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Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at 
the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and 
accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and 
sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads 
for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, 
the challenges and future development prospects of μPads for POCT were discussed.
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1 Introduction

Point-of-care testing (POCT) is a low-cost, user-friendly, 
and portable technology that uses fast and convenient ana-
lytical instruments to obtain test results immediately at the 
sampling point [1]. By using low-volume of samples, POCT 
can be realized in hospitals, clinics, doctor's offices or homes 
[2]. Compared to central laboratory testing [3], POCT sys-
tem has advantages of immediate turn-around time, easy-to-
use format, high sensitivity and accuracy.

Nowadays, the technological challenge in the field of 
microfluidic paper-based analytical devices (μPads) is the 
main support for POCT systems. μPads are also known as 
lab-on-a-chip (LOC), which are proposed by Whitesides’ 
group in 2007 [4]. It miniaturizes the principal use of 
chemistry, biology and other laboratories to a small space 
of paper. It is an analytical platform that integrates the func-
tion of injection [5], reaction [6], separation [7] and detec-
tion [8] into paper by building hydrophilic and hydrophobic 
channels. The sample and reaction solution are driven by 
the capillary force of paper. μPads have the advantage of 

low production cost, simple method, easy processing, good 
biocompatibility, and small reagent consumption. Then the 
development of μPads has shown exponential growth in 
recent years [9].

μPads have been prepared by a variety of methods, such 
as photoetching[10, 11], inkjet printing [12], wax printing 
[13], laser processing [14], plasma processing [15], cutting 
[16], one-step plotting technology [17], flexographic print-
ing [18], and stereoscopic printing [19]. We all know that 
hydroxyl groups on the paper are simple to be modified [20, 
21]. So hydrophilic and hydrophobic regions can be easily 
constructed on the paper surface. Then the paper perme-
ability and surface reaction activity are changed to create 
reaction channels for the migration, storage and reaction of 
reagents [22]. The μPads prepared by these advanced fab-
rication methods greatly expand the potential applications 
because paper can be used as the fine substrate for POCT 
devices. High-throughput determination of the content of 
multiple components in samples can be realized on μPads. 
Also, μPads provide a good platform for sample pretreat-
ment, reagent transportation, mixing, separation and detec-
tion and other analytical functions [23–25].

As fast response rate and high sensitivity are the main 
demands for POCT, the detection system is vital for signal 
acquisition. So far, various detection technologies such as 
electrochemistry (EC), electrochemiluminescence (ECL), 
colorimetry, fluorescence (FL), surface-enhanced Raman 
scattering (SERS) and chemiluminescence (CL) have been 
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assembled on μPads [26]. Honestly, each detection method 
has its advantages and drawbacks. Some optical detection 
methods use light sources as delivery or collection media to 
obtain signals. Because of acceptable sensitivity and response 
speed, these optical methods have become potential candidate 
technologies for μPads [27]. While the size of optical equip-
ments such as lasers, spectrophotometers, charge-coupled 
devices (CCDs) and photomultiplier tubes (PMTs) make it 
difficult to integrate on μPads. Then the application of optical 
methods for POCT is relatively limited [28]. Compared with 
optical detection, electrochemical methods can get rid of the 
dependence on optical-based techniques. Through selection 
of electrode material and electrochemical technique, electro-
chemical detection was realized with fast response and high 
sensitivity [29]. Nowadays, to enrich these detection meth-
ods and achieve sensitive and accurate signal out-put, various 
micro- and nano-materials with different signal transduction 
mechanisms, such as metal nanoparticles [30, 31], metal oxide 
[32, 33], graphene or graphene oxide [34, 35], quantum dots 
[36, 37], hybrid materials [38, 39] and metal–organic frame-
works [40–42] have brought new breakthroughs in the design 
of new paper-based sensors. In addition, signal readers tend to 
be miniaturized. Optical and electric signals can be read-out 
by portable devices like smartphone and electric watch [43, 
44]. Therefore, combined with multiple detection technologies 
based on diverse sensing materials and portable signal readers, 
the POCT was realized on μPads and applied in the fields of 
disease analysis [45–48] (biological fluids like whole blood, 
serum, sweat, tears, urine, saliva, cells, viruses), environmental 
monitoring [49, 50] (water, gas, soil) and food control [51].

Therefore, considering that detection methods are crucial 
for paper-based POCT devices, it is essential to review and 
compare different existing detection methods on μPads. This 
article mainly introduces the development in the integration 
of detection methods on μPads in the past 5 years. Vari-
ous detection methods including EC, ECL, colorimetry, FL, 
SERS and CL are applied on disease analysis, environmental 
monitoring and food control field. Moreover, the advantages 
and disadvantages of these optical detection methods are 
compared. Finally, the challenges and future development 
prospects of paper-based analytical devices for POCT are 
discussed. Although the portability of μPads makes them 
widely used, there is still a great room for improvement in 
stability and detection sensitivity.

2  Electrochemical Detection Methods

2.1  Electrochemical Method

Electrochemical (EC) method has been widely used to con-
vert a biological or chemical event to an electronic signal. 
This detection method has been reported to integrate on the 

μPads by Henry’s group [29]. EC combined with μPads is 
known as electrochemical paper-based analytical devices 
(ePads). EPads are always sensitive and have quick response, 
which have been a main support at the POCT. Recent exam-
ples of applications are reviewed here to demonstrate the 
potential of ePads in environmental monitoring [49] and 
biomedical analysis [52–78] as well as food safety control 
[79–81] field.

2.1.1  Environmental Monitoring

Metal ions have been measured by ePads in Silva-Neto’s 
report [49]. A "plug-and-play" (PnP) assembly for multi-
plexed detection of Fe, Ni, Cu, Zn, Cd and Pb in river water 
samples with screen-printed ePad was described. The device 
had good selectivity and aspirated sample volume can be 
managed well. The detection values for these metal ions 
were in the range of 0.9–10.5 μg/L.

2.1.2  Biochemical Assays

As reported by Liang [52], a wearable electrochemical sen-
sor using three-dimensional paper-based microfluidic elec-
trochemical device (3D-PMED) for real-time monitoring of 
potassium ion  (K+) in sweat was fabricated. The 3D-PMED 
integrated a screen-printed  K+-selective sensor with limit 
of detection (LOD) of 132 mmol/L. Also, per decade of 
 K+ for the electrode response potential was 61.79 mV. In 
2017, a parylene C-coated newspaper (PC-paper) was devel-
oped by patterning of metal layers. These chemically stable 
electrochemical platforms were applied to the detection of 
electrolyte cations, like  H+ and  K+ [53]. EC method was 
used for investigating the fluid dynamics. Such as a 2-layer 
μPad was used for increasing the flow rate through precise 
control of the channel height. A ferrocene complex was ana-
lyzed and anodic stripping detection of cadmium with five-
fold enhancement signal was performed on this ePad [54].

Based on electrochemical methods, small molecules 
can also be detected on μPads. For example, as reported 
by Ming’s work [55], 17β-estradiol (E2) was detected by a 
folding aptasensor platform with the label-free electrochemi-
cal detection method. Amine-functionalized single-walled 
carbon nanotube/ new methylene blue/ AuNPs were adopted 
for immobilizing the aptamer. The calibration curve showed 
a linear range from 10 pg/mL to 500 ng/mL and a LOD of 
5 pg/mL. In 2018, Sales and his team have fabricated an 
ePad by applying the homemade conductive inks for struc-
turing the electrodes. Square wave voltammetry (SWV) 
method was used to detect 3-nitrotyrosine (3-NT). As for the 
sensitivity of the sensor, a low LOD of 49.2 nmol/L of 3-NT 
can be obtained [56]. In Wang’s work, they reported a paper-
supported photoelectrochemical sensing platform based on 
surface plasmon resonance enhancement for real-time  H2S 
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determination.  H2S can induce surface plasmon resonance 
(SPR) enhancement between Ag NPs and CdS QDs [57].

There are also some works about glucose detection 
[58–62]. Chaiyo’s group have introduced an ePad for the 
non-enzymatic detection of glucose in honey, white wine 
and human serum. The screen-printed carbon electrode was 
modified by cobalt phthalocyanine, grapheme and an ionic 
liquid (CoPc/G/IL/SPCE). The modified electrode on ePads 
had excellent electrocatalytic activity towards glucose in a 
wide calibration curve [58]. Glucose can also be detected 
by a wearable platinum sensor in Sarwar team’s work [59]. 
As reported by Cinti’s group [60], the filter paper was used 
as a container for reactions. Prussian Blue Nanoparticles 
(PBNPs) were produced on filter paper and then a reagent-
less electrochemical point-of-care device using glucose 
oxidase for glucose detection was developed with the con-
centration ranging up to 25 mmol/L (450 mg/dL). Cellulose 
nanofibers (CNs) were performed on ePad for glucose meas-
urement in blood samples [61], as shown in Fig. 1a. First, 
the electrospinning method was used for preparing cellu-
lose acetate (CA) nanofibers. Then, in alkaline solution, the 
paper layer was changed to cellulose by deacetylation. The 

paper was treated with trimethyl chitosan (TMC) to obtain 
a smooth and continuous CNs layer. A thick layer of Au 
was sputtered on the TMC/CNs substrate and then reduced 
graphene oxide (rGO) was used to modify the working elec-
trode. At last, the immobilization of glucose oxidase was 
performed on the CNs layer. The ePad has a linear range of 
3.3–27.7 mmol/L for glucose with a LOD of 0.1 mmol/L. 
By converting electrochemical signals into optical readouts, 
Xu’s group showed a closed bipolar electrode (CBE)-based 
two-cell electrochromic device for detection of lactate, glu-
cose and uric acid [62]. A specific oxidase was coupled to 
the analytical cell color change, which is related to the con-
centration of metabolites.

In Li’s review [63], they introduced the types of neu-
rotransmitters and biological sample sources which were 
used for neurotransmitter detection and then reviewed the 
traditional fabrication technologies and modification meth-
ods for paper-based electrochemical POCT devices. In Lu’s 
work [64], ePad was used for human immunodeficiency 
virus (HIV) DNA detection with methylene blue (MB) as a 
redox indicator. A paper-based electrode was made by using 
nickel metal–organic framework (Ni-MOF) composite/Au 

Fig. 1  Some examples for EC detection. a Schematics of glucose-
ePAD with different fabrication method for glucose detection [61]; 
b Schematic illustration of screen printed carbon electrodes [70];  

c Fabrication and modification process of the multi-parameter ePAD 
for the detection of CEA and NSE [73]; d Illustration of the whole 
procedures and sensing principle for OTA determination [79]
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nanoparticles/carbon nanotubes/polyvinyl alcohol (Ni–Au 
composite/CNT/PVA). Ni–Au composite/CNT/PVA can 
achieve interactions between MOF and single-stranded 
DNA. Then a higher loading of the probe DNA was made. 
Peak current varied with the concentration of HIV DNA. The 
device sensed well in a linear range of 10 nmol/L–1 μmol/L 
and a low detection limit of 0.13 nmol/L. Narang et al. fab-
ricated an ePad combined with Zn–Ag nanoblooms to detect 
herpes [65]. In infected patient samples, the ePad showed 
optimum current response in two linear ranges of 113–103 
and 3 ×  105–106 copies/mL with LOD of 97 copies/mL. In 
Cinti’s work [66], printed electrochemical platforms were 
performed for ssDNA and dsDNA detection. The methylene 
blue (MB)-tagged TFO probes were coated on the working 
electrode. Then, TFO probes were fabricated on ePad and 
then dsDNA sequence can be detected in serum samples 
with the LOD of 7 nmol/L.

In recent years, immunoassay has been used for the detec-
tion of antigens such as biomarkers. For example, in 2019, 
Qi’s [67] team synthesized in-situ molecularly imprinted 
polymers (MIPs) on movable valve microfluidic paper-based 
electrochemical device (Bio-MIP-ePADs) for clinical detec-
tion of carcinoembryonic antigen (CEA) based on the strat-
egy of antibody-free biomarker analysis with the detection 
range of 1.0–500.0 ng/mL, and the detection limit could be 
achieved at 0.32 ng/mL. Kaushik’s group [68] proposed an 
electrochemical immunosensing platform for Ebola virus 
(EBOV) detection at pmol/L concentration within 40 min. 
It was a cost-effective, rapid, sensitive and selective sensor 
to detect Ebola virus disease (EVD) at point-of-care (POC). 
Cao’s group [69] developed a sensitive immune method for 
human chorionic gonadotropin (HCG) detection on paper-
based microfluidic device. Alkaline phosphatase com-
bined secondary antibody (ALP-IgG) with functionalized 
gold nanoparticles was used as the signal antibody label. 
The hydrophilic test zones of the aldehyde-functionalized 
screen-printed electrodes (SPEs) were biofunctionalized 
with capture antibodies (Ab1). And the LOD of human 
chorionic gonadotropin (HCG) was 0.36 mIU/mL. Honi-
kel’s group [70] provided a paper-based sensing platform 
by immobilizing different antibodies (antilactoferrin (Lfn) 
or anti-immunoglobulin E (IgE)) onto screen-printed carbon 
electrodes. The LODs were 0.05 mg/mL and 40 ng/mL for 
Lfn and IgE, respectively (Fig. 1b). Li’s team [71] devel-
oped a microfluidic paper-based biosensor integrated with 
zinc oxide nanowires (ZnO NWs) for rabbit immunoglobu-
lin G (IgG) and the immunodeficiency virus p24 antigen 
detection. The whole procedure just took less than 25 min. 
The ePad was performed for detecting rabbit immunoglobu-
lin G (IgG) in phosphate-buffered saline with the LOD of 
60 fg/mL and the immunodeficiency virus p24 antigen in 
human serum with the LOD of 300 fg/mL. Wang’s group 
[72] developed a label-free paper-based electrochemical 

immunosensor by using screen-printed working electrode 
(SPWE) to detect carcinoembryonic antigen (CEA). Amino 
functional grapheme  (NH2-G)/thionine (Thi)/gold nanopar-
ticles (AuNPs) nanocomposites were synthesized to raise the 
detection sensitivity. In 2019, Wang’s team [73] fabricated 
the paper-based device by wax printing and screen-printing 
method. The device enabled the functions of sample filtra-
tion and auto injection. Amino functional graphene (NG)-
Thionin (THI)- gold nanoparticles (AuNPs) and Prussian 
blue (PB)- poly (3,4- ethylenedioxythiophene) (PEDOT)- 
AuNPs nanocomposites were synthesized to modify the 
working electrodes not only for promoting the electron 
transfer rate, but also for immobilization of the CEA and 
NSE aptamers. A multi-parameter aptasensor on ePad for 
simultaneous detection of CEA and neuron-specific eno-
lase (NSE) in a clinical sample was established. The ePad 
exhibited good linearity in ranges of 0.01–500 ng/mL for 
CEA and 0.05–500 ng/mL for NSE, respectively (Fig. 1c). 
Micropipette-tip immunoelectroanalytical platform coupled 
with staple-based paper device was established. Anti-tissue 
transglutaminase was detected with immunoassays per-
forming in the polypropylene micropipette tips [74]. The 
platform was very promising for decentralized analysis. 
Besides, Zheng’s group [75] fabricated a porous structure 
of AuNP-modified paper working electrode (Au-PWE) as a 
sensor substrate with a feature of all-round conductivity and 
plenty of active sites favoring biological ligand attachment, 
which was used to detect CEA and prostate-specific antigen 
(PSA) in enzyme-free condition. Wei’s group [76] fabricated 
gold nanoparticles (AuNPs)/reduced graphene oxide (rGO)/
thionine (THI) nano composites as working electrodes for 
sensitive detection of PSA. THI was used as the electro-
chemical mediator to transduce the biological recognition 
between DNA aptamer and PSA. The linear range for PSA 
was 0.05–200 ng/mL with the LOD of 10 pg/mL.

Additionally, severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) became a global pandemic outbreak 
in 2019. Yakoh’s group developed a label-free paper-based 
electrochemical immunosensor for immunoglobulin detec-
tion against SARS-CoV-2 without the specific requirement 
of an antibody [77]. The principle was that the presence of 
SARS-CoV-2 antibodies would interrupt the redox conver-
sion of the redox indicator. Then the signal decreased. This 
sensor was proven to be effective in real clinical sera from 
patients. West Nile virus can be measured with a LOD of 
10.2 particles in 50 μL of cell culture media by Channon’s 
group [78] on an ePad with Au electrodes.

2.1.3  Food Safety Control

In Zhang’s work [79], Ochratoxin A (OTA) was used as the 
model for an ePad immunoassay. Functionalized  MoS2-Au@
Pt (Ch-MoS2-Au@Pt) was produced to immobilize label 
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aptamer (apta2) for signal amplification. The Ch-MoS2-Au@
Pt-apta2 had the function of specific biorecognition and can 
be the catalyst for  H2O2 reduction reaction. Then EC signal 
can be produced on ePad. As hydroxyl radicals can be pro-
duced in the reaction and induce TMB to change color, a 
colorimetric method was also established for OTA detection. 
So the dual-mode detection for OTA was obtained in the 
linear ranges of 0.1–200 ng/mL and 200- 1 ×  10–4 ng/mL for 
visual and EC detection, respectively (Fig. 1d). DNA purifi-
cation testing was performed on a micro ePad for foodborne 
pathogens detection. The whole procedure can be performed 
in half an hour and Escherichia was successfully detected 
[80]. Writing fabrication method on ePad was reported by 
Li’s group [81]. The writing can be performed for the micro-
fluidic channels and electrodes by two commercial pens. The 
hydrophobic part was written by a wax pen and electrodes 
were produced by a conductive-ink pen. The writing ePad 
was used to detect Salmonella typhimurium DNA by dual 
mode methods (colometry and EC), LODs of 1 nmol/L and 
1 mmol/L, respectively.

2.2  Eelectrochemiluminescence (ECL)

In order to maintain the advantages of paper devices, such as 
easy qualification and development, suitable detection tech-
niques are required [82]. ECL is one of the most versatile 
analytical methods, due to its high sensitivity and signal-to-
noise ratio. As examples, recent works have been performed 
on paper-based ECL devices to detect miRNA. Zhou et al. 
presented a portable ECL chip driven by CRISPR/Cas13a, 
which could be activated by target miRNA. Then, it trig-
gered the subsequent exponential amplification with LOD as 
low as 1 ×  10–15 mol/L of miRNA-17 [83]. Tumor cells can 
cause different degrees of harm to the human body. There-
fore, the rapid detection of tumor cells using paper-based 
devices is important for clinical diagnosis. In Ge’s work, 
AuPd nanoparticles (NPs) were used as a carrier and cata-
lyst for luminol-H2O2 system. With the releasing of  H2O2 
from target cells, MCF-7 can be detected in the range of 
1.5 ×  102–2.0 ×  107 cells/mL and LOD of 40 cells/mL [84] 
(Fig. 2a). Similarly, Yang’s work used semicarbazide and 
nano-silver as dual enhancers, and multi-branched double-
stranded DNA nanowires (MBdsDNA) as carriers to detect 
tumor cells MCF-7, CCRF-CEM, HeLa, and K562 [85]. 
MCF-7’s detection range and LOD were similar to that of 
Ge’s work. Besides, paper-based ECL devices can be used 
for analysis of metal ions. As reported by Huang’s work, 
due to  Ni2+ and  Hg2+ have quenching effects on ABEI’s 
ECL emission, they first made an ECL sensor with repeated 
automatic cleaning of the working electrode to detect heavy 
metals [86] (Fig. 2b). The detection of cancer biomarkers 
can make judgments on course of disease, the existence and 
prognosis of the tumor cells. Sun has developed a rotating 

μPad for multi-step ECL immunoassay of CEA and Pros-
tate specific antigen (PSA) with the advantages of reusable 
rotary valve and short response time [87]. In addition, based 
on the DNA Walker's strand displacement reaction and the 
catalysis of DNA-Pt/CuTNFs [88], an enhanced luminol 
ECL signal was obtained to detect streptavidin with a low 
detection limit of 33.4 fmol/L (Fig. 2c). A diode was cou-
pled on an ePad, which can dramatically enhance the signal 
intensity in Qi’s work [89]. By using gold electrode array 
and an electromagnetic receiver coil, the ECL for detection 
of  H2O2 can be on a par with photomultiplier tube (PMT)-
based results. The high sensitivity with the linear range of 
10 nmol/L to 1 mmol/L was obtained. Moreover, paper-
based ECL devices could be used for analysis of organic 
and inorganic compounds and other substances [90–103] 
involving various scientific fields such as environment moni-
toring, biochemical assay, food safety, and so on (as shown 
in Table 1). Then the paper-based microfluidic system [104] 
has great application potentials. 

However, the above electrochemical method needs elec-
trode couples on µPad. Electrode fabrication is a crucial step 
to fabricate. The power should be added on the device. Some 
electrodes which were used on µPad still cannot have the 
performance in comparison to conventional metallic elec-
trodes. Some other optical detection methods are shown 
below for µPad.

3  Optical Detection Methods

3.1  Colorimetric Detection

μPads with simple user interpretation and instruments are 
desired for POCT. Colorimetric detection is the primary 
technique applied in μPads, because color intensity can 
be realized easily by an ultraviolet–visible (UV–vis) spec-
trophotometer. Until now, it is widely applied in analysis 
of inorganic ions [105–114], biomedicals and proteins 
[115–122], nucleic acid and drugs [123–136], etc.

3.1.1  Environmental Monitoring

Colorimetric detection gets great potential applications 
in environmental monitoring. Generally, direct colori-
metric detection can be measured by comparing the color 
intensity of the reaction spots with the standard colors 
[137]. For example,  Cu2+ reacted with 3-(5-hydroxy-4-
carboxyphenylimino)-5-fluoroindol-2(H)one (HCFI) rea-
gent to obtain a colored complex. Then a miniaturized 
spots patterned commercial book-paper was developed for 
 Cu2+ detection as low as 1 ×  10−3 μg/mL [105]. In 2019, 
a silver triangular nanoplate (AgTNP)-modified paper 
strip was selectively used for detection of iodine. The 
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interaction between AgTNPs and iodine [138], changed 
the color from blue to white and the LOD for iodine was 
7 μg/L.

Besides, colorimetric measurement based on distance 
is a distinctively visual quantitative method. The colored 
length on μPad has the relation to the concentration of 
targets [139, 140]. For instance, a distance-based method 
[107] for  Hg2+ testing was developed. A precipitated tetra-
methylbenzidine (TMB) was immobilized on paper chip. 
When DNAzymes reacted with  Hg2+, the G-quadruplex-
hemin DNAzymes was formed and a color band was gen-
erated (Fig. 3a). A trace concentration of 0.23 nmol/L for 
 Hg2+ was detected.

3.1.2  Biochemical Analysis

As for biomedical analysis, a visual colorimetric μPads 
[115] was developed by the in situ synthesis of a hybrid 
functional material, GOx@Mn3(PO4)2. The content of 
glucose in biological samples can be detected with LOD 
of 0.01 mmol/L (Fig. 3b). Proteins, like enzymes and 
antigens, were also detected by μPADs. For example, 
Gong’s team [116] developed a microfluidic platform 
that collected human serum by a pulling-force spinning 
top (PFST) and paper-based microfluidic enzyme-linked 
immunosorbent assay (ELISA) for quantity of IgA/IgM/
IgG in an instrument-free way. It can easily isolate the 

Fig. 2  Some examples for ECL detection. a Paper-based ECL device for MCF-7 detection [84]; b Schematic illustration for paper-based ECL 
device for  Ni2+ and  Hg2+ detection [86]; c Principle for paper-based ECL device of the analyte-triggered DNA walker [88]
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serum without any clinical apparatus, and a portable smart 
phone made it easy to record the intensity signal. More-
over, in 2020, Li’s group[117] presented a microfluidic 
system that can centrifugate human whole blood and quan-
tify carcinoembryonic antigen and alpha fetoprotein by 
ELISA method with LODs of 360 pg/mL and 280 pg/mL 
for CEA and AFP, respectively. Chandra [120] detected 
alkaline phosphatase (ALP) using colorimetric method on 
µPad by antibody immobilization on paper surface. The 
LOD for the ALP detection was 0.87 (± 0.07) U/mL. To 
wash the nonspecific-binding antibody from the paper sur-
face, a novel continuous washing strategy with ring-oven 
was established by our team [121]. To verify the wash-
ing results, HRP-catalyzed 3,3′,5,5′-tetramethylbenzidine 

(TMB)-H2O2 colorimetric system was used for CEA 
detection with the lower LOD of 0.03 ng/mL (Fig. 3c). 
Moreover, the detection of nucleic acids can also be car-
ried out on paper with super low LOD. Shu’s group [123] 
has developed a micro-patterned paper device (μPPD)-
based colorimetric strategy for double-stranded DNA 
(dsDNA) detection by using polydiacetylene (PDA) 
vesicles. The quantitative analysis of the target can be 
down to 10 nmol/L. By using dye-based reaction, Gos-
wami [124] reported a colorimetric method for pan 
malaria and P. falciparum species detection with LODs of 
61.50 ± 6.43 pmol/L for PLDH and 63.97 ± 7.24 pmol/L 
for Pf GDH, respectively. In 2019, Chen’s team [125] 
has developed a rapid and sensitive colorimetric sensing 

Table 1  Summary of the corresponding ECL applications on μPads in the fields of the environment, food, biochemistry in past 5 years

Materials Target molecule Samples Advantages LOD Refs.

CdTe QDs-H2, Au@g-
C3N4, NSs-DNA1 and 
carboxylated  Fe3O4 
magnetic nanoparticles

MiRNA-155 and miRNA-
126

– Favorable linear response 
and excellent sensitivity

5.7 fmol/L and  
4.2 fmol/L

[90]

DNA (S1)-AuPd NPs miRNA-155 – Acceptable specificity 
and favorable stability

0.67 pmol/L [91]

GQDs load surface vil-
lous Au nanocages

CA153 MCF-7 cell Low-cost and fast 0.0014 U/mL [92]

Au@Pd nanoparticles and 
Pt-Ni alloy particles

MCF-7 cell MCF-7 cancer cells In-situ screening of 
anticancer drugs and 
monitoring the number 
of apoptotic cancer cells

300 cells/mL [93]

Three separated arrays of 
reservoirs

HL-60 cancer cells HL-60 cancer cells Distinguish the tumor 
cells from normal cells

80 cells/mL [94]

A bipolar electrode array MCF-7 cell MCF-7 cell Simple and suitable for 
high-throughput detec-
tion

52 cells/mL [95]

HRP functionalized Au 
nanocubes

Pb2 + Lake water Portable, low-cost and 
high efficiency

0.52 nmol/L [96]

PFCeO2 NPs and 50 nm 
Ag NPs

Pb2 + Mineral water A wide linear range, good 
selectivity and repro-
ducibility

0.016 nmol/L [97]

Green-luminescent 
N-GQDs

α-fetoprotein Human serum A wide calibration range, 
good specificity

1.2 pg/mL [98]

Magnet-controlled self-
circulating chip

Circulating tumour 
nucleic acids (CTNAs) 
in serum clinical CTNA 
samples

Blood samples Highly efficient signal 
generation and desirable 
specificity

100 amol/L [99]

Graphite paper, Pt NPs, 
chitosan-multi-walled 
carbon nanotubes (CS-
MWCNTs) and Au@Pt 
nanostructures

H2O2
CEA

Human serum sample High selectivity, a wide 
linear range, good 
reproducibility

0.5 µmol/L (S/N = 3) of 
 H2O2

5.0 pg/mL for CEA

[100]

Silica nanochannel-
assisted electrode

Alkaloidal drugs Buffers and human serum Flexibility and univer-
sality

1.799 nmol/L and 
11.43 mol/L

[101]

Bipolar electrodes Glucose, lactate and 
cholinc

Human serum Simple, efficient and 
versatile

7.57 μmol/L, 8.25 μmol/L 
and 43.19 μmol/L

[102]

Bipolar electrodes pathogenic DNAs – High sensitivity and mul-
tiplexed analysis

0.1 fmol/L [103]
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platform for the detection of ketamine. By using competi-
tive ELISA test on a μPad, the results can be obtained 
within 6 min with the LOD of 0.03 ng/mL.

Furthermore, a distance-based paper analytical device 
(dPAD) [126] was fabricated to realize the loop-mediated 
isothermal amplification (LAMP) and semiquantitative 

Fig. 3  Some examples for colorimetric detection. a Distance assay 
for  Hg2+ by using G-quadruplex DNAzyme [107]; b Illustration of 
enzyme-inorganic hybrid nanomaterials synthesized on paper chips 

[115]; c Schematic diagram for ring-oven washing procedure [121]; 
d Illustration of distance detection for CEA biomarker [141];  
e Design of the CRISPR/Cas9-mediated TL- lateral flow strip. [127]
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determination of genomic DNA in E.  coli as low as 
4.14 ×  103 copies/μL. For immunoassay, CEA was semi-
qualitative detected by our team with distance-based color-
imetry [141]. With the precipitated TMB-H2O2 added on the 
paper-based device, LOD of 2 ng/mL can be obtained with 
a visible bar (Fig. 3d). In 2021, a non-immunoassay dPAD 
was introduced for the detection of cardiac troponin I (TnI) 
[142]. Without any external blood separation, TnI in whole 
blood samples was determined by using the dPAD with the 
LOD of 0.025 ng/mL.

In the field of biochemical analysis, the lateral flow assay 
(LFA) [143–147] is another common visual platform. Tar-
gets usually are induced by lateral capillary force and then 
react with the biorecognition molecules which are bonded 
on the porous membrane surface. The results can be read 
out via colored molecule-labeled biorecognition molecules. 
LFA is a potential candidate for POCT because of simple 
operation and one-step analysis procedure. For example, 
Hou’s team [146] has developed a LFA for the simultaneous 
detection of glucose and glycation ratios in human serum 
albumin. In 2021, an ultrasensitive LFA [147] was intro-
duced for the determination of the telomerase activity. With 
the deblocking of ssDNase activity of CRISPR/Cas12a by 
telomerase extends activators, the telomerase activity was 
detected as low as 57 cells/mL within 1 h. In 2020, as SARS-
CoV-2 was spread around the world, LFA [127, 148] was 
regarded as the most efficient way to realize POCT. A triple-
line lateral flow assay (TL-LFA) for the dual-gene detection 
of SARS-CoV-2 was established [127]. With the CRISPR/
Cas9 mediating, multiplex reverse transcription-recombi-
nase polymerase amplification (RT-RPA) was realized. The 
genes of envelope (E) and open reading frame lab (Orf1ab) 
were detected from the RNA standards in cell-cultured 
SARS-CoV-2 and SARS-CoV-2 viral. The LOD was 100 
RNA copies of 25 μL reaction (Fig. 3e). Furthermore, other 
DNA analysis using LFA were reported [128, 129]. Cui’s 
team has developed a tetra-primer amplification refractory 
mutation system (ARMS)-polymerase chain reaction (PCR)-
LFA for the detection of two alleles [125] within 75 min. 
Jauset-Rubio [129] has reported a LFA for the multi-channel 
detection of DNA in Francisella tularensis and Yersinia pes-
tis. Using isothermal recombinase polymerase amplification, 
the assay results were obtained within 1 h and the LOD was 
243 fg for Francisella tularensis and 4 fg for Yersinia pestis, 
respectively.

3.1.3  Food Safety Control

For food safety, colormetry method can measure the con-
tent of toxin [149–151] and drugs [152, 153]. A single-line-
based LFA (sLFA) strip [150] without the control line was 
explored for aflatoxin B1 determination. In this assay, an 
orthogonal emissive upconversion nanoparticle (UCNP) 

served as a signal substance and calibrator, which had emis-
sion at two wavelengths. Zhou’s group [152] has developed 
a LFA with up-converting phosphor method for the deter-
mination of morphine and methamphetamine with LOD of 
5 ng/mL for morphine and 10 ng/mL for methamphetamine.

3.2  Fluorescence (FL) Detection

Fluorescence (FL) is the emission after fluorophores or fluo-
rescent dyes excitated by an energy at certain wavelength. 
For μPads, FL has been a main optical method with high 
sensitivity and high selectivity [154].

3.2.1  Environmental Monitoring

In the field of environmental monitoring, FL was applied 
on detection of metal ions [155–162], anion [163–165], 
gas [155], and organic compounds [166–168]. Liu [155] 
has reported a FL probe on μPads with carbazole for the 
detection of  Cu2+ and gaseous  H2S. In 2019, a paper-based 
platform was established [157] using a hand-held UV lamp 
as an excitation resource. For  Cd2+ detection, the FL emis-
sion signal can be captured by a mobile phone. Exploiting 
thin-shell  CuInS2@ZnS QDs,  Cd2+ was measured even at 
a trace concentration of 105.86 nmol/L. Moreover, a μPads 
was demonstrated for  F− detection with the fluorescence 
resonance energy transfer (FRET) method [163]. The lin-
ear range for  F− was 0.05–0.55 nmol/L, with a LOD of 
9.07 pmol/L (Fig. 4a). In 2020 [166], taking advantage of 
the blue luminescence of graphene quantum dots (GQDs), o- 
and p-nitrophenols (ONP and PNP, respectively), two kinds 
of endocrine disruptors were determined selectively and sen-
sitively. The quantitative analysis of ONP and PNP showed 
linear ranges of 0.30–60.0 µg/mL and 0.20–40.0 µg/mL, 
respectively, with LODs of 0.07  µg/mL for ONP and 
0.03 µg/mL for PNP.

3.2.2  Biochemical Analysis

As FL molecules can be used as signal probes, FL has 
many applications in inbiochemical studies. For instance, 
μPads with different carbon and quantum dots [169] were 
reported. Tricolor FL probe was established with the addi-
tion of different concentrations of  Cu2+. For  Cu2+, the LOD 
was 1.3 nmol/L in human urine (Fig. 4b). Furthermore, a 
highly ratiometric fluorescent N, S co-doped carbon dots 
(N,S-CDs) probe towards  ClO− [170] detection had been 
applied to paper-based devices. The N,S-CDs probe showed 
excellent linearity in the range of 0.067–60 μmol/L with a 
LOD of 9.1 nmol/L.

In addition, μPads have been used for the rapid detec-
tion of chemical molecules (e.g. glucose, dipicolinate (PDA) 
and so on [171–175]. On the basic of an Eu (III)-EDTA 
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complexes functionalized poly(diacetylene acid) derived 
liposomes, a novel ratiometric FL detection system was 
established on a paper chip for the visual detection of PDA 
[171]. In 2020, Golmohammadi [175] has reported a cellu-
lose-based wearable patch for sweat biomarker detection. 
Glucose, lactate, pH, chloride, and volume can all be read 
out by a smartphone-based FL imaging module. A smart-
phone APP was also designed in that work.

Besides, μPads have measured various proteins (enzymes 
and antibodies) in whole blood, urine, saliva and sweat, as 
they are regarded as biomarkers of some diseases [176–181]. 
Lin’s group has described a paper-based immunoassay for 
the matrix metalloproteinase-7 (MMP7) detection, which 

was corresponding to renal cancer [177]. Based on sand-
wich-type immunoreaction, silver nanoparticles (AgNPs) 
were first labeled with secondary antibodies. After immu-
noassay, the signal antibody with silver nanoparticles was 
dissolved in nitric acid to produce  Ag+. CdTe quantum 
dot was firstly physically adsorped on the nitrocellulose 
membrane. Due to quenching effect  Ag+, the distances can 
produce on the paper-based chip under 365 nm shining. 
With the concentration of MMP7 increased, the quenching 
distance increased and the LOD was as low as 7.3 pg/mL 
(Fig. 4c). Besides, enzyme activity also can be detected by 
μPads [179–181]. A λ exonuclease-assisted paper-based FL 
assay [179] was described for facile testing of polynucleotide 

Fig. 4  Some examples for FL detection. a Fluorescence “off-to-on” 
mechanism on the GO paper for  F− detecting [163]; b Schematic 
illustration of the tricolor probe for  Cu2+ [169]; c Illustration of dis-
tance-dependent immunoassay on μPAD [177]; d Schematic illustra-

tion for FL detection of CEA on μPAD [182]; e Schematic illustra-
tion of portable test strips and wearable devices for the analysis of TC 
[199]; f Schematic illustrations of a single dual-emissive ratiometric 
probe for thiram by smartphone [203]
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kinase (PNK) activity by fluorescence intensity on paper sur-
faces, achieving sensitivity of PNK activity down to 0.0001 
U/mL. In addition, paper-based FL immunoassays were 
used commonly for the detection of antibody biomarker 
[182–185]. CdTe/CdSe QD and relevant enzyme were satu-
rated on paper. Also, DNA-gated mesoporous silica nano-
containers (MSNs) were combined. Then the FL detection 
of CEA was realized with a low LOD of 6.7 pg/mL [182] 
(Fig. 4d).

Furthermore, since nucleic acids are one of the most 
fundamental biological substances in all organisms [186], 
the accurate measurement becomes a commom concern for 
disease diagnosis. Lu [187] has introduced a paper-based 
sensor system for a nucleic acid amplification test with an 
internet platform. The paper-based sensor enabled genomic 
DNA’s identification for Escherichia coli and Campylobac-
ter jejuni, with the LOD of 2 ×  103 copies/μL. Other μPads 
for nucleic acid detection [188–192] have been summarized 
in Table 2. Another important application for μPads is to 
directly detect cells. In 2020, a fluorescence method was 
established on a dual-layer paper microfluidic chip for the 
detection of ROR1 + [193]. A smartphone-based FL micro-
scope and automated image processing were established to 
enumerate particles, with the LOD of 1 cell/μL.

3.2.3  Food Safety Control

Simple, rapid, and instrument-free quantitative detection is 
very vital for the effective food safety control [194]. Espe-
cially, inorganic content [195–197] in water and food is one 
of the concerns by modern citizens. For example, a μPad was 
designed for membraneless gas-separation and iodate deter-
mination by using the bovine serum albumin-stabilized gold 
nanoclusters (BSA-AuNCs) [196]. Based on the fact that 
gold core of BSA-AuNCs was etched and the red emission 
was quenched, the iodate was monitored by fluorometric 
detection with LOD of 0.005 mmol/L. In 2019, a ratiometric 
fluorescent nanoprobe, label-free carbon dots (CDs), with 
dual emission at 477 and 651 nm was used for the selec-
tive detection of  Pb2+ and pyrophosphate (PPi) with LODs 
as low as 0.055 mmol/L and 0.089 mmol/L, respectively 
[197]. Fu’s team [198] has introduced a μPad integrated with 
a portable fluorometric system for formaldehyde  (CH2O) 
detection in the linear range of 0.2–2.5 ppm.

Fluorescent paper sensors also have been applied for 
monitoring various chemicals like antibiotics [199–201] and 
pesticides [202–204]. μPads were designed for the detec-
tion of tetracycline (TC), relying on multi-color fluorescence 
change of a glove-based visual probe [199]. Combined with 
smartphone-based chromaticity analysis APP, the portable 
detection of TC was obtained with LOD of 9.5 nmol/L 
(Fig. 4e). Jiang’s group [203] has reported a dual-emis-
sive ratiometric paper strip consisting of an UV lamp and 

3D-printing technology for the smartphone-based analysis 
of pesticide in a “on–off-on” fluorescent mode with a LOD 
of 59 nmol/L (Fig. 4f).

3.3  Surface‑Enhanced Raman Scattering (SERS)

SERS sensors on paper have been a hot detection method in 
recent years. When the nanomaterials are modified on the 
paper surface, SERS can be increased by the nanomaterials. 
For example, the gold/silver nanoparticles (Au/AgNPs) drop 
on the paper. Then it will produce precipitation and gener-
ate hot spots to increase the sensitivity of detection. SERS-
based test samples can be divided into three categories.

3.3.1  Environmental Applications

The exploration of content of rhodamine (R6G) in rain 
water had been operated successfully by constructing a 3D 
SERS paper strip. R6G can be selectively detected with 
the minimum magnitude of 1 ×  10–11 mol/L by using silver 
mirror reaction [205]. Also, Au/AgNP-based paper sensor 
was used to explore rhodamine B (RhB) and crystal violet 
(CV) in deionized water and tap water [206–208]. Kim’s 
team fabricated the M13 bacteriophage-functionalized silver 
nanowires (AgNWs) SERS sensor for capturing pesticides, 
especially paraquat (PQ) [209]. Zhang’s group has devel-
oped the 3D Silver Dendrites for the determination of Neo-
nicotinoid with the LOD of 0.02811 ng/mL. The platform 
made great contributions for detecting various contaminants 
[210]. In 2021, Liu’s team prepared an MXene  (Ti3C2Tx) 
-Ag nanoparticles (NPs) hybrid SERS biosensor for detect-
ing adenine molecules in biological environment with the 
LOD of 1 ×  10−8 mol/L [211]. Wang’s group used super-
hydrophobic SERS substrates to detect nitenpyram in the 
field of agriculture with the LOD of 1 nmol/L [212]. Some 
applications in environment [213–216] are shown in Table 3.

3.3.2  Food Applications

In Poppi’s group, AuNP-based paper substrate was applied 
in SERS to detect crystal violet sample and to explore the 
amount of nicotine and uric acid. The respective LODs were 
20 μg/L for nicotine and 30 μg/L for uric acid [217]. In 
order to get a sensitive SERS signal, AgNPs/RGO, AgNF/
AgNP arrays, AgNP and AuNP based paper substrates were 
also used in the field of food applications [218–221]. Pes-
ticides were detected by paper-based SERS method [222]. 
Silver nanoparticles and graphene oxide were printed on the 
paper surface. Thiram, thiabendazole and methyl parathion 
were measured with low LOD. A two-dimensional  MoO3-x 
nanosheet ink was produced in Lan’s group to test crys-
tal violet and malachite green on the fish surface by office 
inkjet printer [223]. Rhodamine 6G and rhodamine B can 
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be detected with SERS in vegetables and contaminants in 
rain, pond, and tap water [224]. A sensitive SERS detec-
tion of R6G with a linear range of 1 ×  10−9–1 ×  10−5 mol/L 
and a detection limit of 1 ×  10−11 mol/L was also realized 
[225]. Xu’s team [226] used SERS signal intensity and 
chiral signal intensity to detect different concentrations 
of C. jejuni spiked in milk samples with a good linearity 
from 1 ×  102 to 1 ×  106 cfu/mL. Also, Zhang’s group has 
detected melamine in the sample of milk based on paper 
SERS with a LOD of 1 ppm and a good linear correlation 
(1–1000 ppm) [227]. Haddad’s group provided a simple 
and sensitive way for analysis of fentanyl in Heroin [228], 
and Li’s group has detected  SO2 in wine from 1 μmol/L 
to 2000 mmol/L with μPads SERS sensor [229] (Fig. 5a). 
Besides, it is very important to detect drug concentration. 
Ameku’s group [230] has designed a μPAD based SERS to 
identify caffeine, paracetamol, and levamisole adulterants 
simultaneously. In our daily life, it is important to detect 
some dyes’ concentration in food safety field. Gu’s group 
presented a novel seed-mediated growth method for mak-
ing a SERS device. The method can detect Methylene Blue 
with LOD down to 1 ×  10–9 mol/L. Also, the LOD was 
1 ×  10–8 mol/L for both Crystal Violet and Rhodamine 6G 
solution [231]. AgNF based paper-SERS [232] and pres-
sure paper spray mass spectrometry (PS-MS) were all used 
to detect ketoprofen with LODs of 0.023 and 0.076 mg/L 
respectively.  SiO2/Ag nanocomposite-based paper sub-
strate [233] was applied to detect acrylamide (AAm) with 
SERS (Fig. 5c). Dao’s group [234] has developed a new 
detection method for monitoring the pesticide chlorpyrifos 
with paper SERS. Lv’s group found that  MoS2@Au/Ag 
hybrid- based paper device exhibited a distinct advantage 
to separate and preconcentrate in biological and chemical 
detection [235] (Fig. 5b). Chen’s team has fabricated µPAD 
combined with SERS for exploring sulphite in wine, which 
showed a good linearity from 5 to 300 μg/mL [236]. Huang’s 
group explored a novel label-free 3D-SERS substrate with 
black phosphorus-Au filter paper, which can detect three 
types of target bacteria including Staphylococcus aureus, 
Listeria monocytogenes and Escherichia coli at the same 
time [237] (Fig. 5d). Paper-based lateral flow immunoas-
say (LFIA) based on  (Fe3O4/Au-PEI) nanoparticles tested 
bacteria in urine and milk samples with a good linearity 
from 1 ×  101 to 1 ×  107 cfu/mL in less than 60 min [238]. 
A paper-based SERS sensor with AgNPs can detect methyl 
parathion quickly in the sample of fruit [239], tartrazine in 
Children's snacks [240], crystal violet (CV) and the fungi-
cide thiram in food [241]. Wu’s team has separated and iden-
tified lycopene and β-carotene in food products successfully 
with paper SERS [242]. Cellulose nanofibers (CNF)/AuNP 
nanocomposite-based paper SERS sensor was used to detect 
thiram with the LOD of 52 ppb [243]. Also, SERS sensor 
showed a LOD of 1 ×  10–7 mol/Lfor methylene blue in the Ta
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sample of apples [244]. Ag@SiO2 core–shell nanoparticles 
[245] were used on filter paper to fabricate SERS chips. The 
chips were used for detecting the amount of thiram with the 
LOD of 1 ×  10–9 mol/L, which had great potential in pesti-
cide residues’ detection. Yang’s group has explored SERS 
chips with Ag/Au NPs to detect malachite green, methylene 
blue and crystal violet with LODs of 4.3 ×  10−9, 2.0 ×  10−8, 
and 8.1 ×  10−8 mol/L, respectively. [246]. Other applications 
in food [247–250] are shown in Table 3.

3.3.3  Biological Applications

SERS based paper has also been used in the biological appli-
cations. Paper substrate and its biosensing application such 
as picomolar SERS based paper was used to detect folic acid 
in picomolar scope for healthcare [251]. SERS paper-based 
lateral flow strip (PLFS) was good for assisting screening of 
traumatic brain injury (TBI) patients in a short time. It was 
used to detect neuron-specific enolase (NSE) with a LOD of 
0.86 ng/mL [252] (Fig. 5e). Qi’s group has reported that by 

using DNA-encoded Raman-active anisotropic nanoparti-
cles on paper, microRNA can be sensitively detected within 
15 min with the LOD of 1 pmol/L [253]. SERS can also 
be used for distinguishing Zika and dengue nonstructural 
protein 1(NS1) biomarkers with a high sensitivity [254]. 
Lorenzo Russo has adopted paper-based immunoassays by 
SERS with AuAg nanoshells for detecting the biomarker of 
resistance protein A (MxA) [255]. What’s more, a dipstick 
immunoassay was realized by using AuAg NSs conjugated 
antibody as a “nanotag”. For biomarker detection, SERS-
based µPAD can be used for quantitative detection of multi-
ple cardiac biomarkers simultaneously. Glycogen phosphory-
lase isoenzyme BB (GPBB), Troponin T (cTnT) and CK-MB 
for early diagnosis have been explored simultaneously [256]. 
SERS containing graphene-isolated-Au-nanocrystals was 
used to detect bilirubin [257]. Different sampling meth-
ods have also been realized in SERS. For example, Merve 
Eryılmaz has explored SERS-based lateral flow immunoas-
say (LFIA) test strips for Group A Streptococcus pyogenes 
(GAS) detection. By using of the swab sampling technique, 

Table 3  Summary of the corresponding SERS applications on µPad in the fields of the environment, food, biochemistry in 2021

Materials Operation method Target molecule LOD Samples Refs.

A mixture of silver nano-
particle (AgNP) and 
gold nanostar (AuNS)

Dropping the solution 
on cellulose nanofiber 
(CNF)

Ferbam 50 μg/kg Kale leaves [213]

Colloidal nanoparticles Spraying nanoparticles 
onto hydroxyethyl cellu-
lose (HEC)

Thiram 1 ×  10–7 mol/L Mud [214]

Silver nanodots on three-
dimensional cellulose 
fibers

A magnetic bead-based 
separation method

R6G (II), TAMRA 153.53 and 
230.37 pmol/L for R6G 
and TAMRA

Dyes [215]

Au@Ag core-shells A electrospun paper 
matrix

methamphetamine 7.2 ppt Wastewater [216]

Silver nanoparticles Immersing nanoparticles 
in melted wax vessel

2,4-dichlorophenoxy-
acetic acid

1.0 ×  10–4 mg/g Green tea [247]

Au@tannic acid (TNA) 
substrate

In-situ growth on paper Reductants – [248]

4-MBA-functionalized 
Au@ZIF-8 SERS paper

Plasma reduction method Putrescine and cadaverine 76.99 and 115.88 ppb Spoiled salmon, chicken, 
beef, and pork samples

[249]

Nanogold particles Dropping nanoparticles 
on plasma-printed 
substrate

Cocaine 1 ng/mL Cocaine [250]

Uniform gold nano-
spheres treated by 
chloride ion

Self-assembling nanopar-
ticles on paper

Fentanyl citrate 0.59 μg/mL and  
2.78 μg/ mL

Urine and serum [268]

Gold nano-pyramid arrays Dropping nanoparticles 
on paper

S-100β 5.0 pg/mL Blood plasma [269]

Gold nanostar@Raman 
reporter@silicasand-
wiched nanoparticles

Dropping nanoparticles 
on paper

Carcinoembryonic 
antigen

1.0 ng/mL Whole blood [270]

Gold nanoparticles (Au 
NPs)

Dropping nanoparticles Serum 10 ppm Blood [271]

Silver-nanowires Dropping nanoparticles 
on paper

DNA 3.12 pg/μL Various bacteria and 
viruses

[272]
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SERS-based rapid assay got the LOD of 0.2 CFU/mL for 
GAS [258]. Also, nanopaper-based analytical devices (nano-
Pads) were appeared for a new platform. The devices were 
the natural hydrophilicity and hollow-channel. Pump-free 
can be realized on the nanopaper. SERS can be performed 
on this new platform for environmental pollutants detection 
[259]. A gold-coated magnetic nanoparticle with anti Micro-
cystin-LR (MC-LR) antibody Fab fragments was produced. 
The relavent antigen can be recognized from aqueous media 
and blood plasma [260]. In clinical analysis field, disease-
related substances are important and SERS has successfully 
realized the disease detection. A paper-based SERS assay 
was used to explore atherosclerosisa [261]. A nanoporous 

networking membrane was adopted as the substrate and 
SERS nanotags was used as the signal reading probe. And 
the LOD was 0.1 pg/mL. Magnetic separation was realized 
by plasmonic paper-based SERS and the capture accuracy 
of the HT-29 cells was 83.7% [262]. Lu has reported the 
simultaneous detection of two biomarkers of squamous cell 
carcinoma antigen (SCCA) and osteopontin (OPN) by paper-
based SERS method. Au–Ag nanoshuttles (Au-AgNSs) was 
used as SERS tags. Au nanoflowers (AuNFs) were used to 
develop a sandwich structure for later immunoassay. The 
LODs for SCCA and OPN in human serum were 8.628 pg/
mL and 4.388 pg/mL, respectively [263]. Zavyalova’s group 
developed a paper-based device for detection of viruses with 

Fig. 5  Some examples for SERS detection. a Schematic illustration of 
dual-modal detection of  SO2 [229]; b Schematic illustration of fab-
rication of  MoS2@Au/Ag hybrid substrate for SERS [235]; c Sche-
matic illustration of F-SANC substrate fabrication in SERS detection 

of AAm [233]; d Schematic illustration of BP-Au filter paper-based 
SERS substrates for food analysis [237]; e Schematic illustration of 
SERS paper-based lateral flow strip (PLFS) [252]; f Schematic illus-
trations of paper-based SERS for serum bilirubin detection [266]
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SERS. SARS-CoV-2 virus can be measured rapidly with bet-
ter selevtivity [264]. In 2017, a plasmonic filter was used by 
Wang’s group to filtrate, capture and identify Streptomycete 
spores with SERS method. The device can discriminate the 
source of nosiheptide product. With this filter, a stain- and 
PCR-free detection was realized with only 5 μL sample solu-
tion and 5 min for the detection time [265]. As reported by 
Pan [266], a paper-based SERS biosensor was established 
for free bilirubin detection by label free method. Enrichment 
function was coupled on this sensor and multifunctional gra-
phene oxide-plasmonic gold nanostar (GO-GNS) hybrids 
was adopted (Fig. 5f). Adenosine can be used for cancer 
biomarker. A SERS-chemometric method was established 
for the detection of urinary adenosine [267]. Some applica-
tions in biological [268–272] in 2021 were shown in Table 2.

3.4  Chemiluminescence (CL)

To perform sensitively and rapidly in POCT, paper-based 
platforms in CL system arises great concern.

A novel paper-based CL system with  H2O2-rhodamine b 
(RhoB) and MOF was established. MOF used  Co2+ as the 
central ion. The CL system was used for total phenolic con-
tent detection. The LODs for gallic acid, quercetin, catechin, 
kaempferol and caffeic acid were 0.98, 1.36, 1.48, 1.81 and 
2.55 ng/mL, respectively [273] (Fig. 6a). Yahyai reported 
that polyphosphate (PP) can enhance the CL of graphene 
quantum dots (GQDs)-KMnO4 system. Deltamethrin (DM) 
can quench this system’s CL. The mechanism was discussed 
and the CL luminous body was  Mn2+. DM can be detected 
in food samples with the LOD of 0.15 μg/mL [274]. Montali 
et al. [275] presented a CL foldable paper-based biosensor 
based on three coupled enzymatic reactions catalyzed by 
enzyme acetylcholinesterase (AChE), choline oxidase and 
horseradish peroxidase. The enzyme can catalyze the decom-
position of hydrogen peroxide and then organophosphorus 
(OP) can be detected with its inhibiting effect of AChE. In 
Yang’s work,  Co2+/N-(aminobutyl)-N-(ethylisoluminol) 
(ABEI) functionalized magnetic carbon composite 
 (Co2+-ABEI-Fe3O4@void@C) was used on a three-dimen-
sional microfluidic paper-based device (3D μPAD) to detect 

Fig. 6  Some examples for CL detection. a Schematic illustration of 
μPAD for phenolic compounds detection [273]; b Schematic illus-
tration of 3D μPAD for copeptin, h-FABP and cTnI detection [276]; 

c Illustration for multiplexed CL analysis on 3D μPAD. [277];  
d Schematic illustration for the mechanism of plasma treatment of 
paper for antibody immobilization [15]
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early acute myocardial infarction (AMI) biomarkers in 
human serum samples. The time-resolved CL signals were 
used for the simultaneous determination of AMI biomark-
ers [276] (Fig. 6b). As reported by Li, temporal resolu-
tion CL method can be performed with double-layered 3D 
μPAD. Then glucose, lactate, cholesterol and choline can be 
detected at the same time.  H2O2 was produced after the reac-
tion of enzyme and substrate. The luminol-H2O2 CL system 
was still catalyzed by the cobalt ion. With temporal resolu-
tion CL method, the LOD for glucose, lactate, cholesterol 
and choline was 8, 15, 6 and 0.07 μmol/L, respectively [277] 
(Fig. 6c). In the future, paper-based CL immunodevice by 
controlling reagent transport can provide a new way of sensi-
tive detection of multi-biomarkers in a short time. For bio-
analysis, in Han’s work, combined with enzyme-catalyzed 
CL method, the testing of cardiac troponin I (cTnI) in human 
serum samples with LOD of 0.84 pg/mL was achieved [278].

In recent years, our lab has worked on paper-based CL 
sensing platforms. The paper-based chip was used in bio-
medical and environmental fields. For instance, a wax-
printed CL μPad for the ofloxacin detection was shown, 
combined with the luminol-H2O2-OFLX system enhanced 
by AgNPs was developed. The LOD for OFLX was 
3.0 ×  10–10 g/mL [279]. A molecularly imprinted polymer 
(MIP) was successfully synthesized on the paper surface 
for the CL detection of dichlorvos (DDV). The LOD for 
DDV detection was 0.8 ng/mL [280]. A paper-based CL 
immunodevice prepared by a low-cost antibody immobili-
zation method based on plasma treatment was introduced. 
The detection of CEA in human serum was performed with 
a linear range from 0.1 to 80.0 ng/mL [15] (Fig. 6d). In 
2017, a paper-based CL immunodevice by using controlling 
reagent flowing technique was explored. The technique can 
change the migration rate for the reagent and then the time-
dissolved CL detection can be realized on the paper-base 
device. CEA, carcinoma antigen 125 (CA125) and carbo-
hydrate antigen 199 (CA199) can be detected simultane-
ously on the paper-based chip with LODs of 0.03 ng/mL,  
0.2 U/mL and 0.2 U/mL, respectively [281]. In 2018, car-
bon nanospheres with HRP functionalization were used 
as signal antibody markers to construct a paper-based CL 
immunodevice for the determination of CEA with the LOD 
of 3 pg/mL. The method was nearly 10 times more sensi-
tive than commercial Ab2-HRP kits [282]. In 2019, a 3D 
washing strategy was developed on a paper-based immu-
nodevice using a ring-oven. The 3D washing strategy had 
a lower background than the flat washing mode, because 
non-specific binding proteins could be continuously trans-
ported to the waste zone by gravity and capillarity. A low 
LOD of 2 pg/mL was obtained for the detection of CEA by 
CL [283]. In 2019, a new fabrication method was used to 
manufacture a μPad. The recycled polystyrene in chloro-
form was used as a hydrophobic reagent. A tape mask was 

adopted to protect the hydrophilic channel. Three cancer 
biomarkers, CEA, α-fetal protein (AFP), prostate-specific 
antigen (PSA) in human serum samples on the μPAD were 
detected by luminol-H2O2 p-iodiophenol (PIP) CL system. 
The linear ranges were 0.05–80.0 ng/mL, 5.0–80.0 ng/mL, 
1.0–50.0 ng/mL, respectively [284]. PSA was detected sen-
sitively on a μPAD [285] by using  NH2-MIL-53(Fe) as the 
detection antibody label. The dual mode detection (FL and 
CL) was achieved with the LODs of 0.3 ng/mL for CL and 
0.2 ng/mL for FL. In 2021, it was reported that by using 
Co-Fe Prussian blue analogue nanocubes (Co-Fe PBA NCs), 
the strong CL still happened in the absence of  H2O2 on a 
paper-based CL device [286].

4  Conclusion and Outlook

µPads have been widely used for inorganic ions, organic 
compounds, proteins, nucleic acid and drug analysis due 
to the advantages of low-cost, easy-to-fabrication, strong-
capilary action and biological compatibility. From the per-
spective of material synthesis substrate, by in-situ growth 
on paper chip or in-situ dropping on paper, it can realize 
detection more sensitively and faster. From the perspective 
of paper chip design, different injection areas or reaction 
areas are designed on the surface of the paper base to build 
a paper-based platform with diversified functions, which can 
satisfy the requirement of rapid detection of single compo-
nent or multi-component samples. At present, the commonly 
used paper-based detection methods are mainly EC, ECL, 
colorimetry, FL, SERS and CL.

EC method is attractive alternative detection technique 
for μPads because of its portable size, small instrumenta-
tion and high sensitivity. However, the stability of detection 
electrodes, which corresponds to temperature, pH and the 
fabrication cost, still remain a challenge.

Due to the high sensitivity and signal-to-noise ratio of 
ECL analysis, low detection limits have been achieved for 
miRNA, tumor cell MCF-7, heavy metal ions, antigens and 
streptavidin since 2015. The development of equipments is 
limited, which requires the continuous efforts of scientists. 
Colorimetric methods have become the most frequently 
used ones in µPads because the signal readout method is 
simple. Distance-based and lateral flow assay paper analyti-
cal devices are well-established platform because of easy 
integration with POCT devices. FL detection is a highly 
sensitive and selective optical analysis technology that can 
be used for different fields. Paper-based SERS sensors have 
the advantages of low cost and simple sample collection, 
but the hydrophilic surface inhibits its sensitivity. This can 
be improved by modifying nanomaterials on the surface. 
Then paper-based SERS sensors can be used for the analy-
sis of environmental samples, food samples and biological 
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samples. CL analysis is sensitive and fast. The paper-based 
CL immunoassay devices have the characteristics of con-
trolled reagent delivery, which provide strategies for detect-
ing various antigens and biomarkers of early cancer.

Although paper-based platform has been widely used in 
various fields, sample pretreatment is still needed in most 
cases. It still needs a lot of efforts to build paper-based plat-
form to test actual samples directly. In addition, another 
challenge is that the paper-based devices are not connected 
to the common products in our daily life, so it is exciting to 
realize simpler and faster detection mode and build a life-
experiment integrated platform. Finally, the construction of 
paper laboratory is also a promising platform. We are look-
ing forward for more designs to indeed realize the micro 
total analysis on μPads. In addition, POCT has the outlook 
for home-stay diagnosis on the paper chip; we always believe 
that more and more people will build multi-dimensional 
platforms through paper for home-stay diagnosis. Through 
our joint efforts, paper-based platforms will play an infinite 
possibility in the future.
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