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RECENT ADVANCES CONCERNING CERTAIN CLASS OF

GEOPHYSICAL FLOWS

JINKAI LI AND EDRISS S. TITI

Abstract. This paper is devoted to reviewing several recent developments con-
cerning certain class of geophysical models, including the primitive equations (PEs)
of atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for
large-scale oceanic and atmospheric dynamics are derived from the Navier-Stokes
equations coupled to the heat convection by adopting the Boussinesq and hydro-
static approximations, while the tropical atmosphere model considered here is a
nonlinear interaction system between the barotropic mode and the first baroclinic
mode of the tropical atmosphere with moisture.

We are mainly concerned with the global well-posedness of strong solutions to
these systems, with full or partial viscosity, as well as certain singular perturbation
small parameter limits related to these systems, including the small aspect ratio
limit from the Navier-Stokes equations to the PEs, and a small relaxation-parameter
in the tropical atmosphere model. These limits provide a rigorous justification to
the hydrostatic balance in the PEs, and to the relaxation limit of the tropical
atmosphere model, respectively. Some conditional uniqueness of weak solutions,
and the global well-posedness of weak solutions with certain class of discontinuous
initial data, to the PEs are also presented.
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1. The primitive equations (PEs) of atmospheric and oceanic dynamics

In the atmospheric and oceanic dynamics, the Boussinesq approximation model is
accepted as the fundamental model that governs their motion. This system in the
case of incompressible flows reads as







∂tU + (U · ∇)U +∇p− νh∆HU − νz∂
2
zU + f0k × U = θe3,

∇ · U = 0,
∂tθ + U · ∇θ − κh∆Hθ − κz∂

2
zθ = 0,

(1.1)

in the space-time domain R
3× (0,∞), where the unknowns are the velocity field U =

(v, w), with horizontal velocity v = (v1, v2) and vertical velocity w, the pressure p,
and the temperature θ. The nonnegative constants νh, νz, κh and κz are the horizontal
viscosity, vertical viscosity, horizontal diffusivity and vertical diffusivity coefficients,
respectively, f0 is the Coriolis parameter and k = (0, 0, 1). Note that here we have
taken the earth rotation into consideration. We denote by (x, y, z) and t, respectively,
as the spatial and temporal variables, and use ∆H = ∂2x+∂

2
y to denote the horizontal

Laplacian.
For large-scale oceanic and atmospheric dynamics, the vertical scale (10 - 20 kilo-

meters) is much smaller than the horizontal scales (several thousands of kilometers),
and consequently, the aspect ratio, i.e. the ratio of the depth (or hight) to the hori-
zontal width, is very small. In view of this thinness (the ratio of the vertical hight to
horizontal width is small) of the ocean and atmosphere, we consider the above Boussi-
nesq equations (1.1) in a thin domain Ωε :=M × (−ε, ε), with M = (0, L1)× (0, L2),
for two positive constants L1 and L2, and ε a small positive parameter. Following
Azérad–Guillén [1], we suppose that the viscosity and diffusivity coefficients have or-
ders (νh, κh) = O(1) and (νz, κz) = O(ε2), and for simplicity, we assume νh = κh = 1
and νz = κz = ε2. By rescaling, we introduce the following new unknowns

vε(x, y, z, t) = v(x, y, εz, t), wε(x, y, z, t) =
1

ε
w(x, y, εz, t),

pε(x, y, z, t) = p(x, y, εz, t), θε(x, y, z, t) = εθ(x, y, εz, t),

for (x, y, z) ∈ Ω := M × (−1, 1) and t ∈ (0,∞), Boussinesq system (1.1), defined on
the ε-dependent domain Ωε, can be transformed to the following scaled Boussinesq
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equations














∂tvε + (vε · ∇H)vε + wε∂zvε −∆vε +∇Hpε + f0k × vε = 0,
∇H · vε + ∂zwε = 0,
ε2(∂twε + vε · ∇Hwε + wε∂zwε −∆wε) + ∂zpε = θε,
∂tθε + vε · ∇Hθε + wε∂zθε −∆θε = 0,

(1.2)

in the fixed space-time domain Ω× (0,∞). Here, the rotating Coriolis term f0k× vε,
in (1.2), is understood as the horizontal components of the corresponding term, that
is k × vε = (−v2ε , v1ε).

Let us take the formal limit, ε → 0+, and suppose that (vε, wε, pε, θε) converges to
(v, w, p, θ) in a suitable sense, then the vertical momentum equation in (1.2) degen-
erates to the following hydrostatic balance

∂zp = θ, (1.3)

and as a result, one obtains the following system, known as the primitive equations
(PEs)















∂tv + (v · ∇H)v + w∂zv −∆v +∇Hp+ f0k × v = 0,
∇H · v + ∂zw = 0,
∂zp = θ,
∂tθ + v · ∇Hθ + w∂zθ −∆θ = 0,

(1.4)

in Ω× (0,∞), where as before, the rotating term is understood as k× v = (−v2, v1).
The above small aspect ratio limit, from (1.2) to (1.4), can be rigorously justified.

Indeed, the weak convergence of such limit was shown in Azérad–Guillén, [1], while
the strong convergence was proved by Li–Titi [45]. This strong convergence result,
reported in [45], will be presented in section 4. We remark that it is necessary to
consider the anisotropic viscosities, so that the Navier-Stokes equations converge to
the PEs, as the aspect ratio ε goes to zero. In fact, for the isotropic case that
(µ, ν) = O(1), it has been shown in Bresh–Lemoine–Simon [6] that the stationary
Navier-Stokes equations converge to a linear system with only vertical dissipation,
instead of the stationary PEs.

As a result of the above discussion, the primitive equations form a fundamen-
tal block in models of the oceanic and atmospheric dynamics, see, e.g., the books
Haltiner–Williams [28], Lewandowski [42], Majda [50], Pedlosky [56], Vallis [66],
Washington–Parkinson [67] and Zeng [69]. The mathematical studies of the PEs
were started by Lions–Temam–Wang [47–49] in the 1990s, where among other issues,
global existence of weak solutions was established; however, the uniqueness of weak
solutions is still an open question, even for the two-dimensional case. This is different
from the incompressible Navier-Stokes equations, as it is well-known that the weak
solutions to the two-dimensional incompressible Navier-Stokes equations are unique
(see, e.g., Constantin–Foias [20], Ladyzhenskaya [41] and Temam [64]). Moreover, it
has been shown by Bardos et al. [2] that if the initial data of the three-dimensional
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Navier-Stokes equations is a function of only two spatial variables, then the Leray-
Hopf weak solution is unique and remains a function of only two spatial variables.
The main obstacle of proving the uniqueness of weak solutions to the PEs is the ab-
sence of the dynamical equation for the vertical velocity. In fact, the vertical velocity
can only be recovered from the horizontal velocity through the incompressibility con-
dition, and as a result, there is one derivative loss for the horizontal velocity. Though
the general result on the uniqueness of weak solutions to the PEs is still unknown,
some particular cases have been solved, see Bresch et al. [5], Petcu–Temam–Ziane [57]
and Tachim Madjo [63] for the case of the so-called z-weak solutions, i.e., the weak
solutions with initial data in X = {v0 ∈ L6|∂zv0 ∈ L2}, and Kukavica–Pei–Rusin–
Ziane [36] for the case of weak solutions with continuous initial data. In a recent
work [46], we generalize the above results and show that weak solutions to the PEs,
with initial data taken as small L∞ perturbations of functions in X , are unique, and
this result will be presented in section 5.

In the context of strong solutions, the local well-posedness was established in
Guillén-González et al [27] (see also Temam–Ziane [65]). Remarkably, taking ad-
vantage of the fact that effectively the unknown pressure is a function of only two
spatial variables, it was first shown in Cao–Titi [17] the global regularity of strong
solutions, with full viscosity and diffusivity, of the 3D PEs with the relevant phys-
ical boundary conditions (see, also, Kobelkov [35]). Taking advantage of the above
observation, made in [17] concerning the pressure, it was shown by Kukavica–Ziane
[38, 39] the global regularity of the 3D PEs subject to Dirichlet boundary conditions.
Moreover, Hieber–Kashiwabara [29] have made some recent progress towards relaxing
the smoothness on the initial data, but still for the system with full viscosity and
diffusivity, of the PEs by using the semigroup method. As it has been mentioned
above, the key observation made in [17] for the global existence of strong solutions
to the PEs in 3D is that effectively the pressure, thanks to the hydrostatic balance
(1.3), is a function of only two spatial variables, i.e. depends only on the horizontal
spatial variables and the time variable, up to a term determined by the temperature;
note that the temperature satisfies the maximal principle, therefore the pressure for
the PEs has better properties than that for the Navier-Stokes equations.

In the oceanic and atmospheric dynamics, due to the strong horizontal turbulent
mixing, the horizontal viscosity and diffusivity are much stronger than the vertical
viscosity and diffusivity, respectively. Therefore, both physically and mathematically,
it is important to study the limiting case that the vertical viscosity or diffusivity
vanishes. In view of this, some further developments on the global existence of strong
solutions to the PEs, with full viscosity but partial diffusivity, have been made by
Cao–Titi [18] and Cao–Li–Titi [11, 12]. Furthermore, the recent works by Cao–Li–
Titi [13–15] show that the horizontal viscosity turns out to be more crucial than the
vertical one for guaranteeing the global well-posedness, as a results they show that
merely the horizontal viscosity is sufficient to guarantee the global well-posedness of
strong solutions to the PEs, as long as one still has either the horizontal diffusivity or
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the vertical diffusivity. These results on the global well-posedness of strong solutions
to the PEs, with full or only horizontal viscosities and partial diffusivity, will be
presented in section 2 and section 3.

Notably, smooth solutions to the inviscid PEs, with or without coupling to the
temperature equation, have been shown by Cao et al. [10] and Wong [68] to blow up
in finite time. For the results on the local well-posedness with monotone or analytic
initial data of the inviscid PEs (which are also called inviscid Prandtl equations or
hydrostatic Euler equations), i.e., system (1.4), without the Lapalacian term ∆v, see,
e.g., Brenier [4], Masmoudi–Wong [54], Kukavica–Temam–Vicol–Ziane [37], and the
references therein.

Another remarkable difference between the incompressible Navier-Stokes equations
and the PEs is their well-posedness theories with Lp initial data. It is well-known
that, for any Lp initial data, with d ≤ p ≤ ∞, there is a unique local mild solution
to the d-dimensional incompressible Navier-Stokes equations, see Kato [31] and Giga
[24, 25]; however, for the PEs, though the Lp norms of the weak solutions remain
finite, up to any finite time, as long as the initial data belong to Lp (one can apply
Proposition 3.1 in [13], see Proposition 3.1 in section 3.1, below, to achieve this fact,
with the help of some regularization procedure), it is still an open question to show
the uniqueness of weak solutions to the PEs with Lp initial data. However, for the
case that p = ∞, as we mentioned above, it has been shown in [46] that the weak
solutions to the PEs, with initial data in L∞, are unique, as long as the discontinuity
of the initial data is sufficiently small.

2. The PEs with full viscosity but partial diffusivity

This section and the next one are devoted to the study of global well-posedness
of strong solutions to the PEs, with full or only horizontal viscosity and partial
diffusivity. In this section, we consider the full viscosity case (however, with only
partial diffusivity), and the case with only horizontal viscosity is postponed to the
next section, section 3.

2.1. The vertical diffusivity case with full viscosity. Consider the following
version of the PEs with full viscosity, but only vertical diffusivity















∂tv + (v · ∇H)v + w∂zv −∆v +∇Hp+ f0k × v = 0,
∇H · v + ∂zw = 0,
∂zp = T,
∂tT + v · ∇HT + w∂zT − ∂2zT = 0,

(2.1)

in Ω0 =M × (−h, 0), where M = (0, L1)× (0, L2), with positive constants L1, L2 and
h. We complement it with the following boundary conditions

v, w, T are periodic in x and y, (2.2)

(∂zv, w)|z=−h,0 = 0, (2.3)
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T |z=−h = 1, T |z=0 = 0, (2.4)

and the initial condition

(v, T )|t=0 = (v0, T0). (2.5)

We point out that here we do not need the initial condition on the vertical velocity
w, as it can be uniquely recovered from the horizontal velocity v from the incom-
pressibility condition.

Replacing T and p by T + z
h
and p + z2

2h
, respectively, extending the resultant

unknowns v, w and T evenly, oddly and oddly, respectively, with respect to z, and
noticing that the periodic subspace H, given by

H :={(v, w, p, T )|v, w, p and Tare spatially periodic in all three variables

and are even, odd, even and odd with respect to z variable, respectively},
is invariant under the dynamical system (2.1), one can easily check that system (2.1),
subject to (2.2)–(2.5), defined on the domain Ω0 =M × (−h, 0), is equivalent to the
following system, defined on the extended domain Ω :=M × (−h, h),















∂tv + (v · ∇H)v + w∂zv −∆v +∇Hp+ f0k × v = 0,
∇H · v + ∂zw = 0,
∂zp = T,
∂tT + v · ∇HT + w

(

∂zT + 1
h

)

− ∂2zT = 0,

(2.6)

subject to the following new boundary and initial conditions

v, w, p and T are periodic in x, y, z, (2.7)

v and p are even in z, and w and T are odd in z, (2.8)

(v, T )|t=0 = (v0, T0). (2.9)

The boundary condition (2.7) and the symmetry condition (2.8) imply w|z=−h = 0.
Therefore, the vertical velocity can be uniquely determined in terms of the horizontal
velocity through the incompressibility condition as

w(x, y, z, t) = −
∫ z

−h

∇H · v(x, y, z′, t)dz′, (2.10)

for any (x, y, z) ∈ Ω and t ∈ (0,∞).

Definition 2.1. Suppose that v0, T0 ∈ H2(Ω) are periodic, and are even and odd in
z, respectively. Given a positive time T ∈ (0,∞). A pair (v, T ) is called a strong
solution to system (2.6), subject to (2.7)–(2.9), in Ω× (0, T ), if

(i) v and T are spatially periodic, and are even and odd in z, respectively;
(ii) v and T have the regularities

v ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω)),

T ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)), ∂zT ∈ L2(0, T ;H2(Ω)),
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∂tv ∈ L2(0, T ;H1(Ω)), ∂tT ∈ L2(0, T ;H1(Ω));

(iii) v and T satisfy system (2.6) pointwisely, a.e. in Ω × (0, T ), with w given by
(2.10), and fulfill the initial condition (2.9).

We have the following result on the existence and uniqueness of strong solutions
to system (2.6), subject to (2.7)–(2.9), on Ω× (0, T ), for any finite time T .

Theorem 2.1 (cf. [11]). Given a positive time T ∈ (0,∞). Suppose that the periodic

functions v0, T0 ∈ H2(Ω) are even and odd in z, respectively, with
∫ h

−h
∇H · v0dz =

0, on M . Then, there is a unique strong solution (v, T ) to system (2.6)–(2.9), in
Ω× (0, T ). Moreover, the unique strong solution (v, T ) is continuously dependent on
the initial data.

Remark 2.1. Theorem 2.1 generalizes and complements the results in [18], where
the global regularity of strong solutions was proved, for initial data with some higher
regularities than H2. Note that the local existence and uniqueness of strong solutions
were not established in [18].

2.2. The horizontal diffusivity case with full viscosity. As a counterpart of
the result in the previous subsection, it is also interesting to study the following PEs
with full viscosity but only horizontal diffusivity















∂tv + (v · ∇H)v + w∂zv −∆v +∇Hp+ f0k × v = 0,
∇H · v + ∂zw = 0,
∂zp = T,
∂tT + v · ∇HT + w∂zT −∆HT = 0,

(2.11)

in Ω0 = M × (−h, 0). We complement it with the boundary and initial conditions
(2.2)–(2.5). Same to the vertical diffusivity case, by replacing T and p by T + z

h

and p+ z2

2h
, respectively, extending the resultant unknowns v, w and T evenly, oddly

and oddly, respectively, with respect to z, system (2.11), defined on Ω0, subject to
(2.2)–(2.5), is equivalent to the following system:















∂tv + (v · ∇H)v + w∂zv −∆v +∇Hp+ f0k × v = 0,
∇H · v + ∂zw = 0,
∂zp = T,
∂tT + v · ∇HT + w

(

∂zT + 1
h

)

−∆HT = 0,

(2.12)

in the extended domain Ω = M × (−h, h), subject to the boundary and initial
conditions (2.7)–(2.9).

Strong solutions to system (2.12), subject to the boundary and initial conditions
(2.7)–(2.9), are defined similarly as Definition 2.1. The only difference is that we
now ask for the regularity ∇HT ∈ L2(0, T ;H2(Ω)), instead of the regularity ∂zT ∈
L2(0, T ;H2(Ω)).

We have the following counterpart of Theorem 2.1:
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Theorem 2.2 (cf. [12]). Given a positive time T ∈ (0,∞). Suppose that the periodic

functions v0, T0 ∈ H2(Ω) are even and odd in z, respectively, with
∫ h

−h
∇H · v0dz = 0,

on M . Then there is a unique strong solution (v, T ) to system (2.6), subject to the
boundary and initial conditions (2.7)–(2.9), in Ω × (0, T ). Moreover, the unique
strong solution (v, T ) is continuously dependent on the initial data.

3. The PEs with horizontal viscosity and partial diffusivity

In the oceanic and atmospheric dynamics, due to the strong horizontal turbulent
mixing, the horizontal viscosity is much stronger than the vertical viscosity. There-
fore, both physically and mathematically, it is important to study the limiting case
that the vertical viscosity vanishes.

3.1. The horizontal diffusivity case with horizontal viscosity. Consider the
following PEs with only horizontal viscosity and horizontal diffusivity:















∂tv + (v · ∇H)v + w∂zv +∇Hp−∆Hv + f0k × v = 0,
∂zp+ T = 0,
∇H · v + ∂zw = 0,
∂tT + v · ∇HT + w

(

∂zT + 1
h

)

−∆HT = 0,

(3.1)

in Ω =M×(−h, h), withM = (0, L1)×(0, L2). We complement it with the boundary
and initial conditions (2.7)–(2.9). Let us recall that the boundary conditions (2.7)–
(2.8) are equivalent to the boundary conditions (2.2)–(2.4), by performing suitable
transformations to the unknowns.

Strong solutions to (3.1), subject to (2.7)–(2.9), in Ω × (0, T ), are define in the
similar way as Definition 2.1, by replacing (ii) there with the following:

(ii’) v and T have the regularities

(v, T ) ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)),

(∇Hv,∇HT ) ∈ L2(0, T ;H2(Ω)), (∂tv, ∂tT ) ∈ L2(0, T ;H1(Ω)).

We have the following theorem on the existence and uniqueness of strong solutions
to system (3.1), subject to (2.7)–(2.9), in Ω× (0, T ), for any finite time T .

Theorem 3.1 (cf. [13]). Given a positive time T ∈ (0,∞). Suppose that the periodic

functions v0, T0 ∈ H2(Ω) are even and odd in z, respectively, with
∫ h

−h
∇H · v0dz = 0,

on M . Then there is a unique strong solution (v, T ) to system (3.1), subject to the
boundary and initial conditions (2.7)–(2.9), in Ω × (0, T ). Moreover, the unique
strong solution (v, T ) is continuously dependent on the initial data.

The key issue of proving Theorem 3.1 is establishing the a priori H2 estimates
on the strong solutions, up to any finite time. Our analysis shows that all desired
estimates depend on the L2 estimate on ∂zv. Due to the lack of the vertical viscosity
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in the horizontal momentum equations, one will encounter a factor ‖v‖2∞ in the energy
inequalities, in other words, the energy inequalities obtained are of the following form:

d

dt
f ≤ C‖v‖2∞f + “other terms”,

which forces us somehow to establish the a priori estimate
∫ T

0
‖v‖2∞dt. Generally,

one can not achieve such kind a priori estimate for any finite time. Nevertheless, we
have the following proposition, which states the a priori estimate on the growth of
the Lq-norms, for all q ∈ [2,∞), of the velocity v.

Proposition 3.1 (cf. [13]). Let (v, T ) be a strong solution to system (3.1), subject
to the boundary and initial conditions (2.7)–(2.9), on the interval (0, T ). Then, for
each q ∈ [2,∞), the following estimate holds

sup
0≤t≤T

‖v‖q ≤ K1(T )eC‖T0‖2qT (1 + ‖v0‖q)
√
q,

where K1 is a continuously increasing function, determined by the initial norms ‖v0‖2,
‖T0‖2, ‖v0‖4 and ‖T0‖4.

Thanks to the above proposition, we can control the main part of the quantity
‖v‖2∞. To this end, we use a logarithmic Sobolev limiting inequality, generalizing the
classical Brézis–Gallout–Wainger inequality [7, 8] (see also [9]), stated in the next
proposition. This logarithmic inequality serves as a bridge between the Lq norms
and the L∞ norm.

Lemma 3.1 (cf. [13]). Let F ∈ W 1,p(Ω), with p > 3, be a periodic function. Then
the following inequality holds

‖F‖∞ ≤ Cp,λmax

{

1, sup
r≥2

‖F‖r
rλ

}

logλ(‖F‖W 1,p(Ω) + e),

for any λ > 0.

Now, applying Proposition 3.1 and Lemma 3.1, we can control ‖v‖2∞ in terms of
the logarithm of higher order norms as follows

‖v‖2∞ ≤ K(t) log(‖(v, T )‖2H2 + e),

for a function K ∈ L1((0, T )). Note that such kind logarithm dependence of ‖v‖2∞ on
the higher order norms does not effect us to obtain the a priori estimate, up to any
finite time. Therefore, one can successfully achieve the desired a priori H2 estimate,
up to any finite time, on strong solution (v, T ).

Besides, the following lemma of a system version of the classic Gronwall inequality
plays an important role in simplifying the proof of the a priori estimates.
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Lemma 3.2 (cf. [13]). Let m(t), K(t), Ai(t) and Bi(t) be nonnegative functions, such
that Ai ≥ e, are absolutely continuous, for i = 1, · · · , n,K ∈ L1

loc([0,∞)). Given a
positive time T , and suppose that

d

dt
A1(t) +B1(t) ≤ K(t)

(

log
n
∑

i=1

Ai(t)

)

A1(t),

d

dt
Ai(t) +Bi(t) ≤ K(t)

(

log
n
∑

i=1

Ai(t)

)

Ai(t) + ζAα
i−1(t)Bi−1(t),

for i = 1, 2, · · · , n, and for any t ∈ (0, T ), where α ≥ 1 and ζ ≥ 1 are two constants.
Then it holds that

n
∑

i=1

Ai(t) +

n
∑

i=1

∫ t

0

Bi(s)ds ≤ Q(t), ∀t ∈ [0, T ),

where Q is a continuous function on [0,∞) which is determined by Ai(0), i = 1, · · · , n,
and K.

Some generalizations of Theorem 3.1 has been obtained in [15], stated in the fol-
lowing theorem.

Theorem 3.2 (cf. [15]). Suppose that the periodic functions v0, T0 ∈ H1(Ω) are even

and odd in z, respectively, with
∫ h

−h
∇H · v0(x, y, z)dz = 0, for any (x, y) ∈M . Then,

there is a unique local strong solution (v, T ) to system (3.1), subject to the boundary
and initial conditions (2.7)–(2.9).

Moreover, if we assume in addition that

∂zv0 ∈ Lm(Ω), (v0, T0) ∈ L∞(Ω),

for some m ∈ (2,∞), then the corresponding local strong solution (v, T ) can be ex-
tended uniquely to any finite time T ∈ (0,∞).

Remark 3.1. It is unclear if system (3.1), subject to (2.7)–(2.9), has strong solutions
up to any finite time T ∈ (0,∞), for any initial data (v0, T0) ∈ H1. Even the local
existence and uniqueness part of Theorem 3.2 does not follow from the standard energy
approach, and in fact, some local in space type energy estimate has been used in the
proof of local existence of strong solutions in [15].

3.2. The vertical diffusivity case with horizontal viscosity. As a counterpart
of the previous subsection, we consider in this subsection the following PEs with only
horizontal viscosity and vertical diffusivity:















∂tv + (v · ∇H)v + w∂zv +∇Hp−∆Hv + f0k × v = 0,
∂zp+ T = 0,
∇H · v + ∂zw = 0,
∂tT + v · ∇HT + w

(

∂zT + 1
h

)

− ∂2zT = 0,

(3.2)
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in Ω = M × (−h, h), with M = (0, L1) × (0, L2). Same to the previous subsection,
we again complement it with the boundary and initial conditions (2.7)–(2.9).

Existence and uniqueness of strong solutions, up to any finite time T ∈ (0,∞), to
the PEs with horizontal viscosity and vertical diffusivity, i.e. system (3.2), is much
more complicated than that to the PEs with both horizontal viscosity and horizontal
diffusivity, i.e. system (3.1). In fact, due to the “mismatching of regularities” between
v and T in system (3.2), even the definition of strong solutions is not standard.

In order to give the definition of strong solutions, we introduce the following func-
tions

u = ∂zv, θ = ∇⊥
H · v, η = ∇H · v +

∫ z

−h

Tdξ − 1

2h

∫ h

−h

∫ z

−h

Tdξdz, (3.3)

where ∇⊥
H = (−∂y , ∂x).

Strong solutions to system (3.2), subject to (2.7)–(2.9), are defined as follows.

Definition 3.1. Given a positive time T . Let v0 ∈ H2(Ω) and T0 ∈ H1(Ω), with
∫ h

−h
∇H · v0(x, y, z)dz = 0 and ∇HT0 ∈ L4(Ω), be two periodic functions, such that

they are even and odd in z, respectively. A pair (v, T ) is called a strong solution to
system (3.2), subject to (2.7)–(2.9), in Ω× (0, T ), if

(i) v and T are periodic in x, y, z, and they are even and odd in z, respectively;
(ii) v and T have the regularities

v ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)), ∂tv ∈ L2(0, T ;H1(Ω)),

T ∈ L∞(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), ∂tT ∈ L2(0, T ;L2(Ω)),

(∇Hu, ∂zT ) ∈ L2(0, T ;H1(Ω)), ∇HT ∈ L∞(0, T ;L4(Ω)),

η ∈ L2(0, T ;H2(Ω)), θ ∈ L2(0, T ;H2(Ω));

(iii) v and T satisfy system (3.2) pointwisely, a.e. in Ω × (0, T ), with w given by
(2.10), and fulfill the initial condition (2.9).

Remark 3.2. (i) The regularities in Definition 3.1 seem a little bit nonstandard.
This is caused by the “mismatching” of regularities between the horizontal momen-
tum equation (3.2)1 and the temperature equation (3.2)4: a term involving the hori-
zontal derivatives of the temperature appears in the horizontal momentum equation,
but it is only in the vertical direction that the temperature has dissipation. More pre-
cisely, though one can obtain the regularity that ∇H∂zv ∈ L2(0, T ;H1(Ω)), which
is included in Definition (3.1), we have no reason to ask for the regularity that
∇2

Hv ∈ L2(0, T ;H1(Ω)), under the assumption on the initial data in Definition 3.1.
In fact, recalling the regularity theory for the parabolic system, and checking the hori-
zontal momentum equation (3.2)1, the regularity that ∇2

Hv ∈ L2(0, T ;H1(Ω)) appeals
to somehow ∇2

HT ∈ L2(Ω×(0, T )); however, this last requirement can not be fulfilled,
because we only have the smoothing effect in the vertical direction for the temperature.
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(ii) As stated in (i), one can not expect such regularity that ∇2
Hv ∈ L2(0, T ;H1(Ω)).

However, with the help of η and θ, in (3.3), one can expect that some appropriate
combinations of ∇Hv and T can indeed have the second order spatial derivatives, that
is (η, θ) ∈ L2(0, T ;H2(Ω)), as included in Definition 3.1.

We have the following existence and uniqueness result:

Theorem 3.3 (cf. [15]). Given a positive time T ∈ (0,∞). Let v0 ∈ H2(Ω) and

T0 ∈ H1(Ω) ∩ L∞(Ω), with
∫ h

−h
∇H · v0(x, y, z)dz = 0 and ∇HT0 ∈ L4(Ω), be two

periodic functions, such that they are even and odd in z, respectively. Then, system
(3.2), subject to (2.7)–(2.9), in Ω× (0, T ), has a unique strong solution (v, T ), which
is continuously depending on the initial data.

If we assume, in addition, that T0 ∈ H2(Ω), then (v, T ) obeys the following addi-
tional regularities

T ∈ L∞(0, T ;H2(Ω)) ∩ C(0, T ;H1(Ω)), ∂tT ∈ L2(0, T ;H1(Ω)),

∇Hv ∈ L2(0, T ;H2(Ω)), ∂zT ∈ L2(0, T ;H2(Ω)),

for any time T ∈ (0,∞).

Remark 3.3. Generally, if we imposed more regularities on the initial data, then
one can expect more regularities of the strong solutions, and in particular, the strong
solution will belong to C∞(Ω × [0,∞)), as long as the initial datum lies in C∞(Ω).
However, one can not expect that the solutions have as high regularities as desired, if
the initial data are not accordingly smooth enough.

The main difficulties for the mathematical analysis of system (3.2) come from three
aspects: one is the strongly nonlinear term w∂zv, the next one is the absence of the
vertical viscosity and the horizontal diffusivity, and the last one is the “mismatching”
of regularities between the horizontal momentum equations and the temperature
equation. To deal with the difficulties caused by the strongly nonlinear term w∂zv,
one can adopt the ideas that have been frequently used in [11–13, 16–18], i.e. using
the Ladyzhenskaya type inequalities for a class of integrals in 3D, among which the
prototype ones are stated in the following:

Lemma 3.3 (cf. [13]). The following inequalities hold true
∫

M

(
∫ h

−h

|φ(x, y, z)|dz
)(

∫ h

−h

|ϕ(x, y, z)ψ(x, y, z)|dz
)

dxdy

≤Cmin
{

‖φ‖
1

2

2

(

‖φ‖
1

2

2 + ‖∇Hφ‖
1

2

2

)

‖ϕ‖2‖ψ‖
1

2

2

(

‖ψ‖
1

2

2 + ‖∇Hψ‖
1

2

2

)

,

‖φ‖2‖ϕ‖
1

2

2

(

‖ϕ‖
1

2

2 + ‖∇Hϕ‖
1

2

2

)

‖ψ‖
1

2

2

(

‖ψ‖
1

2

2 + ‖∇Hψ‖
1

2

2

)}

,

and
∫

M

(
∫ h

−h

|φ(x, y, z)|dz
)(

∫ h

−h

|ϕ(x, y, z)∇HΨ(x, y, z)|dz
)

dxdy
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≤Cmin
{

‖φ‖
1

2

2

(

‖φ‖
1

2

2 + ‖∇Hφ‖
1

2

2

)

‖ϕ‖2‖Ψ‖
1

2
∞‖∇2

HΨ‖
1

2

2 ,

‖φ‖2‖ϕ‖
1

2

2

(

‖ϕ‖
1

2

2 + ‖∇Hϕ‖
1

2

2

)

‖Ψ‖
1

2
∞‖∇2

HΨ‖
1

2

2

}

,

for every φ, ϕ, ψ,Ψ such that the right hand sides make sense and are finite. More-
over, if φ has the form φ = ∇Hf , for a function f , then by the Poincáre inequality,

the lower order term ‖φ‖
1

2

2 in the parentheses can be dropped in the above inequalities,
and the same words can be said for ϕ and ψ.

Concerning the difficulties caused by the absence of the vertical viscosity, we can
adopt the idea in the previous subsection. As stated in the previous subsection, the
absence of the vertical viscosity forces us to estimate ‖v‖2∞, which appears as factors
on the right hand sides of the energy inequalities. To get this estimate, making use
of the growth of the Lq norms of v, i.e. Proposition 3.1, and applying the logarithmic
Sobolev limiting embedding inequality, i.e. Lemma 3.1, we can estimate ‖v‖2∞ as

‖v‖2∞ ≤ C log(e + ‖v‖W 1,4).

Recalling the definitions of u, η and θ, in (3.3), by the elliptic estimates, one can
control ‖v‖W 1,4 by the L4-norms of u, η and θ. Note that (u, η, θ), defined by (3.3),
satisfies

∂tu+ (v · ∇H)u+ w∂zu−∆Hu+ f0k × u

=− (u · ∇H)v + (∇H · v)u+∇HT, (3.4)

∂tη −∆Hη +∇H · [(v · ∇H)v + w∂zv + f0k × v]

=− ∂zT + wT +

∫ z

−h

∇H · (vT )dξ + f(x, y, t), (3.5)

∂tθ −∆Hθ =−∇⊥
H · [(v · ∇H)v + w∂zv + f0k × v], (3.6)

where f = f(x, y, t) is given by

f =
1

2h

∫ h

−h

(
∫ z

−h

∇H · (vT )dξ + wT +∇H ·
(

∇H · (v ⊗ v) + f0k × v
)

)

dz.

By performing the L2 energy estimate to the above system for (u, η, θ), and with the
help of the control on ‖v‖2∞ stated in the above, we can obtain the a priori “ lower
order estimates ”. Actually, we have the following:

Proposition 3.2 (cf. [14]). Let (v, T ) be a strong solution to system (3.2), subject
to (2.7)–(2.9), with initial data (v0, T0) satisfying the assumptions in Theorem 3.3.
Let T ∗ be the maximal existence time of (v, T ). Then, we have the estimate

sup
0≤s≤t

(‖θ‖22 + ‖η‖22 + ‖u‖44) +
∫ t

0

(‖∇Hθ‖22 + ‖∇Hη‖22 + ‖∇Hu‖22)ds ≤M1,

for any t ∈ (0, T ∗), where M1 is a positive constant.
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To obtain the strong solutions up to any finite time, we still need to obtain “ higher
order estimates ”. When doing the energy inequalities for the horizontal derivatives
of T , caused by the absence of the horizontal diffusivity in the temperature equation,
one need appeal to somehow L∞ estimate on ∇Hv to deal with the hardest term
∫

Ω
|∇Hv||∇HT |4dxdydz. To deal with such kind term, we decompose v as

v(x, y, z, t) = ζ(x, y, z, t)−̟(x, y, z, t),

where ̟(·, z, t) is the unique solution to the elliptic system

{ ∇H ·̟(x, y, z, t) = Φ(x, y, z, t)− 1
|M |

∫

M
Φ(x, y, z, t)dxdy, in Ω,

∇⊥
H ·̟(x, y, z, t) = 0, in Ω,

∫

M
̟(x, y, z, t)dxdy = 0,

where Φ is the function given by

Φ(x, y, z, t) =

∫ z

−h

T (x, y, ξ, t)dξ − 1

2h

∫ h

−h

∫ z

−h

T (x, y, ξ, t)dξdz.

Roughly speaking, ̟ captures the temperature-dependent part of the velocity, while
ζ captures the temperature-independent part of the velocity. Recalling the definitions
of η and θ, one can easily check that

∇H · ζ = η − 1

|M |

∫

M

Φdxdy, ∇⊥
H · ζ = θ.

With the help of the above decomposition on v, performing higher order energy
estimates to system (3.4)–(3.6), and using the classical logarithmic Sobolev limiting
inequalities of the Brézis-Gallouet-Wainger [7, 8] and Beale-Kato-Majda [3] types to ζ
and ̟, respectively, one can deal with the the hardest term

∫

Ω
|∇Hv||∇HT |4dxdydz,

and thus get the higher order energy inequality. We have the following proposition:

Proposition 3.3 (cf. [14]). Let (v, T ) be a strong solution to system (3.2), subject
to (2.7)–(2.9), with initial data (v0, T0) satisfying the assumptions in Theorem 3.3.
Let T ∗ be the maximal existence time of (v, T ). Then, we have the estimate

sup
0≤s≤t

(‖∇Hη‖22 + ‖∇Hθ‖22 + ‖∇u‖22 + ‖∇T‖22 + ‖∇HT‖44)

+

∫ t

0

(‖∆Hη‖22 + ‖∆Hθ‖22 + ‖∇H∇u‖22 + ‖∇∂zT‖22)ds ≤M2,

for any t ∈ (0, T ∗), where M2 is a positive constant.

With the help of Proposition 3.2 and Proposition 3.3, it is then standard to show
the existence and uniqueness of strong solutions to system (3.2), subject to (2.7)–
(2.9), up to any finite time T ∈ (0,∞).
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4. Rigorous justification of the hydrostatic balance

Recall that the hydrostatic balance, i.e. (1.3), is a fundamental equation in the
PEs, which is derived by taking the formal small aspect ratio limit to the Boussinesq
equations (1.1), as stated in section 1. This section is devoted to the rigorous jus-
tification of this small aspect ratio limit. For simplicity, we ignore the temperature
equation and the rotating term f0k×v; however, the same results hold for the general
case, and they can be proved similarly.

Consider the anisotropic Navier-Stokes equations

∂tU + (U · ∇)U − µ∆HU − ν∂2zU +∇p = 0,

in the ε-dependent domain Ωε := M × (−ε, ε), where M = (0, L1) × (0, L2). Here
U = (v, w), with v = (v1, v2). As in section 1, we suppose that µ = 1 and ν = ε2.
Introduce the new scaled unknowns

uε = (vε, wε), vε(x, y, z, t) = v(x, y, εz, t),

wε(x, y, z, t) =
1

ε
w(x, y, εz, t), pε(x, y, z, t) = p(x, y, εz, t),

for any (x, y, z) ∈ Ω :=M × (−1, 1), and for any t ∈ (0,∞). Then, uε = (vε, wε) and
pε satisfy the following scaled Navier-Stokes equations (SNS)

(SNS)







∂tvε + (vε · ∇H)vε + wε∂zvε −∆vε +∇Hpε = 0,
∇H · vε + ∂zwε = 0,
ε2(∂twε + vε · ∇Hwε + wε∂zwε −∆wε) + ∂zpε = 0,

(4.1)

defined in the fixed domain Ω.
We complement (4.1) with the boundary and initial conditions

vε, wε and pε are periodic in x, y, z, (4.2)

vε, wε and pε are even, odd and odd in z, respectively, (4.3)

(vε, wε)|t=0 = (v0, w0). (4.4)

Note that (4.3) is a symmetry condition, which is preserved by (4.1), in other words,
it is automatically satisfied for all time, as long as it is satisfied initially.

Formally, by taking the limit ε → 0 in (SNS), one obtains the following PEs

(PEs)







∂tv + (v · ∇H)v + w∂zv −∆v +∇Hp = 0,
∇H · v + ∂zw = 0,
∂zp = 0.

(4.5)

Recall that the solutions under consideration satisfy the symmetry condition (4.3),
so does the initial datum u0 = (v0, w0). Since w0 is odd in z, one has w0|z=0 = 0.
Thus, it follows from the incompressibility condition that

w0(x, y, z) = −
∫ z

0

∇H · v0(x, y, z′)dz′, (4.6)
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for any (x, y) ∈ M and z ∈ (−1, 1). Due to this fact, we only need to specify the
horizontal components v0, while the vertical component w0 is uniquely determined
in terms of v0 through (4.6).

In case that the initial data v0 ∈ H1(Ω), one can not generally expect that w0,
determined by (4.6), belongs to H1(Ω). Instead, one should consider u0 = (v0, w0)
as an element in L2(Ω), and thus can only obtain a global weak solution (vε, wε) to
(4.1), subject to (4.2)–(4.3). For this case, we have the following theorem concerning
the strong convergence:

Theorem 4.1 (cf. [45]). Given a periodic function v0 ∈ H1(Ω), such that it is even
in z, and

∇H ·
(
∫ 1

−1

v(x, y, z)dz

)

= 0,

∫

Ω

v0(x, y, z)dxdydz = 0.

Let (vε, wε) and (v, w), respectively, be an arbitrary weak solution to (SNS) and the
unique global strong solution to (PEs), subject to (4.2)–(4.3). Denote

(Vε,Wε) = (vε − v, wε − w).

Then, we have the a priori estimate

sup
0≤t<∞

‖(Vε, εWε)‖22) +
∫ ∞

0

‖∇(Vε, εWε)‖22dt ≤ Cε2(‖v0‖22 + ε2‖w0‖22 + 1)2,

for any ε ∈ (0,∞), where C is a positive constant depending only on ‖v0‖H1, L1, and
L2. As a consequence, we have the following strong convergences

(vε, εwε) → (v, 0), in L∞(0,∞;L2(Ω)),

(∇vε, ε∇wε, wε) → (∇v, 0, w), in L2(0,∞;L2(Ω)),

and the convergence rate is of the order O(ε).

If, in addition, we suppose that v0 ∈ H2(Ω), then u0 = (v0, w0) ∈ H1(Ω), with w0

given by (4.6). For this case, we have the following theorem concerning the strong
convergence, in which the convergence is stronger than that in Theorem 4.1:

Theorem 4.2 (cf. [45]). Given a periodic function v0 ∈ H2(Ω), such that it is even
in z, and

∇H ·
(
∫ 1

−1

v(x, y, z)dz

)

= 0,

∫

Ω

v0(x, y, z)dxdydz = 0.

Let (vε, wε) and (v, w), respectively, be the unique local strong solution to (SNS) and
the unique global strong solution to (PEs), subject to (4.2)–(4.3). Denote

(Vε,Wε) = (vε − v, wε − w).

Then, there is a positive constant ε0 depending only on the initial norm ‖v0‖H2,
L1 and L2, such that, for any ε ∈ (0, ε0), the strong solution (vε, wε) exists globally
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in time, and the following estimate holds

sup
0≤t<∞

‖(Vε, εWε)‖2H1 +

∫ ∞

0

‖∇(Vε, εWε)‖2H1dt ≤ Cε2,

for a constant C depending only on ‖v0‖H2, L1 and L2. As a consequence, the fol-
lowing strong convergences hold

(vε, εwε) → (v, 0), in L∞(0,∞;H1(Ω)),

(∇vε, ε∇wε, wε) → (∇v, 0, w), in L2(0,∞;H1(Ω)),

wε → w, in L∞(0,∞;L2(Ω)),

and the convergence rate is of the order O(ε).

Remark 4.1. (i) Weak convergence from (SNS) to (PEs), as the aspect ratio goes to
zero, was established in [1]. However, since only the weak convergence was obtained
in [1], no convergence rate was provided there. While Theorems 4.1 and 4.2 show
that the strong convergence from (SNS) to (PEs) is global and uniform in time, and
the convergence rate is of the same order to the aspect ratio ε.

(ii) The assumption
∫

Ω
v0dxdydz = 0 is imposed only for the simplicity of the proof,

and the same result still holds for the general case. One can follow the proof presented
in [45], and do the the a priori estimates on vε − v0Ω and v − v0Ω, in stead of on vε
and v themselves, where v0Ω =

∫

Ω
v0dxdydz.

(iii) Generally, if v0 ∈ Hk, with k ≥ 2, then

sup
0≤t<∞

‖(Vε, εWε)‖2Hk−1 +

∫ ∞

0

‖∇(Vε, εWε)‖2Hk−1dt ≤ Cε2,

for a positive constant C depending only on ‖v0‖Hk , L1 and L2. This can be done
by carrying out higher energy estimates to the difference system between (SNS) and
(PEs).

(iv) Observing the smoothing effects of the (SNS) and (PEs) to the strong solutions,
one can also show, in Theorem 4.2 (but not in Theorem 4.1), the strong convergence
in higher spaces, away from the initial time, in particular, (vε, wε) → (v, w), in
Ck(Ω× (T,∞)), for any given positive time T and nonnegative integer k.

The proofs of Theorem 4.1 and Theorem 4.2 consist of two main ingredients: the
a priori estimates on the global strong solution (v, w) to (PEs), and the a priori
estimates on the difference Uε = (Vε,Wε) := (vε, wε) − (v, w). The desired a priori
estimates for strong solution (v, w) to (PEs), subject to (4.2)–(4.3) is stated in the
following proposition.

Proposition 4.1 (cf. [45]). Suppose that v0 ∈ Hm, with m = 1 or m = 2. Let (v, w)
be the unique global strong solution to (PEs), subject to (4.2)–(4.3). Then, we have
the following:
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(i) If v0 ∈ H1(Ω), then we have the estimate

sup
0≤t<∞

‖v‖2H1 +

∫ ∞

0

(‖∇v‖2H1 + ‖∂tv‖22)dt ≤ C(‖v0‖H1, L1, L2);

(ii) If v0 ∈ H2(Ω), then we have the estimate

sup
0≤t<∞

‖v‖2H2 +

∫ ∞

0

(‖∇v‖2H2 + ‖∂tv‖2H1)dt ≤ C(‖v0‖H2, L1, L2).

The treatments on the estimates of the difference function Uε are different in the
proofs of Theorem 4.1 and Theorem 4.2. For the case of Theorem 4.1, since (vε, wε) is
only a weak solution, one can only perform the energy estimates in the framework of
the weak solutions. We adopt the idea, which was introduced by Serrin [58] to prove
the weak-strong uniqueness of the Navier-Stokes equations; however, the difference
for our case is that, the “strong solutions” are now those for (PEs), but the “weak
solutions” are those for (SNS), or intuitively, we are somehow doing the weak-strong
uniqueness between two different systems. Precisely, we will: (i) use (v, w) as the
testing functions for (SNS); (ii) test (PEs) by vε; (iii) perform the basic energy identity
of (PEs); (iv) use the energy inequality for (SNS). Then, we get the desired a priori
estimates for Uε, stated in Theorem 4.1.

For the case of Theorem 4.2, since the solutions considered are strong ones, one
can get the desired global in time estimates on Uε by using the energy approach to
the system for Uε, which reads as

∂tVε + (Uε · ∇)Vε −∆Vε +∇HPε + (u · ∇)Vε + (Uε · ∇)v = 0,

∇H · Vε + ∂zWε = 0,

ε2(∂tWε + Uε · ∇Wε −∆Wε + Uε · ∇w + u · ∇Wε) + ∂zPε

= −ε2(∂tw + u · ∇w −∆w).

However, some arguments and justifications are required. First, since the initial value
of (Vε,Wε) vanishes, and there is a small coefficient ε2 in the front of the external
forcing terms in the above system, one can perform the energy approach and adopting
the smallness argument to get the desired a priori estimate on (Vε,Wε). In particular,
we have the following proposition:

Proposition 4.2 (cf. [45]). There exists a positive constant δ0, depending only on
L1 and L2, such that, the following estimate holds

sup
0≤s≤t

(‖∇Vε‖22 + ε2‖∇Wε‖22) +
∫ t

0

(‖∆Vε‖22 + ε2‖∆Wε‖22)ds

≤Cε2eC(1+ε4)
∫ t

0
‖∆v‖2

2
‖∇∆v‖2

2
ds

∫ t

0

(1 + ‖∆v‖22)(‖∇∂tv‖22 + ‖∇∆v‖22)ds,
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for any t ∈ [0, T ∗
ε ), as long as

sup
0≤s≤t

(‖∇Vε‖22 + ε2‖∇Wε‖22) ≤ δ20 ,

where Tε∗ is the maximal existence time of (vε, wε), and C is a positive constant
depending only on L1 and L2.

Second, one has to pay attention that, when performing the energy estimates to
the horizontal momentum equations for Vε, no more information about Wε can be
used other than that comes from the incompressibility condition, in other words, the
term Wε∂zVε, in the horizontal momentum equations for Vε, can be only dealt with
by expressing Wε as

Wε(x, y, z, t) = −
∫ z

0

∇H · Vε(x, y, z′, t)dz′.

This is because the explicit dynamical information of Wε, which comes from the
vertical momentum equation, is always tied up with the parameter ε, which will
finally go to zero, in other words, the vertical momentum equation for Wε provides
no ε-independent dynamical information ofWε. Keeping these in mind, we can obtain
the desired a priori estimate stated in Theorem 4.2.

5. The PEs with a certain class of discontinuous initial data

In this section, we present some result on the conditional uniqueness of weak solu-
tions to the PEs, which in particular implies the global existence and uniqueness of
weak solutions to the PEs, with a certain class of discontinuous initial data.

For simplicity, we consider the following version of the PEs:
{

∂tv + (v · ∇H)v + w∂zv +∇Hp(x, y, t)−∆v + f0k × v = 0,
∇H · v + ∂zw = 0,

(5.1)

in the spatial domain Ω =M × (−h, 0), with M = (0, L1)× (0, L2). We complement
(5.1) with the following boundary and initial conditions

v, w and p are periodic in x, y and z, (5.2)

v and w are even and odd in z, respectively, (5.3)

v|t=0 = v0. (5.4)

Note that, as before, the vertical velocity w can be uniquely expressed in terms
of the horizontal velocity v, through the incompressibility condition (5.1)2 and the
symmetry condition (5.3), namely

w(x, y, z, t) = −∇H ·
(
∫ z

0

v(x, y, ξ, t)dξ

)

.
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As a result, system (5.1), subject to (5.2)–(5.4), is equivalent to the following










∂tv + (v · ∇H)v + w∂zv +∇Hp(x
H , t)−∆v + f0k × v = 0,

∇H ·
(

∫ h

−h
v(x, y, z, t)dz

)

= 0,

w(x, y, z, t) = −∇H ·
(∫ z

0
v(x, y, ξ, t)dξ

)

,

(5.5)

in the domain Ω =M × (−h, h), subject to the boundary and initial conditions

v is periodic in x, y and z, and is even in z, (5.6)

v|t=0 = v0. (5.7)

Define two spaces X and H as

X = {v ∈ L6(Ω)|v is periodic in z, and ∂zv ∈ L2(Ω)},
and

H =

{

v ∈ L2(Ω)

∣

∣

∣

∣

v is periodic in (x, y, z), even in z,

and satisfies ∇H ·
(
∫ h

−h

v(x, y, z)dz

)

= 0

}

.

For any initial data v0 ∈ H, following the arguments in [47–49], there is a global
weak solution to system (5.5)–(5.7); however, as we mentioned before, in section 1,
it is still an open question to show the uniqueness of weak solutions to the PEs.
Nevertheless, we can prove the following theorem on the conditional uniqueness of
weak solutions to the PEs.

Theorem 5.1 (cf. [46]). Let v be a global weak solution to system (5.5)–(5.7). Sup-
pose that there is a positive time Tv, such that

v(x, t) = v̄(x, t) + V (x, t), x ∈ Ω, t ∈ (0, Tv),

∂z v̄ ∈ L∞(0, Tv;L
2(Ω)) ∩ L2(0, Tv;H

1
per(Ω)), V ∈ L∞(Ω× (0, Tv)).

Then, there is a positive constant ε0 depending only on h, such that v is the unique
global weak solution to system (5.5)–(5.7), with the same initial data as v, provided

sup
0<t<T ′

v

‖V ‖∞ ≤ ε0,

for some T ′
v ∈ (0, Tv).

To prove Theorem 5.1, we first show that any weak solution to the primitive equa-
tions is smooth in the space-time domain Ω̄ × (0,∞), that is we have the following
proposition.

Proposition 5.1 (cf. [46]). Let v be a weak solution to system (5.5)–(5.7). Then, v
is smooth away from the initial time, i.e. v ∈ C∞(Ω̄× (0,∞)).
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The above proposition can be intuitively seen by noticing that a weak solution has
H1 regularity, at almost any time immediately after the initial time, and recalling
that, for any H1 initial data, there is a unique global strong solution to the PEs;
however, in order to rigorously prove this fact, we need the the weak-strong unique-
ness result for the PEs, see the next proposition, below, where we adopt the idea of
Serrin [58].

Proposition 5.2 (cf. [46]). Given the initial data v0 ∈ H1
per(Ω)∩H. Let vs and vw be

the unique global strong solution and an arbitrary global weak solution, respectively,
to system (5.5)–(5.7), with the same initial data v0. Then, we have vs ≡ vw.

Since weak solutions are smooth immediately after the initial time, one can perform
the energy estimates to the difference system between two weak solutions, on any
finite time interval away from the initial time. Next, focusing on the short time
interval (0, Tv), and using the decomposition stated in the theorem, and handling
the nonlinear terms involving each parts in their own ways, we then achieve the
uniqueness.

It should be pointed out that one can not expect that all weak solutions to the
PEs, with general initial data in H, have the decomposition stated in the above
theorem. In fact, by the weakly lower semi-continuity of the norms, in order to
have such decomposition, it is necessary to require that the initial data v0 has the
decomposition v0 = v̄0 + V0, with ∂z v̄0 ∈ L2 and V0 ∈ L∞. Observing this, it is
necessary to state the following theorem on the global existence and uniqueness of
weak solutions to the PEs with such kind of initial data.

Theorem 5.2 (cf. [46]). Suppose that the initial data v0 = v̄0 + V0, with v̄0 ∈ X ∩H
and V0 ∈ L∞(Ω) ∩H. Then the following hold:

(i) There is a global weak solution v to system (5.5)–(5.7), such that

v(x, t) = v̄(x, t) + V (x, t), x ∈ Ω, t ∈ (0,∞),

∂z v̄ ∈ L∞
loc([0,∞);L2(Ω)) ∩ L2

loc([0,∞);H1
per(Ω)),

sup
0<s<t

‖V ‖∞(s) ≤ µ(t)‖V0‖∞, t ∈ (0,∞),

where

µ(t) = C0(1 + ‖v0‖4)40(t + 1)2 exp{C0e
2t(t+ 1)(1 + ‖v0‖4)4},

for some positive constant C0 depending only on h;
(ii) Let ε0 be the positive constant in Theorem 5.1, then the above weak solution is

unique, provided µ(0)‖V0‖∞ ≤ ε0
2
.

The uniqueness part of Theorem 5.2 is a direct consequence of the estimate in
(i) and Theorem 5.1. So the key ingredient of the proof of Theorem 5.2 is to find
the required decomposition. To this end, we regularize the initial data v0, and solve
system (5.5)–(5.7), with the regularized initial data v0ε, obtaining a sequence of
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solutions vε, which approach v, as ε → 0. Due to the lower semi-continuity of norms,
it suffices to find the corresponding decomposition of vε. We decompose vε as

vε = v̄ε + Vε,

where Vε is the unique solution to the following linear system

∂tVε + (vε · ∇H)Vε + wε∂zVε +∇HPε(x
H , t)−∆Vε + f0k × Vε = 0, (5.8)

∫ h

−h
∇H · Vε(xH , z, t)dz = 0, (5.9)

subject to the periodic boundary condition, with initial data V0ε.
The desired estimates on Vε and v̄ε are stated in the next proposition.

Proposition 5.3 (cf. [46]). We have the following estimates

sup
0≤s≤t

‖Vε‖∞(s) ≤ K3(t)‖V0‖∞,

sup
0≤s≤t

(‖v̄ε‖22 + ‖∂z v̄ε‖22) +
∫ t

0

(‖∇v̄ε‖22 + ‖∇∂z v̄ε‖22)dτ ≤ K4(t),

where K3 and K4 are continuous function on [0,∞), determined only by h, and the
initial norms ‖v0‖6, ‖v̄0‖2 and ‖V0‖∞.

As an application of Theorem 5.2, we have the following result, which generalizes
the results in [5, 36, 57, 63].

Corollary 5.1 (cf. [46]). For any v0 ∈ X ∩ H (or v0 ∈ Cper(Ω̄) ∩ H), there is a
constant σ0, depending only on h and the upper bound of ‖v0‖4, such that for any
V0 = v0 + V0, with V0 ∈ L∞(Ω) ∩ H and ‖V0‖∞ ≤ σ0, system (5.5)–(5.7) with initial
data V0 has a unique weak solution, which has the regularities stated in Theorem 5.2.

Example 5.1 (cf. [46]). Given a constant vector a = (a1, a2), and two positive num-
bers δ and η, with η ∈ (0, h). Set v0 = a|z|δ, V0 = σχ(−η,η)(z), and V0 = v0 + V0, for
z ∈ (−h, h), with σ = (σ1, σ2), where χ(−η,η)(z) is the characteristic function of the
interval (−h, h). Extend v0 and V0, and consequently V0, periodically to the whole
space, and still use the same notations to denote the extensions. Then, one can easily
check that v0 ∈ Cper(Ω̄)∩H and V0 ∈ L∞(Ω)∩H. By Corollary 5.1, there is a positive
constant ε0 = ε0(a, δ, η, h), such that, for any σ = (σ1, σ2), with 0 < |σ| ≤ ε0, system
(5.5)–(5.7) has a unique weak solution, with initial data V0. Note that

V0 = a|z|δ + σχ(−η,η)(z), z ∈ (−h, h).

One can easily verify that V0 lies neither in X ∩H nor in Cper(Ω̄) ∩H, and thus the
results established in [5, 36, 57, 63] cannot be applied to prove the uniqueness of weak
solutions with such kind of initial data.
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6. A tropical atmosphere model

In the tropical zone of the earth, the wind in the lower troposphere is of equal
magnitude, but with opposite sign to that in the upper troposphere, in other words,
the primary effect is captured in the first baroclinic mode, i.e. on the first mode of
the fluctuation of the solution about its vertical average. However, for the study of
the tropical-extratropical interactions, where the transport of momentum between
the barotropic (the spatial vertical average of the solution) and baroclinic (the fluc-
tuation of the solution about the barotropic part) modes plays an important role, it
is necessary to retain both the barotropic and baroclinic modes of the velocity.

Consider the following version of PEs (see, e.g., [28, 42, 50, 56, 66, 67, 69]) for the
atmosphere, in the layer R2 × (0, H), for a positive constant H ,















∂tV+ (V · ∇h)V+W∂zV− µ∆V+∇hΦ = 0,
∂zΦ = gΘ

θ0
,

∂tΘ+V · ∇hΘ+W∂zΘ+ N2θ0
g
W = SΘ,

∇h ·V+ ∂zW = 0,

(6.1)

where the unknowns V = (V1, V2)
T , W , Φ and Θ are the horizontal velocity field,

vertical velocity, pressure and potential temperature, respectively, while the positive
constant µ is the viscosity coefficient. The total potential temperature is given by

Θtotal(x, y, z, t) = θ0 + θ̄(z) + Θ(x, y, z, t),

where θ0 is a positive reference constant temperature and θ̄ defines the vertical profile
background stratification, satisfying N2 = (g/θ0)∂z θ̄ > 0, where N is the Brunt-
Väisälä buoyancy frequency. Here we use ∇h = (∂x, ∂y) to denote the horizontal

gradient and V⊥ = (−V2, V1)T .
Recall that the main effect of the tropical atmosphere is captured in the first baro-

clinic mode. By taking also the tropical-extratropical interactions into consideration,
we can impose an ansatz of the form

(

V

Φ

)

(x, y, z, t) =

(

u
p

)

(x, y, t) +

(

v
p1

)

(x, y, t)
√
2 cos(πz/H)

and
(

W
Θ

)

(x, y, z, t) =

(

w
θ

)

(x, y, t)
√
2 sin(πz/H),

which carry the barotropic and first baroclinic modes of the unknowns.
By performing the Galerkin projection of the PEs in the vertical direction onto the

barotropic mode and the first baroclinic mode, one derives the following dimensionless
interaction, between the barotropic mode and the first baroclinic mode, system for
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the tropical atmosphere (see [50], and also [23, 32, 52, 62], for the details):














∂tu+ (u · ∇)u−∆u+∇p+∇ · (v ⊗ v) = 0,
∇ · u = 0,
∂tv + (u · ∇)v −∆v + (v · ∇)u = ∇θ,
∂tθ + u · ∇θ −∇ · v = Sθ,

(6.2)

where u = (u1, u2) is the barotropic velocity, and v = (v1, v2), p and θ, respectively,
are the first baroclinic modes of the velocity, pressure and the temperature. The
system is now defined on R

2, and the operators ∇ and ∆ are therefore those for the
variables x and y.

An important ingredient of the tropical atmospheric circulation is the water vapour.
Water vapour is the most abundant greenhouse gas in the atmosphere, and it is re-
sponsible for amplifying the long-term warming or cooling cycles. Therefore, one
should also consider the coupling with an equation modeling moisture in the atmo-
sphere.

Following [23], we couple system (6.2) with the following large-scale moisture equa-
tion

∂tq + u · ∇q + Q̄∇ · v = −P, (6.3)

where Q̄ is the prescribed gross moisture stratification. The precipitation rate P is
parameterized, according to [23, 33, 55, 62], as

P =
1

ε
(q − αθ − q̂)+, (6.4)

where f+ = max{f, 0} denotes the positive part of f , ε is a convective adjustment
time scale parameter, which is usually very small, and α and q̂ are constants, with
q̂ > 0.

In order to close system (6.2)–(6.3), one still needs to parameterize the source term
Sθ in the temperature equation. Generally, the temperature source Sθ combines three
kinds of effects: the radiative cooling, the sensible heat flux and the precipitation P .
For simplicity, and as in [23, 53], we only consider in this paper the precipitation
source term, i.e., we set

Sθ = P,

with P given by (6.4).
As in [23, 53], by introducing the equivalent temperature Te and the equivalent

moisture qe as
Te = q + θ, qe = q − αθ − q̂,

system (6.2)–(6.3) can be rewritten as

∂tu+ (u · ∇)u−∆u+∇p+∇ · (v ⊗ v) = 0, (6.5)

∇ · u = 0, (6.6)

∂tv + (u · ∇)v −∆v + (v · ∇)u =
1

1 + α
∇(Te − qe), (6.7)
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∂tTe + u · ∇Te − (1− Q̄)∇ · v = 0, (6.8)

∂tqe + u · ∇qe + (Q̄+ α)∇ · v = −1 + α

ε
q+e , (6.9)

in R
2 × (0,∞), where the constants α and Q̄ are required to satisfy (see [23])

0 < Q̄ < 1, α + Q̄ > 0. (6.10)

Recalling that the adjustment relaxation time ε in (6.9) is small, both physically
and mathematically, it is important to study the behavior of the solutions to system
(6.5)–(6.9), when ε approaches to zero. Formally, by taking the relaxation limit, as
ε→ 0+, system (6.5)–(6.9) will converge to the following limiting system

∂tu+ (u · ∇)u− µ∆u+∇p+∇ · (v ⊗ v) = 0, (6.11)

∇ · u = 0, (6.12)

∂tv + (u · ∇)v − µ∆v + (v · ∇)u =
1

1 + α
∇(Te − qe), (6.13)

∂tTe + u · ∇Te − (1− Q̄)∇ · v = 0, (6.14)

∂tqe + u · ∇qe + (Q̄ + α)∇ · v ≤ 0, (6.15)

qe ≤ 0, (6.16)

∂tqe + u · ∇qe + (Q̄ + α)∇ · v = 0, a.e. on {qe < 0}. (6.17)

Note that equation (6.9) is now replaced by three inequalities (6.15)–(6.17).
Inequality (6.15) comes from equation (6.9), by noticing the negativity of the term

−1+α
ε
q+e , while inequality (6.16) is derived by multiplying both sides of equation

(6.9) by ε, and taking the formal limit ε → 0+. Inequality (6.17) can be derived by
the following heuristic argument: Let (uε, vε, Teε, qeε) be a solution to system (6.5)–
(6.9), and suppose that (uε, vε, Teε, qeε) converges to (u, v, Te, qe), with qe ≤ 0; for
any compact subset K of the set {(x, y, t) ∈ R

2 × (0,∞) | qe(x, y, t) < 0}, since qeε
converges to qe, one may have qeε < 0 on K, for sufficiently small positive ε; therefore,
by equation (6.9), it follows that ∂tqeε+uε ·∇qeε+(Q̄+α)∇· vε = 0, a.e. on K, from
which, by taking ε → 0+, one can see that (6.17) is satisfied, a.e. on K, and further
a.e. on {qe < 0}.

7. Global well-posedness of a tropical atmosphere model

In this section, we address the global well-posedness of strong solutions to the
Cauchy problem of the tropical atmosphere model (6.5)–(6.9) and its limiting system
(6.11)–(6.17). Strong convergence of the relaxation limit from (6.5)–(6.9) to the
limiting system (6.11)–(6.17) is also established.

Definition 7.1. Given a positive time T and the initial data (u0, v0, Te,0, qe,0). A
function (u, v, Te, qe) is called a strong solution to system (6.5)–(6.9), on R

2× (0, T ),
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with initial data (u0, v0, Te,0, qe,0), if it enjoys the following regularities

(u, v) ∈ C([0, T ];H1(R1)) ∩ L2(0, T ;H2(R2)),

(∂tu, ∂tv, ∂tTe, ∂tqe) ∈ L2(0, T ;L2(R2)),

(Te, qe) ∈ C([0, T ];L2(R2)) ∩ L∞(0, T ;H1(R2)),

and satisfies equations (6.5)–(6.9), a.e. on R
2 × (0, T ), and has the initial value

(u, v, Te, qe)|t=0 = (u0, v0, Te,0, qe,0).

Definition 7.2. A function (u, v, Te, qe) is called a global strong solution to system
(6.5)–(6.9), if it is a strong solution to system (6.5)–(6.9), on R

2 × (0, T ), for any
positive time T .

We have the following theorem on the global existence, uniqueness and well-
posedness of strong solutions to the Cauchy problem of system (6.5)–(6.9):

Theorem 7.1 (cf. [44]). Suppose that (6.10) holds, and the initial data

(u0, v0, Te,0, qe,0) ∈ H1(R2), with ∇ · u0 = 0. (7.1)

Then, we have the following:
(i) There is a unique global strong solution (u, v, Te, qe) to system (6.5)–(6.9), with

initial data (u0, v0, Te,0, qe,0), such that

sup
0≤t≤T

‖(u, v, Te, qe)(t)‖2H1 +

∫ T

0

(‖q+e ‖2H1

ε
+ ‖(u, v)‖2H2 + ‖∇u‖∞

)

dt

+

∫ T

0

‖(∂tu, ∂tv, ∂tTe)‖22dt ≤ C
(

α, Q̄, T , ‖(u0, v0, Te,0, qe,0)‖H1

)

,

for any positive time T , here and what follows, we use C(· · · ) to denote a general
positive constant depending only on the quantities in the parenthesis.

(ii) Suppose, in addition to (7.1), that qe,0 ≤ 0, a.e. on R
2, then

sup
0≤t≤T

‖q+e (t)‖22
ε

+

∫ T

0

‖∂tqe‖22dt ≤ C
(

α, Q̄, T , ‖(u0, v0, Te,0, qe,0)‖H1

)

,

for any positive time T .
(iii) Suppose, in addition to (7.1), that (∇Te,0,∇qe,0) ∈ Lm(R2), for some m ∈

(2,∞), then the following estimate holds

sup
0≤t≤T

‖(∇Te,∇qe)(t)‖2m ≤ C
(

α, Q̄, T , ‖(u0, v0, Te,0, qe,0)‖H1, ‖(∇Te,0,∇qe,0)‖m
)

,

for any positive time T , and the unique strong solution (u, v, Te, qe) depends contin-
uously on the initial data, on any finite interval of time.

Global existence of strong solutions are based on those a priori estimates stated in
(i) of Theorem 7.1. We successfully do the L∞(L2) estimate on (u, v, Te, qe), L

∞(L4)
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estimate on (u, v, Te, qe), L
∞(H1) estimate on u, and finally the L∞(H1) estimate on

(u, v, Te, qe), and each of them bases on the previous ones.

Next, we focus on the uniqueness. Let (u, v, Te, qe) and (ũ, ṽ, T̃e, q̃e) be two strong
solutions to system (6.5)–(6.9), with the same initial data (u0, v0, Te,0, qe,0), on the
time interval (0, T ). Define the new functions

(δu, δv, δTe, δqe) = (u, v, Te, qe)− (ũ, ṽ, T̃e, q̃e).

By studying the system for (δu, δv, δTe, δqe), we have

d

dt
‖(δu, δv, δTe, δqe)‖22 +

1

4
‖(δu, δv)‖2H1

≤ C
(

1 + ‖(ũ, ṽ)‖44 + ‖(∇ũ,∇ṽ,∇v)‖22
)

‖(δu, δv, δTe, δqe)‖22
+C‖(∇T̃e,∇q̃e)‖2‖(δu, δv)‖∞‖(δTe, δqe)‖2. (7.2)

Recalling the Brezis–Gallouet–Wainger inequality (see [7, 8])

‖f‖L∞(R2) ≤ C‖f‖H1(R2) log
1

2

(‖f‖H2(R2)

‖f‖H1(R2)

+ e

)

,

and denoting U = (u, v), Ũ = (ũ, ṽ) and δU = (δu, δv), we have

‖δU‖∞ ≤ C

[

‖δU‖2H1 log
+

(

S(t)

‖δU‖H1

)]
1

2

, (7.3)

where

S(t) = ‖U‖H2 + ‖Ũ‖H2 + e(‖U‖H1 + ‖Ũ‖H1).

Denoting

f = ‖(δu, δv, δTe, δqe)‖22, G =
1

4
‖(δu, δv)‖2H1,

m1 = C
(

1 + ‖(ũ, ṽ)‖44 + ‖(∇ũ,∇ṽ,∇v)‖22
)

, m2 = C‖(∇T̃e,∇q̃e)‖2,

then it follows from (7.2) and (7.3) that

f ′ +G ≤ m1f +m2

[

fG log+
(

S/4

G

)]
1

2

.

Then, the uniqueness follows from the next lemma.

Lemma 7.1 (cf. [44]). Given a positive time T , and let m1, m2 and S be nonnegative
functions on (0, T ), such that

m1, S ∈ L1((0, T )), m2 ∈ L2((0, T )), and S > 0, a.e. on (0, T ).
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Suppose that f and G are two nonnegative functions on (0, T ), with f being absolutely
continuous on [0, T ), and satisfy
{

f ′(t) +G(t) ≤ m1(t)f(t) +m2(t)
[

f(t)G(t) log+
(

S(t)
G(t)

)]
1

2

, a.e. on (0, T ),

f(0) = 0,

where log+ z = max{0, log z}, for z ∈ (0,∞), and when G(t) = 0, at some time
t ∈ [0, T ), we adopt the following natural convention

G(t) log+
(

S(t)

G(t)

)

= lim
z→0+

z log+
(

S(t)

z

)

= 0.

Then, we have f ≡ 0 on [0, T ).

We also have the global existence and uniqueness of strong solutions to the limiting
system (6.11)–(6.17), where strong solutions to system (6.11)–(6.17) are defined in
the similar way as those to system (6.5)–(6.9). In fact, we have the following theorem:

Theorem 7.2 (cf. [44]). Suppose that (6.10) holds, and the initial data

(u0, v0, Te,0, qe,0) ∈ H1(R2), ∇ · u0 = 0, qe,0 ≤ 0, a.e. on R
2. (7.4)

Then, there is a unique global strong solution (u, v, Te, qe) to system (6.11)–(6.17),
with initial data (u0, v0, Te,0, qe,0), such that

sup
0≤t≤T

‖(u, v, Te, qe)(t)‖2H1 +

∫ T

0

(

‖(u, v)‖2H2 + ‖∇u‖∞ + ‖(∂tu, ∂tv, ∂tTe, ∂tqe)‖22
)

dt

≤C
(

α, Q̄, T , ‖(u0, v0, Te,0, qe,0)‖H1

)

,

for any positive time T .
If we assume, in addition, that (∇Te,0,∇qe,0) ∈ Lm(R2), for some m ∈ (2,∞),

then we have further that

sup
0≤t≤T

‖(∇Te,∇qe)(t)‖2m ≤ C
(

α, Q̄, T , ‖(u0, v0, Te,0, qe,0)‖H1, ‖(∇Te,0,∇qe,0)‖m
)

,

for any positive time T , and the unique strong solution (u, v, Te, qe) depends contin-
uously on the initial data.

The existence part of Theorem 7.2 is proven by taking the limit to strong solutions
of (6.5)–(6.9). Denote by (uε, vε, Teε, qeε) the unique strong solution to system (6.5)–
(6.9), with initial data (u0, v0, Te0, qe0). Thanks to the a priori estimates stated in The-
orem 7.1, the strong solutions (uε, vε, Teε, qeε) converge to some (u, v, Te, qe). Thanks
to the a priori estimates stated in Theorem 7.1, by using Aubin-Lions compactness
lemma (see, e.g., Simon [59]), one can show that (u, v, Te, qe) satisfies (6.11)–(6.16).
It remains to verify (6.17). To this end, let us define the set

O− = {(x, t)|qe(x, t) < 0, x ∈ R
2, t ∈ (0,∞)},
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and for any positive integers j, k, l, we define

O−
jkl =

{

(x, t)

∣

∣

∣

∣

qe(x, t) < −1

j
, x ∈ Bk, t ∈ (0, l)

}

,

where Bk ⊂ R
2 is a disc of radius k, and j, k, l ∈ N. Noticing that

O− = ∪∞
j ∪∞

k=1 ∪∞
l=1O−

jkl,

to prove that (6.17) holds a.e. on O−, it suffices to show that it holds a.e. on O−
jkl, for

any positive integers j, k, l. Now, let us fix the positive integers j, k, l. Thanks to the
a priori estimate in Theorem 7.1, by the Aubin-Lions compactness lemma (see, e.g.,
Simon [59]), and using the Cantor diagonal argument, one can show that qeε → qe in
C([0, T ];L2(BR)), for any positive time T and positive radius R, and thus qeε → qe in
L2(Ωjkl). Therefore, there is a subsequence, still denoted by qeε, such that qeε → qe,
a.e. on O−

jkl. By the Egoroff theorem, for any positive number η > 0, there is a subset

Eη of O−
jkl, with |Eη| ≤ η, such that

qeε → qe, uniformly on O−
jkl \ Eη.

Recalling the definition of O−
jkl, this implies that for sufficiently small positive ε, it

holds that

qeε ≤ qe +
1

2j
≤ − 1

2j
< 0, on O−

jkl \ Eη.

As a result, by equation (6.9) for qeε, we have, for any sufficiently small positive ε,
that

Gε := ∂tqeε + uε · ∇qeε + (Q̄ + α)∇ · vε = 0, a.e. on O−
jkl \ Eη.

Noticing that

Gε ⇀ ∂tqe + u · ∇qe + (Q̄+ α)∇ · v =: G, in L2(0, T ;L2(R2)),

for any positive finite time T , which in particular implies Gε ⇀ G, in L2(Ojkl \ Eη).
Since Gε = 0, a.e. on Ojkl \ Eη, we have G = 0, a.e. on Ojkl \ Eη, that is

∂tqe + u · ∇qe + (Q̄+ α)∇ · v = 0, a.e. on Ωjkl \ Eη.

This implies that the above equation holds, a.e. on O−
jkl, and further on O−, in other

words, (6.17) holds.
For the uniqueness part, some additional attention is needed to be paid to qe,

because it satisfies equation (6.17) only on part of the domain, i.e. on {qe < 0}. Let
(u, v, Te, qe) and (ũ, ṽ, T̃e, q̃e) be two strong solutions to system (6.11)–(6.17), with
the same initial data (u0, v0, Te,0, qe,0). Define the new functions

(δu, δv, δTe, δqe) = (u, v, Te, qe)− (ũ, ṽ, T̃e, q̃e).

Performing the energy estimate to the system for (δu, δv, δTe), one obtains

d

dt
‖(δu, δv, δTe)‖22 + ‖∇δu‖22 + ‖∇δv‖22
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≤C
∫

R2

[(|∇ũ|+ |∇ṽ|+ |∇v|+ |v|2 + |ṽ|2)(|δu|2 + |δv|2)

+ |δTe|2 + |δqe|2 + |∇T̃e||δu||δTe|]dxdy. (7.5)

To derive the equation for δqe, let us recall the well-known fact that the derivatives
of a function f ∈ W 1,1

loc (Ω) vanish, a.e. on any level set {(x, y, t) ∈ Ω|f(x, y, t) = c},
see, e.g., [22] or page 297 of [26]. By the aid of this fact, and using equation (6.17),
one obtains the equation for δqe as

∂tδqe + u · ∇δqe + δu · ∇q̃e = −(Q̄+ α)[∇ · δvχΩ1
+∇ · vχΩ2

−∇ · ṽχΩ3
]

= −(Q̄ + α)[∇ · δv −∇ · δvχΩ4
+∇ · ṽχΩ2

−∇ · vχΩ3
], (7.6)

a.e. on Ω = R
2 × (0,∞), where

Ω1 = {qe < 0} ∩ {q̃e < 0}, Ω2 = {qe < 0} ∩ {q̃e = 0},
Ω3 = {qe = 0} ∩ {q̃e < 0}, Ω4 = {qe = 0} ∩ {q̃e = 0}.

Performing L2 energy estimate to (7.6), one obtains

1

2

d

dt
‖δqe‖22 ≤

1

4

∫

R2

|∇δv|2dxdy + C

∫

R2

(|δqe|2 + |∇q̃e||δu||δqe|)dxdy

− (Q̄+ α)

∫

R2

(∇ · ṽχΩ2
−∇ · vχΩ3

)(qe − q̃e)dxdy. (7.7)

Note that, in the last integral on the right-hand side of the above inequality, it is
linear in δqe, while other terms in (7.7) are quadratic in δqe, and as a result, the above
inequality, combined with (7.5), does not necessary imply, in general, the uniqueness.
Fortunately, thanks to inequality (6.15), one can actually show that the last integral
on the right-hand side of the above inequality is of positive sign, and therefore it can
be ignored there, in other words, we have

1

2

d

dt
‖δqe‖22 ≤

1

4

∫

R2

|∇δv|2dxdy + C

∫

R2

(|δqe|2 + |∇q̃e||δu||δqe|)dxdy. (7.8)

Combining (7.5) and (7.8), one obtains again (7.2), and thus proves the uniqueness.
While the strong convergence of the relaxation limit, as ε → 0, of system (6.5)–(6.9)

to the limiting system (6.11)–(6.17) is stated in the next theorem:

Theorem 7.3 (cf. [44]). Suppose that (6.10) holds and the initial data

(u0, v0, Te,0, qe,0) ∈ H1(R2), ∇ · u0 = 0,

(∇Te,0,∇qe,0) ∈ Lm(R2), qe,0 ≤ 0, a.e. on R
2,

for some m ∈ (2,∞). Denote by (uε, vε, Teε, qeε) and (u, v, Te, qe) the unique global
strong solutions to systems (6.5)–(6.9) and (6.11)–(6.17), respectively, with the same
initial data (u0, v0, Te,0, qe,0).
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Then, we have the estimate

sup
0≤t≤T

‖(uε − u, vε − v, Teε − Te, qeε − qe)(t)‖22

+

∫ T

0

(

‖(∇(uε − u),∇(vε − v))‖22 +
‖q+eε‖22
ε

)

dt ≤ Cε,

for any finite positive time T , where C is a positive constant depending only on
α, Q̄,m, T , and the initial norm ‖(u0, v0, qe,0, Te,0)‖H1 + ‖(∇Te,0,∇qe,0)‖m.

Therefore, in particular, we have the convergences

(uε, vε) → (u, v) in L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2)),

(Teε, qeε) → (Te, qe) in L∞(0, T ;L2(R2)), q+eε → 0 in L2(0, T ;L2(R2)),

for any positive time T , and the convergence rate is of order O(
√
ε).

Define the difference function (δuε, δvε, δTeε, δqeε) as

(δuε, δvε, δTeε, δqeε) = (uε, vε, Teε, qeε)− (u, v, Te, qe).

Performing the energy estimates to the system for (δuε, δvε, δTeε), one obtains

d

dt
‖(δuε, δvε, δTeε)‖22 + ‖(∇δuε,∇δvε)‖22

≤ C

∫

R2

[(|∇u|+ |∇v|+ |v|2)(|δuε|2 + |δvε|2)

+|δTeε|2 + |δqeε|2 + |∇Te||δuε||δTeε|]dxdy. (7.9)

As before, by the aid of the fact that the derivatives of a function are zero a.e. on any
level set, and using equation (6.9) for qeε and equation (6.17) for qe, one can derive
the equation for δqeε as

∂tδqeε + δuε · ∇δqeε + δuε · ∇qe + u · ∇δqeε

+ (Q̄+ α)∇ · δvε = −1 + α

ε
q+eε − (Q̄ + α)∇ · vχO(x, y, t),

a.e. on R
2× (0,∞), where O = {(x, t) ∈ R

2× (0,∞)|qe(x, t) = 0}. Performing the L2

energy estimates to the above system, and using same similar tricks as before, one
can obtain

d

dt
‖δqeε‖22 +

1 + α

ε
‖q+eε‖22 ≤

1

2
‖∇δvε‖22 + 2(Q̄+ α)2‖δqeε‖22 +

(Q̄ + α)2

1 + α
ε‖∇v‖22

+ 2

∫

R2

|∇qe||δuε||δqeε|dxdy. (7.10)

Starting from (7.9) and (7.10), one can then obtain the desired estimate in Theorem
7.3.
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Remark 7.1. (i) In the absence of the barotropic mode, global existence and unique-
ness of strong solutions to the inviscid limiting system was proved in [53], and the
relaxation limit, as ε → 0+, was also studied there, but the convergence rate was
not achieved. Note that in the absence of the barotropic mode, the limiting system is
linear, while in the presence of the barotropic mode, the limiting system is nonlinear.

(ii) Existence and uniqueness of solutions to the limiting system (6.11)–(6.17),
without viscosity, was proposed as an open problem in [23], and also in [34, 51, 53].
Notably, Theorem 7.2 settles this open problem for the viscous version of (6.11)–
(6.17). Note that we only add viscosity to the velocity equations, and we do not use
any diffusivity in the temperature and moisture equations.

(iii) For the case without the coupling with the moisture equations, i.e. for system
(6.2), global well-posedness of strong solutions was established in Li–Titi [43] by a
different method from that presented here. Global well-posedness of strong solutions
to a coupled system of the primitive equations with moisture (therefore, it is a different
system from those considered in this paper) was recently addressed in Coti Zelati et
al [19], where the system under consideration has full dissipation in all dynamical
equations, and in particular has diffusivity in the temperature and moisture equations.
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[43] Li, J.; Titi, E. S.: Global well-posedness of strong solutions to a tropical climate

model, Discrete Contin. Dyn. Syst., 36 (2016), 4495–4516.
[44] Li, J.; Titi, E. S.: A tropical atmosphere model with moisture: global well-

posedness and relaxation limit, Nonlinearity (to appear), arXiv:1507.05231v1.
[45] Li, J.; Titi, E. S.: Small aspect ratio limit from Navier-Stokes equations to primi-

tive equations: mathematical justification of hydrostatic approximation, preprint.
[46] Li, J.; Titi, E. S.: Existence and uniqueness of weak solutions to viscous primitive

equations for certain class of discontinuous initial data, arXiv:1512.00700.
[47] Lions, J. L.; Temam, R.; Wang, S.: New formulations of the primitive equations

of the atmosphere and appliations, Nonlinearity, 5 (1992), 237–288.
[48] Lions, J. L.; Temam, R.; Wang, S.: On the equations of the large-scale ocean,

Nonlinearity, 5 (1992), 1007–1053.
[49] Lions, J. L.; Temam, R.; Wang, S.: Mathematical study of the coupled models of

atmosphere and ocean (CAO III), J. Math. Pures Appl., 74 (1995), 105–163.
[50] Majda, A. J.: Introduction to PDEs and Waves for the Atmosphere and Ocean

(Courant Lecture Notes in Mathematics vol 9), Providence, RI: American Math-
ematical Society, 2003.

[51] Majda, A. J.: Climate science, waves and PDEs for the tropics, (English sum-
mary) Nonlinear partial differential equations, 223–230, Abel Symp., 7, Springer,
Heidelberg, 2012.

[52] Majda, A. J.; Biello, J. A.: The nonlinear interaction of barotropic and equatorial
baroclinic Rossby waves, J. Atmos. Sci., 60 (2003), 1809–1821.

[53] Majda, A. J.; Souganidis, P. E.: Existence and uniqueness of weak solutions for
precipitation fronts: a novel hyperbolic free boundary problem in several space
variables, Commun. Pure Appl. Math., 63 (2010), 1351–1361.

[54] Masmoudi, N.; Wong, T. K.: On the Hs theory of hydrostatic Euler equations,
Arch. Rational Mech. Anal., 204 (2012), 231–271.

[55] Neelin, J. D.; Zeng, N.: A quasi-equilibrium tropical circulation model: formula-
tion, J. Atmos. Sci., 57 (2000), 1741–1766.

[56] Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edition, Springer, New York,
1987.

http://arxiv.org/abs/1507.05231
http://arxiv.org/abs/1512.00700


36 JINKAI LI AND EDRISS S. TITI

[57] Petcu, M.; Temam, R.; Ziane, M.: Some mathematical problems in geophysical
fluid dynamics, Elsevier: Handbook of Numerical Analysis, 14 (2009), 577–750.

[58] Serrin, J.: The initial value problem for the Navier-Stokes equations, Nonlinear
Problems, R. E. Langer ed., University of Wisconsin Press, Madison, (1963),
69–98.

[59] Simon, J.: Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl.,
146 (1987), 65–96.

[60] Solonnikov, V. A.: Estimates of the solutions of a nonstationary linearized system
of Navier-Stokes equations, Trudy Mat. Inst. Steklov, vol. 70, 1964, In Amer.
Math. Soc. Transl., Series 2, vol. 75, 1–17.

[61] Solonnikov, V. A.: A priori estimates for second-order parabolic equations, Trudy
Mat. Inst. Steklov, vol. 70, 1964, In Amer. Math. Soc. Transl., Series 2, vol. 65,
51–137.

[62] Stechmann, S. N.; Majda, A. J.: The structure of precipitation fronts for finite
relaxation time, Theor. Comput. Fluid Dyn., 20 (2006), 377–404.

[63] Tachim Medjo, T.: On the uniqueness of z-weak solutions of the three-
dimensional primitive equations of the ocean, Nonlinear Anal. Real World Appl.,
11 (2010), 1413–1421.

[64] Temam, R: Navier-Stokes Equations. Theory and Numerical Analysis, Revised
edition, Studies in Mathematics and its Applications, 2., North-Holland Pub-
lishing Co., Amsterdam-New York, 1979.

[65] Temam, R.; Ziane, M.: Some mathematical problems in geophysical fluid dynam-
ics, Handbook of mathematical fluid dynamics, Vol. III, 535–657, North-Holland,
Amsterdam, 2004.

[66] Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics, Cambridge Univ. Press,
2006.

[67] Washington, W. M., Parkinson, C. L.: An Introduction to Three Dimensional
Climate Modeling, Oxford University Press, Oxford, 1986.

[68] Wong, T. K.: Blowup of solutions of the hydrostatic Euler equations, Proc. Amer.
Math. Soc., 143 (2015), 1119–1125.

[69] Zeng, Q. C.: Mathematical and Physical Foundations of Numerical Weather
Prediction, Science Press, Beijing, 1979.

(Jinkai Li) Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot 76100, Israel.

E-mail address : jklimath@gmail.com

(Edriss S. Titi) Department of Mathematics, Texas A&M University, 3368 TAMU,
College Station, TX 77843-3368, USA. ALSO, Department of Computer Science and
Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.

E-mail address : titi@math.tamu.edu and edriss.titi@weizmann.ac.il


	1. The primitive equations (PEs) of atmospheric and oceanic dynamics
	2. The PEs with full viscosity but partial diffusivity
	2.1. The vertical diffusivity case with full viscosity
	2.2. The horizontal diffusivity case with full viscosity

	3. The PEs with horizontal viscosity and partial diffusivity
	3.1. The horizontal diffusivity case with horizontal viscosity
	3.2. The vertical diffusivity case with horizontal viscosity

	4. Rigorous justification of the hydrostatic balance
	5. The PEs with a certain class of discontinuous initial data
	6. A tropical atmosphere model
	7. Global well-posedness of a tropical atmosphere model
	Acknowledgments
	References



