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Simple Summary: Salt and drought stress cause enormous crop losses worldwide. Several different
approaches may be taken to address this problem, including increased use of irrigation, use of
both traditional breeding and genetic engineering to develop salt-tolerant and drought-resistant
crop plants, and the directed use of naturally occurring plant growth-promoting bacteria. Here,
the mechanisms used by these plant growth-promoting bacteria are summarized and discussed.
Moreover, recently reported studies of the effects that these organisms have on the growth of plants in
the laboratory, the greenhouse, and the field under high salt and/or drought conditions is discussed
in some detail. It is hoped that by understanding the mechanisms that these naturally occurring plant
growth-promoting bacteria utilize to overcome damaging environmental stresses, it may be possible
to employ these organisms to increase future agricultural productivity.

Abstract: The recent literature indicates that plant growth-promoting bacteria (PGPB) employ a range
of mechanisms to augment a plant’s ability to ameliorate salt and drought stress. These mechanisms
include synthesis of auxins, especially indoleacetic acid, which directly promotes plant growth;
synthesis of antioxidant enzymes such as catalase, superoxide dismutase and peroxidase, which
prevents the deleterious effects of reactive oxygen species; synthesis of small molecule osmolytes,
e.g., trehalose and proline, which structures the water content within plant and bacterial cells and
reduces plant turgor pressure; nitrogen fixation, which directly improves plant growth; synthesis
of exopolysaccharides, which protects plant cells from water loss and stabilizes soil aggregates;
synthesis of antibiotics, which protects stress-debilitated plants from soil pathogens; and synthesis of
the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers the level of ACC
and ethylene in plants, thereby decreasing stress-induced plant senescence. Many of the reports
of overcoming these plant stresses indicate that the most successful PGPB possess several of these
mechanisms; however, the involvement of any particular mechanism in plant protection is nearly
always inferred and not proven.

Keywords: sustainable agriculture; plant growth-promoting bacteria (PGPB); salt stress; drought stress

1. Drought and Salt Stress

Plants that are grown in the field under natural conditions are typically subjected
to a wide range of both biotic and abiotic stresses, any one of which may significantly
inhibit plant growth and development [1]. Biotic stress factors that are inhibitory to plant
growth and development include viruses, nematodes, insects, phytopathogenic bacteria,
and phytopathogenic fungi. In addition, abiotic stress factors that are detrimental to
plants include extremes of temperature, excessively high or low light conditions, flooding,
drought, high salt, toxic metals, organic contaminants, and excessive radiation. This
review focuses on the effects and remediation of drought and salt stress, two of the most
problematic abiotic stresses as far as plant growth is concerned.
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Soil salinity and drought are enormous global problems for the growth of agricultural
plants. Worldwide drought has increased dramatically in recent years because of the in-
creasing impacts of climate change (https://climate.nasa.gov/news/3117/drought-makes-
its-home-on-the-range/, accessed on 5 January 2022; https://www.c2es.org/content/
drought-and-climate-change/, accessed on 5 January 2022). Soil salinity is not only af-
fected by climate change but is especially problematic for crops that require irrigation.
Because of the lack of sufficient water (i.e., drought) in many locations, some farmlands are
under-irrigated, causing salt (from the irrigation water) to accumulate in the soil. In this
case, the salt remains in the soil when the irrigation water is either utilized by plants or
is lost to evaporation. Moreover, the majority of the world’s salt-inhibited soils are found
in arid or semi-arid climates (https://www.fao.org/global-soil-partnership/resources/
highlights/detail/en/c/1412475/, accessed on 5 January 2022). Compounding the negative
effects of drought, the high salt levels that result from irrigation are inhibitory to the growth
of a large number of plants. At present, it is estimated that >900 million hectares or ~20%
of the world’s cultivated land mass is negatively impacted by high levels of salt. Moreover,
a significant fraction of the global land mass used for the growth of irrigated crops is at
least somewhat adversely affected by high levels of salinity.

The initial responses of most plants to drought and salinity are similar; both responses
are largely due to water stress within the plant [2,3]. When plants are first exposed to
high levels of salt, a decrease in their growth rate occurs. This is often followed by a slow
recovery to a lower growth rate. Subsequently, following the continued uptake of salt by
plants, sodium ions are translocated through the xylem to the plant shoots, with leaves and
shoots eventually accumulating high levels of sodium ions. The toxicity of accumulating
sodium ions in plants is generally considered to be a function of the excessive amounts
of sodium ions that compete with potassium ions for the binding sites that are necessary
for plant cellular functioning. This abiotic stress results in the generation of a number of
reactive oxygen species within the plant [4], which in turn can cause electrolyte leakage
from plant cells, plant cell membrane lipid peroxidation, an increase in photorespiration,
a decrease in transpiration, eventual pollen sterility, and a decrease in the plant’s rate of
photosynthesis, all of which negatively affect the plant yield and quality.

Plants are able to use a range of mechanisms to deal with salt stress [2,5–14], including
(i) selective accumulation (in vacuoles) or exclusion of sodium ions, (ii) modulation of
the root uptake of sodium ions and the subsequent transport of these ions into leaves,
(iii) compartmentalization of sodium ions at the plant cellular level, (iv) synthesis of a
variety of compatible solutes such as trehalose and proline, (v) modification of plant
cell membranes, (vi) synthesis of various antioxidative enzymes, including superoxide
dismutase and peroxidase, and (vii) modulation of some plant hormone levels, including
auxin, cytokinin, and ethylene. Moreover, the salt tolerance of any particular plant species
is often a function of the specific salt tolerance of the cultivar of the plant being examined,
the growth phase of the plant, the soil composition, the plant’s health, the presence and
nature of plant pathogenic organisms, the presence of specific rhizospheric or endophytic
plant growth-promoting bacteria (PGPB), and the presence of mycorrhizae [1].

In considering the different PGPB mechanisms that can be employed (elaborated in
the following section), it is necessary to bear in mind that many of these activities and their
regulation are interconnected. Moreover, different PGPB contain different sets of genes that
enable them to provide a range of varied protective responses against the inhibitory effects
of a range of abiotic (and biotic) stresses, including drought and salinity. In addition to
the more direct effects of PGPB on plants, many PGPB can modify plant gene expression,
thereby increasing the plant’s synthesis of stress protective agents. Thus, for example, some
PGPB may promote an increase in the plant’s production of “water-structuring” metabolites
(osmolytes), such as betaine, proline, and trehalose, and the synthesis of reactive oxygen
detoxifying enzymes, such as superoxide dismutase and catalase [15].

In assessing the scientific literature, it should be pointed out that the ability of PGPB to
overcome the effects of salt stress on plant growth has been studied to a much greater extent
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than the ability of PGPB to ameliorate drought stress. This somewhat disparate focus may
reflect the fact that salt stress is technically easier to impose and study in a laboratory setting
and is of more universal interest than drought stress. This notwithstanding, numerous
studies have reported success in using PGPB to ameliorate some of the deleterious effects
of both salt and drought stress.

Interestingly, drought and/or salt stress often increases the sensitivity of many plants
to various phytopathogens, often by decreasing the plant’s ability to effectively mount an
attack against the pathogen. However, it has been observed that PGPB isolated from salt-
or drought-stressed soils, in addition to the previously mentioned ability to protect plants
against these abiotic stresses, can frequently effectively protect plants against the damage
caused by many different fungal phytopathogens [16–18].

In the examples given below, conferring plants with drought and/or salt tolerance is
often attributed to one or more well-known PGPB mechanisms; this is despite the fact that
drought and/or salt tolerance in nature is probably attributable to multiple mechanisms. In
addition, the scientific literature also contains numerous studies in which the mechanism
used by a PGPB strain to confer drought and/or salt tolerance to a plant is not known.
While these strains may be useful in some limited applications, since other researchers do
not know what mechanisms they are using, the isolated strains are only useful to those who
have isolated and identified them, since they do not provide any guidelines for selecting
other (possibly similar or more efficacious) PGPB that are better at conferring salt and/or
drought tolerance to treated plants.

2. Plant Growth-Promoting Bacteria

A very large number of bacteria are typically found in soil (~108 to 109 bacterial
cells per gram of soil), although drought- or salt-stressed soils often contain as little as
106 bacterial cells per gram of soil [19]. Moreover, the bacteria are not evenly distributed
throughout the soil. That is, much greater numbers of bacteria are usually found around
the roots of plants than in the bulk soil. This is a consequence of the fact that plant
roots generally exude a large amount sugars, amino acids, and small organic acids, and
different types of these small molecules can serve as a nutrient source for many different
soil bacteria [20]. The bacteria in the soil are made up of a range of different genera and
species, some of which can promote plant growth (i.e., PGPB), some of which can inhibit
plant growth (i.e., phytopathogens), and some of which have no discernible effect on
plant growth.

PGPB stimulation of plant growth by may occur by a variety of either direct or
indirect mechanisms. The direct promotion of plant growth by PGPB may occur by the
bacterium, providing a plant with one or more phytohormones, such as auxin, cytokinin,
or gibberellin, or by improving the ability of a plant to acquire soil nutrients by providing
plants with sequestered iron, solubilized phosphate, zinc and potassium, and fixed nitrogen.
In addition, PGPB that express the enzyme 1-aminocyclopropane-1-carboxylate (ACC)
deaminase can lower plant ACC and ethylene levels and hence significantly increase a
plant’s tolerance to a wide range of environmental ethylene-generating stresses [11,21–24].
Importantly, PGPB may possess one or more of these activities, with most PGPB possessing
a few of these activities.

The indirect promotion of plant growth by PGPB happens when the PGPB acts as
a biocontrol agent and can prevent or thwart phytopathogens (usually either fungi or
bacteria) from inhibiting plant growth. This may occur in several different ways, including
the synthesis of pathogen-inhibiting antibiotics and/or hydrogen cyanide by the PGPB;
the synthesis of any one of several different pathogenic fungal cell wall lytic enzymes;
the synthesis of siderophores that bind extremely tightly to soil Fe+++, resulting in the
pathogen (that has a much lower affinity for iron) being deprived of necessary iron; the
PGPB outcompeting the phytopathogen for sites on or near the plant root; the synthesis
of plant hormones by the PGPB, thereby promoting plant growth and strengthening
the plant’s ability to fight off the attacking phytopathogen; the PGPB decreasing the
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amount of pathogen-induced stress ethylene within a plant; the synthesis of volatile
organic compounds (VOC) that are toxic to a variety of pathogenic organisms; and the
PGPB inducing the plant’s own defenses against phytopathogens (i.e., Induced Systemic
Resistance) [1].

Several of the direct mechanisms mentioned above have previously been shown to
protect plants against both drought and salt stress [10,13,25–28]. For example, cytokinin,
auxin, and ethylene levels have all been directly implicated in playing a role in how plants
respond to drought and salt stress [1,2,10,22,29]. In addition, indirect mechanisms of plant
growth promotion have been shown to protect a salt- or drought-debilitated plant against
the phytopathogens present during periods of salt or drought stress [18].

PGPB and the mechanisms that they employ have been extensively studied over the
past 20–25 years, and they have been shown to be effective at facilitating plant growth and
development under a wide range of potentially inhibitory conditions, with many different
species of plants, and under laboratory, greenhouse, and field conditions. Moreover,
several of the isolated and characterized PGPB strains have been commercialized in several
different countries [1,30]. Although PGPB presently make up only a very small portion of
the global fertilizer market, with each succeeding year, more of these bacteria are being
used in sustainable agricultural practice. It is therefore expected that PGPB will eventually
(hopefully in the next 5–15 years) be utilized on a global scale and replace many of the
environmentally deleterious chemicals that are currently used in agriculture.

2.1. How PGPB Mechanisms Deal with Plant Drought and Salt Stress
2.1.1. Mechanisms: ACC Deaminase, IAA, Cytokinin, and Metabolites Such as Proline
and Trehalose

PGPB exhibit a wide range of mechanisms through which they can improve the
tolerance of plants to salt and drought stress. After a careful analysis of the existing
literature, some of the most common traits involved are (i) the synthesis of the enzyme
ACC deaminase, lowering the amount of stress ethylene produced by plants; (ii) the release
of auxins and especially IAA, modulating the regulatory responses of plants that have been
exposed to various environmental stresses; (iii) the synthesis of metabolites such as proline
and trehalose, well known to behave as protectants against various stresses (particularly
drought and salt stress; Figure 1). The protective effect of these bacterial mechanisms
against abiotic stresses has been extensively tested and validated for a large number of
plant and bacterial species. In the following section, a description of the functioning of
these mechanisms is presented.

2.1.2. Details of How Each Mechanism Functions

The plant hormone ethylene is involved in several plant biological activities, including
germination of seeds, tissue differentiation, the regulation of root branching and root
elongation, flowering, fruit ripening, and leaf abscission. However, when plants are
subjected to biotic or abiotic environmental stresses, the synthesis of a high amount of
ethylene occurs. This synthesis starts from S-Adenosyl-Met; this molecule is converted
into ACC by ACC synthase, and the ACC is subsequently converted into ethylene by
the enzyme ACC oxidase [31]. ACC deaminase produced by PGPB can lower ACC and
ethylene levels in a plant via the degradation of ACC to ammonia and alpha-keto-butyrate.
As a consequence, the ethylene level inside a plant will not reach concentrations that are
inhibitory to plant growth [32,33]. There is a body of literature demonstrating the efficacy
of PGPB in producing ACC deaminase [34], supporting plant growth in the presence of salt
or/and drought stresses [1,2] (see Tables 1 and 2). The clear involvement of ACC deaminase
in facilitating plant growth under water deprivation or the excess of salt is typically
demonstrated with the use of mutants lacking this enzymatic activity [25,34]. Moreover,
ACC deaminase is often associated with the expression of other PGPB plant-beneficial
traits, such as IAA synthesis [33], and the production of osmoprotectant molecules [35].
Auxins are phytohormones whose effect is dose-dependent, driving different stages of plant
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development, such as germination of seeds, xylematic vessel formation, the elongation and
proliferation of plant cells, root branching (including the emergence of both lateral and
adventitious roots), plant responses to light and gravity, photosynthesis, florescence and
fructification, and tolerance to stressful conditions [36]. Soil bacteria able to synthesize IAA
are quite common and belong to a wide variety of taxonomic groups. Bacterial biosyntheis
of IAA may occur through one or more of seven different biosynthetic pathways that
have been identified, with five of these pathways relying on tryptophan as a precursor of
IAA [37,38]. Usually, since amino acid synthesis is costly from an energetic point of view,
the tryptophan concentration inside a bacterial cell is low and is strictly regulated. For this
reason, to synthesize IAA, bacterial cells primarily use the tryptophan released through
exudation by the plant roots. IAA produced by bacteria may be taken up by plant roots,
augmenting the endogenous plant pool. The increased IAA generally has the effect of
stimulating plant growth (or suppressing plant growth if the IAA level becomes too high).
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Figure 1. Schematic overview of the consequences of salt and drought stress on plants and the
functioning of PGPBs supporting plant growth in these harsh environmental conditions.

IAA-producing bacteria mediate drought and salt stress tolerance by improving root
structure architecture, increasing the permeability of water into the cell and the water
uptake in leaves, regulating metabolic homeostasis by increasing osmotic content, ROS
detoxification, and inducing the transcription of a plethora of stress-related genes combined
with the induction of specific protein synthesis [39,40].

Following several previous experiments using transgenic plants, a strain of the Gram-
negative bacterium Ensifer meliloti was engineered with an ipt gene from a strain of
Agrobacterium under the control of the E. coli trp promoter, which causes the overpro-
duction of the phytohormone cytokinin [41]. The genetically engineered bacteria were
then assessed to determine whether they could protect alfalfa plants against the growth
inhibition and senescence that is a consequence of drought stress. Alfalfa plants were first
inoculated with engineered E. meliloti and then subjected to several weeks of drought stress.
Following this stress, the plants inoculated with the transformed PGPB strain were signifi-
cantly larger than the plants inoculated with the non-transformed strain. When the plants
were later rewatered, those that had been inoculated with the engineered PGPB strain grew
to a level similar to plants that had not been subjected to drought stress, suggesting that
the high levels of bacterial cytokinin produced by the engineered bacterium improved
the ability of alfalfa to withstand drought stress. Unfortunately, the use of genetically
engineered bacterial strains in the field is not permitted in most countries; however, it may
be possible to alter rhizobial strains to produce high cytokinin levels by either conventional
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mutagenesis or CRISPR modification of the bacterial genome (which is not considered to
be genetic engineering in many countries).

Trehalose (α-D-glucopyranosyl-(1→1)-α-D-glucopyranoside) is a non-reducing dis-
accharide that consists of two glucose molecules linked by a α,α-1,1-glycosidic bond; it is
found in archaea, bacteria, fungi, plants, and in many invertebrates. In bacteria, trehalose
synthesis is realized through five different pathways, with only one consisting of a sin-
gle reaction, e.g., in Pseudomonas putida UW4 and other bacterial species, and consisting
of trehalose synthesis from maltose mediated by a transglucosylation reaction [42]. Tre-
halose in plant and bacterial cells behave as a xeroprotectant, through three hypothesized
mechanisms (water replacement, glass formation, and stability theory), enabling them to
deal with harsh abiotic stress such as desiccation and or high levels of salinity [43–46].
The environmental pressure induced by salinity or drought selects and favors tolerant
plants and microorganisms. As a consequence, PGPB living on the root and able to tol-
erate arid or saline conditions can limit the damage caused by drought and/or salinity
to the plants [47]. One of the mechanisms responsible for the induced plant tolerance to
desiccation is the bacterial modulation of the amount of trehalose in plants. Trehalose
behaves as a signal of drying damage due to its ability to trigger the plant defense system
to limit the damages caused by drought. This was demonstrated by Vilchez et al. [48], who
identified the otsAB genes (which codes for alpha, alpha-trehalose-phosphate synthase,
and trehalose-6-phosphate phosphatase) in the drought-tolerant Microbacterium sp. strain
3J1 and inserted them into the drought-sensitive P. putida KT2440 strain. The transformed
strain P. putida KT2440 (pUCP22:otsAB) overproduced trehalose under water stress condi-
tions and efficiently supported the growth of pepper plants cultivated under water deficit.
Moreover, several examples in the literature, reviewed by Sharma et al. [49], demonstrate
that trehalose is a key component of the functioning of the legume-rhizobia-mycorrhizal
fungi tripartite symbiosis under drought conditions.

In addition to increasing bacterial and plant tolerance to environmental stresses,
trehalose improves the survival of PGPB or other bacterial biocontrol agents during long-
term storage of commercial formulations and increases root competence [50]. Finally,
trehalose has recently been classified by the US Food and Drug Administration as Generally
Regarded As Safe (GRAS) [51], thus becoming useful as a food formulant.

Among the compatible solutes produced by the plant following water deprivation,
proline reduces the cell water potential and helps to maintain the turgor pressure, thus
ensuring the plant’s full range of plant metabolic activity, development, and yield rate. The
amount of proline synthesized by different species of plants increases from 20% to 80%
of the total number of free amino acids under optimal conditions and osmotic and salt
stress, respectively [52]. Fortunately, PGPB can modulate proline expression in plants. For
example, Pseudomonas putida strain GAP-P45 can promote the growth of Arabidopsis thaliana
plants that have been exposed to drought, upregulating the expression of genes that are
involved in proline production, including OAT (ornithine-∆-aminotransferase), P5CS1 (∆1-
pyrroline-5-carboxylate synthetase 1), P5CR (∆1-pyrroline5-carboxylate reductase), and in
proline degradation, such as PHD1 (proline dehydrogenase 1) and P5CDH (∆1–pyrroline
5-carboxylate dehydrogenase). These results, obtained by real-time PCR, are consistent
with the improvement of the growth parameters (plant biomass, water content, chlorophyll
concentration) observed in plants cultivated under water deficit and inoculated with this
bacterial strain [53]. Similarly, salt tolerance in wheat induced by Bacillus sp. strain wp-6
was determined to be related to an increased content of proline, soluble sugar, and soluble
protein of 7.48%, 12.34%, and 4.12%, respectively [54].
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Table 1. Recent studies indicating how PGPB help to ameliorate drought stress.

Plant Bacteria Comments Reference

Arabidopsis thaliana
(thale cress) Flavobacterium crocinum HYN0056T

Inoculation with HYN0056T enhanced tolerance against drought and
salt stress, possibly via induction of stomatal closure. Treatment with
strain HYN0056T followed by drought or salt stress caused the
upregulation of several drought- and salt-inducible Arabidopsis genes.

[55]

Arabidopsis thaliana
(thale cress)

Kosakonia cowanii GG1 isolated as an endophyte of
seeds of the xerophytic invasive plant
Lactuca serriola

Inoculation of A. thaliana with K. cowanii GG1 stimulated plant growth
under drought conditions. The bacterial strain reduced soil water loss,
indicating that the synthesis of exopolysaccharides contributes to
maintaining the soil water content.

[56]

C. arietinum L. (chickpea) Mesorhizobium ciceri Ca181

Mutants of M. ciceri defective in phosphorous solubilization and
drought stress tolerance were selected. The results indicated that the
otsA (Trehalose-6-phosphate synthase), Auc (Acetoin utilisation protein),
and Usp (Universal stress protein) genes contributed to the mechanism
of drought stress tolerance.

[57]

Eleusine coracana (L.) Gaertn.
(finger millet)

Variovorax paradoxus RAA3 and ACC
deaminase-producing bacteria
(Ochrobactrum anthropi DPC9,
Pseudomonas palleroniana DPB13 and DPB16, and
Pseudomonas fluorescens DPB15)

Inoculation of plants with V. paradoxus RAA3 and the consortium of
O. anthropi DPC9, P. palleroniana DPB13 and DPB16, and P. fluorescens
DPB15 increased plant growth and nutrient levels in leaves. High
amounts of ROS-scavenging enzymes, including superoxide dismutase,
guaiacol peroxidase, catalase, and ascorbate peroxidase, as well as the
cellular osmolytes proline and phenol, leaf chlorophyll, and a reduced
level of hydrogen peroxide and malondialdehyde, were observed after
inoculation with RAA3 and the consortium of the other four bacterial
strains compared to untreated plants.

[58]

Eucalyptus grandis
(rose gum) Pseudomonas sp. M25 and N33

Plants inoculated with strain M25 exposed to gradual water deficit
showed a significant increase in plant water content and cell wall
elasticity. Rapid water deficit conditions caused partial defoliation in the
absence of added bacteria. Both PGPB strains stimulated the formation
of new leaves; inoculation with strain M25 reduced the transpiration
rate; and co-inoculation with both strains increased both growth and
photosynthetic activity.

[59]
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Table 1. Cont.

Plant Bacteria Comments Reference

Glycine max L. Merrill (soybean) Bradyrhizobium japonicum and Azospirillum brasilense

The inoculation of soybean plants with B. japonicum and/or A. brasilense
and then subjected to drought stress yielded increased leaf membrane
stability. Co-inoculation with these strains followed by drought stress
improved nodulation. Treatment with one or both of these strains
reduced the pod abortion rate under moderate drought stress but not
severe drought stress.

[60]

Juglans regia L.
(walnut.)

AM fungi (Funnelliformis mosseae,
Claroideoglomus etunicatum), and
Azotobacter chroococcum, Azospirillium lipoferum

Drought stress caused a reduction in plant growth and leaf nutrient
content, while increased proline, soluble sugar, starch peroxidase
enzyme activity, and phenolic content was seen in leaves. Inoculation
with consortia alleviated the negative effects of drought stress on
seedlings by increasing the phenol, proline, peroxidase activity, soluble
sugar, and starch content. C. etunicatum was the most effective
AM fungi.

[61]

Solanum lycopersicum Mill cv. F144 (tomato) and
Capsicum annuum L. cv. Maor (pepper)

Achromobacter piechaudii ARV8 (isolated from the
Arava region of the Negev desert, Israel)

Tomato and pepper seedlings exposed to transient water stress and
inoculated with strain A. piechaudii ARV8 showed increased biomass.
Moreover, ARV8 lowered ethylene synthesis in tomato seedlings during
drought stress, favoring the recovery of ARV8-treated plants when
watering was resumed.

[62]

Solanum lycopersicum L.
(tomato)

Various rhizobacteria (12 Bacillus spp. strains,
6 Pseudomonas, 4 Brevibacillus and 1 Paenibacillus
strain isolated from Cistanthe longiscapa (a native
flowering desert plant from the Atacama
desert, Chile)

The Bacillus strains were used to formulate three consortia and to
inoculate tomato seeds that were subsequently exposed to different
degrees of water limitation. Inoculated seedlings showed higher
biomass and recovery rates compared to uninoculated ones.

[63]

Solanum tuberosum (cultivars Swift
and Nevsky) (potato)

Achromobacter xylosoxidans Cm4,
Pseudomonas oryzihabitans Ep4, and
Variovorax paradoxus 5C-2

PGPB inoculation increased tuber yield in field experiments in plants
cultivated under water-limited conditions. However, the leaf water
concentration both in inoculated and uninoculated plants was similar,
suggesting that other mechanisms (such as the modulation of
phytohormone levels) might be responsible for plant growth promotion.

[64]
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Table 1. Cont.

Plant Bacteria Comments Reference

Triticum aestivum L. (wheat) Azospirillum brasilense and Herbaspirillum seropedicae
Inoculation with the bacterial strains induced drought resistance in the
wheat cultivar CD-120. The grain index was improved with
H. seropedicae under water stress conditions.

[65]

Triticum aestivum L.
(wheat)

Variovorax paradoxus RAA3; Pseudomonas spp.
DPC12, DPB13, DPB15, and DPB16;
Achromobacter spp. PSA7 and PSB8; and
Ochrobactrum anthropi DPC9

In drought conditions, inoculation with strain RAA3 and a consortium
of DPC9 + DPB13 + DPB15 + DPB16 improved wheat plant growth and
foliar nutrient levels and positively modulated antioxidant properties
compared to uninoculated plants.

[66]

Triticum aestivum L.
(wheat)

Azospirillum brasilense NO40 and
Stenotrophomonas maltophilia B11

Seedling inoculation with the two bacterial strains overcame the
negative effects of drought stress, including changes to the relative
water content of roots, shoots, and leaves; the area of leaves; the
contents of chlorophyll a and b and ascorbic acid; and the protein
patterns of root extracts. Bacterial inoculation reduced the
drought-induced negative changes (i.e., the leakage of electrolytes and
accumulation of malondialdehyde and hydrogen peroxide, the
production of proline, and the activities of catalase and peroxidase
compared to their uninoculated counterparts).

[67]

Triticum aestivum
(wheat)

Curtobacterium flaccumfaciens Cf D3-2 and
Arthrobacter sp. Ar sp. D4-1

The two bacterial strains, when used separately to inoculate wheat
plants, showed the ability to promote growth under drought conditions. [68]

Vigna mungo L. (black gam) and
Pisum sativum L. (pea)

Ochrobactrum pseudogrignonense RJ12,
Pseudomonas sp. RJ15, Bacillus subtilis RJ46, alone
and in consortia

Consortium treatment increased seed germination, root and shoot
length, and plant biomass. Under drought conditions, treated plants
exhibited elevated ROS and cellular osmolyte synthesis, higher leaf
chlorophyll content, and increased relative water content compared to
uninoculated plants. Bacterial inoculation reduced ACC accumulation
in plants and down-regulated ACC-oxidase gene expression.

[69]

Vigna unguiculata (cowpea) Bacillus aryabhattai strain MoB09 (able to degrade
the herbicide paraquat)

B. aryabhattai MoB09 promoted the growth of cowpea plants following
drought stress. [70]
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Table 1. Cont.

Plant Bacteria Comments Reference

Zea mays L. (maize) 12 drought-tolerant bacterial strains producing
ACC deaminase and/or exopolysaccharides

Strains that synthesize both ACC deaminase and exopolysaccharides
induced increased photosynthesis rate, stomatal conductance, vapor
pressure, water-use efficiency, and transpiration rate. The strain
B. velezensis D3 was the best PGPB.

[71]

Zea mays L.
(maize)

Commercial biostimulant BACSTIMR
100 composed of a consortium of two
Bacillus licheniformis strains, two
Brevibacillus laterosporus strains, and one
Bacillus amyloliquefaciens strain

Plant inoculation conferred increaseed drought resistance in maize by
altering several plant metabolic pathways, including pathways
encoding redox homeostasis and strengthening of the plant cell wall,
osmoregulation, energy production, and membrane remodelling.

[72]

Table 2. Recent studies indicating how PGPB help to ameliorate salt stress.

Plant Bacteria Comments Reference

Arabidopsis thaliana (thale cress) Paraburkholderia phytofirmans PsJN

A. thaliana plants inoculated with strain PsJN showed higher survival rate when
exposed to long-term salinity and reduced Na+ accumulation within leaf tissues
compared to uninoculated plants. Mutants defective in ACC deaminase, auxin
catabolism, N-acyl-homoserine-lactone production, and flagellin synthesis showed
a low relevance of these functions to salinity tolerance. Bacterial release of volatile
organic compounds (mainly 2-undecanone, 7-hexanol, 3-methylbutanol and
dimethyl disulphide) reproduced the effects of direct bacterial inoculation of roots,
increasing plant growth rate and tolerance to salt stress conditions. Exposure of
A. thaliana to different amounts of these molecules demonstrated their capability to
affect growth, while exposure to a mixture of the first three compounds mimicked
the effects of the bacterial strain on plant growth stimulation and salinity tolerance.

[73]

Arachis hypogaea L. (peanut)

Klebsiella sp., Pseudomonas sp.,
Agrobacterium sp., and Ochrobactrum sp.
isolated from the halophyte
Arthrocnemum indicum

Five diazotrophic salt-resistant strains of Klebsiella, Pseudomonas, Agrobacterium, and
Ochrobactrum produced IAA and ACC deaminase, fixed N2, and solubilized
phosphate. All of the isolates promoted peanut growth under non-stressful
conditions and increased the N content in plants. In plants that were previously
inoculated with these bacterial strains and then exposed to salt stress, accumulation
of ROS-modulating enzymes and increased biomass was recorded compared to
uninoculated ones.

[74]
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Plant Bacteria Comments Reference

Brassica campestris L. (canola) Brevibacterium epidermidis RS15 and
Bacillus aryabhattai RS341

120 mM NaCl reduced the rate of seed germination by 50%. Inoculation with
B. epidermidis RS15 and B. aryabhattai RS34, both halotolerant and able to synthesize
ACC deaminase, enhanced seed germination under salt stress and reduced the
ACC content in seeds. Inoculation with both bacterial strains increased hydrolytic
enzyme activities (amylase, invertase, and protease) and decreased ethylene levels
compared to uninoculated seeds exposed to salt stress.

[75]

Camelina sativa
(camelina or false flax)

Pseudomonas putida UW4, two root
endophytes Pseudomonas migulae 8R6 and
Pseudomonas fluoresces YsS6 (both ACC
deaminase producing strains), and the acdS
minus mutants 8R6M and YsS6M

Soil inoculation with wild-type strains increased shoot length without salt, and
seed yield under moderate salinity. Transgenic plants that expressed the acdS gene,
encoding the enzyme ACC deaminase, showed reduced inhibition of root
lengthening and biomass development, and increased seed production, better seed
quality, and higher levels of seed oil production under salt stress.

[76]

Camelina sativa
(camelina or false flax) Pseudomonas migulae 8R6

Both of the C. sativa plants treated with the ACC deaminase producing endophyte
P. migulae 8R6 and transgenic plants expressing acdS demonstrated increased
tolerance to salt. Inoculation with strain 8R6 positively impacted ethylene- and
abscisic acid-dependent signalling. The expression of acdS in transgenic plants
altered auxin, jasmonic acid, and brassinosteroid signalling and/biosynthesis.
Expression of genes involved in carbohydrate metabolism were up-regulated, as
was the expression of genes modulating the level of ROS released. The expression
of the acdS gene also positively effected the expression of photosynthesis genes.

[77]

Camelina sativa
(camelina or false flax) Pseudomonas migulae 8R6

Treatment of C. sativa, grown under salt stress, with the endophyte P. migulae 8R6,
able to synthesize ACC deaminase, induced a negative modulation of ethylene
signaling as well as auxin and jasmonic acid biosynthesis and signaling, while
genes involved in regulation of gibberellin signaling were positively affected. In
plants cultivated with salt and inoculated with 8R6, a moderate expression of the
acdS gene under the control of the rolD promoter occurred, which was highly
efficient in lowering the expression of the genes involved in the synthesis of
ethylene and its signaling.

[78]
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Plant Bacteria Comments Reference

Capsicum annuum (pepper)
Brevibacterium iodinum RS16, Bacillus
licheniformis RS656, and Zhihengliuela alba
RS111

Brevibacterium iodinum RS16, Bacillus licheniformis RS656, and Zhihengliuela alba
RS111 were identified as both halotolerant and ACC deaminase producers. Single
inoculation with the three bacterial strains in red pepper plants grown at three
salinity levels induced lower ethylene production. Plant biomass and salt tolerance
index (the ratio of the biomass of salt stressed to non-stressed plants) in inoculated
plants was higher compared to non-inoculated plants.

[79]

Capsicum annuum L. (red pepper) Pseudomonas frederiksbergensis OS261

Plants were inoculated with strain OS261 and grown with three levels of salt.
Growth parameters (height and plant biomass) of plants were increased by the
presence of the bacterial strain compared to uninoculated controls. The amount of
ethylene synthesized by plants grown under salinity stress was high, but
inoculation with strain OS261 reduced the release of this hormone. The level of
antioxidant enzyme activity in leaves of inoculated plants grown in salinity was
increased, while the H+ concentration was reduced.

[80]

Capsicum annuum L. cv. Bulmat (red
pepper)

Pseudomonas frederiksbergensis OB139,
Pseudomonas vancouverensis OB155

Plants were cultivated under four levels of salt concentration and inoculated or not
with one or both strains. Salt stress inhibited plant growth through increased
ethylene synthesis and the disruption of photosynthetic parameters compared to
uninoculated plants. The combination of the two bacterial strains, both able to
synthesize ACC deaminase, lowered ethylene levels in plants and increased
catalase activity, leading to increased plant growth compared to a single bacterium
or the uninoculated control.

[81]

Cicer arietinum L. (chickpea) Mesorhizobium ciceri EE-7 (salt-sensitive) and
Mesorhizobium ciceri G-55 (salt-tolerant)

Two isolates of M. ciceri, one that was salt sensitive and another that was salt
tolerant, were transformed with an isolated acdS gene encoding ACC deaminase.
Salt stress reduced the biomass of plants inoculated with the wild-type strains. The
salt-tolerant bacterial strain induced a higher nodulation rate in chickpeas
compared to the salt-sensitive strain. The shoot dry weight was increased in plants
inoculated with the salt-sensitive transformant strain. In plants inoculated with the
salt-sensitive transformant strain, nodulation was found to be comparable to that
induced by the salt-tolerant strain.

[82]
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Coriandrum sativum L. (coriander) Azospirillum brasiliense and
Azotobacter chroococcum

Inoculation of coriander seeds, exposed to four levels of salt stress, with a mixture
of A. brasiliense and A. chroococcum enhanced chlorophyll content and increased
grain yield and plant biomass compared to uninoculated plants. Combined
inoculation and salt stress increased catalase and decreased the level of ascorbate
peroxidase and guaiacol peroxidase compared to untreated plants. Inoculation
with both PGPB lowered Na and increased the K concentration in coriander leaves
compared to untreated plants. The presence of PGPB improved plant growth in
both the absence and presence of salt stress conditions.

[83]

Cucumis sativus (cucumber) Pseudomonas fluorescens, Bacillus megaterium,
and Variovorax paradoxus

The ability to solubilize phosphates and synthesize ACC deaminase, siderophores,
and IAA was assessed in the three PGPB strains grown at two salt concentrations (2
and 5% NaCl w/v). While B. megaterium was the least affected by high salinity,
ACC deaminase activity as well as siderophore and IAA production in P. fluorescens
remained unaffected under salt stress. On the contrary, V. paradoxus was not
tolerant to salt, and its expression of plant beneficial traits was reduced by salinity.
When inoculated onto cucumber plants grown at three different salinity levels,
P. fluorescens was the most effective of the three strains at decreasing the inhibitory
effects of salinity.

[84]

Hordeum vulgare L. (barley),
emphTrifolium repens L. (clover), and
Pennisetum glaucum L.R. Br. (pearl millet)

Pseudomonas putida UW3 and UW4

Barley, clover, and pearl millet plants grown in the presence of salt and inoculated
with P. putida UW3 and UW4. P. putida UW4 increased barley biomass compared to
uninoculated plants. Strain UW3 increased the biomass of the three crops. Shoot
and root length and weight were increased in inoculated plants, suggesting a more
efficient photosynthetic activity in the presence of the bacterial strains. Data from
pulse amplitude modulation fluorometry showed that the reduction of plant
photosynthetic activity induced by salt stress was recovered once the strains
were applied.

[85]
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Medicago sativa L.
(alfalfa)

Bacillus megaterium NRCB001, Bacillus subtilis
subsp. subtilis NRCB002, and Bacillus subtilis
NRCB003

Thirteen bacterial strains were isolated from the rice rhizosphere and characterized
for their plant beneficial traits. B. megaterium NRCB001, B. subtilis subsp. subtilis
NRCB002, and B. subtilis NRCB003 synthesized auxin, siderophores, NH3, and
ACC deaminase and solubilized phosphate and potassium. Strains NRCB001 and
NRCB002 tolerated 1750 mM NaCl. The three strains were inoculated onto
M. sativa grown under normal conditions and salinity stress. Strains NRCB002 and
NRCB003 increased the dry weight of alfalfa compared with non-inoculated
seedlings treated with 130 mM NaCl.

[86]

Oryza sativa L.
(rice)

Streptomyces sp. GMKU 336 and its ACC
deaminase-deficient mutant

Plants of Thai jasmine rice cultivar Khao Dok Mali 105 grown under salt stress were
inoculated with the endophyte Streptomyces sp. GMKU 336 or with its mutant
lacking ACC deaminase activity. Strain GMKU 336 increased plant growth and
chlorophyll, proline, K+, Ca+, and water content. The amount of released ethylene
was reduced, as was the content of ROS and Na+, and the Na+/K+ ratio, compared
to uninoculated plants or to those inoculated with the mutant. Plants treated with
the wild type showed down-regulation of genes involved in the ethylene synthesis
pathway, ACO1 and EREBP1, while acdS was up-regulated. Genes involved in
osmotic balance, Na+ transport, calmodulin, and antioxidant enzymes
were upregulated.

[87]

Oryza sativa (rice) Bacillus tequilensis 10b (UPMRB9)

The effect of strains 10b UPMRB9′ on the growth of rice that was grown in the
presence of salt was assessed. Strain 10b UPMRB9′ improved osmoprotectant
properties such as proline, the soluble sugar concentration, and the levels of the
antioxidant enzymes uperoxide dismutase, peroxidase, and catalase. Rice
inoculated with strain UPMRB9 accumulated a greater amount of N and Ca in
plant tissues, suggesting that this strain could behave as a bio-augmenter to
improve biochemical and nutritional features in rice plants under salinity stress.

[88]
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Panax ginseng
(ginseng) Paenibacillus yonginensis DCY84T

The impact of strain DCY84T, able to synthesize IAA and siderophore and solubilize
phosphate, was assessed under short- and long-term salinity stress. Ginseng seedlings
inoculated with the bacterial strain, following exposure to salt stress, were protected
by the induction of plant defense-related systems (ion transport, ROS scavenging
enzymes, proline content, total sugars, and ABA biosynthetic genes), as well as genes
involved in root hair formation. The metabolome of the seedlings treated with
DCY84T and exposed to salt stress overlapped with that of control plants.

[89]

Pisum sativum (pea) Bacillus marisflavi (CHR JH 203) and
Bacillus cereus (BST YS1_42)

Inoculation of pea plants with B. marisflavi CHR JH 203 and B. cereus BST YS1_42,
both synthesizing a high amount of ACC deaminase, grown under salinity,
improved plant biomass as well as the amount of plant carbohydrates, reducing
sugars, proteins, chlorophylls, phenol, flavonoids, and antioxidant enzymes levels.
In addition, plant ROS scavenging genes, defense genes, and cell rescue genes were
all overexpressed in inoculated plants in the presence of 1% NaCl.

[90]

Seidlitzia rosmarinus Ehrenb. ex Boiss
(perennial-green desert species of
saltwort)

Rothia terrae, Kocuria palustris,
Pseudomonas baetica, Pseudomonas fluorescens
Staphylococcus warneri, Staphylococcus
epidermidis, Staphylococcus succinus,
Paenibacillus amylolyticus,
Brevibacterium frigoritolerans,
Stenotrophomonas pavanii, Halomonas sulfidaeris,
Planococcus salinarum, Planomicrobium koreense,
Planococcus halocryophilus, Planomicrobium soli

Culturable endophytic bacteria from the halophytic plant Seidlitzia rosmarinus Ehrenb.
ex Boiss. were isolated and characterized to evaluate their plant beneficial traits under
salt stress. Root endophytes belonged to genera Rothia, Kocuria, Pseudomonas,
Staphylococcus, Paenibacillus, and Brevibacterium; shoot isolates belonged to
Staphylococcus, Rothia, Stenotrophomonas, Brevibacterium, Halomonas, Planococcus,
Planomicrobium, and Pseudomonas genera; Staphylococcus, Rothia, and Brevibacterium
occurred in both roots and shoots. Synthesis of IAA and ACC deaminase was higher
in bacteria from roots than from shoots. Finally, S. pavanii JST3 and P. fluorescens JST2
improved both shoot and root growth of Lepidium sativuum under
salinity conditions.

[91]

Solanum lycopersicum (tomato) Pseudomonas azotoformans CHB 1107

Strain CHB 1107 wild-type (producing ACC deaminase) lowered ethylene and
proline levels in tomato plants exposed to high salt levels, increasing the dry weights
of shoots and roots compared with uninoculated plants. Plants that were inoculated
with a mutant that lacked ACC deaminase activity showed reduced K, Ca, and Mn
uptake compared with plants inoculated with the wild-type strain. The wild-type
strain CHB 1107 reduced the uptake of Na by tomato plants compared with the
mutant strain under salt stress. Tomato plants inoculated with the wild-type strain
yielded a higher K/Na ratio than those that were inoculated with the mutant.

[92]
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Sorghum vulgare
(sorghum)

Pseudomonas migulae SVB3R2, SVB3R3,
SVB3R4, Pseudomonas sp. SVB3R5,
Pseudomonas brassicacearum SVB6R1

Sorghum, tomato, and cucumber bacterial endophytes were characterized by 16S
rRNA sequence determination and tested for plant beneficial traits. The activity of
five endophytes was tested on plants grown with salinity stress. Strains SVB3R3
and SVB3R4 increased plant biomass, and strains SVB3R3 and SVB3R4 and SVB6R1
decreased the symptoms of plant salinity stress. Only strain SVB6R1 could produce
ACC deaminase.

[93]

Triticum aestivum (wheat)

Bacillus pumilus SU3, Bacillus aquimaris SU8,
Bacillus pumilus SU10, Bacillus arsinicus SU13,
Arthrobacter sp. SU18, Bacillus cereus SU24,
Pseudomonas mendocina SU40, Bacillus
aquimaris SU44, and Bacillus subtilis SU47

Salt-tolerant (ST) PGPB positively influenced the growth and yield of wheat in
saline soil. All nine tested strains improved plant growth in saline soil under
greenhouse conditions, with strain DU18 being the most efficient. Under field
conditions, strains SU44 and SU8 were the best in increasing plant biomass. Plant
inoculation with strain SU8 led to higher proline content and total soluble sugar
accumulation in wheat, while strain SU44 resulted in a higher accumulation of
reducing sugars. The amounts of N, K, and P in wheat leaves increased
significantly after inoculation with all the strains; B. subtilis SU47 lowered the
sodium (Na) content in wheat leaves.

[94]

Triticum aestivum (wheat) Serratia marcescens CDP-13

Serratia marcescens CDP-13 is halotolerant, produces ACC deaminase, solubilizes
phosphate, synthesizes siderophores and IAA, and fixes N2. Wheat inoculation
with strain CDP-13 increased plant biomass under salinity stress, reducing
inhibition of plant growth caused by salt and lowering the amount of
osmoprotectants (such as proline, malondialdehyde, soluble sugar), protein, and
IAA content in plants.

[95]

Triticum aestivum L. (wheat). Bacillus megaterium PN89
B. megaterium PN89, able to synthesize IAA, induced increased germination rate
and root and shoot length in wheat plants exposed to salt stress, compared to
non-inoculated controls.

[96]

Triticum aestivum (wheat) Brevibacterium frigoritolerans, Bacillus velezensis,
and Bacillus thuringiensis

The expression of plant-beneficial traits of Br. frigoritolerans alone or in combination
with B. velezensis and B. thuringiensis under six salinity levels was characterized,
and the effects on wheat of these strains alone or in combination under salt stress
were assessed. B. frigoritolerans was the most effective, both for physiological trait
expression and wheat plant growth promotion. Under salinity stress, the mixed
inoculation of the three bacterial strains was more efficient than any single
inoculation.

[97]
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Triticum durum (wheat) Fourteen strains of the genera
Streptomyces and Nocardiopsis

Fourteen Actinomycetes strains were tested for expression of plant-beneficial
activities under salinity conditions. The isolates could solubilize inorganic
phosphate and synthesize IAA, HCN, and ammonia when grown in the presence of
different salt concentrations. The majority of the strains produced ACC deaminase.
Plant inoculation with these strains improved biomass and yielded an increased
amount of chlorophyll and proline compared to uninoculated plants, both with and
without salt.

[98]

Vigna radiata L.
(mung bean) Enterobacter cloacae KBPD

Strain KBPD is an ACC deaminase producer, able to solubilize phosphates and
synthesize IAA, siderophore, ammonia, hydrogen cyanide, and exopolysaccharide.
V. radiata plants exposed to salinity and inoculated with this bacterial strain showed
increased shoot length, root length, and fresh and dry weights. Inoculation with
strain KBPD also reduced proline content in plants grown with salt stress.

[99]

Vigna radiata (L.) R. Wilczekspring
(mung bean)

Rhizobium sp. LSMR-32 and
Enterococcus mundtii LSMRS-3

Under salt stress conditions, separate inoculation with the two bacterial strains
induced increased seed germination, grain yield, plant height, biomass, chlorophyll
content, and nutrient uptake compared to uninoculated plants. Inoculation with
both strains increased both symbiotic parameters (nodulation rate, nodule biomass,
and leghaemoglobin amount) and soil phosphatase and dehydrogenase levels. The
microbial consortium enhanced the level of proline and anti-oxidative enzymes.

[100]

Zea mays (maize) Azospirillum lipoferum or
Azotobacter chroococcum

Maize (corn) plants that were exposed to salt stress had reduced growth
parameters, pigments, soluble proteins, K+, and a K+/Na+ ratio. Salinity led to
increased levels of soluble sugars, proline, Na+, malondialdehyde, and peroxidase
and catalase activity, while the activity of plant ascorbate peroxidase remained
unaffected. Plants inoculated with A. lipoferum or A. chroococcum increased growth
parameters, pigments, K+, osmolytes, K+/Na+ ratio, and the antioxidative enzymes
in salt-affected maize. Both bacterial strains also lowered malondialdehyde and
Na+ in maize plants.

[101]
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The majority of the papers reported in Tables 1 and 2 are focused on experiments
performed under controlled laboratory or greenhouse conditions. Unfortunately, despite
their effectiveness under these conditions, the field application of PGPB covers only a
small portion of agriculture at a global level [102]. Although PGPB are more acceptable for
deliberate use in the field than transgenic plants in many countries, their exploitation is well
below their potentiality, and this is mainly related to the lack of consistency and repeatability
of PGPB performance in open field conditions. The survival of PGPB once inoculated onto
the plants is one of the main problems. This is related to the compatibility of the selected
PGPB with the considered plant species and the soil characteristics. Once introduced in
the environment, the PGPB establishes relationships with the resident microbiota, and the
results of this interaction may range from positive to negative [103]. Finally, the inoculant
formulation has a specific role in maintaining the strain survival, especially after inoculation
in open field conditions [104] Regarding stressed soil such as those affected by an excess of
salt or water deficiency, it is necessary to consider the adaptability of the selected PGPB to
these harsh conditions. When considering a stressed environment, it is always important
to keep in mind that the expression of plant-beneficial bacterial physiological traits can
be modified by the stress itself [105,106]. Following the analysis of the literature for this
manuscript, it is clear that there is a general lack of data on the performance of PGPB in
increasing plant growth and yield under salinity and drought stress conditions under open
field conditions.

3. Groups of Microorganisms to Lower Plant Drought and Salt Stress

Since bacteria can express different plant-beneficial activities, inoculation of plants
with a combination of two or more non-antagonistic microorganisms, belonging to the same
or different species, or including both prokaryotic and eukaryotic organisms, can often lead
to additive or synergistic effects in the promotion of plant growth. In fact, the lack of one
plant beneficial activity in one strain can sometimes be overcome if another microorganism
expresses this specific physiological trait [29,107–109]. Moreover, the combination of
diverse plant growth-promoting microorganisms (PGPM) offers a wide range of positive
activity to a plant, including the enhancement of plant growth, reduced susceptibility to
soil-borne diseases, increased yield, and improved seed and fruit nutritional value. The
commercialization of groups of PGPM as biofertilizers and biocontrol agents represents the
bottleneck of the full process [110,111]. However, as demonstrated by the large number
of scientific papers recently published on this topic, the use of microbial consortia is
becoming a reliable tool to support plant growth in stressed environments, especially those
characterized by an excess of salt [112–116] or a deficiency of water [63,117–121].

3.1. Bacterial Consortia

Bacterial consortia may be classified as either simple or complex. In simple consortia,
all of the bacterial strains are inoculated in a bioreactor at the same time, while in a complex
consortium, the bacterial growth occurs in separate bioreactors [29,122]. Once the strategy
of employing a simple consortium has been decided upon, it should be taken into account
that the metabolism of each inoculated bacterial strain affects the growth and physiology
of the other co-existing strains, leading to a plethora of possible interactions, ranging from
neutral, to positive (cooperation, synergism, commensalism), to negative (amensalism,
competition, antagonism). Although the occurrence of one or the other type of interactions
is usually finely monitored and regulated during the scale-up of the fermentation process,
the issue of the strain’s compatibility plays a pivotal role in the final result [123]. For,
example, in Pseudomonas koreensis S2CB45 (which was isolated from the surface sterilized
spore of a mycorrhizal fungi) and Microbacterium hydrothermale IC37-36 (which was isolated
from a rice spermosphere), the expression of plant-beneficial traits such as ACC deaminase,
IAA, and cytokinin was higher when these PGPB were co-cultured rather than grown
separately. Consequently, when this consortium was used to inoculate red pepper plants
grown at two salt stress levels, these bacterial strains reduced ethylene emission by 20%
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compared to uninoculated plants, lowered ROS accumulation, and increased activity of
antioxidant enzymes [112].

Especially for those consortia intended for use as plant growth promoters in saline
or arid environments, the sampling site from which the bacterial strains are isolated is
key. Since autochtonous plants growing in arid environments have co-evolved with their
associated microbiota, it is a common opinion that selecting bacterial strains from these
specific environments may help to obtain well-adapted bacterial strains with high tolerance
to stress as well as long survival and persistence in open field conditions [124,125].

In a recent study, Mansour et al. [118] examined the effects of either the single or
double inoculation of five faba bean cultivars with strains R. leguminosarum bv. viciae
USDA 2435 and P. putida RA MTCC5279 on the growth and health of these plants treated
to (i) optimal watering, (ii) moderate watering, or (iii) severe drought conditions. While
the water deficiency reduced the synthesis of photosynthetic pigments and enhanced the
production of antioxidant enzymes and osmoprotectants to a different extent according
to the drought sensitivity of the cultivar, plant inoculation with the bacterial strains led to
increased seed yield and crop water productivity.

Similarly, among 89 strains originally from the rhizosphere or endosphere of two
Algerian autochthonous halophytic plants (Suaeda mollis and Salsola tetrandra), three bac-
terial strains, i.e., Bacillus atropheus (BR5, OR15, and RB13), were selected based on plant
growth-promoting traits (IAA, ACC deaminase, nitrogen fixation, and phosphate solu-
bilization), antifungal activity, and tolerance to environmental conditions (pH, PEG, and
NaCl). The bacterial strains were used to inoculate A. thaliana and durum wheat alone or in
combination under salt stress conditions. Overall, the data obtained indicate that bacterial
inoculation of both plant species increased plant growth under normal conditions. When
wheat plants were cultivated in soils characterized by three salinity levels, inoculation with
the consortium was the most efficient strategy for increasing growth compared to control
plants. Finally, inoculation with the consortium increased chlorophyll and carotenoid
contents while lowering proline content, lipid peroxidation, and the activities of antioxi-
dant enzymes in treated plants, suggesting that the bacterial treatments limit the damages
induced by salt stress [116].

3.2. Bacteria Plus Fungi (Including AMF)

Consistent with the fact that plant microbiota includes a wide variety of different mi-
croorganisms, the effects of consortia involving bacterial strains associated with arbuscular
mycorrhizal fungi (AMF) and other non-obligate symbiotic fungi on plant growth under
arid conditions is a powerful tool, where each microorganism potentiates the bioprotection
against the effects of various abiotic stresses on the plant [29]. AMF are common plant-
beneficial fungi that typically form a symbiotic relationship with the roots of ~80–90% of all
land plants, colonizing plant roots intracellularly. AMF enter the root cortical cell walls, and
once inside these cells, form obligate branched intracellular fungal structures (arbuscules),
where an exchange of nutrients between the plant and the beneficial fungus takes place. In
this exchange, the plant provides the fungus with both fixed carbon and nitrogen, and in
exchange, the fungus provides the plant with an effectively increased root system and a
significantly increased ability to take up water and nutrients from the soil.

The work of several researchers has highlighted the occurrence of additive and syn-
ergistic effects between AMF and PGPB [29], with PGPB behaving as mycorrhizal helper
bacteria and thus favoring the establishment of the mycorrhizal symbiosis. Even more
complex is the interrelationship involving legumes, rhizobia, and AMF, where the AMF can
favor nodule formation, while rhizobia may reduce mycorrhizal hyphal development [126].
On this latest point, contrasting results have been obtained by Igiehon and Babalola [121],
who assessed the effects of a combination of rhizobia species and AMF on the growth of
soybean under drought stress. Based on their results, co-inoculation of soybean plants
with the bacteria Rhizobium sp. R1 and R. cellulosilyticum R3, together with a consor-
tium of AMF (consisting of Paraglomus occulum, Gigaspora gigantea, Funneliformis mosseae,
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Claroideoglomus etunicatum and Rhizophagus clarus), improved the growth and yield of soy-
bean plants that were exposed to 40% water stress, leading to enhanced leaf relative water
content and proline concentration. Moreover, mycorrhizal plants that were inoculated
with rhizobia displayed the greatest number of fungal spores and mycorrhizal colonization
intensity of all of the water regimes, revealing that the rhizobia and AMF consortium can
positively interact and represent a valuable tool in sustainable agriculture.

A large number of factors can affect the tripartite relationship between the host plant,
mycorrhizal fungi, and PGPB strains, ranging from the host plant and AMF species in-
volved to the chemical and physical parameters of the growth substrate(s) [127,128]. For
example, Veselaj et al. [129] reported that in legumes the relationships occurring among
AMF, PGPB, and rhizobia are dependent both on the species of microorganisms involved
and the level of salinity. In this study, inoculated pea plants were grown at two different lev-
els of salt stress, with two AMF (Rhizophagus irregularis and C. claroideum) and/or two PGPB,
one of them being a rhizobial strain (Rhizobium leguminosarum) and Burkholderia sp. When
grown under optimal conditions, the plant growth parameters were improved by inoc-
ulation with R. irregularis and bacteria (R. leguminosarum and Burkholderia sp.) or by the
combination of the AMF (R. irregularis + C. claroideum) with each type of bacteria. While
the plant growth was reduced by the salt stress, inoculation with R. irregularis led to better
vegetative development and higher productivity than with C. claroideum. Moreover, under
salt stress, pea plants treated with Burkolderia sp. increased vegetative growth more effi-
ciently than R. leguminosarum. In this experiment, the best results, in terms of plant growth
and productivity, were observed with plants inoculated with both AMF the rhizobia strain.

In addition to AMF, mixed bacterial/fungal consortia can include other microfungi, such
as isolates of Trichoderma species and the root endophyte Serendipita indica (previously clas-
sified as Piriformospora indica). While Trichoderma spp., and especially Trichoderma harzianum,
is mainly known for its mycoparasistic behaviour mediated by chitin degradation [130],
S. indica is a root endophyte mimicking AMF, able to grow in pure culture and improve
nutrient uptake, increasing disease resistance and stress tolerance to environmental con-
ditions [131]. In a recent study [132], lettuce and tomato plants were cultivated in the
presence of different salinity levels and inoculated with two commercial biostimulants,
one containing Bacillus amyloliquefaciens, B. brevis, B. circulans, B. coagulans, B. firmus,
B. halodenitrificans, B. laterosporus, B. licheniformis, B. megaterium, B. mycoides, B. pasteurii,
B. subtilis, and Paenibacillus polymyxa, and the other Glomus spp., Agrobacterium radiobacter,
Bacillus subtilis, Streptomyces spp., and Thricoderma spp. While uninoculated plants showed
symptoms related to salinity, plants inoculated with the two formulations showed increased
biomass, leaf number, and leaf area and were less sensitive to salinity stress. Comparing the
efficacy of the two commercial formulations, the inoculum with the consortium containing
AMF was more effective than the one based exclusively on Bacillus species.

Notwithstanding the good results obtained inoculating plants with S. indica, both
under optimal and drought/salt stressed conditions [133–137], combinations of S. indica
and PGPB have not always yielded positive results. Thus, the possibility of using this
fungus in consortia with PGPB has been shown to be effective only in studies aimed at
increasing plant disease resistance [138].

4. Summary and Conclusions

Approximately 20 years ago, scientists began observing and reporting that PGPB
could help plants to overcome some of the effects of drought and salt stress. Since that
time, there have been a large number of literature reports confirming the ability of PGPB,
applied by itself or as part of a consortium, to ameliorate some of the negative effects of the
related abiotic stresses of drought and salt stress on plant growth and development. On
the one hand, PGPB can directly promote plant growth, thereby helping plants to defend
themselves against growth-inhibiting drought and salt stress. On the other hand, PGPB
can augment a plant’s defenses against the often deleterious effects of drought and/or
salt stress using a number of different mechanisms. These mechanisms include (but are
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not limited to) the synthesis of the enzyme ACC deaminase, which can decrease plant
stress ethylene levels, the synthesis of IAA and cytokinin, which can modulate a plant’s
response to stress and promote its growth, and the synthesis of various osmoprotectant
molecules, such as proline and trehalose, which can structure plant intracellular water,
thereby protecting the cell’s structural integrity.

To date, the majority of the reported experiments using PGPB to ameliorate drought
and salt stress include just a single well-characterized PGPB strain. However, scientists
have demonstrated that the addition of several bacterial strains or a mixture of bacterial
and fungal strains may also be highly effective. However, additional work is required
to determine whether some of these consortia will be sufficiently stable and therefore
effective throughout a growing season and in the long term. In addition, just how effective
these approaches will be in the field (as opposed to in growth chamber and greenhouse
experiments) in the presence of severe drought or salt stress remains to be determined.
Certainly, the increased use of naturally occurring PGPB in agriculture as a means of
addressing various abiotic stresses is an attractive approach that (based on the results that
have been published) shows quite a lot of promise. Nevertheless, there are still many
scientific and regulatory hurdles to overcome before this technology is widely accepted
and used on a large scale.
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