 

Ø Salient feature-based methods 

 

[27-30] 

[31-32] 

[33] 

[34] 

[35] 

[36] 

[37-38] 

[39-43] 

[44-46] 

[47-49] 

[50] 

[51-56] 

Deep learning Ø Convolution neural network (CNN) [57-66] 

Fuzzy Set Ø Fuzzy sets, Intuitionistic fuzzy sets [67-78] 

Hybrid and optimization  Ø Combination of multiple techniques [79-103] 

Other fusion methods Ø ICA, Support vector machine (SVM), etc. [104-110] 
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spectral information. But pyramid-based methods are not 
much preferred due to blocking effects, artifacts, and edge 
uncertainties, that occur by sampling operation. Transform-
based fusion methods provide better solutions for this prob-
lem. 

2.3. Transform-based Fusion Methods 

 The transform-based fusion methods enhance the accu-
racy of a fused image with multi-resolution and lead to a 
better clinical diagnosis and treatment. Initially, the input 
images are decomposed into low band and high band fre-
quency coefficients. Then, different fusion rules are applied 
to those bands to select quality fused coefficients. Lastly, 
the accurate fused image is generated by the inverse trans-
formation. The diagrammatic representation of a transform-
based medical image fusion is shown in Fig. (4). The trans-
form-based fusion methods provide better fusion perfor-
mance than the spatial domain methods. 
 The familiar transform-based fusion method is a Wave-
let Transform (WT). Yong Yang et al. [27] proposed an 
efficient DWT based medical image fusion, which repre-
sents a pixel-based image fusion where wavelet coefficients 
are fused with visibility fusion rules to provide good locali-
zation and improve the resolution by windowing-based con-
sistency verification. Rajiv Singh et al. [28] proposed wave-
let transforms-based MIF. This technique is superior to pyr-
amid-based methods, PCA, and the fused image has more 
complementary information. A. Anoop Suraj et al. [29] sug-
gested a DWT based image fusion and denoising in FPGA. 

In this method, the input images are properly registered with 
affine transform, and then DWT. The selection of frequency 
bands is made using the least support vector machine, which 
removes the blurriness and artifacts. S. V. Jagadeesh Chan-
dra et al. [30] proposed a DWT-based medical image fusion 
in which the author improves the fused image quality with 
more resolution and fewer artifacts. 
 The WT based image fusion preserves the information 
with effective localization in both spatial and spectral do-
mains.  However, this method fails to satisfy the shift-
invariant due to the down sampling operation. This problem 
is solved by the redundant discrete wavelet transform 
(RDWT) [31, 32]. The authors P. S. Gomathi et al. [31] 
proposed medical image fusion based on RDWT with mor-
phological operators.  The fusion method provides a better 
analysis of medical modalities, which includes better com-
ponent information, and is suitable for computer-aided- ap-
plications. H.N. Yadav [32] proposed an RDWT-based 
medical image fusion for computer-aided diagnosis. Initial-
ly, the input images are properly registered by mutual in-
formation, and then coefficients are fused by the entropy-
based fusion rule, which leads to improve the quality of the 
fused image. This algorithm is used for the robustness of the 
fusion process to avoid merging artifacts of wavelet coeffi-
cients and is better than the traditional DWT methods, but it 
does not provide the required edge information. Multi 
Wavelet Transform (MWT) [33] is used to solve the short-
comings of the scalar wavelet. It has more texture and pro-
vides detailed information of a fused image, but it does not 

 
Fig. (3). Diagrammatic representation of IHS-based medical image fusion [22-24]. 

 

 
Fig. (4). A framework of transform-based MMIF [27]. 
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provide the smoothness of edges. Lifting Wavelet Trans-
form (LWT) [34] construction is divided into Spilt, Predic-
tion, and Update phases, and it is famous for reducing the 
complexity in DWT, but with vagueness in edges. Heba.M. 
EI Hoseny et al. [35] proposed a DT-CWT based medical 
image fusion with an optimization algorithm and histogram 
matching. This fusion method provides a better visual quali-
ty image, and and is better than other conventional DWT 
based methods in terms of both qualitative and quantitative 
features. But the Wavelet-based fusion methods do not 
provide sufficient information such as the smoothness of 
edges, contours, and directionality of the images. 
 The Curvelet Transform (CVT) is an extended version of 
the conventional wavelet transform. Shirin Hajeb Moham-
mad Alipour et al. [36] proposed a CVT-based MRI-PET 
medical image fusion, where the input images are decom-
posed into frequency coefficients using discrete curvelet 
transform, and then regional information entropy is used to 
calculate the fused coefficients with the help of a maximum 
rule. The fused image is obtained by an inverse curvelet 
transform and this algorithm gives a fused image with suffi-
cient curves and edges.  However, this method is not suffi-
cient for medical images due to its lack of directionality. 
This problem was addressed by Contourlet Transform 
(CONT) [37, 38], for better representation of an image with 
good contours and also to acquire a fine geometrical struc-
ture of an image. CONT has two functions such as the La-
placian Pyramid (LP) and Directional Filter Banks (DFB). 
LP identifies discontinuity points in the image and is linked 
by DFB for better directionality. L. Yang et al. [37] pro-
posed a geometric analysis of CONT-based MMIF. The low 
fused coefficients are obtained by energy-based fusion rule 
and high fused coefficients are obtained by region weighted 
selection rule for extracting the features, such as edges, con-
tours, sharp boundaries, and directionality. Hui Huang et al. 
[38] suggested a nonlinear approximation of contourlet 
transform-based image fusion for highlighting the edges and 
improving the efficiency. The source images are decom-
posed into coefficients, and then fused by a feature mapping 
algorithm. The feature mapping algorithm is used to remove 
the blocking effects, and provides the edges data. The ob-
tained fused image has higher directionality with good con-
tours. The CONT does not satisfy the shift-invariant, and 
this problem was well handled by a non-subsampled con-
tourlet transform [39-43]. 
 Gaurav Bhatnagar et al. [39] proposed a multi-modal 
medical image fusion using directive contrasts in the NSCT 
domain. This algorithm gives visual content with high con-
trast fused images without color distortions and is also use-
ful to physicians for disease diagnosis in a better way. 
Guocheng Yang et al. [40] proposed statistical measure-
ments of NSCT based MMIF. The low and high band coef-
ficients of NSCT are fused using Shanon entropy and a 
weighted map, is used for extracting the salient features 
with structural information. These salient features are more 
needed for medical images for better diagnosis. Gaurav 
Bhatnagar et al. [41] suggested a multi-modal medical im-
age fusion using a new contrasting NSCT. In this algorithm, 
the low and high fused coefficients are obtained by 
weighted matrix and sum modified Laplacian for the extrac-
tion of saliency information and edges. This algorithm leads 

to more resolution with high structural information in the 
fused image and is superior to DWT, CONT, and NSCT. 
Periyavattam Shanmugam  Gomathi [42] proposed NSCT-
based MMIF. The input images are decomposed into a low 
band and high band frequency coefficients for multi-
resolution purposes. Mean and variance are the fusion rules 
used to select the best directionality and edge information 
from coefficients. Then the fused image is generated by 
inverse NSCT. This algorithm gives a 50% improvement 
compared to the other existing transformation methods. 
Zhiqin Zhu et al. [43] proposed NSCT with phase congru-
ency and local energy-based MMIF. This method gives en-
hanced fused image with better structure and features. The 
NSCT-based fusion methods provide a fused image with 
more directionality, but it has more complexity and less 
sensitivity. To achieve better fusion results, which include 
more directionality with less complexity and high sensitivi-
ty, ST and NSST techniques are preferable. 
 The ST [44-46] and the NSST [47-49] are the most ef-
fective methods for fusing multi-modal medical images with 
detailed sparse directional representations, which include an 
infinite number of directions and complexity reduction than 
NSCT. The comparison of transform domain-based tech-
niques is shown in Table 3. In medical image fusion, the 
fusion performance can be improved by a hybrid combina-
tion of transform domain-based methods, as discussed in 
section 2.8. 

2.4. Sparse Representation Based Fusion Methods 

 Sparse Representation (SR) is an efficient tool for better 
analysis of the human visual system and is used in various 
application areas such as face recognition, object tracking, 
image fusion, machine learning, etc. [50]. 
 The procedure for Joint SR-based multi-modal medical 
fusion is shown in Fig. (5): 
1. Initially, the source images are converted into vectors 

through a sliding window.  
2. The vector representation of two source images sparse-

ly by over-completes dictionary D. 
3. The fused sparse coefficients are obtained by fusion 

rule and then converted into fused vectors using over-
complete dictionary D. 

4. Finally, the fused image is obtained with high resolu-
tion by reverse operation of step 1. 

 The dictionary can be created in two types: (1) fixed 
methodology, (2) learning methodology. The learning 
method was more efficient and flexible than the fixed meth-
od. The efficient construction of a learning-based dictionary 
is the K-SVD algorithm. The sparse representation based 
fusion method [50] does not provide the required edges and 
contrast of the fused image. In medical image fusion, many 
authors proposed various combinations with SR to obtain 
fused images with more visual and detailed information, and 
low distortions. 

2.5. Saliency Feature-Based Fusion Methods 

 Saliency feature-based methods are quite different than 
the other fusion methods. The merits of this method are: (1) 
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saliency features extraction, (2) shift-invariance, and (3) low 
complexity. The diagrammatic representation of the fusion 
process is shown in Fig. (6).  

 
Fig. (6). Flow chart for an edge-preserving filter with saliency 
feature-based fusion method. 

 The edge-preserving filters play a wider role in medical 
image fusion for edge features such as Cross bilateral filter 
(CBF) [51], guided filter (GF) [52, 53], weighted least 
squares filter (WLSF) [54], Rolling guided filter (RGF) 
[55], and Fast guided filter [56]. These filtering techniques 
are used to produce detailed edges and better visual quality 
of the fused image. Recently, the researchers used these 
saliency-based image fusion methods as a preprocessing 
step at the initial stage of medical image fusion for noise 
reduction and enhanced edges. 
 The whole procedure showing the edge-preserving filter-
based image fusion is summarized as follows: 
 Initially, the input images (I1, I2) are represented in vari-
ous scales by edge-preserving filters (EF). The base layers 
(BL1, BL2) and detailed layers (DL1, DL2) of two images at 
different scales (ith level) are computed by Eqs. (4, 5). 
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 The effective fusion rule is used to fuse both base and 
detailed layers by Eq. (6).  

Table 3. General Comparison of transform-based fusion methods. 

Methods LF Bands HF Bands Merits Demerits 

Wavelet Transform One Three Good localization in both time and frequency 
It does not provide edges, Contours, and direc-

tionality data. 

Contourlet Transform One Finite Produced sufficient edges and directionality. 
It does not satisfy the shift-invariant due to down 

sampling. 

Shearlet Transform One Infinite 
It provides detailed sparse directional represen-

tation. 
It leads to misregistration due to the lack of shift-

invariant. NSST is a better way to handle this. 

 

 
Fig. (5). Flow chart for joint sparse representation based medical image fusion [50]. 
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)2,1(

)2,1(

iDLiDLDfuFDL

iBLiBLBfuFBL

=

=

            (6) 
 Where BLF and DLF are the fused base layer and detailed 
layer, and fuB, and fuD are fusion rules regarding the base 
layer and detailed layer, respectively. Finally, the fused im-
age is obtained by Eq. (7). 

FDLFBLfuI +=             (7) 

2.6. Deep Learning Based Fusion Methods 

 In recent years, deep learning has emerged as a new era in 
the medical field for disease diagnosis. Aprominent and typi-
cal deep learning model is the Convolutional neural network, 
because it is a class of deep neural networks, and is most 
widely used to analyze visual imagery. The convolutional 
neural network is multistage feed-forward ANN, and the con-
volution operation is multidimensional. It derives its name 
from the form that it consists of multiple hidden layers, such 
as convolutional layers, pooling layers, completely linked 
(fully connected) layers, and normalized layers. The first pa-
rameter of CNN is input, and the second parameter is kernel, 
and the last parameter is output, which lead to generate a fea-
ture map. The spatial and transform domain-based medical 
image fusion methods have flaws in the extraction of detailed 
features and fusion rules, which requires artificial design. The 
CNN based image fusion provides a fused image with more 
detailed features and better visual quality. The deep learning 
is used in various medical application areas such as classifica-
tion [57], medical diagnosis [58], segmentation [59-61], im-
age fusion [62-65], and image registration [66]. 
 Various authors suggested image fusion algorithms relat-
ed to CNN with better fusion rules, such as Yu Liu et_.al. 
[62] proposed Deep CNN based image fusion. This architec-
ture extracts the high-frequency details from source images 
using filters and then performs CNN to generate a focus map. 
This focus map is used to provide optimized details with con-
sistency verification for better visualization and quality. 
Haithem Hermessi et al. [63] suggested a new CNN and 
Shearlet domain based medical image fusion. This proposed 
method extracts the features with better visualization of a 
fused image via a similarity learning scheme and fully con-
nected Siamese architecture in the NSST domain.  Weighted 
NCC based feature maps are generated by CNN, which are 
used in the fusion of high-frequency coefficients and the low-
frequency fused coefficients are obtained by the energy-based 
fusion rule. The fused image is superior to traditional NSST 
methods in terms of visualization and directionality. Ruichao 
Hou et al. [64] proposed an MRI-CT medical image fusion 
using CNN and DCSCM (Dual-channel spiking cortical mod-
el). Their methodology is related to feature-based image fu-
sion. Initially, two medical images are decomposed into coef-
ficients by NSST. The low and high frequency fused coeffi-
cients are obtained by the CNN based feature map with adap-
tive selection rule and DCSCM. The DCSCM is used to ex-
tract textures, and detailed information from the dark regions. 
After that, a better and more detailed fused image is produced 
by inverse NSST. 

 Meng Wang et al. [65] suggested image fusion based on 
supervised deep learning CNN with weighted gradient flow. 
The salient features were extracted, and integrated by back 
propagation gradients, and then fusion rule was performed 
with weighted gradient flow, which improved the detailed 
structural information. This proposed deep network was 
tuned according to the pre-trained network such as VGG 16, 
VGG 19, and ResNet 50. This fusion method provides supe-
rior results than the other existing techniques such as NSCT, 
SR, GF, etc. The deep learning based fusion method pro-
vides a fused image with more features, and efficient edge 
information, but it faces various difficulties such as lack of 
training datasets, complexity in network framework, high 
cost, and long training time. 

2.7. Fuzzy Set Based Fusion Method 

 Generally, medical images are poorly illuminated and 
even some details will not be visible i.e., vagueness in na-
ture. In medical image fusion, enhancement has a prominent 
role in the clarity of disease identification without ambigui-
ty. Several enhancement techniques such as histogram [67], 
gray-level transform [68] based methods, etc., have been 
proposed, but they are not sufficient for medical image fu-
sion, because of their uncertainties. This problem was 
solved by a mathematical tool called a fuzzy set [69]. Fuzzy 
sets are used to remove vagueness but not to handle more 
uncertainties since they contain only membership functions 
[0, 1]. The generalized version of a fuzzy set is the Intuition-
istic Fuzzy Set (IFS) [70]. IFS considers more uncertainties.    
 Ruche Sanjay et al. [71] proposed DWT and fuzzy logic 
based medical image fusion. In this algorithm, low fused co-
efficients are generated by fuzzy logic and high fused coeffi-
cients are generated by the average rule. This algorithm is 
used to remove the vagueness present in the medical image. 
The final fused image is obtained by inverse DWT and it is 
superior to other pyramidal based methods. Balasubramanian 
et al. [72] suggested IFS based image fusion. This method 
provides a fused image without uncertainties and it is superior 
to other transformation techniques. The author proposed [73-
76] Intuitionistic fuzzy set based multi-modal medical image 
fusion techniques. These algorithms provide bright and con-
trast-enhanced fused images with detailed structures. These 
methods are superior to Non-fuzzy techniques both  qualita-
tively and quantitatively. T. Tirupal et al. [77, 78] proposed 
Sugeno’s and Yager’s IFS based medical image fusion. These 
algorithms give enhanced fused images with a clear structure 
of the tumour present. 

2.8. Hybrid and Optimization Algorithms Based Medical 
Image Fusion 

 Recently, many researchers have proposed and pub-
lished hybrid and optimization algorithms based fusion 
techniques [75, 79-103], which lead to improved fusion per-
formance in terms of visual quality. It also provides quanti-
tative analysis for better diagnosis and assesses medical-
related problems, such as Rajkumar Soundrapandiyan et al. 
[75] proposed DWT and Intuitionistic fuzzy set (IFS) based 
medical image fusion. Initially, the input images are fused 
by using DWT with maximum and entropy-based fusion 
rules. The initial fused images have a lot of uncertainties, 
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and those are overcome by the intuitionistic fuzzy set. The 
final fused image has high contrast without uncertainties. 
Jyothi Agarwal et al. [79] proposed DWT and curvelet 
transform-based image fusion. This hybrid technique pro-
vides a fused image with good localization and better edges, 
and is superior to conventional DWT and CVT based tech-
niques, but does not provide directionality information.  Yin 
Dai et al. [80] proposed medical image fusion based on 
wavelet, pseudo-color, and α channel fusion methods, used 
to highlights the in-depth details and clear visible lesions of 
cerebral infractions in a fused image. Jing-Jing Jong et 
al.[81] proposed an SR based Medical image fusion. The 
input images are split into patches over a dictionary, and 
each patch can be represented sparsely by the least angle 
regression algorithm, which leads to better resolution.  The 
sparse coefficients are fused using the maximum fusion rule, 
and the fused image is reconstructed from combining fused 
sparse coefficients with the corresponding dictionary. This 
fusion process has been proved better than the DWT, NSCT, 
and SR methods both visually and quantitatively. Nargis 
Aktar et al. [82] proposed hybrid medical image fusion, 
which includes DTCWT and PCA. The DTCWT is used to 
extract saliency features from input images and PCA is used 
to compute principal components, which are used in the 
processing of that features and that reduce the redundant 
information, which is generated by DTCWT decomposition. 
This method is superior to PCA, DWT, DTCWT, 
DWT+PCA methods. Ebenezer Daniel et al. [83] proposed 
an optimum spectrum mask and GWO (Gray wolf optimiza-
tion algorithm) based on medical image fusion. The opti-
mum spectrum mask is used to obtain better contrast, edge 
information, and minimize the redundancy of fused images. 
 Jingming Xia et al. [84] presented a hybrid medical im-
age fusion, which includes SR, NSCT, and PCNN. Initially, 
the two input images are decomposed into low and high 
coefficients by NSCT. Then, the low-frequency coefficients 
are fused by sparse representation, and fused high-frequency 
coefficients are obtained by PCNN, which is helpful to ex-
tract meaningful features and detailed edge information. 
Finally, the fused image is obtained by inverse NSCT with 
detailed information regarding the structure and edges, and 
is superior to NSCT, SR, NSCT-SR, and NSCT-PCNN 
techniques, but the major drawback is parameters’ setting in 
the conventional PCNN. Ebenezer Daniel [85] suggested an 
optimum wavelet-homomorphic and genetic gray wolf op-
timization algorithm (OWHF+HG-GWO) based on medical 
image fusion. Firstly, registered input images are enhanced 
by homomorphic filtering and then decomposed using DWT 
to get approximation and detail coefficients. Secondly, the 
approximation and optimized detail coefficients of the first 
image, and detail and optimized approximation coefficients 
of the second image are added and vice versa. The opti-
mized scale values are selected by the HG-GWO. Lastly, 
according to the reconstruction process, the fused image is 
obtained. This method is suitable for all medical datasets.  
 Ling Tan et al. [86] proposed fast finite Shearlet trans-
form and SR-based medical image fusion. The author’s con-
tributed work represents a quality fused image with direc-
tionality, and better visualization, and is 35% superior to the 
state-of-the-art fusion methods such as NSCT, NSST, etc. 
Mehdi Hassan et al. [87] suggested neuro-wavelet based 

MIF. The low and high frequency coefficients are fused by 
using the neural network with extracted features. The fused 
image is obtained by inverse DWT, and gives better results 
both visually and quantitatively. Sharma Dileep Kumar 
Ramlal et al. [88] proposed hybrid based medical image 
fusion. This method resolves the limitations of individual 
NSCT and SWT. The fused image has more texture, point 
discontinuities, and good edge information. B. Rajalingam 
et al. [89] presented a DT-CWT with NSST based MIF. 
However, the combination of two techniques produced a 
quality fused image with more detailed information. Chenxi 
Huang et al. [90] contributed work related to NPCNN and 
optimized by the shuffled frog leaping algorithm (SFLA). 
The low and high frequency bands of NSCT are fused by 
SFLA-PCNN fusion rule. In the PCNN model, it is difficult 
to handle the parameters setting. To overcome that problem, 
SFLA is used for optimizing the PCNN parameters. This 
proposed method gives a quality fused image; robustness 
and the tumour region are visible clearly.    
 Jun Li et al. [91] suggested guided filter and ORDL 
(online robust dictionary learning) based image fusion. The 
guided filter is an edge preserving filter, used to amplify the 
edge information, and a jointly clustered patch ORDL algo-
rithm is used to reduce the amount of training data and im-
prove the performance of the fusion process. The author’s 
proposed method is better than the MST (Multiscale Trans-
form) and MST-SR based methods. Heba M. EI-Hoseny et 
al. [92] contributed work based on medical image fusion 
using NSST, modified central force optimization (MCFO), 
and contrast enhancement. This method has four stages of 
operation. Firstly, perform histogram matching of both reg-
istered input images, and decomposed by NSST. Secondly, 
MCFO generates optimized gain parameters for better selec-
tion of features from coefficients and then fused. Thirdly, 
the fused image is obtained by the inverse NSST. Lastly, the 
contrast enhancement technique is used to enhance the fused 
image quality. Q. Hu et al. [93] proposed a dictionary learn-
ing and Gabor filter based MMIF. The frequency bands are 
fused by Gabor energy weights, and sparse representations, 
which are updated by dictionary-based algorithm (OMP) 
with manifold-based conjugate gradient method. The ad-
vantage of Gabor filter is to improve the image texture with 
frequency and direction representation, and the dictionary 
leads to non-unique solutions of the sparse matrix. This fu-
sion process gives good fusion results over the NSCT-
RPCNN, NSCT-PAPCNN, and NSST-SR based methods. 
Velmurugan Subbiah Parvathy et al. [94] proposed Optimi-
zation algorithm based medical image fusion, which in-
cludes DWT and Binary crow search optimization (BCSO) 
algorithm. The initial stage of fusion process is noise re-
moval, which can be done by the median filter. After that, 
the DWT coefficients are fused by using optimized parame-
ters, which are generated by the BCSO algorithm, and are 
used for the better selection of parameters. This methodolo-
gy is superior to another optimization algorithm, such as 
genetic algorithm (GA). 
 Lina Xu et al. [95] proposed optimized DWT- homo-
morphic filter based medical image fusion. The enhanced 
coefficients are optimized by a shark smell optimization, 
which is used to select optimized parameters.  The fused 
image has fine details and is superior to DWT, PCNN, DCT, 
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LP and IHS techniques. Yanyu Liu et al. [96] proposed To-
tal-Variational-Decomposition (TVD) and Robust spiking 
cortical model (RSCM) based MMIF. The input images are 
decomposed into a base and detailed layer using TVD, and 
then fused by fusion rules, which include RSCM and CNN 
model. The fused image has good contrast, better detailed 
information, and high computation speed. Sarmad Maqsood 
et al. [97] proposed two-scale decomposition and sparse 
representation based MMIF. The input images subjected to 
pre-processing by contrast enhancement technique and then 
decomposed into a base and detailed layer. The fused image 
is obtained by a decision map, which is generated by a dic-
tionary, and then reconstruction takes place. Zhaisheng Ding 
et al. [98] proposed Brain MIF based on dual channels 
CNNs in the NSST domain. The fusion strategy of this 
method is, that the initial weights are integrated into an in-
put image by the CNN model, and then decomposed by 
NSST. The resultant fused image has better quality without 
distortion, and is superior to NSCT-PCNN, NSST-
PAPCNN, SR-CVT, and NSST-SR methods.  
 Jingming Xia et al. [99] proposed NSST, PAPCNN, and 
CSR based image fusion, which is used to extract the struc-
tural and detailed features. This method gives better results 
in terms of qualitative and quantitative analysis, and is supe-
rior to traditional NSST-PCNN, CSR, SR-PCNN methods, 
etc. Padmavathi K et al. [100] suggested TV -L1 decompo-
sition of MRI-PET MIF. The cartoon and texture compo-
nents are fused with weights, which are generated by PSO. 
The fused image has more texture and visual details which 
are preserved with greater contrast, but the major drawback 
is high computation time. Yu Liu et al. [101] proposed con-
volutional sparsity with morphological component analysis 
(CS-MCA) based MIF. The input images are decomposed 
into cartoon and texture components and then fused by fea-
ture maps, which are generated by CS-MCA with the help 
of a dictionary. This method gives an improvement in diag-
nosis and better than the standard SR-based methods.  
 Kamal deep Kaur et al. [102] proposed Hilbert and gray 
wolf optimization algorithm-based MIF. The advantage of 
HT is extorting the information from input images and opti-
mum spectrum scaling, which is used for the selection pro-
cess, and used for removing the optimization problem in PSO.  
 Sneha Singh [103] suggested improvement of medical 
image fusion, which represents multi-layer decomposition 
such as base and detailed layers. The base layers are fused 
by a feature map, which is obtained by CNN with the re-
gional energy fusion rule, and the detailed layers are com-
bined using a cluster-based dictionary. The obtained fused 
image has high contrast of tumour regions with low compu-
tation time. 

2.9. Other Fusion Methods 

 The dimensionality reduction based medical image fu-
sion methods used for feature processing are PCA [104] and 
independent component analysis (ICA) [105]. Few authors 
proposed various approaches of medical image fusion for 
improvement of fusion performance for better medical diag-
nosis such as SVM (Support Vector machine) [106], 
AFSSD [107], FMI based medical image fusion [108], local 
extrema based medical image fusion [109], NPDM modal 

[110]. S.L. Jany Shabu [106] proposed a fusion method 
named SVM classifier for feature extraction and detection 
of tumour region. Arash Saboori et al. [107] proposed an 
adaptive filter based on medical image fusion with spectral 
and spatial discrepancy. The usage of an adaptive filter is to 
integrate both medical image information, and then fuse it 
by optimized parameters, which are generated by spectral 
and spatial discrepancy. This algorithm proves both subjec-
tively and objectively better than DWT, IHS, and HPF 
methods. Li Yufeng et al. [108] proposed modulation-based 
image fusion. The input images are multiplied with a factor 
and then combined. The fusion performance is superior to 
DWT and LP. Zhiping Xu et al. [109] suggested medical 
image fusion based on multi-level local extrema for medical 
application, which includes local energy and contrast-based 
fusion rule. This technique shows better visualization, but 
edges are not enhanced properly. Zhe Liu et al. [110] sug-
gested non-parametric density model for reducing the distor-
tions and mismatch problems. The fused image of this 
method has good localization and abnormalities characteri-
zation. The comparison of existing techniques, which in-
cludes straight, hybrid, and optimization algorithm-based 
fusion methods is shown in Table 4.  
 The aforementioned, each medical image fusion method 
has its own merits and demerits. Still, image fusion tech-
niques require more efficient algorithms to exhibit fused 
image with more information, useful for better diagnosis, 
since fused image has many uncertainties and vagueness.  

3. MEDICAL IMAGE FUSION RULES  

 In the medical image fusion process, the fusion rule 
plays an important role in highlighting the features of input 
images that are superimposed on the output image. The av-
erage and maximum rules are frequently used as pixel-based 
fusion rules. The image fusion rules mentioned in this litera-
ture are principal component analysis (PCA) [104], energy-
based fusion rule [111, 112], human visualization based 
fusion rule [78], PA-PCNN based fusion rule [49], modified 
spatial frequency (MSF) fusion rule [113], IFS based cosine 
similarity [114], normalized weighted sum based fusion rule 
[115], consistency verification [78, 116], and phase congru-
ency (PC) [117-119]. These rules are used to extract the 
image features to make decision for performing the fusion 
process. 

3.1. PCA Based Image Fusion Rule  

 PCA based image fusion rule is related to highlight the 
invisible saliency features of an image. The best example is 
PCA, which is used as a dimensionality reduction tool to 
create weights by principal components. The procedure for 
weights calculation using PCA is as follows: 
1) Let R1and R2 are the two coefficients of input images  
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Table 4. Comparison of existing medical image fusion method. 

Fusion Methods Modalities Advantage Disadvantage 

IHS & PCA [22] MRI-PET Fused image has better color visualization and spatial features. It causes spectral distortions at the 
boundaries and low contrast. 

LP [25] MRI -CT, 
This method preserves better outlines in a fused image. 

Low complexity. 
May introduce artifacts and blocking 
effects on fused image boundaries. 

DWT [27] MRI-PET, It provides good localization in both time and frequency. It has more complexity and does not 
satisfy the shift-invariant property. 

RWT [31] MRI-SPECT Satisfies shift invariant property and good resolution. Unable to reflect the edges infor-
mation. 

MWT [33] MRI -CT Increase the image analysis, texture information, and feature 
extraction. 

Presence of noise at edges in a fused 
image. 

LWT [34] MRI -CT Less complexity. Fused image suffers with blocking 
effects at the outlines. 

CVT [36] MRI -CT It covers sufficient curves and edges information. Lack of directionality 

CONT [37] MRI -CT More edges, directionality information is present in a fused 
image and superior than DWT & CVT. 

May causes blocking effects and low 
contrast. 

NSCT [43] MRI, PET Superior to traditional transform techniques in terms of direc-
tionality. High complexity. 

ST [44] MRI -CT This method provides a fused image with more directionality 
with less spectral distortions. 

This method leads to misregistration 
due to lack of shift invariance. 

NSST+PAPCNN [49] MRI-CT, Fusion process is Superior to NSCT with less complexity, and 
overcome the drawbacks in PCNN. 

Low brightness and Contrast due to 
uncertainties, and high computation-

al time. 

JSP [50] MRI-PET, Fused image has less color distortions and blocking effects. Does not provide a quality fused 
image, and the edges are not clear. 

GF  [52] MRI-SPECT This method gives noise free and preserves more detailed edge 
information in a fused image. 

Visual representation is poor and 
provides CT image information. 

CNN+ DCSCM [64] MRI -CT 
This method gives optimized parameters for selection of features 

from input images and produce fused image with clear tumor 
region. 

High expensive and long training 
time. 

YIFS [78] 
MRI-CT, 

MRI-PET, 
MRI-SPECT 

This method gives a better contrast fused image without distor-
tions. 

CT image information  is not en-
hanced properly. 

GWO+ OSM [83] 
MRI-CT, 

MRI-PET, 
MRI-SPECT 

Fast computation speed as well as dynamic selection of opti-
mized scale values, and are used for better diagnosis. Edges information is not up to level. 

NSCT+PCNN+SR [84] MRI -CT This algorithm is suitable for gray and color images, and gives 
better results than conventional NSCT based techniques. 

MRI information is not clear i.e., 
artifacts. 

OWHF+HG-GWO [85] 
MRI-CT, 

MRI-PET, 
MRI-SPEC 

Fused image is obtained by optimized parameters, and suitable 
to various medical data sets. 

High computation time and Low 
brightness. 

NPCNN [90] MRI-PET, 
MRI-SPECT 

Overcome the drawbacks in PCNN, and provides optimization 
selection using fewer parameters. 

Vagueness is present in a fused 
image. 

GF+ORDL [91] MRI -CT This method provides better results in terms of edges than the 
SR and other MST techniques. 

Soft tissue information is less in a 
fused image., and low brightness 

BCSO [94] 
MRI-CT, 

MRI-PET, 
MRI-SPECT 

Complementary information is present in a fused image. Less directionality information 

TVD+SR [96] MRI -CT Provides better detailed information and high computation 
speed. 

Some parts are not visible clearly in 
a fused image 

DCNN+NSST [98] MRI -CT Enhance the contrast of diagnostic features High computation time. 

NSST+PAPCNN+CSR 
[99] 

MRI-CT, 
MRI-PET,  

MRI-SPECT 

It shows a better visual quality with detailed edges and texture 
information. 

Vagueness and uncertainties are 
present in a fused image. 

FMI [108] MRI- CT Less computation time and the fused image have more comple-
mentary data. 

CT image information is not clear, 
which leads to wrong diagnosis. 

NPDM [110] MRI-PET It represents a clear structure of the tumor region, and the imag-
es are available on the axial plane. 

This method is not suitable for mul-
tiplanar and multi- parametric repre-

sentations. 
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2) Calculate the covariance matrix is given by  
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3) Compute the Eigen vectors (VC) and Eigenvalues (D) of 
the covariance matrix from Eq. (10) 
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4)  Generating normalized weights by VC  
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5) Finally, fused coefficients are obtained by weighted func-
tions 
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3.2. Energy-based Image Fusion Rule  

 It is used to extract detailed information from the coeffi-
cients of the input images. Examples of energy-based fusion 
rules are maximum local energy (MLE) [111], and sum-
modified-laplacian (SML) [112]. 

3.2.1. MLE 

 Depends on the fusion process, the local energy-based 
fusion rule is applicable for both low and high-frequency 
coefficients. This fusion rule is used to extract the maximum 
energy of two input images and produce a fused output im-
age with a 3*3 sliding window. The LE is defined as, 
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 Where f is the local filtering operator. P and Q are the 
local windows. AorB∈ξ (A &B are the windows for the two 
input images). 

 Local beyond wavelet energy is expressed as 
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 Where M represents the filtering operators at various 
directions and (l, k) is the scale and direction of the trans-
form.  
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3.2.2. SML 

 The SML can extract detailed structure information that 
leads to a better visualization as well as clarity. The SML is 
defined as:   
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 Where ( ) ( )1212 +×+ ba are window size, defined around 
( )hg, and the gradient ( )fef ,2∇  is defined as: 
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 Here k is the step between different coefficients. 

3.3. Visualization Based Fusion Rule 
 The best example of visualization based fusion rule is 
contrast visibility. It is defined as an amount of difference in 
intensity values between the image block and the mean val-
ue of the block. Contrast visibility is expressed as: 
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 Where kµ , and FE × are mean and dimensionality of 
that block kB , respectively.  

3.4. PA-PCNN Based Fusion Rule 
 The pulse coupled neural network (PCNN) is a biologi-
cally inspired neural network that has been extremely used 
in medical image to extract efficient edge information from 
high coefficients of input images for better visualization and 
diagnosis. The PCNN is an iterative procedure and does not 
require a training process. It is applied in various areas like 
image classifications, image compression, image fusion, etc. 
The PCNN is a single-layered network with the 2D array 
input. The conventional PCNN model is a set of various 
parameters that include amplitudes, linking strengths, and 
coefficients. The defects in conventional PCNN have a large 
number of parameters and parameters settings. To overcome 
this problem, the author [49, 99] proposed PA-PCNN (pa-
rameter- adaptive pulse coupled neural network) based fu-
sion rule, which is mathematically described as follows: 
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 =cdS Input image, =LV Amplitude of linking effect, 
( )=nFcd Feedback input, ( )=nLcd Linking input at position 

(i, j), N = iterations, ( )=nUcd Internal activity, =β Linking 
strength, =fα Exponential delay function. 

3.5. MSF 
 This fusion rule is used to measure the entire image edge 
strength in its gradient directions.  The mathematical formu-
lation of MSF of an image F is defined as, 
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 Where RF, CF, SaDF, and MaDF are the row, column, 
secondary diagonal, and main diagonal frequencies, respec-
tively. 

3.6. IFS Based Cosine Similarity 

 Let ( ) ( ){ }jGjG ccG νµ ,= , and ( ) ( ){ }jHjH ccH νµ ,=  be 
the two IFSs in the universe of discourse C. The cosine sim-
ilarity function (IFSCS) is used as a fusion rule for the com-
parison of two IFS’s with maximum and minimum selec-
tion, and used for medical diagnosis and range belongs to 
[0-1]. It is described as follows:    
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3.7. Normalized Weighted Sum Based Fusion Rule 

 The normalized weighted based fusion rule is used to 
extract the detailed structural information from the image 
coefficients. Let DC and AC are the detailed and approxi-
mation coefficients of the input images G and H, respective-
ly. The mathematical representation of the normalized 
weighted sum fusion rule is defined as,  
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where 2121 &,, AADD WWWW  is the standard deviation of the 
weights of image coefficients G and H. 

3.8. Consistency Verification  

 The consistency verification is a fusion rule used to gen-
erate a new decision map for a better-fused image using a 
majority filter with 77 ×  window size. This rule is used to 
remove wrong focus pixels or errors.    

3.9. Phase Congruency (PC)  

 The PC is used to enhance the features and also to meas-
ure the local structures of an image. The PC of an image at 
(x, y) location is defined as, 
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and the local amplitude at j scale is  
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 In Eq (32), o
jM and e

jM are the odd and even-symmetric 
2-D Log-Gabor filters at scale j.         (32) 

4. PERFORMANCE EVALUATION METRICS 

 Subjective and objective are the two types of methods 
used for evaluating the quality of a fused image. In subjec-
tive evaluation, the fusion quality depends upon the human 
visual system. The subjective evaluation can be compared 
with different methods, such as image spatial details, object 
size, color, etc. It has various drawbacks like time consum-
ing, high cost, inconvenience, etc. The objective evaluation 
methods have been proposed to overcome the drawbacks of 
subjective evaluation. Further, these are classified into two 
types concerning reference images.   

(1) Objective type performance quality metrics with a refer-
ence image. 

(2) Objective type performance quality metrics without a 
reference image. 

4.1. Objective Type Performance Quality Metrics with a 
Reference Image  

 A list of frequently used objective type performance 
quality metrics with reference images is illustrated in Table 
5 and each parameter has its unique characteristics for better 
visualization and representation. The quality of fusion per-
formance can be calculated by evaluation metrics like dis-
crepancy (DK) [24], overall performance (OP) [24], cross-
correlation (CC) [37], mutual information (MI) [64], simi-
larity measures (SSIM) [65], universal quality index param-
eter (UQI) [71], mean absolute error (MAE) [71], percent-
age fit error (PFE) [72], root mean square error (RMSE) 
[72], peak signal to noise ratio (PSNR) [120], deviation  
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Table 5. Objective type performance quality metrics with a reference image.  

Performance 
metrics Description Equation 

kD  
The discrepancy is used to estimate the features of the images. 
For better fusion performance, the discrepancy value must be 

small.
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CC It computes the spectral features of similarity between the 
reference and fused image. The range is 0-1. The high CC 
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SC SC is used to calculate the strength of the fused image and the 
value must be high.
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reference image. The lower value represents good fusion quali-
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Table 6. Objective type performance quality metrics without a reference image. 

Performance 
Metrics Description Equation 

SF SF measures changes in intensity values in a fused image (fused). 
For good quality fusion performance, the SF value must be large. )()( 22 CFRFSF +=
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index (DI) [120, 121], difference invariance (DIV) [122], 
structural content (SC) [123], average difference (AD) [123, 
124], and normalized absolute error (NAE) [123, 124], 

4.2. Objective Type Performance Quality Metrics With-
out a Reference Image 

 This is a highly desirable method to measure the fused 
image quality without a reference image. A list of frequently 
used objective type performance quality metrics without a 
reference image is illustrated in Table 6. Few metrics are 
computed with the help of source images and the remaining 
is related to the fused image for quality measurements, such 
as spatial frequency (SF) [37], petrovic metric [39], standard 
deviation (STD) [52], average gradient (AG) [52], entropy 
(E) [64], mean (M) [72], functional mutual information 
(FMI) [122], fusion factor (FF) [125, 126], fusion symmetry 
(FS) [125, 126],fusion index (FI) [126], piella metrics [127], 
sum of correlation difference (SCD) [128], visibility (VIS) 
[129]. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

 The performance of medical image fusion methods is 
evaluated by the benchmark databases, namely, image fu-
sion toolbox [17], whole-brain atlas [18], and another medi-
cal image dataset [20]. The database [17, 18, 20] consists of 

MRI, CT, MRA, PET, and SPECT images with detailed 
information of the abnormal and normal structure of the 
brain, and all images are co-aligned as shown in Fig. (7). 
The comparison of existing methods is a typical task be-
cause the authors used different multi-modality medical 
images and evaluation metrics. Various authors suggested 
different schemes in the literature for medical image fusion, 
as discussed in section II. The quality evaluation of the 
fused image is performed in two ways: qualitatively and 
quantitatively. In this section, a study of various approaches 
is carried out using subjective and objective type analysis 
with different medical image applications. The objective 
analysis of different existing techniques with quality metrics 
is arranged in a table format, as shown in Table 7, such as 
IHS & PCA [22], NSCT [43], IFS [72], SIFS [73], and 
NSST+PAPCNN [49], and performance quality metrics are 
mean, standard deviation (STD), average gradient (AG), 
spatial frequency (SF), entropy (EN), mutual information 
(MI), and running time. 

5.1. MRI-CT Evaluation Group 

 The subjective type analysis is shown in Fig. (8). Fig. 
(8a and b) are multi-modality images, which provide soft 
and hard tissue information. Fig. (8c) shows the comple-
mentary information which is not clearly visible.  Fig. (8d) 
represents a degraded fused image, which represents MRI 

 
Fig. (7). Multi modal medical image fusion dataset examples for fusion process [17-18, 20]. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 
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information. Fig. (8e) represents low quality fused image. 
The detailed edges and enhanced fused image areas shown 
in Fig. (8f-g). 
 In objective type analysis of MRI-CT fusion methods, 
the IFS based medical image fusion method produced the 
highest value for mutual information (MI), 5.8989, which 
indicates the transfer of the high information from a source 
image into the fused image. The SIFS gives the highest val-
ues of 62.7349 for standard deviation (STD), and 18.9252 
for spatial frequency (SF) with low computation time 
(0.4429 sec); it indicates detailed texture information pre-
sent in a fused image. NSST+PAPCNN based medical im-
age fusion method gives the highest values of 6.5927 for 
entropy (E), and 57.9767 for mean, which indicates the 
fused image has more information with good resolution. 
NSCT based fusion method gives highest value of 7.3979 
for average gradient, means fused image has more detailed 
information. 

5.2. T1-weighted MR - MRA Evaluation Group 

 The subjective type analysis is shown in Fig. (9). Fig. (9a 
& b) shows multi-modality images, which provide infor-
mation of soft lesions. Fig. (9c) shows the degraded fused 
image.  Fig. (9d-e) represents a detailed structured fused im-
age, which represents lesion location has clear visibility. Fig. 
(9f) represents more texture information. The detailed edges 
and enhanced fused image areas are shown in Fig. (9g). In 
objective type analysis of T1-weighted   MR -MRA fusion 
methods, the SIFS based medical image fusion method pro-
duced the highest values of 67.8497 for mean, 68.9038 for 
STD, and 4.9515 for MI with low computation time (0.5032 
sec), which indicates good contrast in a fused image. NSCT 
based fusion method gives the highest value of 10.1804 for 
AG, and 26.2009 for SF, it represents detailed texture infor-
mation present in a fused image. NSST+PAPCNN fusion 
method attains a higher value for EN, 6.6468, which repre-
sents a fused image is more informative. 

5.3. MRI-PET Evaluation Group 

 Table 7 shows the Glioma disease of MRI-PET medical 
image fusion based on various existing methods and quality 
metrics. The subjective type analysis of MRI-PET image 
fusion is shown in Fig. (10). Fig. (10a and b) shows the 
multi-modality images with soft tissue and functionality 
information. Fig. (10c) shows the degraded fused image, 
which is not suitable for diagnosis. Low contrast fused im-
age is shown in Fig. (10d). The detailed complementary 
information present in a fused image is shown in Fig. (10e). 
Fig. (10f) images show the enhanced fused image, which is 

used to identify the tumour region efficiently with better 
diagnosis. Lastly, a low enhanced fused image is observed 
in Fig. (10g). 
 In objective type analysis of MRI-PET medical image 
fusion methods, the SIFS based medical image fusion meth-
od produced the highest values of 29.9189 for mean, and 
58.7795 for STD with low computation time (0.4612 sec), 
which indicates a well enhanced fused image. NSCT based 
fusion method gives the highest value of 6.9015 for AG, and 
28.317 for SF, which indicates detailed edge information is 
present in a fused image. NSST+PAPCNN fusion method 
attains higher values of 2.9734 for EN, and 3.7551 for MI; it 
represents more information is transferred from source im-
ages. 

5.4. MRI-Spect Evaluation Group 

 The subjective type analysis of MRI-SPECT image fu-
sion is shown in Fig. (11). Fig. (11a and b) shows multi-
modality images, that provide soft tissue and blood flow 
information. Fig. (11c) shows the degraded fused image. 
The more complementary information present in a fused 
image is shown in Fig. (11d). Fig. (11e) represents quality 
fused images with a clear structure. Fig. (11f) represents 
better edge information, and a better visualized fused image. 
Lastly, detailed edge and structure information is present in 
the fused image, as shown in Fig. (11g). 
 In objective type analysis of MRI-SPECT medical image 
fusion methods, the NSCT based fusion method attains a 
higher value for SF, 21.6799, which represents good texture 
information. SIFS based fusion method gives the highest 
values of 47.8104 for Mean, 62.4093 for STD, 5.0656 for 
EN, and 5.1860 for MI with low comutation  time (0.4688 
sec), which indicates more detailed textural information is 
present in a fused image. NSST+PAPCNN based fusion 
method produced the highest value of 7.8165 AG, which 
indicates the fused image is well structured.    

CONCLUSION 

 The Multimodal Medical Image Fusion (MMIF) plays a 
tremendous role in the present bio-medical research. The 
purpose of MMIF is to enhance the image quality in all as-
pects without artifacts and color distortions. In this paper, 
we present a detailed review of multi-modal medical imag-
es, fusion methods, image fusion rules, quality evaluation 
metrics, and finally, a comparison of all existing techniques, 
which will lead to future research.  
 Many of the researchers proposed different fusion meth-
ods, which are the modified version of existing ones, and 

 
Fig. (8). Experimental results for MRI-CT images. (a) MRI image, (b) CT image, (c) IHS & PCA, (d) NSCT, (e) IFS, (f) SIFS, (g) 
NSST+PAPCNN. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Table 7. Comparison of various existing methods with different datasets.  

Datasets Fusion Techniques Mean STD AG SF EN MI Running time 
(Sec) 

MRI-CT 

IHS & PCA 28.1525 29.7206 3.9726 12.5567 4.2321 5.3126 1.25 

NSCT 55.7727 60.0306 7.3979 18.6704 6.5463 5.3827 10.81 

IFS 56.2292 60.8907 6.9227 17.6850 6.2152 5.8989 0.6712 

SIFS 57.7266 62.7349 7.2502 18.9252 6.2628 5.8886 0.4429 

NSST+PAPCNN 57.9767 61.5506 6.9023 17.2323 6.5927 5.3858 25.81 

T1-weighted 
MR & MRA 

IHS & PCA 11.3707 11.3495 4.6097 14.0983 4.2577 4.8555 1.72 

NSCT 66.3808 67.2207 10.1804 26.2009 6.3323 4.7910 11.64 

IFS 59.33 62.4487 9.3827 25.3612 4.7583 4.8549 0.6435 

SIFS 67.8497 68.9038 9.8371 24.2625 4.9037 4.9515 0.5032 

NSST+PAPCNN 66.6708 68.2066 9.0896 25.0663 6.6468 3.8854 27.85 

MRI-PET 

IHS & PCA 15.8455 15.9531 4.0350 140582 2.9667 3.3096 1.71 

NSCT 17.8876 41.9828 6.9015 28.3187 2.5733 3.5712 18.99 

IFS 27.9612 55.7105 5.2412 23.2345 2.9183 3.7193 0.5912 

SIFS 29.9189 58.7795 5.6967 25.2336 2.9482 3.7081 0.4612 

NSST+PAPCNN 17.9179 41.9672 6.8974 28.3178 2.9734 3.7551 25.42 

MRI-SPECT 

IHS & PCA 14.2144 17.5271  3.2092 14.0588 2.4556 3.9638 1.67 

NSCT 42.0009 58.6003 7.8145 21.6799 4.5954 4.9348 18.25 

IFS 40.2415 56.1923 6.5123 18.9745 4.6669 5.1288 0.6754 

SIFS 47.8104 62.4093 4.9652 14.7244 5.0656 5.1860 0.4688 

NSST+PAPCNN 42.0021 58.6007 7.8165 21.5805 4.5954 4.9211 24.22 

 

 
Fig. (9).  Experimental results for T1- weighted MRI-MRA images. (a) T1-weighted MR image, (b) MRA image, (c)IHS & PCA, (d) 
NSCT, (e) IFS, (f) SIFS, (g) NSST+PAPCNN. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 

 
Fig. (10). Experimental results for T1- weighted MRI-MRA images. (a) T1-weighted MR image, (b) MRA image, (c) IHS & PCA, (d) 
NSCT, (e) IFS, (f) SIFS, (g) NSST+PAPCNN. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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Fig. (11). Experimental results for T1- weighted MRI-MRA images. (a) T1-weighted MR image, (b) MRA image, (c) IHS & PCA, (d) 
NSCT, (e) IFS, (f) SIFS, (g) NSST+PAPCNN. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 

 
they are not sufficient enough to support the medical diag-
nosis completely. The multi-resolution algorithms are more 
helpful for medical image fusion to extract the features at 
various scales and directions to satisfy the shift-invariant 
property. The scale and orientations are important criteria in 
medical image fusion. Many algorithms are proposed relat-
ed to scales and orientations. Sparse representation (SR) and 
saliency-based fusion methods provide better visualization 
and edge enhancement, respectively. Deep learning is a new 
era in the medical field for better diagnosis, but it faces var-
ious difficulties such as the complexity of the deep learning 
network framework, lack of training datasets, and high ex-
pense. Finally, fuzzy set based fusion methods provide en-
hanced fused images without uncertainties and vagueness. It 
is difficult to conclude that a single fusion method is good in 
all aspects. Each methodology has its advantages and draw-
backs, which are emphasized in this review. 
 The image fusion rules are significantly used to extract 
the feature to improve the quality of an image. The standard 
image quality evaluation metrics are well discussed in this 
paper to decide the quality of fusion performance. So the 
image fusion methods, fusion rules, and performance quality 
metrics play an important role in enhancing the quality of 
the image. However, the challenging tasks in medical imag-
ing synthesis are noise, complexity, high cost, lack of suffi-
cient features, etc. In the future, more sophisticated algo-
rithms must be developed to overcome the above-mentioned 
problems. Those modalities are helpful to the physician for 
better perception and identification of the diseases. 
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