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Abstract

Ultra-wide bandgap beta-gallium oxide (β-Ga2O3) has been attracting considerable attention as a promising
semiconductor material for next-generation power electronics. It possesses excellent material properties such as a
wide bandgap of 4.6–4.9 eV, a high breakdown electric field of 8 MV/cm, and exceptional Baliga’s figure of merit
(BFOM), along with superior chemical and thermal stability. These features suggest its great potential for future
applications in power and optoelectronic devices. However, the critical issue of contacts between metal and Ga2O3

limits the performance of β-Ga2O3 devices. In this work, we have reviewed the advances on contacts of β-Ga2O3

MOSFETs. For improving contact properties, four main approaches are summarized and analyzed in details,
including pre-treatment, post-treatment, multilayer metal electrode, and introducing an interlayer. By comparison,
the latter two methods are being studied intensively and more favorable than the pre-treatment which would
inevitably generate uncontrollable damages. Finally, conclusions and future perspectives for improving Ohmic
contacts further are presented.
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Introduction
Recently, gallium oxide (Ga2O3) has been considered as

a promising candidate for preparing high-power and

high-efficiency devices by virtue of its excellent material

properties [1–3]. Ga2O3 has five different polymorphs,

designated as α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3,

and ε-Ga2O3, among which β-Ga2O3 is the most

thermodynamically stable and has been extensively stud-

ied [4]. With ultra-wide bandgap of 4.6–4.9 eV [5–7],

the theoretical breakdown electric field (Ebr) of 8 MV/

cm for β-Ga2O3 is about three times larger than that of

SiC or GaN [8–10], which enables β-Ga2O3-based de-

vices to handle gigantic switching voltages. The suitabil-

ity of semiconductors for power device applications is

usually evaluated by Baliga’s figure of merit (BFOM)

[11]. The BFOM of β-Ga2O3 is almost triple that of SiC

and GaN, reducing the conduction loss significantly

[3, 12–14]. Moreover, the saturation electron velocity is

theoretically estimated to be around 2 × 107 cm/s, making

it alluring for high-frequency operations [15–20]. Another

distinctive interest of β-Ga2O3 among wide-bandgap

semiconductors is that high-quality single crystals can be

synthesized cost-effectively by using melt growth tech-

niques [21–24]. In addition, high-quality n-type β-Ga2O3

epitaxial films can be realized by precisely doping with Sn,

Si, Ge, and Mg, and the obtained electron density ranges

from 1016 to 1019 cm−3 [25–28]. Because of the above-

mentioned advantages over other wide-bandgap semicon-

ductors, β-Ga2O3 shows its capabilities to be a promising

material for power electronics as well as extreme environ-

ment (high temperature, high voltage, and high radiation)

[29–31] electronics.

Many promising β-Ga2O3 devices have been reported,

including Schottky barrier diodes [32], MOSFETs [1–3],

and various types of solar-blind photodetectors [33, 34].

Among these devices, MOSFETs are the most prevailing

configuration for radio frequency and high-power oper-

ation [35], giving full play to its high Ebr and BFOM.

However, one of the challenges for β-Ga2O3 application

in MOSFET devices is the difficulty in forming Ohmic

contacts compared with narrow-bandgap semiconduc-

tors [36]. Usually, an excellent Ohmic contact between

the semiconductor and the metal electrode is essential

for high-performance semiconductor devices [37, 38].

Low-resistance contacts could reduce the voltage drop

on the contact and consequently increase the voltage
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across the channel, securing the designed current density

and high switching speeds. Furthermore, low-resistance

contacts contribute to reducing heat generation which

could aggravate the self-heating effect.

In consequence, the fabrication of high-quality Ohmic

contacts is a prerequisite for achieving high-performance

devices. In this review, we start with fundamental concepts

of metal/semiconductor contacts. In the “Approaches to

Ohmic Contacts” section, a summary of recent significant

advances on Ohmic contacts to β-Ga2O3 is presented, and

approaches to Ohmic contacts are discussed and analyzed.

Finally, some perspectives are provided for improving

Ohmic contacts to β-Ga2O3 in the future.

Basic Physics of Ohmic Contacts
An Ohmic contact is a metal/semiconductor junction in

which there is no barrier at the interface impeding the

transport of carriers, as illustrated in Fig. 1a. On the

contrary, an energy barrier existing at the interface will

inhibit the carrier transport between the metal and semi-

conductor, as is evident from Fig. 1b. Notably, the con-

tacts formed between wide-bandgap semiconductors and

metals are always Schottky. Thus, the contact resistance

normally depends on the metal/semiconductor Schottky

barrier height (SBH) ΦB. For an n-type semiconductor, it

obeys the equation:

qΦB ¼ qΦm−χs ð1Þ

where Φm is the work function of the metal and χs is

the electron affinity of the semiconductor.

As depicted in Eq. (1), it is important to reduce the

SBH to form the Ohmic contact. In addition, high dop-

ing in semiconductors could facilitate the formation of

Ohmic contacts, e.g., for heavily doped semiconductors

(ND > ~ 1018 cm−3), the barrier will become narrow

enough and allow the electrons directly to tunnel

through the interface due to significant band bending of

the conduction band [39], as shown in Fig. 2. Neverthe-

less, the doping levels that can be achieved in β-Ga2O3

are usually below of what can be obtained in Si, as is the

case with other wide semiconductors. Other than that,

the surface states also play an important role in the for-

mation of Ohmic contacts which are frequently defined

as regions of high-rate recombination. Those middle

bandgap defect levels induced by the surface states are

able to help the carriers transport. This implies that a

good Ohmic contact can be formed by introducing

proper surface states into semiconductors [40–43].

An electrical quantification of the contact characteris-

tics is necessary to evaluate the quality of contacts. Cur-

rently, the specific contact resistivity ρC is one of the

commonly used parameters to access the performance

of Ohmic contacts, typically expressed in Ω ∙ cm2 [44].

The specific contact resistivity is a very useful quantity

which is independent of the contact geometry and refers

to the metal/semiconductor interface only. So far, the

lowest ρC of 4.6 × 10−6 Ω ∙ cm2 was reported for Ti/Au

contacts to β-Ga2O3 [45]. Wong et al. also obtained a

low ρC of 7.5 × 10−6 Ω ∙ cm2 with Ti/Au contacts [46].

Up to now, many efforts have been devoted to obtain

the contacting with low ρC, and the typical values for

specific contact resistivities spread over a range of

10−5–10−6 Ω ∙ cm2 for good Ohmic contacts [36].

Approaches to Ohmic Contacts
To date, investigations on the intrinsic properties of

β-Ga2O3 mostly have been carried out on its MOSFET

structure, in which two kinds of the channel synthesis

method are usually adopted. One is the micromechani-

cally exfoliated flake (nanomembrane); the other is the

epitaxial β-Ga2O3 film on its native substrate, as summa-

rized in Table 1.

Normally, exfoliated β-Ga2O3 flakes could be transferred

to any substrates conveniently and cost-effectively. It is

found that the material properties of β-Ga2O3 flakes

would not degenerate during the exfoliation as evidenced

by Raman spectroscopy and atomic force microscopy [19],

meaning that the performance of MOSFETs based on the

exfoliated flakes is comparable to that based on epitaxial

layers. Due to these advantages, this method is recom-

mended to study the electrical characteristics consisting of

the density of interfacial defects, breakdown voltage, sur-

face optical phonon scattering [47–49], and thermal prop-

erty, i.e., self-heating effect [50, 51].

Fig. 1 Schematic illustrations of a Ohmic contacts and b Schottky contacts. EC, EV, EF, m, and EF, s are the energy levels of the conduction band
edge, valence band edge, Fermi energy of metal and semiconductor, respectively
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As summarized in Table 1, methods employed to im-

prove Ohmic contacts could be generally categorized

into three types: (1) pre-treatment, (2) post-treatment,

and (3) multilayer metal electrode. Besides, introducing

an interlayer can also obtain superior Ohmic contacts

which is not shown in Table 1.

Pre-treatment

The pre-treatment is performed before metal deposition,

including ion implantation, plasma bombardment, and

reactive-ion etching (RIE). Higashiwaki et al. demon-

strated that the contacts formed by using Ti/Au stack

with the RIE pre-treating process showed an almost

Ohmic behavior, while the sample without the RIE treat-

ment showed a Schottky behavior, as illustrated in Fig. 3

[1]. The significant difference could be attributed to the

out-diffusing of the free oxygen atoms that generated

through the continuous bombardment by breaking the

exposed Ga–O bonds, leaving plenty of oxygen vacancies

that act as donors in β-Ga2O3. On the other hand, the

continuous RIE treatment would also generate consider-

able surface states which play an important role during

contact formation [41]. Figure 4 shows associated DC

output characteristics from which quasi-linear current at

low drain voltage can be observed. In their later work, as

demonstrated in Fig. 5, the output characteristics exhib-

ited good linearity relationship between the current and

drain voltage in which Si ion implantation and RIE were

applied to β-Ga2O3 together and an extremely low spe-

cific contact resistivity of 8.1 × 10−6Ω∙cm2 was achieved

[12]. Obviously, the Ohmic behavior obtained by RIE

and Si+ implantation together would outperform that by

RIE only since Si atoms are known to be shallow donors

with small activation energies in β-Ga2O3 [34].

Fig. 2 The energy band diagram at the metal/semiconductor interface with highly doped semiconductors

Table 1 The comparison of reported work about β-Ga2O3 MOSFETs

Channel Carrier density/cm−3 Device structure Dielectric (method) Process S/D metal electrode

Flake [19] 5.5 × 1017 BG (D-M) 285-nm SiO2 Tube annealing Ti/Au

Flake [88] 3 × 1017 BG (D-M) 300-nm SiO2 – Ti/Au

Flake [89] 3 × 1017 TG (E-M) 42-nm HfO2(ALD) – Ti/Au

Flake [55] 3.7 × 1017 BG (D-M) 300-nm SiO2 RTP Ti/Au

Flake [52] 2.7 × 1018 BG (D/E-M) 300-nm SiO2 Ar plasma bombardment Ti/Al/Au

Flake [50] 8 × 1018 BG (D/E-M) 300-nm SiO2 Ar plasma bombardment Ti/Al/Au

Sn-doped epilayer [12] 3 × 1017 TG (D-M) 20-nm Al2O3(ALD) Si+ implantation(S/D) + RIE + RTP Ti/Au

UID epilayer [57] 5 × 1019 FP (D-M) 20-nm Al2O3(ALD) Si+ implantation (channel + S/D) +
RIE + RTP

Ti/Au

Sn-doped epilayer [90] 6.34 × 1015 TG (D/E-M) 20-nm SiO2(ALD) RIE + RTP Ti/Au

Sn-doped epilayer [13] 4.8 × 1017 TG (E-M) 20-nm Al2O3(ALD) RTP Ti/Al/Ni/Au

Sn-doped epilayer [63] 2.3 × 1017 WG (E-M) 20-nm Al2O3(ALD) RTP Ti/Al/Ni/Au

UID epilayer [46] < 4 × 1014 TG (E-M) 50-nm Al2O3(ALD) Si+ implantation(S/D) + RIE + RTP Ti/Au

Sn-doped epilayer [53] 2 × 1017 TG (D-M) 20-nm SiO2 (PEALD) Spin-on-glass doping + RTP Ti/Au

Ge-doped epilayer [21] 4 × 1017 TG (D-M) 20-nm Al2O3(ALD) RTP Ti/Al/Ni/Au

UID epilayer [64] – GR (E-M) 20-nm SiO2(ALD) Highly doped epitaxial cap layer
on S/D + RIE + RTP

Ti/Al/Ni/Au

BG bottom gate, TG top gate, DG double gate, FP field plated, WG wrap gate, D-M depletion mode, E-M enhancement mode
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Additionally, Zhou et al. reported the high-performance

β-Ga2O3 field-effect transistors with Ar plasma bom-

bardment prior to contact metal deposition [52]. On the

contrary, the sample without Ar bombardment exhibited

Schottky contacting. The difference can be ascribed to

the generation of oxygen vacancies and surface states

during the Ar plasma bombardment process, the same

as RIE treatment.

Although the abovementioned techniques can improve

the performance of Ohmic contacts, such technologies are

not practically applicable because the induced damage is

usually the last thing that process engineers want in semi-

conductor devices, and furthermore, the damage-induced

Ohmic contacts are not always reproducible.

For this reason, apart from the aforesaid traditional tech-

niques used frequently for forming low-resistance Ohmic

contacts, a relatively novel technique—spin-on-glass (SOG)

doping—was recently adopted [53], and a specific contact

resistivity of 2.1±1.4 × 10−5Ω∙cm2 was achieved, which veri-

fied the effectiveness of SOG doping technique. Figure 6

shows the output characteristics of SOG-doped β-Ga2O3

MOSFETs which exhibited excellent linear behavior at low

drain voltage. Compared with ion implantation, the SOG

Fig. 3 (Color online) I–V curves measured between two contacts
(as-deposited Ti/Au) fabricated with and without RIE treatment
on n-Ga2O3 substrates. Reproduced from Ref. [1]

Fig. 4 (Color online) DC output characteristics of Ga2O3 metal/
semiconductor field-effect transistors. Reproduced from Ref. [1]

Fig. 5 DC I–V curves of Ga2O3 MOSFET (Lg = 2 μm) measured at RT.
Reproduced from Ref. [12]

Fig. 6 Output characteristics of the SOG S/D-doped MOSFET with
Lg = 8 μm, drain gate spacing Lgd = 10 μm. Reproduced from Ref. [53]
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doping reduces damage-induced diffusion of species and

lowers the costs by abandoning the expensive ion im-

planter. Similar to ion implantations, the basic principle be-

hind this technology is doping the S/D region with shallow

donors. Obviously, the superior Ohmic contact can be

achieved with intentionally doped β-Ga2O3. For instance,

the highly doped β-Ga2O3 was used to fabricate β-Ga2O3

field-effect transistors with drain currents exceeding 1.5 A/

mm [50]. The record high drain current is due to the heavy

doping in β-Ga2O3 which causes a very thin depletion layer,

and electrons can tunnel easily across this barrier leading to

an Ohmic contacting behavior. Interestingly, the orientation

of the β-Ga2O3 surface may also exert an influence on the

contacting behavior. Baik et al. reported that the same elec-

trodes on β-Ga2O3 showed different contact properties, in

which the sample on ( 2 01) substrate behaved as Ohmic

contacts while the control sample on (010) exhibited

Schottky behavior. This could be attributed to different Ga/

O ratio and density of dangling bonds at specific orienta-

tions [54].

Post-treatment

The post-treatment is performed after metal deposition,

mainly referring to the annealing process. Annealing plays a

role in reducing damage induced by previous process tech-

nologies such as ion implantation and plasma bombardment.

Additionally, it contributes to the formation of an interlayer

which may reduce the conduction band discontinuity

between the metal and β-Ga2O3. Remarkably, the parameters

including temperature, atmosphere, and annealing time exert

an important influence on the performance of devices. The

experiment on the annealing in air and N2 was implemented

to compare the effect of annealing atmosphere on

β-Ga2O3-based Ohmic contacts [55]. As it can be seen in

Fig. 7, the performance of annealing in N2 outperformed that

in air, which could be attributed to that higher oxygen partial

pressure in air suppressed the formation of oxygen vacancies.

However, the dependence of contact characteristics on the

temperature, atmosphere, and annealing time on contact

characteristics is unclear; hence, it is further needed to

optimize the parameters of the annealing process.

Multilayer Metal Electrode

Another approach to forming Ohmic contacts is to re-

duce the SBH at the metal/semiconductor interface. The

SBH equals the difference between the work function of

the metal and the electron affinity of the semiconductor.

Based on this recognition, one might expect that metals

with low work function would form Ohmic contacts on

β-Ga2O3. Nevertheless, it has been proven that the work

function is not the dominant factor of forming Ohmic

contact [56].

Nine metals deposited on β-Ga2O3 were selected

based on the properties such as work function, melting

temperature, and oxide stability [57]. The metal work

function of Ti and electron affinity of unintentionally

doped β-Ga2O3 are known to be 4.33 eV and 4.00

±0.05 eV, respectively [19, 58, 59], so a barrier of 0.22 eV

should exist at the interface leading to the Schottky con-

tact. Nonetheless, it turned out that Ti contacts with an

Au capping layer were Ohmic with the lowest resistance

among nine metals after annealing. In the meanwhile,

Bae et al. explored the dependence of contact properties

on the Ti/Au and Ni/Au for devices based on the exfoli-

ated β-Ga2O3 flakes [55]. It was observed that the per-

formance of MOSFETs with Ti/Au metal electrodes

outperformed those with Ni/Au metal electrodes under

the same annealing condition. At the beginning, it was

considered that the work functions of Ni and Ti are

5.01 eV and 4.33 eV, respectively, so Ti may form an

Ohmic contact more easily than Ni; however, studies

through the energy dispersive spectroscopy (EDS) dem-

onstrated that the oxygen atomic percentage in the

β-Ga2O3 region decreased while the oxygen atomic

percentage in Ti near the interface increased after an-

nealing, as illustrated in Fig. 8 [55]. This phenomenon is

ascribed to the out-diffusion of oxygen atoms from

Fig. 7 Electrical properties of β-Ga2O3 flakes with different thermal annealing atmosphere and annealing temperature. Ti/Au contacts under a N2

and b air. Reproduced from Ref. [55]
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β-Ga2O3 into Ti metal, leading to the formation of oxy-

gen vacancies acting as donors. Moreover, during the an-

nealing process, the accelerated out-diffusion of oxygen

atoms in β-Ga2O3 could react with Ti and form Ti2O3

which is useful for forming Ohmic contacts owing to its

low work function (3.6–3.9 eV). Therefore, the inter-

facial reaction between metals and β-Ga2O3 is an im-

portant factor in forming Ohmic contacts at the metal/

semiconductor interface.

In addition, it is found that most Ti/Au metal elec-

trodes used to form Ohmic contacts were annealed at

450 °C [45, 53] or 470 °C [12, 46, 57, 60] by rapid ther-

mal process. A similar degradation behavior of contact

characteristics was observed when the annealing was

performed above 500 °C in Ref. [55, 56], as illustrated in

Figs. 7 and 9, respectively. Yao et al. speculated that an

insulating oxide layer was formed possibly at elevated

annealing temperature, resulting in the deteriorated

contacts. Nevertheless, Bae et al. observed that the sur-

face of deposited metal was much rougher after

700 °C annealing due to the intermixing of metals and

the diffusion of gallium and oxygen atoms into metal

electrodes, which was ascribed as the reason for degrad-

ation behavior. Obviously, the degradation mechanisms

of Ti/Au contacts to β-Ga2O3 after high-temperature an-

nealing are still under debate.

β-Ga2O3-based devices with Ti/Au contacts cannot

meet the demand for working under high temperature.

Hence, to avoid the degradation of contact characteristics

at elevated annealing temperature, more complex metal

stacks should be adopted. By far, Ti/Al/Au [50, 52], Ti/Au/

Ni [61, 62], and Ti/Al/Ni/Au metal stacks [13, 21, 63, 64]

have been employed to form electrical contacts on β-Ga2O3.

But a comprehensive comparison of contact characteristics

between these metal stacks is still insufficient.

Mohammad [65] and Greco et al. [36] discussed the

role of each metal layer in the complex metal stacks,

providing some guidelines for improving the Ohmic

contacts. The schematic of the metal stacks is shown in

Fig. 10. Note that this approach is currently developing

for GaN-based power devices [66–69].

The first metal layer on the substrate, referred to as

contact layer, should have a low work function and good

adhesion to the substrate. Moreover, it may also block

the diffusion of upper layer metals with large work func-

tions into the substrate. Presently, Ti is the principal

metal as contact layer to β-Ga2O3 because of its low

function (4.33 eV) and good adhesion to the substrate.

Besides, the formation of Ti2O3 and Ti3O5 with lower

work functions than Ti at the interface is favored in

forming Ohmic contacts since the oxides reduce the

SBH and leave behind oxygen vacancies acting as do-

nors. However, other metals with low work functions in-

cluding Ta (3.1 eV) and Hf (3.9 eV) have not been

explored yet. The second overlayer with a low work

function should be able to form intermetallic com-

pounds with the contact layer to prevent their diffusion

Fig. 8 Atomic percentage profiles by EDS of metallization and β-Ga2O3 a pre- and b post-annealing at a temperature of 500 °C. Reproduced from Ref. [55]

Fig. 9 I–V plots for Ti/Au contacts on Sn-doped (�201) Ga2O3 wafer
as a function of annealing temperature in Ar (annealing time 1 min).
Reproduced from Ref. [56]
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into the interface. Presently, Al is used as the overlayer

since it can meet these requirements. The third metal

layer (barrier layer) serves the purpose of limiting the

in-diffusion of the upper metal layer and out-diffusion of

lower metal layers [70, 71]. Ni is the most commonly

used barrier layer for β-Ga2O3. There are other good

candidates like Mo, Nb, and Ir with high melting points

to substitute Ni which are expected to have lower re-

activity and solubility for Au than Ni [72–75]. The

fourth cap layer acts as a protective layer to prevent or

minimize the oxidation of underlying metals. Practically,

Au is commonly employed to serve this purpose.

Introducing an Interlayer

There are mainly two methods of introducing an inter-

layer at the metal/β-Ga2O3 interface. One is to form an

intermediate semiconductor layer (ISL) with low work

function by annealing, e.g., Ti2O3. The other is to insert

the deposited ISL between the metal and β-Ga2O3, which

has been intensively studied [76–78]. Compared with the

former method, the latter is more favorable to form

Ohmic contacts owing to the high carrier concentration

of ISL. The bandgaps of ISLs range from 3.5 to 4.0 eV

[79–81], like AZO (~ 3.2 eV) [82], In2O3 (~ 2.9 eV) [83, 84],

and IGZO (~ 3.5 eV) [85]. Typically, the SBHs of various

metals deposited on β-Ga2O3 are in the range of

0.95–1.47 eV [86, 87], as shown in Fig. 11a. Nonetheless,

the incorporation of a thin ISL reduces the SBH, making

it easier for electrons to transport from the metal to the

conduction band of β-Ga2O3, as illustrated in Fig. 11b.

Additionally, the high density of electrons in ISL could

further reduce the contact resistance.

Lately, AZO/Ti/Au was used as electrodes on Si+-im-

planted β-Ga2O3, and the obtained specific contact re-

sistivity was 2.82 × 10−5 Ω∙cm2 after annealing [76].

Oshima et al. achieved platinum/indium–tin oxide (Pt/

ITO) Ohmic contacts to β-Ga2O3 with a wide range of

process temperature window [77]. The large process

window of 900–1150 °C enables the realization of

high-temperature operation. And ITO/Ti/Au electrodes

to β-Ga2O3 were also demonstrated by Carey et al. [78]

in which the sample showed Ohmic behavior with ρC of

6.3 × 10−5 Ω∙cm2 after annealing. Without the ITO, the

same annealing did not deliver linear current–voltage

characteristics. These results verify the effectiveness of

adding ISL for obtaining Ohmic contacts.

Notably, a bubble on the surface of ITO/Ti/Au con-

tacts was observed while no bubbling on the single ITO

layer without metal layer above [78]. It was considered

as the result of out-diffusion of oxygen atoms in the

ITO layer into the upper metal layers. Hence, it is neces-

sary to choose appropriate metal or metal stacks as cap-

ping layers on ITO to prevent the degradation of surface

morphology.

Conclusions
In this work, we have summarized the significant

progress in R&D of β-Ga2O3 MOSFETs. Nevertheless,

the contacts on β-Ga2O3 are one of the key issues limit-

ing its potential application as high-frequency and

high-voltage devices in the future. Although this review

provides an overview of the state-of-the-art methods for

forming Ohmic contacts, there is still much space left to

be explored, and a set of concise prospects can be

digested as follows: (i) The temperature dependence and

degradation mechanism of contact characteristics need

further investigations for clear clarification; (ii) Metals

with low work function like Ta and Hf and metals with

Fig. 11 The schematic of band offsets for a metal/β-Ga2O3 and b

metal/ISL/β-Ga2O3. ∆Ec equals the energy difference between the
Fermi energy of metals and the conduction band of semiconductors

Fig. 10 The schematic of metal stacks for obtaining Ohmic contacts
to wide-bandgap semiconductors
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high melting point like Mo, Nb, and Ir are worthy to be

screened for serving as the contact layer and barrier

layer, respectively; (iii) The optimal metal stacks on

β-Ga2O3 have not been fully realized yet, and a compre-

hensive and systematic study of metal stacks to β-Ga2O3

is imperative for achieving low-resistance and thermally

stable Ohmic contacts; and (iv) Other potential ISLs

consisting of ZnO, IZO, IGZO, etc. remain unexploited,

as well as the influence of varying thickness and propor-

tion of ingredients of ISLs on the performance of the

contacts. In summary, the studies about Ohmic contacts

to β-Ga2O3 are still quite superficial; we believe that this

topic will continue to be one of the focused issues in the

future. Hopefully, the approaches to forming Ohmic

contacts presented in this review would be instrumental

in achieving high-performance β-Ga2O3 devices.
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