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Abstract 
Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A 
typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images 
corresponding to continuous wavelengths that normally contain redundant information or may exhibit a 
high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained 
from the images can become excessively complex and time consuming for such high dimensional data 
sets and this makes it difficult to incorporate such systems into an industry that demands standard 
protocols or high-speed processes. Therefore, recent works have focused on the development of new 
systems based on this technology that are capable of analysing quality features that cannot be inspected 
using visible imaging. Many of those studies have also centred on finding new statistical techniques to 
reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-
destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of 
fruit and vegetables. It explains the different technologies available to acquire the images and their use for 
the non-destructive inspection of internal and external features of these products. Particular attention is 
paid to the works aimed at reducing the dimensionality of the images, with details of the statistical 
techniques most commonly used for this task. 

Keywords Computer vision, fruits, vegetables, quality, non-destructive inspection, image analysis, 
hyperspectral imaging, multispectral imaging 

Nomenclature 
2D 2 dimensional 
ANN  Artificial neural networks 
ANOVA Analysis of variance 
AOTF   Acousto-optic tunable filters 
BMP  Bitmap image format 
CCD  Charge-coupled device 
FLD  Fisher's linear discriminant 
FWHM  Full width at half maximum 
GALDA  Genetic algorithm based on LDA 
LCTF   Liquid crystal tunable filters  
LD Lorentzian distribution 
LDA  Linear discriminant analysis 
MC  Moisture content 
MD  Mahalanobis distance 
NIR Near-infrared 
PCA Principal component analysis 
PLS Partial least square 
PLSDA  PLS discriminant analysis 
PLSR  PLS regression 
RF Radio frequency 



RGB Red, Green, Blue colour space 
RGBI Red, Green, Blue, Infrared 
SAM Spectral angle mapper 
SID Spectral information divergence 
SSC Soluble solids content 
TA Titratable acid 
UV Ultraviolet 

1. Introduction
The application of machine vision to food analyses has increased considerably in recent years, and has 
been used with meat (Du & Sun, 2009), fish (Quevedo et al., 2010; Quevedo & Aguilera, 2010), grains 
(Manickavasagan et al., 2010), bread (Farrera-Rebollo et al., 2011), fruits and vegetables (Cubero et al., 
2011), among others. The breadth of applications depends, among many other things, on the fact that 
machine vision systems provide substantial information about the nature and attributes of the objects 
present in a scene. Another important feature of such systems is that they open up the possibility of 
studying these objects in regions of the electromagnetic spectrum where the human eye is unable to 
operate, such as in the ultraviolet (UV), near-infrared (NIR) or infrared (IR) regions.  

The high risk of human error in classification processes has been underlined and is one of the most 
important drawbacks that machine vision can help prevent. In a study carried out with different varieties 
of apples, where various shape, size and colour parameters were compared, one of the conclusions 
reached was the limited human capacity to reproduce the estimation of quality, which is defined as 
inconsistency (Paulus et al., 1997). Moreover, as the number of parameters considered in the decision-
making process increases, so does the rate of error in classification. Furthermore, it should also be 
mentioned that automatic inspection allows precise statistics to be generated on aspects related to the 
quality of the inspected product, which leads to greater control over it and facilitates its traceability. 

In this respect, the quality of a particular fresh or processed fruit or vegetable is defined by a series of 
external characteristics that make it more or less attractive to the consumer. Such attributes include its 
ripeness, size, weight, shape, colour, the presence of blemishes and disease, the presence or absence of 
fruit stems, the presence of seeds, and so on, as well as a series of internal properties like sweetness, 
acidity, texture, hardness, etc. that can influence the consumer’s decision as to whether to repeat the 
consumption of a particular fruit or not. In sum, they cover all of the factors that exert an influence on the 
product’s appearance, on its nutritional and organoleptic qualities or on its suitability for preservation. 
Most of these factors have traditionally been assessed by visual inspection or destructive sampling 
performed by trained operators, but currently many of them, particularly the external ones, can be 
estimated with commercial vision systems (Cubero et al., 2011). These vision systems for fruit sorting are 
normally based on colour video cameras that imitate the vision of the human eye by capturing images 
using three filters centred on red, green and blue (RGB) wavelengths. Therefore, they are limited to 
observing scenes and are usually incapable of obtaining much information about the external or internal 
composition of the products. 

One way to enhance the capability of traditional colour systems that seek to imitate the human eye is the 
use of multispectral systems. A hyperspectral image is composed of a relatively wide range of continuous 
wavelengths, whereas a multispectral image consists of a few wavelengths that do not necessarily have to 
be continuous. The main advantages of multispectral imaging systems are the relatively low cost of the 
system in comparison with hyperspectral systems and the fact that they can be more specific for real 
applications. In fact, hyperspectral systems are sometimes used just to select the particular set of 
wavelengths that will finally be used. An RGB camera could be considered a particular case of a 
multispectral system although it is more common to include wavelengths in frequencies outside the 
visible, like NIR. For instance, Aleixos et al. (2002) developed a multispectral camera for the inspection 
of citrus fruits which was able to acquire visible and near-infrared images (RGBI) from the same scene. 
The same authors also developed specific algorithms for inspecting the size, colour and presence of 
defects in citrus at a rate of between 5 and 10 fruits/s. The camera had two CCDs, one of which was a 
colour CCD that provided RGB information and the other was monochromatic but coupled to an IR filter, 
centred on 750 nm, which provided IR information. For defect detection, a Bayesian discriminant model 
was used to segment the images at the pixel level, the independent variables being the grey levels of the 
RGBI bands and the classes background, defect and sound skin. The experiments were carried out with 
oranges, mandarins and lemons. Comparing results with those obtained using human classification 
showed 94% coincidence in the worst case (when the fruit was changing colour from green to orange). 



The system was also capable of correctly classifying lemons and mandarins, and detected the external 
defects in 93% and 94% of cases, respectively. One of the conclusions was that the B improved the 
detection of defects compared to using only RGI, but its contribution was of little importance. Taghizadeh 
et al. (2011) compared a conventional RGB imaging system based on a standard still camera with a 
hyperspectral imaging system (400-1000 nm) to evaluate the quality of mushrooms by estimating the 
hunter L-value, which is the most commonly applied feature for mushroom quality grading. Different 
model performance indicators showed the reasonably high potential of hyperspectral imaging models to 
predict the L-value for mushroom samples in comparison to RGB-based models. 

A multispectral vision system developed by Kleynen et al. (2005) included four wavelength bands in the 
visible/NIR range for sorting apples cv. Jonagold based on the presence of defects. They used interference 
filters centred at 450, 500, 750 and 800 nm, but since the 500 nm spectral component did not give any 
significant information for discriminating between defects and sound tissue, finally this spectral 
component was not taken into account in computing the frequency distributions. The 450 nm spectral 
band provided significant information with which to identify slight surface defects like russet. The 750 
and 800 nm bands, on the other hand, offered good contrast between the defect and the sound tissue and 
were well suited to detecting internal tissue damage like hail damage, bruises, and so forth. This system 
was recently used by Unay and Gosselin (2006) to study several thresholding and classification-based 
techniques for pixel-wise segmentation of multispectral images of cv. Jonagold apples using a multilayer 
perceptron-based method in order to detect surface defects. This work was later enhanced by extracting 
several features from defective skins with the aim of classifying the fruit in different categories (Unay et 
al., 2011). 

Bennedsen and Peterson (2005) also developed a multispectral machine vision system with the aim of 
detecting surface defects on apples. The system operated on apples that were oriented with the stem/calyx 
axis perpendicular to the imaging camera. Images were acquired through two optical filters at 740 and 
950 nm. Due to the difference in the detecting ability of the two wavebands used, two training sets were 
constructed for each variety: one for 740 nm images and one for 950 nm. In order to evaluate the overall 
performance of the system, the binary images resulting from the segmentations of the 740 and 950 nm 
images were combined. Apples of eight varieties were used to test the combined performance of the 
segmentation routines, with a success rate ranging from 78% to 92%. Ariana et al. (2006) presented an 
integrated approach using multispectral imaging in reflectance and fluorescence modes to acquire images 
of three varieties of apples (Honeycrisp, Redcort and Red Delicious) to distinguish various defects on 
apples, including bitter pit, soft scald, black rot, decay and superficial scald. They acquired eighteen 
images from a combination of filters ranging from the visible region through the NIR region and from 
three different imaging modes (reflectance -R-, visible light-induced fluorescence and UV-induced 
fluorescence) for each apple as a basis for pixel-level classification into normal or damaged tissue. Seven 
band pass filters (450, 550, 680, 740, 880, 905, and 940 nm peak transmittance) and a 710 nm long-pass 
filter were used in this system.  

Blasco et al. (2007) developed a multispectral inspection system to detect and sort citrus fruits according 
to 11 different types of external defects by combining the information obtained from four image 
acquisition systems that are sensitive to NIR, visible, UV and fluorescence. Compared with the results 
obtained using only colour images, the multispectral system showed that the contribution of non-visible 
information increased the rate of success in fruit classification by about 78%. This research was later 
enhanced in Blasco et al. (2009) to include some morphological features of defects, which raised the 
success rate up to 86%, 82% being the success rate when only an RGB camera was used. Single 
wavebands can be combined to create spectral indexes. Some of these indexes were studied by Lleó et al. 
(2011) to determine the ones that best fit the ripeness prediction of Richlady peaches, with two new 
indexes being proposed. 

The detection of contaminants can be one of the applications of such multispectral systems. Kalkan et al. 
(2011) developed a two-dimensional local discriminant bases algorithm to discriminate between 
aflatoxin-contaminated and uncontaminated hazelnuts and red chili peppers flakes. The samples were 
screened with 12 different filters, some at 400–510 nm with 10 nm FWHM and others at 550 and 600 nm 
with 70 and 40 nm FWHM, respectively. The algorithm classified the flakes into aflatoxin-contaminated 
and uncontaminated classes with a 79.2% accuracy rate, so that the level of aflatoxin in the test set was 
decreased from 38.26 ppb to 22.85 by removal of the ones that were classified as contaminated. The 
hazelnut kernels were independently subjected to two different classifications: first, on the detection of 
contamination and, second, on the detection of fungal infestation without considering their aflatoxin 



concentrations. A correct classification accuracy of 92.3% was achieved for classifying the hazelnuts as 
aflatoxin-contaminated (>4 ppb) or not (<4 ppb). 

Internal quality can also be predicted using these systems. For instance, Peng and Lu (2005) presented a 
multispectral system with the objective of developing mathematical models to describe the relationship 
between fruit firmness and multispectral scattering profiles from apples. Scattering images were acquired 
from Red Delicious apples using two different multispectral imaging systems (a rotating filter and a 
multispectral imaging spectrograph) at wavelengths of 680 nm, 880 nm, 905 nm and 940 nm with a band-
pass of 10 nm. Each scattering image was reduced to a simple spatial scattering profile through radial 
averaging. In a different study aimed at estimating maturity, Lleó et al. (2009) used a multispectral 
imaging system to classify peaches into different levels of maturity at harvest and to compare this 
classification with reference measurements such as firmness or reflectance at 680 nm achieved with a 
visible spectrometer. The proposed system had three band-pass filters centred at 800 nm IR, 675 nm Red 
(R) and 450 nm Blue (B), with a bandwidth of 20 nm. Two non-supervised classifications based on the 
Ward method were applied on the histograms extracted from the region of interest, i.e. the skin of the 
peach. The first classification considered the R channel image of each sample, while the second used the 
histograms of the R/IR images, which achieved better results (90% agreement). The use of the R/IR ratio 
avoided the effect of fruit shape on light reflectance and thus improved the definition of multispectral 
maturity clusters. In contrast, the contribution of the B component in the classification was poor. 

Beyond multispectral imaging, the use of hyperspectral sensors makes it possible to conduct a more 
sophisticated analysis of the scene by acquiring a set of images corresponding to particular wavelengths, 
normally in the visible and NIR part of the electromagnetic spectrum. The reduction in the price of 
hyperspectral systems, typically used for remote sensing and meteorology, allows them to be used in 
laboratories for food quality and they are an emerging and promising tool for food quality and safety 
control, as Gowen et al. (2007) stated in an earlier review of the use of this technology in food inspection. 
The acquired multidimensional spectral signature (spectrum) characterising a pixel can be used to analyse 
scenes like a standard colour camera but also to obtain information about internal compounds that can be 
related with the internal quality of the product.  

These systems work with a large number of monochromatic images of the same scene at different 
wavelengths, thus enabling simultaneous analysis of the spatial and spectral information. The set of 
monochromatic images that are captured constitute a hyperspectral image. As they are made up of a 
large collection of images, hyperspectral images constitute a far more extensive source of information 
than that provided by a single monochromatic image or a conventional RGB image. The number of 
images depends on the spectral resolution of the system used and they are combined by forming a cube 
in which two dimensions are spatial (pixels) and the third is the spectrum of each pixel. Without 
adequate processing, such a large amount of data, despite being one of the main advantages of 
hyperspectral systems, can complicate the extraction of useful information, since much of the 
information obtained is redundant or, by nature, cannot be used to distinguish between regions with 
similar characteristics (Shaw & Burke, 2003). The demanding industrial restrictions of working in real-
time often make it necessary to reduce the dimensionality of the problem and to select the greatest amount 
of non-redundant information from the least number of wavelengths. Unsupervised methods such as 
principal component analysis or supervised ones such as linear discriminant analysis are commonly 
employed.  

Another detail to bear in mind is that when raw hyperspectral images are analysed, it is the radiance of the 
scene rather than its reflectance that is being analysed. For these two reasons, when a hyperspectral image 
is acquired, first it is necessary to carry out the appropriate compensations in order to separate the 
reflectance of the scene from the radiance, and to apply techniques to reduce the amount of information 
obtained. 

Some techniques for acquiring hyperspectral images even share technology with spectrometry, although 
the two techniques should not be confused. Hyperspectral imaging provides spectral and spatial 
information (what and where), while spectrometry provides information about spectral information 
captured at a particular spot on the sample. To know more about this technology, a good review about 
spectrometry was carried out by Nicolaï et al. (2007) or other literature can be consulted (Ozaki et al., 
2006; Sun, 2009). Figure 1 shows a hyperspectral image of an orange with some external defects that are 
clear in particular wavelengths and practically invisible in others. 



Figure 1. Hyperspectral image decomposed on their monochromatic images showing an orange 
with some external defects. 

This paper addresses the recent advances focused on the use of this technology for the quality assessment 
of fruits and vegetables. In the second section, different technologies for hyperspectral image acquisition 
are explained and discussed. Hyperspectral images generate a large amount of information that is 
important to reduce and analyse, being many works aimed at developing methods for this task. This 
works are described in the third section. Sometimes, the reduction of the data is aimed at selecting some 
important wavelengths in order to build multispectral systems that are easier to implement using a more 
standard technology. Works with this objective are revised in section four followed by the application of 
hyperspectral technology to the inspection of the external and internal quality of different species of fruits 
and vegetables. Finally, prospects of future trends and conclusions are given. 

2. Technologies for hyperspectral image acquisition
The essential elements for constructing hyperspectral imaging systems include light sources, wavelength 
selection devices, and area detectors (Sun, 2010). Depending on the technology used, the selection of the 
wavelengths can be performed by dispersing the incident radiation into its individual wavelength or 
blocking the radiation in such a way that only the desired wavelength reaches the detector. The most 
frequently used are usually imaging spectrographs, liquid crystal tunable filters (LCTF) and, to a lesser 
extent, acousto-optic tunable filters (AOTF). Although these types are the most commonly used, there 
are also other kinds of equipment that have been developed for the acquisition of reflectance 
hyperspectral images (Kim et al., 2001). 

2.1. Liquid crystal tunable filters 

An LCTF is a solid-state instrument that uses electronically controlled liquid crystal cells to transmit light 
with a selectable wavelength, while excluding all others. The LCTF is based on Lyot filters, which are 
built from a series of optical stages, each consisting of a combination of a birefringent retarder (an optical 
property of a material that causes the polarisations of light to travel at different speeds) and a liquid 
crystal layer sandwiched between two parallel polarisers. As the incident linearly polarised light traverses 
the retarder, it is split into two light rays, i.e. the ordinary and the extraordinary rays, which have different 
optical paths though the retarder and emerge with a phase delay that is dependent on the wavelength. 
After transmission through the retarder, only those wavelengths that are in phase are transmitted by the 
polariser to the next filter stage (Hetch, 2003). To introduce tunability, a liquid crystal layer is used in 
each stage. Tunability is provided by the partial alignment of the liquid crystals along an applied electric 
field between the two polarisers. Tuning time for randomly accessing wavelengths depends on the liquid 



crystal material used and the number of stages in the filter. Typically, it takes tens of milliseconds to 
switch from one wavelength to another, which is far longer than the response time of the AOTF. While 
the position of the band-pass is actively tunable, its width is fixed and depends on the construction of the 
device. One advantage of the LCTF is a high rejection ratio for out-of-band transmission, which implies a 
high image quality. Another important advantage is that LCTFs can be manufactured with larger 
apertures than AOTFs. On the other hand, their major drawback is their longer tuning time relative to 
AOTFs, as previously commented. 

A typical LCTF-based system includes the electronic module and the tunable filter. Gómez-Sanchis et al. 
(2008a) described the main elements, configuration and a spectral characterisation of an LCTF-based 
system for citrus inspection. The main characteristics included two liquid crystal filters, with spectral 
ranges of 400 nm to 720 nm, and 650 nm to 1100 nm respectively. The combined use of both filters 
provided an extended working range from 400 nm to 1100 nm. A uniform global efficiency of the system 
across all frequencies was achieved by varying the integration time for each band using a certified white 
reference. Images in those bands where the efficiency of the system was lower needed more acquisition 
time than others where the system was more efficient. In Peng and Lu (2006), an LCTF-based 
hyperspectral imaging system was developed for measuring fruit firmness of apples. Spectral images 
from Red Delicious and Golden Delicious apples were acquired from 650 to 1000 nm in increments of 
10 nm. Gómez-Sanchis et al. (2008a) studied the feasibility of an LCTF hyperspectral system for 
detecting decay in citrus fruits in the early stages of infection using halogen lighting instead of the 
traditional inspection using UV lighting. Two filters were used to achieve this: one that was sensitive to 
the visible (460-720 nm) and one that was sensitive to the NIR (730-1020 nm). Figure 2 shows a possible 
the arrangement for the simultaneous use of two LCTF filters (i.e. sensible to visible and NIR) with a 
single camera without alter the scene. 

Figure 2. System for the acquisition of hyperspectral images based on two LCTF 

2.2. Acousto-optic tunable filters 
In recent years, technology based on AOTF has grown, thereby providing an alternative to LCTF and to 
imaging spectrographs (Vila et al., 2005), and its use is starting to be introduced for optimising 
agricultural and chemical processes (Bei et al., 2004). For instance, Jiménez et al. (2008) used an AOTF 
to obtain the spectrum of olive oil from inside a horizontal centrifugal decanter. This equipment allows 
instantaneous scanning of the oil flowing through the sensor. The imaging system was programmed to 
scan three spectra for each olive residue sample at a rate of 10 scans/s in the 1100 to 2250 nm range. 
Moreover, AOTF technology has also been used for the determination of physical features in food 
applications. Cayuela et al. (2009) described a portable AOTF-NIR spectrophotometer with a wide 
spectral range between 1100 and 2300 nm, which was equipped with a reflectance post-dispersive optical 
configuration and an InGaAs detector was used for NIR prediction of fruit moisture content (MC), free 
acidity and oil content in intact olives.  



An AOTF is a solid-state device that works as an electronically tunable band-pass filter based on light-
sound interactions in a crystal (Chang, 1976). It can isolate a single frequency of light from a broadband 
source in response to an applied acoustic field. The main components of an AOTF are a suitably oriented 
birefringent uniaxial crystal to which a piezoelectric transducer is bonded. The most common crystal for 
constructing an AOTF is Tellurium Dioxide (TeO2). The application of a radio frequency (RF) signal to 
the transducer produces an acoustic wave that propagates inside the crystal. The acoustic waves change 
the refractive index of the crystal by compressing and relaxing the crystal lattice. The changes in the 
refractive index make the crystal act like a transmission diffraction grating. Unlike a classical diffraction 
grating, the AOTF only diffracts one specific wavelength of light, so that it acts more like a band-pass 
filter with a narrow bandwidth than a diffraction grating. The diffracted light is divided into two beams 
with orthogonal polarisations, i.e. horizontally polarised and vertically polarised. The undiffracted beam 
and the undesired diffracted beam (e.g. vertically polarised beam) are blocked by a beam stop. The 
wavelength of light selected is a function of the frequency of the RF applied to the crystal. Therefore, the 
wavelength of the diffracted beam is controlled by changing the frequency of the RF source (Vila-Francés 
et al., 2011). Furthermore, the bandwidth and the intensity of the filtered light can also be adjusted by 
controlling the RF source. In addition, if multiple RF frequencies are launched into the crystal, then 
combinations of frequencies can be diffracted simultaneously, which makes it more flexible than LCTFs, 
which generate only a single band-pass at a time. Since AOTF is an advanced electronically tunable filter, 
it includes important features similar to those to be found in LCTF, such as accessibility to random 
wavelengths, flexible controllability, high spectral resolution, fast wavelength switching, wide spectral 
range, narrow bandwidth, and a relatively large optical aperture. AOTF technology presents, as its main 
advantage, a tuning speed that is higher than that obtained with LCTF technology, typically in tens of 
microseconds, owing to the fact that it is only limited by the speed of the sound propagation in the crystal. 
Furthermore, AOTF presents broader wavelength ranges (Vila-Francés et al., 2010). On the other hand, 
AOTFs have smaller apertures compared with LCTFs and, in addition, imaging quality is comparatively 
poor. 

2.3. Imaging spectrographs
An imaging spectrograph is an optical device that is capable of dispersing incident broadband light into 
different wavelengths instantaneously on an area detector (e.g. a CCD detector). Wavelength dispersion is 
carried out using a prism. The imaging spectrograph generally operates in a line-scanning mode, i.e. the 
object is scanned line-by-line as the entire field of view is acquired. The light from a scanning line is 
dispersed into different wavelengths and they are projected onto the area detector, creating a special two-
dimensional image: one dimension represents spatial information and the other the spectral dimension. 
Each vertical line along the spectral axis of the 2D area detector forms a continuous spectrum from a 
fixed spatial point on the object surface. The object must be moved stepwise under the acquisition system 
by means of a stepper table while at each step a line is scanned, as in a push broom scanner. Thus, a full 
spectral image can be obtained. One advantage of the imaging spectrograph is its high spectral resolution. 
On the other hand, the major drawback is the need to move the object with respect to the spectrograph. 
Therefore, it is not possible to acquire an entire image without properly synchronising the image 
acquisition with the movement of the object. This fact makes hyperspectral image acquisition difficult 
and thus makes it necessary to use complex calibration techniques in order to achieve quality 
hyperspectral images (Sun, 2010).  

This technology is cited in the scientific literature more frequently than LCTF and AOTF technologies for 
agricultural applications probably because of its higher spectral range and resolution. Some examples 
where this technology is well described include ElMasry et al. (2008), where a hyperspectral imaging 
system based on a spectrograph was used in the spectral region between 400 and 1000 nm for early 
detection of bruises on different background colours of apples cv. McIntosh. Three effective wavelengths 
in the NIR region (750, 820, 960 nm) were found that could potentially be implemented in multispectral 
imaging systems for the detection of bruises on apples. In the study conducted by Al-Mallahi et al. 
(2008), a hyperspectral imaging system was used to distinguish potato tubers from soil clods. An imaging 
spectrograph was employed to take hyperspectral images of 60 wavebands in the 321-1044 nm range. In 
order to improve success rates, hyperspectral images were taken and analysed to find the most relevant 
wavebands to perform an optimum discrimination. This paper highlights the usefulness of employing an 
imaging spectrograph to discriminate between tubers and clods and shows the significance of adding a 
waveband from the NIR to accomplish a high success rate of discrimination under any moisture 
conditions. Such systems have also been successfully used for the evaluation of physical properties in 
food science. For instance, Polder et al. (2003) used an imaging spectrograph (393-710 nm) to estimate 
lycopene and chlorophyll contents, which play a role in the ripening of tomatoes. They also used an 
imaging spectrograph to measure the concentration of the main constitutive compounds in tomatoes 



(including lycopene, lutein, β-carotene, chlorophyll-a and chlorophyll-b) at different stages of ripening 
(Polder et al., 2004). Spectral images from 396 to 736 nm with a resolution of 1.3 nm were recorded and 
used to determine the presence of these compounds. Figure 3 shows a possible arrangement of a 
hyperspectral system based on image spectrograph. The sample has to be placed over a conveyor belt or a 
similar mechanism that displaces it under the camera along the image is acquired. A possible alternative 
us the use of a mirror scan that is a device that captures the image reflected on a moving mirror. 

Figure 3. A possible arrangement for hyperspectral imaging spectrograph 

3. Most commonly used statistical techniques
Having a large number of bands is of great interest but also increases the complexity of the analysis of the 
information. The statistical problems that arise when multicollinearity in a set of variables to be analysed 
is present makes the selection of important wavelengths or classification of pixels for hyperspectral image 
segmentation difficult (Mather, 1998). This section analyses the most widely used statistical techniques 
found in the scientific literature for this purpose: Principal Component Analysis (PCA), Partial Least 
Squares (PLS), Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANN). It should be 
noted however, that most of these techniques are focused just on the spectral raw data without including 
information that is spatially adjacent in the images; hyperspectral data are not treated as images but as 
simple values stored in a spectral array. However, spatial information can be included afterwards in the 
images obtained from the most important sources of variability (score images). 
3.1. Principal component analysis 
PCA is one of the most popular multivariate statistical techniques, commonly used to reduce the 
dimensionality of data and to solve the multicollinearity problem. This method simplifies the task of 
obtaining an overview of all the information in the data set, because it is an unsupervised projection 
method which summarises data by forming new variables as uncorrelated and linear combinations of the 
original variables. Normally, a few of these new variables, called principal components (PCs), should 
explain most of the common variations in all the data. Therefore, by only considering several PCs, high 
dimensional data can be reduced to a lower dimensionality with a minimal loss of information. A 
drawback of PCA is that it does not guarantee the class separability of data due to its unsupervised nature 
related to the fact that PCA summarises the variance in the data, which may not be related to the 
segregation of the classes (Jollife, 1986). This technique is widely used in hyperspectral imaging, as it is 
considered a powerful and robust tool for obtaining an overview of such complex data and for reducing 
the large dimension of the data provided by the hyperspectral images. For example, Mehl et al. (2004) 
used this technique on hyperspectral images (628-900 nm) to detect different defects and contaminations 
on the surface of apples. Differences in spectral responses were analysed using PCA and second 
difference methods for sorting wholesome and contaminated apples. The study showed that both methods 
gave very similar results for the detection of disease, fungal contamination, bruises and soil 
contamination on apples. The main differences were related to the computing time. While PCA is more 



complex to use and requires more data processing time, the asymmetric second difference method only 
required three wavelengths and much less computation time to process the images. 

The PCA technique has been widely applied for data reduction. For instance, Xing et al. (2005) used it to 
reduce data from a hyperspectral imaging system (400-1000 nm) for detecting bruises on ‘Golden 
Delicious’ apples. Four wavebands centred at 558, 678, 728 and 892 nm were selected for later use in a 
multispectral imaging test using PCA. Then, if there was one bruised area recognised on the apple surface 
using thresholding, the fruit was classified as bruised. The classification results indicated that about 93% 
of the non-bruised apples were recognised as sound, and an accuracy of about 86% was achieved in 
bruised apples. Later, Xing et al. (2007a) used PCA in the same spectral region to reduce the number of 
bands for separating stem-end/calyx regions from true bruises on apples cv. Golden Delicious and cv. 
Jonagold. They found four (558, 678, 728 and 892 nm) and six (571, 608, 671, 709, 798 and 867 nm) 
effective wavebands for identifying the stem-end/calyx, respectively, in the two varieties. Then, stem-
end/calyx regions were distinguished from other skin defects by analysing the contour features of the first 
PC score images. In the investigated samples, none of the sound tissue was misclassified as a stem-end or 
calyx region for either of the cultivars, and all of the cases of stem-end/calyx present in the images were 
correctly recognised for the Golden Delicious apples and 98.33% for Jonagold apples. Finally, less than 
3% of bruises were misclassified as stem-end/calyx regions in the two cultivars. With the same 
configuration and for the same purposes, Xing et al. (2007b) used the chemometric tool PCA to extract 
and summarise the spectral information from the hyperspectral images. PCA was then carried out on the 
same four effective wavebands as before. Later, PC2 and PC3 score images were combined to construct 
virtual images, and finally the 'moments' thresholding method was used to process those virtual images, 
this tool being found to be suitable for this application. 

In the work by Gowen et al. (2008), the PCA method was used on a hyperspectral imaging system in the 
spectral region between 400 and 1000 nm with a resolution of 5 nm in order to detect bruise damage on 
white mushrooms. Two data reduction methods were investigated: in the first one, PCA was applied to 
the hypercube of each sample and the second PC (PC2) score image was used to identify bruise-damaged 
regions on the mushroom surface. In the second one, PCA was applied to a data set consisting of average 
spectra from normal regions and bruise-damaged tissue. Better results were obtained with the second 
method when applied to a set of independent mushroom samples. The score image was also used prior to 
several classification algorithms to detect bruises on pears cv. Crystal. Zhao et al. (2010) applied PCA to 
the spectral region ranging from 526 to 824 nm in order to get the best score image representing the 
bruised region. It was found that the bruised region could be clearly identified from the PC2 score image. 

3.2. Partial least squares 
PLS regression is an unsupervised statistical method used when not only a data array coming from X data 
is available, but also a Y array that we want to predict from our X data. The aim of PLS analysis is to find 
a latent variables linear regression model by projecting the X variables and the Y variables into a new 
latent space, where the covariance between these latent variables is maximized. In other words, a PLS 
model tries to find the latent multidimensional direction in the X space that explains the direction of the 
maximum multidimensional covariance in the Y space. The PLS algorithm determines a set of orthogonal 
projection axes, called PLS-weights. Typically, most of the variance could be captured with the first few 
latent variables, while the remaining latent variables described random noise or linear dependencies 
between the dependent variables and the independent variables. Moreover, PLS analysis is related to 
PCA. Both techniques are used to convert a set of highly correlated variables into a set of independent 
latent variables (t scores) by using linear transformations and can be employed as dimension reduction 
techniques. Due to all these benefits, PLS models are widely used in hyperspectral imaging to extract and 
summarise spectral information from hyperspectral images, to reduce the high dimensionality of the 
spectral data and to overcome the problem of multicollinearity, when we want to infer some Y property 
from the former (hyperspectral images) (Vinzi et al., 2010). 

This technique was used by ElMasry et al. (2007) to analyse hyperspectral images in the visible and NIR 
(400-1000 nm) regions for the non-destructive determination of MC, SSC and acidity (expressed as pH) 
quality attributes in strawberry. PLS models were developed between the average reflectance spectra and 
the measured quality parameters in order to predict quality parameters. Furthermore, multiple linear 
regression (MLR) models were established using only the optimal wavelengths to predict the quality 
attributes. Moreover, for classifying strawberry based on the stage of ripeness, a texture analysis was 
conducted on the images based on grey-level co-occurrence matrix (GLCM) parameters. The MLR 
models demonstrated higher prediction performance than PLS models, although only a few wavelengths 



were utilised. In order to study ripening in tomatoes, Polder et al. (2004) analysed concentrations of 
different compounds using HPLC and by analysing spectral images using PLS regression at the pixel 
level and at the tomato level. PLS regression models at the tomato level were constructed either by 
averaging the prediction of all the pixels or by training the model on the mean of the spectra of all the 
pixels (i.e. only one spectrum is used per tomato). Although regression on complete tomatoes gave a 
smaller error than regression on individual pixels, pixel-based regression made it possible to construct 
concentration images of tomatoes with non-uniform ripening. 

Partial least squares discriminant analysis (PLS-DA) is a supervised variant of PLS regression where the 
independent variable is a categorical one expressing the class membership of the samples. The usual PLS 
Discriminant Analysis was proposed to overcome the multicollinearity problem of LDA and it can be 
defined as a straightforward extension of the PLS regression (Sjöström et al., 1986). Using a PLS-DA 
calibration model, Nicolaï et al. (2006) discriminated between pixels of sound apple skin and bitter pit 
lesions. Leave-one-out cross validation was used to determine the number of latent variables based on 
minimisation of the root mean squared error of cross validation prior to segmentation. The number of 
latent variables in the PLS calibration was two and the system was able to identify bitter pit lesions, even 
when they were not visible to the naked eye, such as just after harvest. In the work by Xing et al. (2007b), 
a PLS-DA model was also built to extract and summarise spectral information. The pixels from the 
bruised regions were assigned a value of zero and the pixels from the sound tissue were given a value of 
one. These values were then used as dependent variables and the normalised reflectance spectra were 
taken as the independent variables in the PLS-DA model. Similar to the method used in the PCA 
procedure shown in section 3.1, the loadings plots of PLS latent variables were used to determine the 
effective wavebands for discrimination. The PLS-DA model was later rebuilt with the same four effective 
bands and by arranging the prediction values for each pixel on an apple. The authors concluded that PLS-
DA does not need complex image processing of the virtual images, but it does need a good training data 
set to be able to build a model prior to predicting new samples (as well as any statistical model, although 
this is even more evident in high dimensional data arrays and supervised models). Moreover, poorer 
results for the identification of stem-end/calyx were achieved than with PCA score images. Menesatti et 
al. (2009) studied the spectral region between 1000 and 1700 nm using PLS-DA with the aim of 
developing an objective method to assess the starch index in apples cv. Golden Delicious that avoided the 
need for chemical methods, although it is still destructive. They applied PLS-DA to hyperspectral NIR 
images to classify single pixels into starch or starch-free classes, using their NIR reflectance spectrum. 
The starch classification of each apple was based on the percentage of classified starch-free areas over the 
total (starch-free and starch) classified pixels. The potential of hyperspectral imaging (445–945 nm) to 
discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom surfaces was 
investigated by Taghizadeh et al. (2011). Damage-free mushrooms, mushrooms artificially smeared with 
casing soil and mechanically damaged mushrooms, resulting in enzymatic browning, were tested. PLS-
DA models were developed to classify mushroom tissue as one of the three classes investigated using 
pixel spectra from each class. Prediction maps were obtained by applying the developed models to the 
hyperspectral images of candidate mushrooms. Percentages of pixels classified into each class were also 
calculated for the mushrooms studied in the calibration set. Results obtained showed that the models 
performed satisfactorily in discriminating between the three classes studied. Model validation was 
performed using three different test sets of mushrooms obtained from a commercial producer. It was 
found that the PLS-DA models that were developed were capable of satisfactorily identifying undamaged 
regions, casing soil and enzymatically damaged areas on mushrooms from the validation sets. 

3.3. Linear discriminant analysis
Discriminant analysis is a statistical technique for classifying objects into mutually exclusive groups 
(classes) based on a set of measurable features of the objects, which in the case of hyperspectral images 
are normally spectral features. This supervised method is focused on maximizing the ratio of the variance 
between groups and variance within groups (Jobson, 1992). The class membership of a sample can be 
predicted by calculating the distance to the centroid of each class in the transformed space and then 
assigning the sample to the class with the smallest distance to it. LDA has no free parameters to be tuned 
and the extracted features are potentially interpretable under linearity assumptions. This technique is 
related to ANOVA (analysis of variance) and regression analysis, which also attempt to express one 
dependent variable as a linear combination of other features or measurements (Fisher, 1936; McLachlan, 
2004). Furthermore, it is also closely related to PC when dealing with multidimensional data arrays, since 
LDA needs the X variables to be independent and normally distributed, which can be easily performed by 
PCA feature extraction (working on the scores or latent variables obtained from PCA. However, this 
technique does not take into account any differences in class (Martinez & Kak, 2004). These capabilities 
have led to its extensive use and practical exploitation in many fields of application, such as hyperspectral 



imaging, which involves a large number of features. Polder et al. (2002) compared a hyperspectral system 
to a standard RGB one for measuring the stages of ripeness of tomatoes. The spectrograph had a spectral 
range of 396 to 736 nm with a spectral resolution of 1.3 nm, which enabled it to obtain spectral images 
with 257 bands. LDA was performed on both hyperspectral and RGB images, as well for classifying 
pixels in five different classes of ripeness. The spectral bands of each pixel were used as independent 
variables in the analysis of the images after reducing the dimensionality of the hyperspectral images to 
three bands to enable the comparison of both systems. The classification of tomatoes was performed by a 
simple majority vote regarding individual pixel classification, the spectral images being more 
discriminating than standard RGB images. On the other hand, Al-Mallahi et al. (2008) used linear 
discriminant analysis to distinguish potato tubers from soil clods. Images were taken under wet and dry 
conditions and segmentation was performed using linear discriminant analysis, the result being pixel-
segmented images in which each pixel was classified as tuber or clod, and when the proportion of the 
tuber pixels exceeded a certain majority percentage, the entire object was classified as a tuber, otherwise 
as a clod. In order to improve the success rates obtained with RGB images, five effective bands from 
hyperspectral images were analysed. The discriminant functions from LDA were able to separate the 
pixels and classify the objects as tuber or clod under wet and dry conditions with higher rates than with 
just colour information. In this case, the hyperspectral images analysed using LDA also offered better 
results than the traditional RGB systems. Gómez-Sanchis et al. (2008b) used LDA and classification and 
regression trees (CART) to segment multispectral images of rotten and sound mandarins. Altogether 20 
spectral features corresponding to 20 monochromatic images were used as independent variables in the 
model. 

In order to sort citrus fruits by identifying the most common defects, Blasco et al. (2007) developed a 
multispectral inspection system which combined the information obtained from four image acquisition 
systems that were sensitive to NIR, visible, UV and fluorescence. Segmentation of the four images was 
carried out using an unsupervised region-growing process. LDA was used to segment visible images, 
where the colour coordinates of pixels were used as independent variables. A comparison of the results 
from colour images with those obtained from the multispectral system showed that the contribution of 
non-visible information increased the rate of successful fruit classification, especially in the case of some 
of the most dangerous defects. 

Gowen et al. (2009a) used LDA to analyse hyperspectral images for the early detection of freeze damage 
in white button mushrooms. For each image, mean reflectance spectra from the central part were obtained 
and PCA was applied to the calibration set of data in order to concentrate that spectral information into 
the two first PC scores. LDA was then applied in order to estimate a boundary to separate the clusters of 
undamaged and freeze-damaged spectra. Using this method, freeze-damaged mushrooms could be 
correctly classified with an accuracy >95% after 45 minutes thawing, even when freeze–thaw damage 
was not visibly evident. The reasonably low misclassification rates obtained for classification of 
undamaged mushrooms and mushrooms just after thawing highlights the high potential of hyperspectral 
imaging combined with PCA to reduce the original data dimensional space and LDA for the early 
identification of mushrooms subjected to freeze damage.  

3.4. Artificial neural networks
An ANN is a non-linear statistical data-modelling tool that attempts to mimic the fault-tolerance and 
capacity to learn of biological neural systems by modelling the low-level structure of the brain. An ANN 
consists of an interconnected group of artificial neurons that works like a parallel system capable of 
resolving paradigms that linear computing cannot. In most cases, an ANN is an adaptive system that can 
change and adjust its knowledge by adjusting its parameters according to the samples of data that are 
presented in order to solve the problem at hand. This is called the learning phase. They are usually used to 
model complex relationships between inputs and outputs or to find patterns in data. The most popular 
ANN is the multilayer perceptron (MLP), which is a feedforward ANN model that maps sets of input data 
onto a set of appropriate outputs, and consists of multiple layers of nodes (neurons) on a directed graph 
that is fully connected from one layer to the next. MLP can employ a large variety of learning techniques, 
the most popular being backpropagation. The backpropagation algorithm is a supervised learning method 
based on gradient descent in error which propagates classification errors back through the network and 
uses these errors to update parameters (Shih, 2009). ANN is a commonly used pattern recognition tool in 
hyperspectral image processing because of the fact that it is capable of handling a large amount of 
heterogeneous data with considerable flexibility and due to its non-linear property (Plaza et al., 2009). 
Furthermore, ANN have several advantages over conventional pattern recognition methods. Firstly, they 
can learn the intrinsic relationship by example. Secondly, they are more fault-tolerant than conventional 



computational methods and, finally, in some applications, ANN are preferred over statistical pattern 
recognition because they require less domain-related knowledge of a specific application (Egmont-
Petersen, 2002).  

Because of their flexibility and the possibility of working with unstructured and complex data like that 
obtained from biological products, ANN have been applied in almost every aspect of food science, and it 
is a useful tool for performing food safety and quality analyses (Huang et al., 2007). For instance, Qin and 
Lu (2005) developed a feedforward backpropagation ANN classifier to sort cherries with and without pits 
using a transmission hyperspectral imaging system. The images were acquired in four orientations before 
and after pits were removed. Additional cherries were bruised and then subjected to two different post-
bruising treatments in order to study the bruising effect on pit detection. Single spectra obtained from a 
specified spatial location of the image and selected regions of interest (ROIs), both covering the spectral 
region between 692 nm and 856 nm, were compared as inputs for the ANN. To reduce the data 
dimensionality, PCA was applied to the ROI data and only score spectra of the first PC were used as 
inputs of the ANN. A sample was classified as having a pit when the output value was greater than the 
threshold value (0.5), and as having no pit otherwise. ROIs resulted in a 3.5% error in incorrect 
classification of cherries with pits and a 3.1% error for cherries without pits, which are less than half of 
those from single spectra. Results showed that fruit size and defects had an important effect on pit 
detection but the effect of fruit orientation or colour on ANN classifications was negligible. A 
combination of PCA and ANN was also used by Bennedsen et al. (2007) to detect surface defects on 
apples cv. Golden Delicious. The images were arranged as data sets in which each individual column was 
considered a sample, and the pixel values were taken as variables. By using PCA, the columns of pixels 
were replaced by columns of PCs, where each column was assigned a value of ‘zero’ if it did not 
represent a defect and ‘one’ if it did. This matrix was used to train the subsequent neural networks. There 
are four network categories: two sets based on 740 nm images and two based on 950 nm images. Each set 
consisted of two categories based on the arrangement of the images: ‘vertical’ and ‘horizontal’. The 
‘vertical’ position is how the images are seen by the camera, where the stem/calyx axis was vertical. The 
network outputs for each of two wavebands were then divided by two and added together to produce a 
new image. If there was an intersection of the two networks with a positive value, the defect was 
considered to have been detected. The overall performance of the system was evaluated and found to be 
non-suitable by itself for practical implementation due to its low detection rate. 

Unay and Gosselin (2006) applied several thresholding and classification-based techniques for pixel-wise 
segmentation of surface defects on apples cv. Jonagold. In this work, they used 18 segmentation 
techniques: three global thresholding techniques (Entropy, Isodata and Otsu), one local thresholding 
technique (Niblack's method), three unsupervised classifiers (k-means, competitive neural networks and 
self-organising feature maps) and 11 supervised classifiers in which MLP was included. Results showed 
that among many classification and thresholding-based methods, MLP was the most promising for 
segmenting surface defects in high-speed machine vision-based apple inspection systems. For different 
cultivars of apples, Ariana et al. (2006) combined multispectral imaging in reflectance and fluorescence 
imaging modes in one integrated approach in order to acquire images with which to distinguish several 
defects including bitter pit, soft scald, black rot, decay and superficial scald. Backpropagation ANN 
classification models were developed for two classification schemes (binary and multi-class). Seven 
classification models for each variety were built based on imaging mode combinations, the integrated 
imaging model of reflectance and fluorescence (FUV+R) being more effective on cv. Honeycrisp apples, 
whereas single imaging models of visible and NIR reflectance or UV-induced fluorescence were effective 
on cv. Redcort and cv. Red Delicious. 

Neural networks were also used by ElMasry et al. (2009) by means of feedforward backpropagation ANN 
models, which were developed to classify the apples into injured and normal classes, and to detect 
changes in firmness due to chilling injury. Five optimal wavelengths (717, 751, 875, 960 and 980 nm) 
were selected by an ANN model based on the maximum weight assigned to the input nodes. The ANN 
model developed to predict the firmness of the apples had the spectral responses of an apple at the 
selected optimal wavelengths and used averaging to obtain the spectral value of all pixels as input nodes 
and the apple firmness value as output. Finally, to differentiate damaged apples from normal ones, the 
output layer of the ANN model developed was then modified so as to have two nodes: normal and injured 
classes. Table 1 summarises important works that use the described statistical techniques for the 
processing of hyperspectral images. 



Table 1. Studies related to statistical techniques applied to hyperspectral image processing 
Reference Fruit Statistical 

techniques 
Application 

Chichester et al. (2003) Tomatoes ICA Lycopene and chlorophyll contents 
to estimate ripeness 

Mehl et al. (2004) Red Delicious, 
Golden Delicious, 
Gala, and Fuji apples 

PCA Detection of disease, fungal 
contamination, bruises and soil 
contamination 

Xing et al. (2005) Golden Delicious 
apples 

PCA Reduction in the number of 
hyperspectral bands for bruise 
detection 

Xing et al. (2007a) Golden Delicious 
and Jonagold apples 

PCA Reduction in the number of 
hyperspectral bands for bruise 
detection 

Xing et al. (2007b) Golden Delicious 
and Jonagold apples 

PCA & PLS Stem-end/Calyx-end detection 

Gowen et al. (2008) White mushrooms PCA Freeze damage 
Zhao et al. (2010) Crystal pears PCA Bruise detection 
ElMasry et al. (2007) Strawberry PLS MC, SSC, and acidity (expressed as 

pH) quality attributes 
Polder et al. (2004) Tomatoes PLS Constitutive compounds at different 

ripening stages 
Nicolaï et al. (2006) Apples PLS Identification of bitter pit lesions 
Menesatti et al. (2009) Golden Delicious 

apples 
PLS Assess starch index 

Polder et al. (2002) Tomatoes LDA Compare hyperspectral system to 
standard RGB for ripeness stages 

Al-Mallahi et al. (2008) Potatoes LDA Distinguish potato tubers from soil 
clods 

Gómez-Sanchis et al. 
(2008b) 

Clemenules 
mandarins 

LDA Decay 

Blasco et al. (2007) Citrus fruits LDA Segmentation of visible images 
Gowen et al. (2009) White mushrooms LDA Early detection of freeze damage 
Qin and Lu (2005) Montmorency tart 

cherries 
ANN Sort cherries with and without pits 

Bennedsen et al. (2007) Golden Delicious 
apples 

ANN Identification of surface defects 

Unay and Gosselin (2006) Jonagold apples ANN Pixel-wise segmentation of surface 
defects 

Ariana et al. (2006) Honeycrisp, Redcort 
and Red Delicious 
apples 

ANN Distinguish bitter pit, soft scald, 
black rot, decay and superficial 
scald defects 

ElMasry et al. (2009) Red Delicious apples ANN Predict the firmness of the apples 

4. Dimensionality reduction and selection of spectral features
A typical hyperspectral image is composed of dozens of correlative monochromatic images. With a 
spectral resolution of about 5 nm, a system working between 400 and 1000 nm could acquire about 120 
images (features), which normally contain redundant information or may exhibit a high degree of 
correlation. In addition, the computational complexity of the classifier can become excessive for high 
dimensional data sets. The optimal reduction in dimensionality allows the performance system to be 
optimised in terms of computational performance and simplicity. These problems are commonly 
alleviated by using techniques that retain most of the original information in fewer bands. These include 
several techniques that aim to conserve the greatest amount of variability and the most significant 
information contained in the hyperspectral image (Du and Sun, 2006). Guyon and Elisseeff (2003) 
summarised the main benefits of variable selection as improving the inference performance, providing 
faster and cost effective predictors, and better understanding of the underlying process that generates the 
data. Methods for reducing the dimensionality can be divided into feature selection and feature extraction. 
Feature selection approaches try to find a subset of the original variables, i.e. frequency bands in the case 
of hyperspectral images. In some cases, data analysis such as regression or classification can be 
performed in the reduced space more accurately than in the original space. Feature extraction, on the 
other hand, transforms the data in the high-dimensional space into a space with fewer dimensions. The 
data transformation may be linear, as in PCA, but many non-linear dimensionality reduction techniques, 
such as ANN, also exist (Lee and Verleysen, 2007). 



Many of the works related with the inspection of fruit and vegetables that use hyperspectral systems to 
acquire the images are aimed at reducing hyperspectral to multispectral information in order to develop 
systems capable of obtaining similar results using simpler technology or that could be used for in-line 
applications. Xing and Baerdemaeker (2005) used a hyperspectral imaging system based on a 
spectrograph (400–1000 nm) to obtain optimal waveband images for detecting bruises on apples cv. 
Jonagold, and capable of separating them from the stem and calyx. PCA was used to reduce the high 
dimension of the data provided by the spectral reflectance image. In accordance with PCA loading plots, 
six wavebands centred at 571, 608, 671, 709, 798 and 867 nm were selected. The contour plots for the 
PC1 scores were useful to distinguish between sound apple skin, bruised apple and apples with calyx and 
stem-end. Using just these wavelengths, no misclassifications were observed for the bruise class. Lefcout 
et al. (2006) proposed a robust method for selecting one or two wavelengths from hyperspectral data with 
the aim of detecting faeces in Golden and Red Delicious apples, using reflectance and fluorescence 
images. The apples were inspected from 452 to 729 nm and from 465 to 900 nm. The segmentation of the 
images was accomplished by applying a binary threshold to images of a single wavelength and to images 
constructed using ratios or differences between images at two different wavelengths. For reflectance 
imaging, maximum detection rates for spots of 1:20-dilution faeces were 100% and 62.5% using 
R816−R697 and R784−R738, respectively. For fluorescence imaging, maximum detection rates for spots 
of 1:200-dilution faeces were 97.9% and 58.3% using F665/F602 and F647/F482, respectively. In all 
cases, the results reached a success rate of 100% if the dilution was increased. Maximum detection rates 
for Red Delicious apples required the use of a Prewitt edge-detection filter. PCA was also used by Liu et 
al. (2005, 2006) to obtain spectral features for the detection of chilling injury in cucumbers imaged using 
a hyperspectral system based on a spectrograph with a spectral range of 447-951 nm. A large spectral 
difference between good, smooth skins and chilling-injured skins occurred in the 700–850 nm 
visible/NIR regions. Hence, both simple band ratio algorithms and PCA were used in an attempt to 
discriminate ROI spectra of good cucumber skins from those injured by chilling. These methods were 
applied to the mean reflectance spectra of cucumber ROI areas. The PCA classification model was 
established using two classes, ‘good’ and ‘injury’, based on SIMCA (Soft Independent Modelling of 
Class Analogy, Sjöström et al., 1986) of PCA with a Mahalanobis distance and a residual spectral 
measurement. On the other hand, a simple band ratio algorithm (Q = R811/R756) was also used. Results 
revealed that both the dual-band ratio algorithm (Q = R811/R756) and the PCA model from a narrow 
spectral region of 733–848 nm can detect chilling-injured skins of cucumbers within 3–7 days’ room 
temperature (RT) storage with a success rate of over 90%.  

Gómez-Sanchis et al. (2008b) analysed the feasibility of detecting rottenness in citrus fruits caused by 
Penicillium digitatum in the early stages of infection using a hyperspectral computer vision system. The 
aim was to find a reduced set of optimally selected bands with which to develop a system that could 
replace the current ones based on dangerous UV-induced fluorescence lighting. The hyperspectral vision 
system used two LCTF to achieve the goal: one sensitive to the visible (460-720 nm) and one sensitive to 
NIR (730-1020 nm). Four feature-selection methods were evaluated in order to select the most 
discriminant bands for distinguishing between early fungal damage and sound skin, such as correlation 
analysis, mutual information, stepwise multivariate regression and genetic algorithms based on LDA. The 
minimum number of bands required to optimise successful classification was estimated to be 20, which 
was obtained with the GALDA method.  

As already mentioned, PLS is one of the most commonly used methods for this purpose. ElMasry et al. 
(2008) determined some important wavelengths for detecting bruises in apples cv. McIntosh using this 
technique on hyperspectral images. A hyperspectral imaging system based on a spectrograph was used to 
acquire images between 400 and 1000 nm. PLS and stepwise discriminant analysis were used to reduce 
data dimensionality and to select the effective wavelengths. Three wavelengths in the NIR region (750, 
820, 960 nm) were found that could potentially be implemented in multispectral imaging systems for the 
detection of bruises in this cultivar of apples. The images at the selected wavelengths were averaged, 
thereby creating a new image that was the basis for bruise area identification using a multilevel adaptive 
thresholding method. The results indicated that the bruised apples could be successfully distinguished 
from the sound apples from one hour after bruising. Using PLSR, Gowen et al. (2009b) studied spectral 
bands related with water in order to investigate the spectral behaviour of white mushrooms under 
different levels of mechanical vibration, using a hyperspectral imaging system based on a spectrograph 
and operating in the NIR wavelength of 950-1700 nm. Candidate water matrix coefficients of mushrooms 
under perturbation by physical vibration may be associated, respectively, with strongly and weakly bound 
water in the mushroom matrix. PLSR models were built for the prediction of vibration time, using mean 
absorbance spectra as inputs. Changes in sample spectra arising from perturbation were examined by 



observation of PLSR coefficients. Candidate water matrix coordinates were proposed at 950, 1174, 1398, 
1433, 1454, 1496 and 1510 nm. Absorbance spectra at these wavelengths suggested that there was a 
decrease in absorption at wavebands associated with strongly bound water accompanied by an increment 
in absorption at wavelengths associated with weakly bound water as vibration time increased, indicating 
mobility of water on the mushroom surface after perturbation. 

A different approach was taken by Ariana and Lu (2010), who used hyperspectral imaging under the 
transmittance mode to select important wavebands that can be used in a further development of an in-line 
inspection system to detect internal defects in pickling cucumbers and whole pickles. Hyperspectral 
images were acquired from normal and defective cucumbers and whole pickles using a hyperspectral 
reflectance system (400–740 nm) and a transmittance imaging system (740–1000 nm). A total of four 
subsets of wavebands were determined by a branch and bound algorithm combined with the k-nearest 
neighbour classifier. The highest classification accuracies of 94.7% and 82.9% were achieved using the 
optimal four-waveband sets of 745, 805, 965, and 985 nm at 20 nm spectral resolution for cucumbers and 
of 745, 765, 885, and 965 nm at 40 nm spectral resolution for whole pickles, respectively. One of the 
main conclusions was that using the transmittance mode in the NIR region of 740–1000nm was effective 
for detection of internal defects in both cucumbers and pickles. 

In some cases, different works proposed different wavelengths to solve the same problems, such as the 
detection of defects in certain fruits. This fact seems to indicate that more attention is paid to the 
statistical techniques or to the capabilities of the technology than to what is really happening in the fruits 
or vegetables. Results may be influenced by the illumination, the calibration of the system, the variables 
taken in the statistical models and, in general, by the particular experimental conditions. In this respect, it 
would be desirable to complete the works with chemical analyses that explain the meaning of the 
wavelengths found. 

5. Estimation of fruit quality
Hyperspectral imaging has recently emerged as a powerful inspection tool for quality assessment of fruits 
and vegetables. The quality of a piece of fruit or vegetable is defined by several attributes that determine 
its marketability and shelf life. Quality assessment is therefore one of the most important goals of the 
highly competitive food industry. Product quality includes external appearance, such as colour and the 
presence of skin diseases or bruises, and internal quality features, including sugar content or firmness. 
External quality measurements of fruits are currently being determined in many cases by computer vision 
systems based on colour images. Even though such techniques offer important advantages like real-time 
operation, lower cost or simulation of human processes, they also have some limitations, the main one 
being the fact that the human eye is restricted to the visible part of the electromagnetic spectrum and 
misses important information that is outside these limits. Therefore, to expand quality inspection beyond 
human limitations, it is necessary to employ instrumental measurements such as hyperspectral imaging 
(Sun, 2010). One of the applications of these systems is thus the enhancement of the traditional computer 
vision techniques in the inspection of the external quality by developing more accurate systems for the 
estimation of particular quality features. However, this technology is being used largely because of the 
capability of hyperspectral imaging to detect the presence of numerous chemical compositions that can be 
related with internal quality, as well as estimating their spatial distribution, which cannot be achieved by 
traditional systems.  

5.1. Estimation of external quality parameters
Detection of skin defects is one of the most widespread uses of hyperspectral imaging in the inspection of 
fruits and vegetables, since the perceived quality is highly associated with a good appearance of the 
product. Many applications aimed at such detection have been reported, mainly in apples. An example of 
such applications is the detection of bruises on apples. Bruising is one of the major surface defects of 
apples and they lower the quality of the fruit and entail significant economic losses. Therefore, a great 
deal of effort has been made to improve bruise detection. Lu (2003) developed a NIR hyperspectral 
imaging system for detecting both new and old bruises on apples in the 900-1700 nm spectral region. 
PCA and minimum noise fraction transform (MNF) were performed on the images acquired from Red 
Delicious and Golden Delicious apples over a period of 47 days after bruising. Results showed that the 
spectral region between 1000 and 1340 nm was the most appropriate for bruise detection. Bruise features 
changed over time from lower reflectance to higher reflectance, and the rate of the change varied with 
fruit and variety. The system was able to detect both new and old bruises, with a correct detection rate of 
between 62% and 88% for Red Delicious and from 59% to 94% for Golden Delicious. This research 
therefore showed that NIR hyperspectral imaging was useful for detecting apple bruises. Xing and 
Baerdemaeker (2005) used a hyperspectral imaging system (400-1000 nm) to detect bruises on Jonagold 



apples. Six optimal wavelengths were selected (571, 608, 671, 709, 798 and 867 nm) and PCA was then 
performed on the multispectral image. It was shown that the first PC score images could be used as a 
good representation of the height profile of the apple surface to determine whether there was shape 
deformation of the surface, which was assumed to be one feature of the bruised region. The contour plots 
for the first PC score images were used to distinguish between sound apples and bruised apples, the result 
being a classification rate for sound apples of 84.6% and 77.5% for bruised apples. 

Apart from external defects, the presence of contaminants on apples was studied by Mehl et al. (2004), 
who presented a hyperspectral imaging system as a tool to detect defects and contamination on the 
surfaces of Red Delicious, Golden Delicious, Gala and Fuji apples, including side rots, bruises, flyspecks, 
scabs and moulds, fungal diseases (such as black pox) and soil contaminations. Differences in spectral 
responses within the 430-900 nm spectral range were analysed using PCA and second difference methods 
for sorting sound and contaminated apples. An asymmetric second difference method using a chlorophyll 
absorption waveband at 685 nm and two bands in the NIR region was tested. This study showed that this 
asymmetric second difference method provided good detection of the defective/contaminated apples, 
regardless of the cultivar and the colour of the apple. A hyperspectral NIR imaging system (900-1700 nm) 
was developed by Nicolaï et al. (2006) to identify bitter pit lesions on apples. A discriminant PLS 
calibration model was constructed to discriminate between pixels of unaffected apple skin and bitter pit 
lesions. The system was able to identify bitter pit lesions, even when not visible to the naked eye, such as 
just after harvest, but could not discriminate between bitter pit lesions and corky tissue. The reduced 
luminosity at the boundary of the image caused in one image some misclassification errors, which 
highlights the importance of the lighting system. Ideally, this should be spectrally and spatially uniform, 
taking into account the geometry of the sample. A flat object is not the same as a spherical one and in 
many cases corrections are needed (Gómez-Sanchis et al., 2008c). 

Other works have also demonstrated the value of hyperspectral imaging for the detection of skin defects 
and damage in other species of fruits like citrus fruits. Martínez-Usó et al. (2005) used a hyperspectral 
system (400-720 nm) to develop an unsupervised algorithm capable of segmenting images of oranges for 
detection of their surface defects. The algorithm employed a minimisation function which took into 
account the intensity of each band together with edge information. Due to the unsupervised nature of the 
procedure, it could adapt itself to the large variability of intensities and shapes of the image regions. Thus, 
this segmentation strategy was able to locate different regions and find their contours satisfactorily. 
Another hyperspectral imaging approach to defect detection in citrus fruits was described by Qin et al. 
(2009), who detected canker lesions and other common peel diseases, including greasy spot, insect 
damage, melanose, scab and wind scar, by means of the spectral information divergence (SID) 
classification method. This algorithm was based on quantifying the spectral similarities by using a 
predetermined canker reference spectrum. SID was performed on the hyperspectral images of Ruby Red 
grapefruits in the spectral region from 450 to 930 nm. The overall classification accuracy was 96.2%, thus 
demonstrating that hyperspectral imaging coupled with the SID classification method could be used to 
discriminate citrus canker from other confounding diseases. Blasco et al. (2009) presented a computer 
vision system that was developed for the recognition and classification of the most common external 
defects in citrus fruits. Images of oranges and mandarins were acquired using three different systems: 
visible colour, NIR reflectance and UV-induced fluorescence. The authors used an unsupervised region-
growing algorithm to segment the image, then an analysis of, morphological parameters of the final 
regions, and a decision algorithm in order to classify the fruits in categories. The overall success rate 
reached 86%. However, the greatest increment was achieved in the identification of anthracnose and 
green mould (95% and 97%, respectively), which are dangerous defects that spread the disease to sound 
fruits and their rate of identification must be as high as possible. 

A number of hyperspectral imaging methodologies have been researched for the external quality 
assessment of cucumbers. Cheng et al. (2004) proposed a novel method for hyperspectral feature 
extraction and applied it to the detection of chilling injury on cucumbers. They used a hyperspectral 
imaging system with a spectral range of 447-951 nm for tests on cucumbers. This new method combined 
PCA and Fisher's linear discriminant (FLD) method to show that the hybrid PCA-FLD method 
maximised the representation and classification effects on the extracted new feature bands. Results 
showed that this new integrated PCA-FLD method outperformed the PCA and FLD methods when they 
were used separately for classification, achieving a minimum defect recognition rate of 91% and a 
minimum sound cucumber recognition rate of 88.3% in the worst case. Later, Liu et al. (2005) also used 
the same hyperspectral imaging system for detecting chilling injury on cucumbers. Images of cucumbers 
were acquired before and during cold storage treatment as well as during post-chilling RT storage. Both 



simple band ratio algorithms and PCA were tested to discriminate good cucumber skins from those of 
chilling-injured cucumbers. Results revealed that both the dual-band ratio algorithm, using the 811 and 
756 nm spectral reflectance, and the PCA model from a narrow spectral region of 733–848 nm were able 
to detect chilling-injured skins of cucumbers within 3–7 days of storage at RT with a success rate of over 
90%. On the other hand, chilling injury was relatively difficult to detect at the initial post-chilling RT 
stage, especially during the first 0–2 days in storage, due to the insignificant manifestation of chilling-
induced symptoms. A similar approach was employed in the 900-1700 nm region for detection of bruises 
on pickling cucumbers by Ariana et al. (2006). PCA, band ratio and band difference were applied in the 
image processing to segregate bruised cucumbers from normal cucumbers. Best detection accuracies from 
the PCA were achieved when a bandwidth of 8.8 nm and the spectral region of 950–1350 nm were 
selected. It was found that detection accuracy was dependent on the time since bruising. Detection 
accuracies from the PCA decreased from 95% to 75% over the 6-day period after bruising. The best band 
ratio of 988 and 1085 nm had detection accuracies of between 93% and 82%, whereas the best band 
difference of 1346 and 1425 nm had accuracies between 89% and 84%. The general classification 
performance analysis suggested that band ratio and difference methods offered a similar performance, but 
they were better than PCA in the estimation of the quality of the pickling cucumbers. 

Hyperspectral imaging has been applied to determine the external quality of many other fruits and 
vegetables. Gowen et al. (2008) investigated the potential application of a hyperspectral imaging system 
(400-1000 nm) for detecting bruise damage on white mushrooms. Two data reduction methods based on 
PCA were investigated. After applying PCA, the images obtained from both methods were segmented 
using the simple thresholding method. Accuracies between 79% and 100% were obtained for both 
methods. Hyperspectral imaging was applied to inspect pears by Zhao et al. (2010), who used a 
hyperspectral imaging system (408-1117 nm) for bruise detection on pears. PCA was first applied to 
process the hyperspectral images in order to obtain the second PC score image, which represented the 
bruised region best. Then, several classification algorithms were used in a comparative manner to classify 
pixels into bruised or sound classes, including maximum likelihood, Euclidean distance, Mahalanobis 
distance (MD), and spectral angle mapper (SAM). Results showed that MD and SAM offered the best 
performance, with detection accuracies of 93.8% and 95.0%, respectively. Moreover, compared with the 
other classification algorithms, MDC and SAM were able to overcome the effects of uneven illumination 
in detecting bruising of pears by the hyperspectral imaging sensor technique.  

Hyperspectral reflectance imaging was used by Karimi et al. (2009) to study the changes in reflectance 
(350-2500 nm) of avocados coated with different formulations. Wang et al. (2011) used a reflectance 
hyperspectral system (400-720 nm) for the detection of external insect damage in jujube fruits. The peel 
conditions of jujube samples were tested at different undamaged stem-end/calyx-end/cheek regions and at 
insect-damaged stem-end/cheek regions. A stepwise discriminant analysis was used to classify the jujubes 
as insect-infested or free of infestation based on the wavelengths that were identified as effective. 
According to the results, none of the sound cheek or undamaged calyx-end regions were misclassified as 
having stem-end or insect infestation. Over 98% of the intact jujubes and 94% of the insect-infested 
jujubes represented in the images were recognised correctly, and the overall classification accuracy was 
about 97%. The results demonstrated that hyperspectral imaging based on a statistically derived 
discriminant function can be used to discriminate insect infestation from other confounding surface 
features in jujubes. Moreover, absorbance images (1000-1600 nm) were used by Sugiyama et al. (2010) 
to discriminate between the skin, stem and leaves of frozen blueberries. The optimal illumination 
wavelengths for distinguishing foreign materials were determined to be 1268 and 1317 nm, according to 
the results of a discriminant analysis of absorbance spectra. LDA was used to select the wavelengths and 
to separate between classes. A threshold was then used to classify the pixels. 

Table 2 summarises some of the most important works related with the estimation of external quality 
using hyperspectral systems. 

Table 2. Works related with the estimation of external quality features of fruits 
Reference Fruit Features Wavelengths 

Ariana et al. (2006) Pickling cucumbers Bruises 900-1700 nm 
Blasco et al. (2009) Oranges and mandarins Thrips, phytotoxicity, scarring, scales, 

chilling injury, sooty mould, 
oleocellosis, anthracnose, stem-end 
injury, medfly egg deposition and 
green mould 

visible, NIR 

Cheng et al. (2004) Cucumbers Chilling injury 447-951 nm 



ElMasry et al. (2008) McIntosh apples Bruises 400-1000 nm 
Gómez-Sanchis et al. 
(2008b) 

Citrus fruits Decay 460-1020 nm 

Gowen et al. (2008) White mushrooms Bruises 400-1000 nm 
Gowen et al. 2009 White mushrooms Freeze damage 400-1000 nm 
Lefcout et al. (2006) Golden and Red Delicious 

apples 
Faeces 465-900 nm 

Liu et al. (2005) Cucumbers Chilling injury 447-951 nm 
Lu (2003) Red Delicious and Golden 

Delicious apples 
Bruises 900-1700 nm 

Karimi et al. (2009) Avocados Reflectance 350-2500 nm 
Martínez-Usó et al. (2005) Oranges Skin defects 400-720 nm 
Mehl et al. (2004) Red Delicious, Golden 

Delicious, Gala, and Fuji 
apples 

Side rots, bruises, flyspecks, scabs, 
moulds, fungal diseases and soil 
contaminations 

430-900 nm 

Qin et al. (2009) Ruby Red grapefruits Canker lesions, greasy spot, insect 
damage, melanose, scab and wind scar 

450-930 nm 

Xing and Baerdemaeker 
(2005) 

Jonagold apples Bruises 400-1000 nm 

Wang et al. (2011) Jujubes Insect damage 400-720 nm 
Sugiyama et al. (2010) Blueberries Foreign material 1000-1600 nm 
Zhao et al. (2010) Pears Bruises 408-1117 nm 

5.2. Estimation of internal quality parameters
Hyperspectral imaging has also been widely used (mostly on apples) to measure internal quality attributes 
of fruits, such as sugar or SSC, flesh and skin colour, firmness, acidity and starch index, and so forth. 
Concerning internal quality, maturity is extremely important in the determination of harvest time and the 
marketing context. Several parameters are normally used to assess fruit maturity, for instance firmness. In 
recent years, many works on the determination of the maturity of apples have been reported. An example 
of such studies is that of Peng and Lu (2005), who developed a method for predicting apple fruit firmness 
using a multispectral imaging system. A Lorentzian distribution (LD) function with three parameters was 
proposed to characterise spatial scattering profiles from scattering images for Red Delicious apples at four 
wavelengths (680, 880, 905 and 940 nm). A multi-linear regression analysis was performed to describe 
the relationship between parameters of the scattering profile and the firmness of apples. Apple fruit 
firmness was predicted with a correlation coefficient (r) of 0.82. This confirmed the feasibility of using an 
LD function to predict apple firmness. A similar approach was used by Lu and Peng (2006) for assessing 
firmness in Red Haven and Coral Star peach fruit, the result being that a wavelength of 677 nm had the 
highest correlation with firmness for a single wavelength, although at least 11 wavelengths were needed 
to obtain better results. Later, an LCTF-based hyperspectral imaging system was used by the same 
research group (Peng and Lu, 2006) to measure fruit firmness of apples. Spectral images from Red 
Delicious and Golden Delicious apples were acquired from 650 to 1000 nm. Similarly to their previous 
work, they used a modified LD function with four parameters, instead of three, to characterise the 
scattering profiles. In addition, for each wavelength, a multi-linear regression analysis was attempted 
between firmness and LD parameters for both cultivars. The correlation between LD parameters and fruit 
firmness was found to change with wavelength; the best single wavelengths were 810 nm for Red 
Delicious (r = 0.58) and 690 nm for Golden Delicious (r = 0.50). These results indicated that while LD 
parameters at single wavelengths were related to fruit firmness, they were insufficient for accurate 
prediction of fruit firmness. 

Noh et al. (2007) developed an integrated hyperspectral reflectance and fluorescence imaging technique 
for measuring apple maturity. Both fluorescence and reflectance scattering images were acquired using a 
hyperspectral imaging system in the 500-1000 nm region from Golden Delicious apples. Standard 
destructive tests were performed to measure multiple maturity parameters like flesh and skin colour, 
firmness, SSC, starch and titratable acid (TA). An approach similar to the one employed in the works 
mentioned above, using an LD function and multi-linear regression analysis, was employed to relate LD 
parameters to individual maturity parameters for each sensing mode and their combined data. Overall, the 
fluorescence prediction models had consistently lower correlations with individual maturity parameters 
than the reflectance models. Excellent predictions of skin and flesh hue were obtained (r ≥ 0.90) with 
either the fluorescence models or the reflectance models. However, the fluorescence and reflectance 
models both yielded poorer prediction results for TA. The integration of reflectance and fluorescence 
improved maturity measurements over either reflectance or fluorescence alone; the improvements in 
correlation were noticeable for most parameters (up to 10.6% for TA). Similarly, Noh and Lu (2007) also 
employed laser-induced fluorescence scattering images to predict multiple quality parameters (fruit skin 



and flesh colour, firmness, SSC and TA). Fluorescence scattering images were acquired from Golden 
Delicious apples by a hyperspectral imaging system (500-1000 nm). The apples were illuminated by a 
continuous-wave blue (408 nm) laser at six different excitation times. A hybrid method of combining 
PCA and ANN modelling was used to predict fruit quality parameters. The differences were minimal in 
the model prediction results from the fluorescence data obtained with illumination at 1, 2, 3, 4 and 5 m; 
therefore, fluorescence could be performed within 1 m of illumination. Excellent predictions were 
obtained for apple skin hue with r = 0.94 and relatively good predictions were obtained for fruit firmness, 
skin chroma and flesh hue (r ≥ 0.74). On the other hand, poorer correlations were found for SSC, TA and 
flesh chroma. Zhao et al. (2009) applied hyperspectral imaging (408-1117 nm) to determine the sugar 
content of apple cv. Fuji. On applying the PLS method to the spectral profiles of the fruits, it was found 
that the optimal spectral range for sugar content was 704-805 nm. The authors found that PLS analysis 
gave a reasonably good correlation for estimating the sugar content of apple (r = 0.91). 

Despite the importance of the parameters mentioned above in the measurement of fruit maturity, the most 
reliable maturity index is the starch degradation pattern of the pulp. Apple fruit maturation is 
characterised by an almost complete conversion of starch into sugars. The most usual way to assess the 
starch conversion stage is the iodine test, in which cut fruit is dipped in iodine solution and stain patterns 
are visually evaluated by inspectors comparing them with reference charts. However, of late researchers 
have been focusing on developing non-destructive techniques to assess the starch index that avoid 
subjective assessment and the usage of toxic iodine solution. Peirs et al. (2003) used a hyperspectral 
imaging system (868-1789 nm) to measure the starch distribution and starch index of apple fruit during 
maturation. Using PCA on the hyperspectral images, four wavelengths were selected (989, 1051, 1131 
and 1215 nm) and PCA was then applied again to the multispectral images. A threshold value was 
defined to classify the pixels of the first PC score image of an apple into pixels containing a concentration 
higher or lower than the threshold value for staining. Hence, these images confirmed the spatial starch 
degradation pattern as determined by the traditional iodine technique. 

Another hyperspectral imaging approach to assess the starch index is the one described by Menesatti et al. 
(2009). They used visible and NIR images of Golden Delicious apples in the spectral region between 
1000 and 1700 nm. They studied the relationships between NIR spectral images, colour images and 
visually assessed starch/starch-free patterns, indirectly measuring the stages of apple maturity. PLSDA 
was used on hyperspectral NIR images to classify single pixels in two classes (starch and starch-free), 
achieving 66% accuracy. Other applications of hyperspectral imaging systems to the assessment of the 
internal quality of apples have been cited in recent literature, such as chilling injury detection. Damage in 
fruit cell membranes due to chilling injury affects normal firmness, and therefore changes in firmness 
could be used as an indication of possible chilling injury. The starch index was also employed by Nguyen 
Do Trong et al. (2011) to estimate the optimal cooking time of potatoes. The changes in the 
microstructure during cooking affect the interaction of light with the starch granules in different regions 
inside the potato. The potential of hyperspectral imaging (400–1000 nm) was studied for contactless 
detection of the cooking front in potatoes. PLSDA was used to discriminate between the pixel spectra for 
the cooked regions and those for the regions that remained raw. By modelling the evolution of the 
cooking front over time, the optimal cooking time could be predicted with less than 10% relative error. 
ElMasry et al. (2009) detected chilling injury and predicted firmness in Red Delicious apples using a 
hyperspectral imaging system (400–1000 nm) and ANN techniques. Experimental results demonstrated 
that a spectral imaging system associated with ANN could successfully distinguish between chilling-
injured apples and normal apples (98.4% accuracy), as well as detect changes in firmness (r = 0.92). 

Hyperspectral imaging has also been used for determining the internal quality of other fruits and 
vegetables, apart from apples. Qin and Lu (2005) used hyperspectral transmission images in the 400–
1000 nm spectral region to detect pits in tart cherries using ANN to classify cherries with and without 
pits. Experiments resulted in low average classification errors (about 3%). It was shown that sample 
orientation and colour did not significantly affect classification accuracy, but the size of the fruit did. 
ElMasry et al. (2007) determined MC, SSC and acidity in strawberries by means of a visible-NIR 
hyperspectral imaging system (400–1000 nm), with results that showed a good prediction performance 
for moisture content (r = 0.91), SSC (r = 0.80) and pH (r = 0.94). Moreover, for classifying strawberries 
according to the stage of their ripeness, a texture analysis was conducted on the images based on grey-
level co-occurrence matrix (GLCM) parameters, a maximum classification accuracy of 90% being 
achieved. Fernandes et al. (2011) reported a system based on neural networks for the estimation of grape 
anthocyanin concentration using hyperspectral images (400–1000 nm). They used a method based on NN 
called AdaBoost. The inputs from the NN were the PCs of the spectra of the grapes. Hyperspectral data 



were collected in the reflectance mode for 46 individual whole grapes of the Cabernet Sauvignon variety. 
The anthocyanin concentration values obtained by expert calibrations had a squared correlation 
coefficient value of 0.65 compared to the values measured using conventional laboratory techniques. The 
internal quality of whole pickles was studied by Ariana and Lu (2010b) using transmittance (675–1000 
nm) and reflectance (400-675 nm) hyperspectral imaging systems. Images of pickles were obtained using 
a prototype in-line hyperspectral imaging system. PCA was applied to the hyperspectral images of the 
pickle samples for the detection of bloater damage. Transmittance images were far more effective for 
internal defect detection than reflectance ones. An overall defect classification accuracy of 86% was 
achieved, compared with an accuracy of 70% by the human inspectors.

Banana fruit quality and maturity stages were studied by Rajkumar et al. (2011) at three different 
temperatures (20, 25 and 30 ºC) by using a hyperspectral imaging technique in the visible and NIR (400–
1000 nm) regions. The quality parameters like MC, firmness and SSC were determined and correlated 
with the spectral data using PLS. The model showed that 10 latent factors could be used to select the 
optimal wavelength based on beta coefficients. Eight wavelengths were required to predict the maturity 
stages of banana fruits representing the quality attribute in terms of the features that were studied. 

Table 3 summarises some of the most important works related with the estimation of the internal quality 
of fruits using hyperspectral systems. 

Table 3. Works related with the estimation of internal quality features of fruits 
Reference Fruit Features Wavelengths 

ElMasry et al. (2007) Strawberries MC, SSC and acidity 400–1000 nm 
ElMasry et al. (2009) Red Delicious apples Chilling injury, firmness 400–1000 nm 
Menesatti et al. (2009) Golden Delicious apples Starch 1000–1700 nm 
Noh and Lu (2007) Golden Delicious apples Flesh and skin colour, firmness, 

SSC and TA 
500–1000 nm 

Rajkumar et al. (2011) Banana MC, SSC and firmness 400–1000 nm 
Noh et al. (2007) Golden Delicious apples Flesh and skin colour, firmness, 

SSC, starch and TA 
500–1000 nm 

Peirs et al. (2003) Apple Starch distribution and index 868–1789 nm 
Peng and Lu (2005) Red Delicious apple Firmness 680, 880, 905 

and 940 nm 
Peng and Lu (2006) Red Delicious and Golden 

Delicious apples 
Firmness 650–1000 nm 

Fernandes et al. (2011) Grapes Anthocyanin concentration 400–1000 nm 
Ariana and Lu (2010b) Pickles Bloated 675–1000 nm 
Qin and Lu (2005) Tart cherries Pits 400–1000 nm 
Zhao et al. (2009) Fuji apples Sugar content 408–1117 nm 

6. Future trends
The future of hyperspectral systems applied to food inspection is promising, since both the industry and 
consumers are becoming increasing aware of need to ensure the quality and safety of food, and this 
technology is an important tool for the automatic inspection and monitoring of these parameters. The 
price of the equipment is constantly decreasing, while the technology allows more accurate imaging 
systems to be developed that are capable of going further into the electromagnetic spectrum. This would 
enable researchers to create new applications oriented towards the non-destructive estimation of internal 
compounds related with the organoleptic quality or shelf life of the products.  

However, there are still two challenges to be overcome using this technology. On the one hand, the 
acquisition and processing times of the images are still slow, which prevents widespread implementation 
in an industry that needs real-time inspection. The partial solution is to search for a small set of important 
wavelengths that can be used to deal with each problem individually but which sometimes miss important 
information or limit the potential scope of the final application. On the other hand, most of the research 
being conducted is aimed at detecting these sets of wavelengths or obtaining results to relate with 
particular objectives. But in most cases results are dependent on the laboratory conditions (lighting, 
calibration, etc.) or on the statistical techniques used, and are not truly related with internal compounds or 
physical-chemical properties that could support these results from the product point of view. In these 
cases, for example, different studies can obtain different sets of wavelengths for similar applications. 



7. Conclusions
This paper has summarised the current state of the art on the application of hyperspectral imaging for fruit 
and vegetable inspection. Most of works deal with statistical techniques to reduce the dimensionality of 
the problem, being the most used based on ANN, PCA, PLS or LDA. Using the whole captured spectrum 
or reducing the information to a few bands, the ultimate aim is the inspection of quality beyond the 
possibilities of traditional computer vision systems based on colour images. However, there are still 
challenges in this topic that have to be overcome by researchers. Although nowadays these systems fits 
probably better with laboratory developments, many current works try to provide the industry with 
important practical solutions. However, very few of them investigate the physical-chemical and biological 
phenomena that are evidenced in the images. Thus, different works provide very different results for 
similar problems, for instance in the selection of particular wavelengths. The increasing interdisciplinary 
nature of research groups offers the possibility of combining genetic, biological and physiological 
knowledge with physics and computer vision research to take an important step towards integrated 
solutions for the fruit and vegetable industry. These solutions will not only allow problems to be detected, 
but will also afford the generation of tools with which to prevent their causes. In general, this is a 
technology whose use is beginning to extend to inspect the external and internal quality of many 
horticultural products, mainly because of the constant price reduction of the components and the 
increment in computation capacity of modern computers. However, its potential as non-destructive 
analytical tool is not fully exploited and much remains to be investigated. 
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