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Abstract

Human activities have led to a massive increase in CO
2
 emissions as a primary greenhouse gas that is contributing to climate 

change with higher than 1 ◦
C global warming than that of the pre-industrial level. We evaluate the three major technologies 

that are utilised for carbon capture: pre-combustion, post-combustion and oxyfuel combustion. We review the advances in 
carbon capture, storage and utilisation. We compare carbon uptake technologies with techniques of carbon dioxide sepa-
ration. Monoethanolamine is the most common carbon sorbent; yet it requires a high regeneration energy of 3.5 GJ per 
tonne of CO

2
 . Alternatively, recent advances in sorbent technology reveal novel solvents such as a modulated amine blend 

with lower regeneration energy of 2.17 GJ per tonne of CO
2
 . Graphene-type materials show CO

2
 adsorption capacity of 

0.07 mol/g, which is 10 times higher than that of specific types of activated carbon, zeolites and metal–organic frameworks. 
CO

2
 geosequestration provides an efficient and long-term strategy for storing the captured CO

2
 in geological formations 

with a global storage capacity factor at a Gt-scale within operational timescales. Regarding the utilisation route, currently, 
the gross global utilisation of CO

2
 is lower than 200 million tonnes per year, which is roughly negligible compared with 

the extent of global anthropogenic CO
2
 emissions, which is higher than 32,000 million tonnes per year. Herein, we review 

different CO
2
 utilisation methods such as direct routes, i.e. beverage carbonation, food packaging and oil recovery, chemical 

industries and fuels. Moreover, we investigated additional CO
2
 utilisation for base-load power generation, seasonal energy 

storage, and district cooling and cryogenic direct air CO
2
 capture using geothermal energy. Through bibliometric mapping, 

we identified the research gap in the literature within this field which requires future investigations, for instance, designing 
new and stable ionic liquids, pore size and selectivity of metal–organic frameworks and enhancing the adsorption capacity of 
novel solvents. Moreover, areas such as techno-economic evaluation of novel solvents, process design and dynamic simula-
tion require further effort as well as research and development before pilot- and commercial-scale trials.

Keywords Carbon capture and storage · CCUS · CO
2
 capture · Geothermal energy · Energy storage · Pre-combustion · 
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CPGs  CO
2
-Plume geothermal system

MIEC  Mixed ionic–electronic conducting membrane

Introduction

Renewable energy technologies have been dramatically 
progressing over the past decade. The levelised cost of 
electricity for wind and solar energy technologies has been 
reduced by 66 and 85%, respectively. This means that the 
levelised cost of energy for solar was approximately six 
times higher only a decade ago (Lazard 2018). Despite this 
speed of maturity in renewable technologies, we still rely 
on fossil-based fuels to generate the global energy demand. 
The energy demand globally is expected to be nearly met 
by from fossil-based fuel (coal, natural gas and oil), which 
constitutes 78% by 2040 (Cao et al. 2020). While waiting for 
renewable energy technologies to fully mature enough and 
replace fossil-based fuel, carbon capture storage and utilisa-
tion of fossil-based emissions are crucial as a transition state 
(Zhang et al. 2016, 2020a). For instance, integrated gasifica-
tion combined cycle (IGCC) is a common approach coupled 
with carbon capture and storage in clean coal power plants. 
In a country such as India, transportation and electricity gen-
eration contribute to 45% of the country’s total greenhouse 
gas emissions (Ashkanani et al. 2020).

Furthermore, coal is considered the current and the future 
fuel in India, where there are total reserves of approximately 
150 gigatons. Thus, the IGCC process along with carbon 
capture looks crucial. In terms of coal reserves, India comes 
third globally after the USA and Russia as first and second 
(Ashkanani et al. 2020). Globally, coal is the largest energy 
source for electricity generation and the second-largest feed-
stock source of primary energy (Wei et al. 2020). However, 
with the current rate of CO

2
 emissions globally and with a 

CO
2
 level in the atmosphere higher than 409 ppm, anthropo-

genic activities have caused more than 1 ◦
C global warming 

than that of the pre-industrial level, of which higher than 
0.3

◦
C was due to coal-burning (Wei et al. 2020; Osman 

et al. 2020a). In 2015 the Paris agreement was developed 
which aims to limit global warming to 2 ◦

C by 2100, while 
attempting to limit the increase to 1.5 ◦C (Fawzy et al. 2020). 
Thus, investigating carbon capture technologies is of great 
importance as it is considered the only solution to miti-
gate CO

2
 emissions from industrial-scale power generation 

plants, which could lower those emissions by 50% by 2050 
(Wei et al. 2020; Wienchol et al. 2020; International Energy 
Agency 2008). It is worth noting that the cost of reducing 
CO

2
 emissions will dramatically increase by 140% if carbon 

capture and storage technologies are not considered (GCCSI 
2017).

Three main technologies are being utilised in carbon 
capture: pre-combustion, post-combustion and oxyfuel 

combustion routes. Here, the first two routes represent 
96.6% of the literature work until 2018, while oxy-reform-
ing technology showed only 3.4% of the total publications 
(Omoregbe et al. 2020). The utilisation of liquid solvents 
in pre- and post-combustion technologies is usually done 
in an absorber packed-bed in a counter-current directions, 
where the fuel gas (pre-combustion) or the exhausted flue 
gas (post-combustion) is pumped from the bottom of the 
reactor to the top, while simultaneously, the flow of the 
chemical or physical solvent flows from top to bottom. 
Temperature or a pressure swing is then applied to release 
the majority of absorbed CO

2
 from the CO

2
-rich physical 

or chemical solvent, while the CO
2
 lean chemical or physi-

cal solvent is sent back to the absorber reactor. Finally, the 
captured CO

2
 is compressed and utilised in gas recovery, oil 

recovery, agriculture, soda ash manufacturing, food industry 
and production of value-added chemicals and fuels or stored 
in geological reservoirs or saline aquifers (Ashkanani et al. 
2020; Miranda-Barbosa et al. 2017; Tarkowski and Uliasz-
Misiak 2019).

Globally, there are 22 demo projects for carbon capture 
and storage based on power generation with the majority 
share of pre- and post-combustion projects, nearly equalling 
10 and 9, respectively. There are only three demo projects 
based on oxyfuel combustion projects (Vega et al. 2020). 
In terms of countries that invest in carbon capture and stor-
age, the USA is leading the world with seven projects, and 
China comes second with five demo projects. For carbon 
capture technologies to become economic feasible, having 
adequate carbon pricing is crucial either in carbon tax or 
carbon allowances. By 2019, carbon tax significantly varied 
from one country to another, with values ranging from a few 
dollars to one hundred $/tonne of CO

2
 . At the same time, 

pricing for carbon allowances was approximately $35.4 per 
tonne of CO

2
 equivalent within the European Union Emis-

sion Trading Scheme by July 2019 (Kárászová et al. 2020). 
This value of carbon allowance started at $5.17/tonne CO

2
 

equivalent in May 2017 and is expected to reach $47.25/
tonne CO

2
 equivalent by 2023 (Kárászová et al. 2020). Com-

paring the net present value of various types of power plants 
integrated with carbon capture technology, pulverised coal 
was the cheaper option under low carbon prices. Simulta-
neously, the IGCC power plants were desirable only when 
the carbon price was high (Huang et al. 2020; Bohm et al. 
2007). Thus, the carbon pricing is considered as one of the 
most effective ways to encourage the deployment of carbon 
capture and storage technologies.

This review offers the most up-to-date advancements 
in carbon capture, storage and utilisation technologies to 
help mitigate climate change. It outlines the advantages and 
disadvantages of each route with its readiness for commer-
cialisation to decarbonise the industrial sector. Moreover, 
the review suggests steps and future guidelines from gaps 
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in the literature using bibliometric analysis. Overall, this 
critical review aims to benefit the academics working in the 
decarbonisation field alongside the policies of carbon cap-
ture, storage and utilisation technologies and will focus on 
themes that face the development and potentially face the 
commercialisation of capture, storage and utilisation tech-
nologies and their future.

CO
2
 capture technologies

In carbon capture storage and utilisation, there are mainly 
three technologies that are being utilised: pre-combustion, 
oxyfuel combustion and post-combustion technologies.

Pre-combustion

In this decarbonisation route, traditional fuels (coal or natu-
ral gas) are reacting with air or O

2
 and with or without steam 

to produce mainly synthesis gas, which is a mixture of car-
bon monoxide (CO) and hydrogen ( H

2
 ), also known as fuel 

gas or syngas as shown in Fig. 1. The main two processes 
for producing syngas are shown in Eqs. (1) and (2) for par-
tial oxidation and steam reforming reactions, respectively 
(Jansen et al. 2015).

(1)

C
n
H

m
+

n

2
O

2
→ n C O +

(

m

2

)

H
2

ΔH
C H

4
= − 36 kJ mol

−1

(2)

CnHm + n H2O → n C O +

(

n+m

2

)

H2 ΔHCH4
= 206 kJ mol

−1

In the case of using steam reforming, the typical reformer 
products are 43% H

2
 , 11% CO, 21% H

2
O and 6% CO

2
 

(Osman et al. 2018a). When the partial oxidation and steam 
reforming are deployed in pre-combustion simultaneously, 
the process is called auto-thermal reforming, where the heat 
released from the exothermic nature of the partial oxidation 
can drive the endothermic steam reforming reaction. The 
syngas mixture is then cooled down and cleaned up from 
impurities such as hydrogen sulphide, hydrochloric acid, 
mercury and carbonyl sulphide (Cao et al. 2020). The puri-
fied syngas is then subjected to the water-gas shift reaction 
(WGSR) by reacting the CO with steam ( H

2
 O) as shown 

in Eq.  (3), to increase the % CO
2
 and facilitate the CO

2
 

separation in later stages along with the production of H
2
 

fuel as decarbonised fuel, which only produces H
2
 O when 

combusted.

Finally, CO
2
 is separated through various physical and 

chemical absorption processes for either storage or utilisa-
tion (Kumar et al. 2018; Li et al. 2019a). In the chemical 
industry, the pre-combustion approach is mature and has 
been utilised for CO

2
 capture for nearly a century (higher 

than 95 years). For power generation purposes, the H
2
-rich 

fuel can be used in a Rankine + Brayton combine cycle 
plant. Although CO

2
 separation herein is much easier and 

requires lower energy than other techniques such as post-
combustion, it still needs energy for reforming, air separa-
tion and improvements in the efficiency of energy recovery 
within the process. Additionally, further purification stages 

(3)CO + H
2
O → CO

2
+ H

2
ΔH = −41 kJ mol

−1

Fig. 1  Pre-combustion technology consists of an air separation unit 
for oxygen separation (not mandatory). Then the fuel is reacting with 
air or O

2
 to produce mainly synthesis gas, which is then sent to the 

shift reactor unit to produce hydrogen and CO
2
 . The produced hydro-

gen can be used to fuel electric cars or to produce electricity through 
a gas turbine, while the flue gas is sent to the heat recovery and steam 
generation unit for electricity production. Finally, the CO

2
 is com-

pressed and dehydrated for transport and storage purposes
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are required when oil or coal is utilised to eliminate impu-
rities, ash and sulphur-containing compounds. In the first 
generation of the integrated gasification combined cycle 
(IGCC), the main cause for efficiency loss was the WGSR 
step, which was responsible for 44% of the total efficiency 
loss. This was due to the energy required for steam genera-
tion along with the heat released within the WGSR process 
as it is an equilibrium limited and exothermic process.

On the other hand, CO
2
 produced through the pre-com-

bustion process is characterised by high pressure. CO
2
 is 

then undergoing compression and liquefication for stor-
age or transportation purposes at low power requirements. 
Moreover, it promotes the production of H

2
 as a fuel that can 

be used in fuel cells (after further purification), transporta-
tion or as a building block in the production of value-added 
chemicals (Osman et al. 2020a). Another big benefit of the 
pre-combustion route is the flexibility of the outputs where 
H

2
 production or power generation can easily be switched 

according to the demand.
The separation of the H

2
 and CO

2
 mixture in the pre-

combustion route can be done using physical or chemical 
absorption techniques via syngas scrubbing using a liquid 
solvent selective to carbon dioxide and hydrogen sulphide 
as acid compounds (Jansen et al. 2015). The main common 
chemical solvent is amine-based, and its absorption capac-
ity is higher at lower partial pressure than that of physical 
solvents that require higher partial pressure. On the other 
hand, the physical solvents’ loading relies on the partial 
pressure of the CO

2
 , according to Henry’s law. Generally, 

at low temperatures and high partial pressures, the physical 
solvents’ performance is high as those conditions provide 
better sorption capacity. Physical solvents suffer from draw-
backs such as low CO

2
–H

2
 selectivity, high solvent viscos-

ity, thermal stability, corrosivity, toxicity and flammability 
(Ashkanani et al. 2020). Regarding low-temperature CO

2
 

separation, many techniques are being deployed, such as 
cooling, compression, condensation, flashing along with 
cryogenic distillation that is commercially used in the food 
industry. However, it is mainly used for highly concentrated 
CO

2
 streams (higher than 90%) and not adequate for dilute 

CO
2
 streams.

The purity of the produced hydrogen in the pre-combus-
tion approach is not a priority, while the CO

2
 separation is. 

Thus, for high-purity H
2
 and CO

2
 , advancement in separation 

technologies is crucial. Adsorptive reactors and membrane 
reactors are promising where the integration of reaction and 
separation occurs in a single unit to lower the energy require-
ment, as well as the formation of by-products, while increas-
ing the overall efficiency of the process. In adsorptive reactor 
technology, a selective solid CO

2
 adsorbent is utilised to 

facilitate the removal of CO
2
 from the stream and hence, 

shift the equilibrium reaction towards H
2
 production. The 

characteristics for those adsorbents are high CO
2
 adsorption 

capacity, mechanically robust, fast sorption, selective and 
stable during multiple CO

2
 adsorption and regeneration 

cycles. For instance, due to the deteriorating CO
2
 adsorp-

tion capacity at elevated temperatures, adsorbents such as 
zeolites, metal–organic frameworks and activated carbons 
are not suitable. Various designed adsorbent systems have 
been utilised, such as promoted calcium carbonate, hydro-
talcite and others in that approach. For membrane reactors, 
the palladium membrane or its alloy is the most commonly 
used. However, palladium is prone to sulphur poisoning and 
deactivation even at a lower reaction temperature (Osman 
et al. 2016), while the silica-based membrane is not, thus, 
superior in this perspective.

Nevertheless, silica membranes are not stable at high 
temperatures and pressures. Dense polymeric membranes 
are cheap materials; however, they are thermally unstable 
and not selective to hydrogen. In this perspective, the carbon 
molecular sieve membranes (CMSMs) showed good perfor-
mance as they are resistant to sulphur poisoning and robust 
materials. Recently, Cao et al. (2020) integrated both adsorp-
tive reactors and membrane reactors in multiple cycles for 
the pre-combustion route and showed good performance for 
750 hours of syngas exposure and a temperature of 250 ◦C 
and pressure of 25 bar, with CMSMs as adsorptive reactors.

Overall, the pre-combustion technology is promising in 
carbon capture storage and utilisation, while there are many 
challenges to improving its overall efficiency. For instance, 
the solvent regeneration temperature needs to be conducted 
at a lower temperature than currently used to avoid any 
reduction in the solvent. Thus, ionic liquids are being utilised 
to overcome this issue, as they are characterised with their 
negligible volatility (Zhou et al. 2021; Krishnan et al. 2020; 
McDonald et al. 2014). On the other hand, selecting the 
appropriate ionic liquid is not an easy task due to the exist-
ence of possible structures from various anion and cation 
combinations which requires trial and error to find the best 
separation performance (Lu et al. 2019). For that purpose, 
computer-aided molecular design (CAMD) is recently being 
used to find out the best combinations to design ionic liquids 
structurally. (Zhou et al. 2021) have investigated 10116 solu-
bility data along with 463 hydrogen solubility data from the 
literature of ionic liquids with modelling to find out the best 
ionic liquids for pre-combustion technology. They found out 
that the most promising ionic liquid solvents are hydroxyl 
(OH)-ammonium ( NH

3
 ) and hydroxyl-imidazolium ([Tf

2
N ]) 

bis (trifluoromethyl sulphonyl) amide at 40
◦
C and 30 bars 

according to industrial pre-combustion conditions.
In theory, the pre-combustion route could offer a cheaper 

cost than that of post-combustion and oxyfuel combustion 
routes by 38–45 and 21–24%, respectively (Portillo et al. 
2019). However, due to the retrofitting of current facilities, 
this added costing and complexity to the set-up process have 
limited its commercialisation.
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Oxyfuel combustion

In the oxyfuel combustion route, the carbon-based fuel is 
combusted in re-circulated flue gas and pure oxygen ( O

2
 ) 

stream, rather than air, hence limiting its commercialisation 
potential due to the high cost of O

2
 separation and produc-

tion as shown in Fig. 2. However, the CO
2
 capture and sepa-

ration are easy, and the oxyfuel combustion method is con-
sidered as the most promising energy-efficient route among 
the main three methods (pre-, post- and oxyfuel), with a 
low-efficiency penalty of 4% compared with 8–12% for the 
post-combustion route (Wienchol et al. 2020). The reduction 
in the volume of exhausted flue gas and nitrogen gas emis-
sions (NOx) along with the increasing boiler efficiency can 
be achieved by applying the oxyfuel combustion route in 
power systems. One big challenge in such a route is the sup-
ply of pure oxygen as its separation is an energy-intensive 
and costly process in the air separation unit. For example, 
cryogenic distillation is the only proven technology for pro-
ducing a large amount of O

2
 with high purity for large-scale 

utilisation (Chen et al. 2019). Thus, investigating new novel 
routes of air separation is quite important herein, such as 
ion-transport and oxygen-transport membranes along with 
chemical looping methods (Shin and Kang 2018; Martinez 
and Hesse 2016; Chen et al. 2018a; Shi et al. 2018). To 
resolve the problem associated with the energy needed for 
cryogenic air separation, oxygen-transport membranes were 
introduced, known as the mixed ionic–electronic conduct-
ing membrane (MIEC) (Portillo et al. 2019; Kotowicz and 
Balicki 2014). Carbo et al. reported that the inclusion of 

oxygen-transport membranes in oxyfuel combustion could 
reach an economic saving in the range of 19–50%, compared 
to that of post-combustion technology (Carbo et al. 2009). 
There is recently a drastic increase in publications concerned 
with oxygen-transport membranes, where an average pub-
lications in 1985 were 30 publications compared to 200 in 
2012 (Portillo et al. 2019).

Interestingly, the utilisation of the chemical looping 
method can enhance the net power plant efficiency by 3% 
when employed in oxyfired along with IGCC and instead of 
the air separation unit. Furthermore, capital costing of the 
power plant and electricity costing will decrease by 10–18 
and 7–12%, respectively (Wienchol et al. 2020; Cormos 
2020). One such advantage of using the oxyfuel combus-
tion route is that it can be employed in current or new power 
plants along with utilisation of various types of fuels such as 
municipal solid waste or lignocellulosic biomass.

The integration between bioenergy and carbon capture 
and storage is called BioCCS or BECCS, leading to a nega-
tive carbon approach for climate change mitigation. It was 
reported that in oxyfuel combustion of lignocellulosic bio-
mass, the accumulative emissions of CO

2
 of net electricity 

production was − 0.27 kgCO2 MJel−1 (Gładysz and Ziȩbik 
2016). While the integration of carbon capture along with 
municipal solid waste incineration has led to emissions of 
− 0.70 kgCO2, eq kg−1 of wet waste feedstock (Pour et al. 
2018). This, in turn, showed that BECCS could be an effec-
tive way of achieving decarbonisation and the negative car-
bon technology for climate change abatement along with 
oxyfuel combustion.

Fig. 2  Oxyfuel combustion technology consists of an air separa-
tion unit for oxygen separation (mandatory). Then the carbon-based 
fuel is combusted in the re-circulated flue gas and pure oxygen ( O

2
 ) 

stream in a boiler. Then the flue gas is sent to the particle removal 

unit, followed by the cooler and condenser unit to remove water and 
then to the sulphur removal unit before sending it again to the cooler 
and condenser unit. Finally, the CO

2
 is compressed and dehydrated 

for transport and storage purposes
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Interestingly, there are twenty BECCS projects globally 
that include waste-to-energy, ethanol production, combus-
tion of biomass and co-firing, biomass gasification and 
biogas plants (Pour et al. 2017; Bui et al. 2018c). Never-
theless, still, there are challenges in the BECCS approach, 
such as the higher cost of biomass compared to fossil-based 
fuel, such as coal along with high levelised cost of elec-
tricity and lower efficiency. When including air separation 
and CO

2
 purification and compression units in the oxyfuel 

combustion system, the cycle efficiency decreases by 9–13% 
points as those are energy-intensive units. Thus, to make 
the overall process attractive for commercialisation, process 
and heat integrations are inevitable herein. For instance, the 
utilisation of heat generated from the compressor cooling 
systems in the units, as mentioned above, along with the 
steam cycle, showed that it is an effective method in this 
case (Chen et al. 2019). Moreover, the pressurised oxyfuel 
combustion cycle showed better performance than that of 
the traditional atmospheric cycle and could increase the effi-
ciency by 3% points (Hong et al. 2010).

There is a growing global interest to prove the feasibility 
of the oxyfuel combustion technology with different dem-
onstration projects and pilot-scale plants being deployed 
since the last decade; however, capacities are all lower than 
100 MWth (Strömberg et al. 2009; Cook 2009). Wei et al. 
(2020) reported that the utilisation of biomass in oxyfuel 
combustion using the supercritical CO

2
 cycle showed a 

reduction of − 3.7 megatonnes of CO
2
 per annum. Further-

more, BECCS technology will be more economically fea-
sible than fossil-based fuel if the carbon tax is higher than 
$28.3 per tonne of CO

2
.

Post-combustion

The capture and separation of dilute CO
2
 in an oxidant envi-

ronment from the flue gas of a combustion system is called 
the post-combustion route (Zhang et al. 2020a, b). Before 
CO

2
 capture, the exhaust flue gas emissions go through 

denitrification and desulphurisation along with dust removal 
and cooling to prevent solvent degradation (Wu et al. 2020). 
Then the flue gas containing mainly CO

2
 , H

2
O and N

2
 , is 

then fed counter-currently to the absorber that contains the 
solvent, as shown in Fig. 3. The scrubbed gas is then washed 
with water, followed by CO

2
 regeneration. Usually, the cap-

tured CO
2
 is then compressed into supercritical fluid and 

then transported for storage in geological reservoirs or saline 
aquifers. As the flow rate of CO

2
 is high, and its concen-

tration is low in flue gas streams, along with its inherently 
stable nature, an energy-intensive process is required for 
solvent regeneration.

Monoethanolamine absorption is considered as the most 
common and only commercialised method in the post-com-
bustion approach, while other absorbents are used as well, 

such as 2-amino-2-methyl-1-propanol and N-methyldietha-
nolamine and others (Karnwiboon et al. 2019; Ochedi et al. 
2020). The adsorption route is also used in post-combustion 
in the form of either temperature swing or pressure swing 
adsorption processes along with calcium looping (Bui et al. 
2018b). Amine solutions are the most common solvents due 
to their high CO

2
 absorption capacity and good selectivity 

towards acidic gases (Rochelle 2009). Nevertheless, they 
suffer from drawbacks such as the corrosivity of amines, 
high energy footprint during regeneration, degradation and 
hence, solvent loss and evaporation. Although the monoetha-
nolamine chemisorption, as mentioned, is the only commer-
cially available method, the capital along with the operat-
ing costing herein is expensive; thus, some projects based 
on that technology have been shut down (Schlissel 2018). 
To decrease the capital costing associated with the post-
combustion technology, membrane separation could be a 
suitable technology as it requires a low energy need, low 
carbon footprint, low operational cost and easy retrofitting 
and scaling up with the current power plants (Vakharia et al. 
2018). At the same time, there are many challenges associ-
ated with membrane separation, such as water condensa-
tion on the membrane, rapid diminution of selectivity and 
permeance after operation along with emissions (NOx and 
SOx) that pass through the membrane. Some membranes 
also suffer from difficult temperature adjustment and fluctua-
tion in humidity that causes a drastic change in the transport 
characteristics of the membrane (Pfister et al. 2017).

For the adsorption route, metal–organic frameworks 
(MOFs) possess some interesting characteristics such as the 
functionalised pore morphology and tailored structures that 
could work properly in CO

2
 carbon capture. MOFs materials 

can exist in higher than 75,000 different structures, which 
help facilitate specific pore-structure materials for the car-
bon sequestration approach. Despite that, none of the MOFs 
materials has been deployed at the industrial scale due to 
the intense energy required for regeneration and their rapid 
structure instability (Qazvini and Telfer 2020). MOFs modi-
fication could be done through the functionalisation with 
polar groups or the loading of exposed metal sites within the 
MOFs structure (Zhou et al. 2019; Ding et al. 2019; Jiang 
et al. 2019). Furthermore, computational screening model-
ling strategies are a powerful tool for finding optimum per-
forming materials among thousands of adsorbents, such as 
MOFs materials. Regarding the vacuum swing adsorption, 
there is a common relationship between pellet porosity and 
pellet size for all materials at the optimal adsorbent perfor-
mance (Farmahini et al. 2020). Furthermore, computational 
simulations could be used for designing new photo-reactive 
MOFs materials with high adsorption and desorption capaci-
ties. One major drawback of using adsorbents such as MOFs 
in carbon capture and storage is the energy-intensive nature 
associated with the desorption process in the form of a large 
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amount of pressure or temperature swing. Sunlight as an 
external stimulus can facilitate the desorption process with 
lower energy demand over photoresponsive MOFs materi-
als such as diarylethene and azobenzene. Park et al. (2020), 
with the aid of computational modelling, synthesised Mg-
IRMOF-74-III (with azopyrdine attached to its unsaturated 
metal sites) material that showed a CO

2
 adsorption capacity 

of 89.6 cm3 g−1 , that is the highest value within photorespon-
sive MOFs reported in the literature.

Although the pre-combustion technology offers higher 
efficiency than that of post-combustion technology, it is 
more expensive. To reduce the cost associated with the pre-
combustion route, finding a superior absorption solvent is 
crucial. Currently, post-combustion technology is the most 
mature and widely used route among the three main routes 
of carbon capture and storage (Wienchol et al. 2020; Wang 
et al. 2011a). However, due to the dilution of CO

2
 comes 

from the flue gas by N
2
 from the air, this reduces the par-

tial pressure of CO
2
 and increases the additional cost in the 

electricity generation by approximately 60–70% for the new 
infrastructure or 220–250% for the retrofitting (Portillo et al. 
2019).

As mentioned earlier, chemisorption using amine-based 
solvents is a ready technology for retrofitting of current 
power plants. Based on that technology, pilot-scale power 
plants that have been implemented showed a CO

2
 absorp-

tion capacity of 80 tonnes per day (Vega et al. 2020). It is 
projected that the first integrated commercial carbon capture 
and storage along with coal-fired power plants will be open 
by 2020–2025. Consequently, it will be utilised in the rest of 
the carbon-intensive commercial-scale processes afterward. 
Vega et al. (2020) compared traditional and novel technolo-
gies that are used in carbon capture and storage areas such 
as post-combustion (traditional) and partial oxy-combustion 
(novel). At the pilot-scale of the absorption route, novel 
along with blend solvents have been deployed to reduce 
the energy footprint of the overall process before demon-
stration-scale trials. There are desirable properties in novel 
solvents such as the high cyclic capacities, low production 
cost, low corrosiveness, lower degradation and thus lower 
by-products along with the environmental impact. Over the 
currently deployed pilot power plants, CO

2
 capacity was in 

the range of 0.1 to 1 tonne per day at a low capacity level, 
while the high capacity level showed values in the range 
of 10–80 tonnes per day (Vega et al. 2020). Shell company 

Fig. 3  Post-combustion technology, where the hot flue gas is cooled 
first and then sent to a CO

2
-absorber unit that usually contains 

monoethanolamine solvent as traditional sorbent. Then the CO
2
-rich 

absorbent is sent to the CO
2
-stripper unit to release the CO

2
 gas, 

while the CO
2
-lean absorbent is sent back to the CO

2
-absorber unit. 

Finally, pure CO
2
 is compressed and dehydrated for transport in pipe-

lines and storage purposes
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developed a new CO
2
 capture method ( Shell Cansolv

TM ) 
based on amine solvent technology (Stéphenne 2014). The 
proposed technology is appropriate for various industries 
such as refineries, energy production, mining and chemical 
industry processes. One such advantage of the CansolvTM 
solvent is that the required regeneration energy for captur-
ing one tonne of CO

2
 is in the range of 2.5–2.9 GJ per tonne 

of CO
2
 . Which is lower than the most common solvent, 

monoethanolamine, as it showed regeneration energy of 
3.5 GJ per tonne of CO

2
 (Yun et al. 2020; Krishnamurthy 

2017; James et al. 2019). Yun et al. investigated the techno-
economic feasibility of monoethanolamine as a traditional 
absorption solvent and modulated amine blend (MAB) as a 
novel solvent in the carbon capture and storage technology. 
The novel solvent has an advantage over the common sol-
vent in the regeneration energy required for capturing one 
tonne of CO

2
 , which was 2.17 GJ per tonne of CO

2
 , where 

monoethanolamine common solvent as mentioned earlier 
showed a value of 3.50 GJ per tonne of CO

2
 . The technoeco-

nomic evaluation revealed that the cost for CO
2
 capture in 

the Republic of Korea for monoethanolamine and Modulated 
Amine Blend solvents were 35.50 and 25.70 per tonnes of 
CO

2
 , respectively (Yun et al. 2020).

The decarbonisation of the industrial sector will require 
an assessment of the technology readiness level (TRL) of 
different carbon capture, storage and utilisation techniques. 
Pre-combustion (natural gas processing) is the only capture 
technology that has reached commercial scale (TRL9) (Bui 
et al. 2018a). Other capture technologies such as adsorption 
post-combustion, oxyfuel combustion (coal power plants), 
pre-combustion (IGCC), membrane polymeric (natural gas), 
BECCS technology and direct air capture are in the demon-
stration scale (TRL7), while, in pilot-scale (TRL6), there 
are membrane polymeric (power plants), post-combustion 
(biphasic solvents), chemical looping combustion as well 
as calcium carbonate looping technologies. The remain-
ing capture technologies are ranging from laboratory-scale 
plant (TRL5) to proof of concept (TRL3) such as membrane 
dense inorganic, oxyfuel combustion (gas turbine), ionic liq-
uid post-combustion and low-temperature separation pre-
combustion technologies.

Regarding carbon storage technology, post-combus-
tion (amine) in power plants, saline formations and CO

2

-enhanced oil recovery are the only three technologies that 
have reached commercial scale (TRL9) (Campbell 2014; 
Singh and Stéphenne 2014). While other technologies such 
as CO

2
-enhanced gas recovery and depleted oil and gas fields 

are still in the demonstration level (TRL7), other storage 
technologies such as ocean storage and mineral storage are 
in infant stages of formulation (TRL2) and proof of con-
cept in laboratory tests (TRL3), respectively. On the other 
hand, the transport technologies either onshore and offshore 

pipelines along with transport ships are both mature (TRL9) 
(Bui et al. 2018a). An important aspect during the early 
stages of CCUS deployment is the development of appro-
priate infrastructure, whereby the consolidation of multiple 
CO

2
 sources can provide an opportunity to take advantage 

of economies of scale in carbon capture.

CO
2
 separation methods from �ue gas 

in combustion capture process

Numerous exceptional separation techniques are utilised 
through the combustion method for the CO

2
 separation of 

flue gas. These techniques are absorption, microalgae, mem-
brane separation, adsorption and cryogenics (Fig. 4) (Osman 
et al. 2020a; Li et al. 2012a).

Absorption is an entrenched CO
2
 separation procedure 

utilised in the synthetic and petroleum area up to date. 
Absorption divides into two classifications: (1) physical, 
where it relies on both temperature and pressure (absorp-
tion happens at extraordinary pressures and low value of 
temperatures), and (2) chemical, where absorption of CO

2
 

relies upon neutralising acid-base response (Li et al. 2011c). 
Remarkable of the favoured solvents are amines (for exam-
ple, monoethanolamine), solutions of ammonia, Selexol, 
Rectisol and fluorinated solvents. The common current addi-
tion is ionic liquids, which have shown incredible poten-
tial in the absorption of CO

2
 and are likewise eco-friendly 

(Hasib-ur Rahman et al. 2010).
Microalgae bio fixation is a suitable procedure for the 

expulsion of CO
2
 of flue gases. This procedure demands 

the utilisation of photosynthetic organisms (microalgae) for 
anthropogenic carbon capture and storage. Marine microal-
gae have been proposed to be of more prominent potential 
because they have more distinguished carbon stabilisation 
rates than land plants (Ben-Mansour et al. 2016). Microal-
gal culturing is very costly; however, the technique creates 
different composites of high worth that can be utilised for 
income production. Microalgal photosynthesis further com-
mands to precipitation of calcium carbonate that can aid as 
an enduring sink for carbon (Nakamura and Senior 2005).

The separation based on membranes substances depends 
on the variances in the interactions that occurred within 
gases and the materials of the membrane, that adjusted to 
permit several pieces to transfer discriminatory into the 
membrane (Li et al. 2011c). Membranes have extraordinary 
merit in CO

2
 separation in pre-combustion capture and post-

combustion CO
2
 separation. A broad category of diverse 

membrane materials and methods are obtainable, some of 
which now on the industrial field, and potentially related to 
CO

2
 separation. The enforcement and related cost of technol-

ogies based on membrane separation in extensive range CO
2
 

capture principally rely totally on the membrane materials. 
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Adsorptive separation is a hybrid separating technique which 
operates on the principle of varieties in adsorption and des-
orption properties of the component of the hybrid (Li et al. 
2012a). The cryogenic CO

2
 separation procedure utilises 

the basis of liquid case temperature and pressure variation 
in component gases of flue gas. In this procedure, cooling 
and condensation of CO

2
 occur, then extracted from the flue 

gases (Song et al. 2012).

Absorbents and their performance

Absorption is a technique of transporting the matters from 
their vapour state to the fluid phase as long as that the vapour 
is dissolvable in that fluid (Abdeen et al. 2016). In the state 
of CO

2
 , the solubility of the gas is conditioned on the sol-

vent’s physical and chemical features. Contingent upon the 
solvent utilised, the gas parts can be easily dissolved physi-
cally or are bound chemically to the solvent designated as 
physical or chemical absorption or a hybrid of both pro-
cesses (Koytsoumpa et al. 2018). If the particles of vaporous 
of CO

2
 are combined with liquid particles with inadequate 

intermolecular forces, the absorption is defined as physical 
absorption.

Thermal energy demands through chemical solvents are 
extremely more necessary than those for physical solvents 
that are attributed to the energy augmented through the 
reboiler of the stripper column (Koytsoumpa et al. 2018; 
Jansen et al. 2015). In the case of physical solvents, the 
loading limit of the solvents is in a practical direct reliance 
within the partial pressure of the parts to be separated and 
the solvent loading as indicated by Henry’s law, deducting 

its recovery through pressure throttling. The destruction of 
CO

2
 in the physical fluid solution is ascribed to the Van 

der Waals or interactivity electrostatic and is typical at tre-
mendous pressure and lowered value of temperature (Koyt-
soumpa et al. 2018; Theo et al. 2016).

The chemical or reactive absorbents comprise amines, 
blends, ionic liquids, aqueous solvents, ammonia, etc. The 
blends were then created to merge the positive features of 
diverse absorbents, and concurrently overcoming their nega-
tive features. The physical absorbents comprise solvents like 
Rectisol, Selexol, etc. To be applied as an absorbent, a sol-
vent should possess the required features such as exceptional 
reactivity and absorptivity with CO

2
 , great stability below 

elevated thermal and fixed chemical exposure, moderate 
vapour pressure, suitable renewability, low environmental 
impact and cost-effective to apply (Sreedhar et al. 2017a, 
b). Amines such as monoethanolamine and diethanolamine 
were the newest and the most usually applied absorbents 
attributed to their economical cost, excellent reactivity and 
a remarkable rate of absorption. Nevertheless, they undergo 
several obstacles like diminishing in the oxidative atmos-
phere, intense renewal energy demand, restricted CO

2
 stor-

ing potential and corrosive features by foaming and fouling 
components (van der Zwaan and Smekens 2009).

Gao et  al. (2016) have revealed a trial of a 30  wt% 
monoethanolamine-methanol compared to aqueous 30 wt% 
monoethanolamine solvent in a pilot-plant testbed, which 
involves the whole absorption and desorption. The out-
comes showed that monoethanolamine-methanol solvent 
possessed a more accelerated CO

2
 absorption rate and low-

ered regenerating energy-consuming compared to aqueous 

Fig. 4  Technologies and methods that are utilised regularly in CO
2
 separation. In post-combustion carbon capture technologies, there are many 

four routes: absorption, adsorption, membrane separation and microalgae
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monoethanolamine solvent (Fig. 5). Recovery heat duty of 
monoethanolamine-methanol solvent at best-operating sta-
tuses was lower than that of aqueous monoethanolamine 
solvent which revealed that monoethanolamine-methanol 
possessed a potential to displace aqueous monoethanolamine 
solvent in manufacturing CO

2
 pilot plant.

Cyclic amine piperazine was applied as a promoter attrib-
uted to its prompt production of carbamates with carbon 
dioxide. Ma et al. (2016) have studied the influences of dif-
ferent additives of piperazine and Ni(II) ( were utilised as an 
absorbent in the bubbling reactor) on CO

2
 absorption perfor-

mance and ammonia escape rate. Also, they compared the 
efficiency of the mixed additive in the extraction technique 
with that of pure ammonia solution (Fig. 6). The obtained 
performance for the absorption of CO

2
 was higher by 72% 

at the addition of 2  wt% NH
3
 solution with piperazine 

(25 mmol/L) and Ni(II) (50 mmol/L), as compared to that 
performed by 3 wt% NH

3
 solution without any addition. Fur-

thermore, the loss in of the NH
3
 amount was approximately 

1/3 compared in the case of using a 3 wt% of NH
3
 solution 

without any addition.
2-Amino-2-methyl-1propanol was further reviewed in the 

literature due to its excellent absorption potential, special 
resistance for degradation and corrosion and more extraor-
dinary selectivity (Sreedhar et al. 2017a; Kim et al. 2013). 
The blend of 2-amino-2-methyl-1propanol and piperazine is 
beneficial where it managed to lessen in regeneration energy 
with a 20% and reducing in the rate of circulation absorbent 
by (45%), away from a notable increment in thermal and 
oxidative decay resistances (Sreedhar et al. 2017a). Khan 
et al. (2016) have investigated reviews a post-combustion 
procedure of capture of CO

2
 of flue gas by utilising aque-

ous amine blend of 2-amino-2-methyl-1-propanol and 
piperazine. The specific rate of absorption for the blends 
ranged between 14.6 × 10

−6 and 26.8 × 10
−6

kmol/m
2

s . The 
measured highest rate of CO

2
 absorbed was (99.63%) at the 

greatest content of piperazine (10 wt%) in the blend. The 
most chief CO

2
 loading potential was (0.978) to the greatest 

content of piperazine. The regeneration performance was 

Fig. 5  a Regeneration heat duty for monoethanolamine (MEA) and 
monoethanolamine-methanol (MEA-methanol) solvent, b regen-
eration heat duty for monoethanolamine-methanol solvent c for 

monoethanolamine solvent. Adapted with permission from Gao et al. 
(2016), Copyright 2020, Elsevier



807Environmental Chemistry Letters (2021) 19:797–849 

1 3

detected within the range of 90.93–98.93% and the found 
best performance was (98.93%) at using the greatest content 
of 2-amino-2-methyl-1propanol (28 wt%).

Diethylenetriamine possesses three amino groups (two 
principal and one secondary). In contrast to monoethan-
olamine, diethylenetriamine displayed more special reac-
tivity (Salvi et al. 2014), lower heat of reaction although 
with sufficient CO

2
 absorbing potential (Kim et al. 2014), 

more elevated rate of mass transference (Fu et al. 2012) 
and smaller heat capacity for regeneration (Zhang et al. 
2014). Sulpholane behaves like a physical additive within 
the chemical absorption system, attributed to its extraordi-
nary stability and special resistance towards corrosion. The 
diethylenetriamine–pentamethyldiethylenetriamine mixed-
amine solvent was affirmed as a biphasic solvent. The pen-
tamethyldiethylenetriamine duties as the proton acceptor, i.e. 
extracted the zwitterion and improved the CO

2
 absorption 

in diethylenetriamine, securing great CO
2
 capacity (Wang 

et al. 2020a). Wang et al. (2020a) have found that the sul-
pholane enhanced the rate of CO

2
 absorption via diethylene-

triamine–pentamethyldiethylenetriamine–sulpholane solvent 
(1.3 times) compared to that diethylenetriamine–pentame-
thyldiethylenetriamine solvent. Figure 7 demonstrates the 
chemical structures and carbon atom label of the species in 
the diethylenetriamine–pentamethyldiethylenetriamine–sul-
pholane biphasic solvent. The CO

2
 was captured over dieth-

ylenetriamine corresponding to the zwitterionic mechanism 
and provided carbamate to the solvent. If more CO

2
 was 

absorbed in the solvent, the quantities of liberating diethyl-
enetriamine and pentamethyldiethylenetriamine at the solu-
tion reduced, and a higher amount of diethylenetriamine 
and pentamethyldiethylenetriamine have owned a proton. 
Contrasted with untreated pentamethyldiethylenetriamine 
and sulpholane, the formed diethylenetriamine–carbamate, 

Fig. 6  Using Ni(II) and pipera-
zine to decrease NH

3
 escape 

during CO
2
 capture by a NH

3
 

solution. This can be utilised in 
post-combustion technology

Fig. 7  The chemical structures and carbon atom label of the diethylenetriamine–pentamethyldiethylenetriamine–sulpholane biphasic solvent. 
Adapted with permission from Wang et al. (2020a), Copyright 2020, Elsevier
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protonated diethylenetriamine and pentamethyldiethylenetri-
amine, bicarbonate was further hydrophilic and possessed 
large polarity, causing to a more durable ability to merge 
with water than untreated pentamethyldiethylenetriamine 
and sulpholane.

Hence, throughout CO
2
 absorption within the solvent, the 

uniform solution was split to hydrophilic and hydrophobic 
phases. Also, it is denoted that the hydrophobic sulpholane 
and untreated pentamethyldiethylenetriamine were dispersed 
off the higher layer, whereas the hydrophilic parts were 
dispersed off the below layer due to the density variation. 
Therefore, the hydrophobic sulpholane developed the hydro-
philic–hydrophobic division within the CO

2
 stored solution, 

which improves the phase division, as presented in Fig. 8.
The influence of the addition of enzyme carbonic anhy-

drase was examined on monoethanolamine, methyldiethan-
olamine, 2-amino-2-methyl-1propanol and potassium car-
bonate ( K

2
CO

3
 ) (Gladis et al. 2017). The K

2
CO

3
 was tried 

as an absorbent due to its economic value, the moderate 
value of enthalpy demands, lowering toxicity, small solvent 

losses and extraordinary resistance for decomposition. To 
counterpoise the lowering rate of mass transfer, promoters, 
biological enzymes, organics and alkaline amino acids were 
stated to be utilised (Endo et al. 2011; Russo et al. 2013).

Wang et al. (2019) have synthesised spherical pellets 
of K

2
CO

3
 comprising varying amounts of Al

2
O

3
 for CO

2
 

capture (Fig. 9). The activated alumina promoted sorb-
ent pellets arranged with 50 wt% of K

2
CO

3
 hold the most 

chief CO
2
 adsorption potential (0.0023 mol/g). Besides, the 

urea additive (15 wt%) can also improve CO
2
 separation 

( ∼ 0.0031 mol CO2∕g ) of the pellets filled with 50 wt% of 
K

2
CO

3
 . The enriched CO

2
 capture is attributed to the nota-

bly improved sorbent pellets’ porosity as a sequence of 
urea decay. Furthermore, the urea sorbent pellets keep the 
exceptional compressive strength (18.96 MPa) and excel-
lent resistance towards corrosion (retain about 99.41% of its 
original weight after 4000 rotations).

Fig. 8  The suggested phase 
division mechanism in dieth-
ylenetriamine–pentamethyldi-
ethylenetriamine–sulpholane 
biphasic solvent. This represents 
the single phase along with 
biphasic (hydropholic and 
hydrophobic)

Fig. 9  The synthesis process of K
2
CO

3
 pellets sorbents. Adapted with permission from Wang et al. (2019), Copyright 2020, Elsevier
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Adsorption

The concept of adsorption is interpreted as the emerging 
adhesion between atoms, ions or molecules, whether in a 
liquid or gaseous or solid state, and the surface. The ions, 
atoms or particles that adhere to create a film on the sub-
stance’s surface in which they are bound and are termed as 
an adsorbate, while the substance on which they appended 
is named adsorbent. Adsorption is diverse from absorption 
due to, in absorption, the absorbate (fluid) is dissolved via 
an absorbent, whether solid or liquid. Adsorption forms 
on the outside surface, while absorption entails the whole 
material volume. Sorption is correlated to the couple man-
ners, while desorption is considered as counter-reaction or 
reversed the adsorption process (Ben-Mansour et al. 2016; 
Abd et al. 2020).

Adsorption may begin physically; this requires ineffective 
Van der Waals forces (physisorption). Likewise, it might 
happen chemically, which demands covalent bonding (chem-
isorption), and it may happen attributed to the electrostatic 
attraction. The most prominent chemical adsorption and 
absorption systems, in CO

2
 capture techniques, include the 

interaction within chemicals that leads to the creation of 
molecular structures based on CO

2
 , following which recov-

ery of the uptake CO
2
 is achieved over an adequate rise in 

temperature via heat treatment. The regeneration method 
spends the greatest of the potential demand in CO

2
 capture. 

So, there is a necessity to promote energetic substances and 
methods for CO

2
 uptake that can considerably lessen opera-

tion expenditure via the decline in expenditure of regenera-
tion (Ben-Mansour et al. 2016).

The physical adsorbents which used in CO
2
 adsorption 

whether carbonaceous and non-carbonaceous substances, 
as shown in Table 1, demands lowering value energy in the 
contrasting to that required in the case of using the chemi-
cal adsorbents. This can be explained that in the physical 
adsorbents, not new bonds are created between the carbon 
dioxide and the surface of the used adsorbent; hence, this 
ultimately results in reducing the energy demanded regen-
eration process (Abd et al. 2020).

Carbonaceous materials adsorbents

Carbonaceous materials typically were composited of car-
bon and additional linked material that can consider unique 
features like environmentally benign, extraordinary stability 
feature whether the thermal and chemical behaviour, excep-
tional conduction mechanism (heat and electrical character-
istics) or surpassing strength. Besides, these materials have 
numerous merits such as low-cost, effective, simple compo-
sition from materials settled in nature, extraordinary distinct 
surface area, unique pore volume, and they are fine weight 
substances (Abd et al. 2020; Lozano-Castelló et al. 2002).

Activated carbon materials Over the ages, the porous car-
bon adsorbents have emerged as proper substances for CO

2
 

uptake ascribed to the physical adsorption of CO
2
 on their 

surface, signifies the energy that demands the regeneration 
process was declined. Besides, the excellent CO

2
 adsorption 

will be performed ascribed to their porous feature. Also, 
these materials can be efficiently qualified to combine excep-
tional surface features and necessary beneficial groups that 
can assist in enhancing the resulting interaction between the 
adsorbent substances and CO

2
 which are crucial for pro-

viding an extraordinary CO
2
 adsorption potential (Li et al. 

2019b; Singh et al. 2019). The activated carbons were fabri-
cated of carbonaceous substances through pyrolysis at high 
temperatures and special pressure in the activation furnace 
(Kosheleva et al. 2019). The resulting from this process is 
extraordinary surface area and heterogeneous pore structure. 
Besides, an inert gas (nitrogen or argon) was applied in the 
carbonisation step to eliminate any volatile parts to fabri-
cate enriched carbon specimens. After that, the fabricated 
specimen was activated in the existence of the oxidising 
agent (oxygen, steam or carbon dioxide) at a wide range of 
elevated temperatures (Mahapatra et al. 2012).

The activation stage among the carbonaceous substances 
and the oxidising agents is an endothermic reaction, as 
explained in the following:

The carbon dioxide was preferably utilised as an activa-
tion agent than steam ascribing to its capacity to produce 
particles that have tight micropores nature that satisfies the 
characteristics of molecules of carbon dioxide, while steam 
is beneficial to compose particles with mesopores feature 
(González et al. 2009; Román et al. 2008).

The influence of nitrogen incorporating with the activated 
carbon was estimated to behave that the carbon dioxide 
uptake performance is managed via porosity character and 
nitrogen ratio. Recently, He et al. (2021) have synthesised 
activated carbons via carbonisation and potassium hydrox-
ide KOH activation employing rice husk as a raw material. 
The studied samples show remarkably surface area about 
≈ 1496 m2 g-1 , and micropore volume of 44.7 × 10−2 cm3 g−1 . 
Also, compared with the biochar to KOH as (1:5) ratio sam-
ple, chitosan modified (biochar/KOH as 1:5) sample displays 
remarkable CO

2
 uptake achievement 0.00583 mol g−1 , which 

can be ascribed to the creation of the CO
2
-philic active sites 

on activated carbons surface via nitrogen species. The isos-
teric heat of CO

2
 uptake for chitosan modified (biochar/KOH 

as 1:5) sample is extremely higher than that of the non-mod-
ified sample. The adsorption performance of the modified 
sample with chitosan can be suitably represented via the 

(4)C + CO2 → 2CO, ΔH = +173 × 103 J mol
−1

(5)C + H2O → CO + H2, ΔH = +132 × 103 J mol
−1
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Freundlich model (Fig. 10). The large ideal adsorption solu-
tion theory (IAST) selectivity factor to the modified sample 
with chitosan designates their unique adsorption selectivity 
for CO

2
 over doping with nitrogen.

Activated carbons were prepared using two stages of 
activation steps from different types of waste and low-value 
lignocellulosic biomass such as potato peel waste, barley 
waste and miscanthus with surface areas ( m2∕g ) of 833 
(Osman et al. 2019), 692 (Osman et al. 2020c) and 1368 
(Osman et  al. 2020b), respectively. Singh et  al. (2019) 
have presented the manufacture of activated porous carbon 
spheres for D-glucose carbonisation with a unique potassium 
acetate for carbon dioxide uptake. The obtained spheres 
shape activated porous carbon possesses a specific surface 
area of ≈ 1920 m2∕g , spherical shape for surface morphol-
ogy and special pore volume of ≈ 0.9 cm3∕g . The activated 
porous carbon spheres display outstanding achievement, and 
manifest carbon dioxide uptakes ranged between 0.00196 
to 0.00662 mol/g at different operating conditions. Further-
more, the samples exhibit efficient carbon dioxide uptake 
achieved 0.02008 mol/g at a temperature of 0 ◦

C and pres-
sure of 30 bar and achieved 0.01408 mol/g in the case the 
temperature raised to 25 ◦C and pressure 30 bars (Fig. 11). 
This achievement could be ascribed to the extremely 
revealed porous construction of the studied materials.

To sum up, the activated carbon adsorbents exhibit 
remarkable merits such as low value for regeneration energy, 

simple to restore, low regeneration temperature, an abun-
dance of raw materials and extraordinary thermal stability; 
mainly the uptake achievement improves if the applied pres-
sure of carbon dioxide rises.

Carbon nanotube materials Carbon nanotube materials 
are being examined in CO

2
 uptake area ascribed to their 

attractive physical and chemical features such as great con-
duction behaviour whether thermal or electrical, besides 
the feasibility to develop their surfaces through attaching a 
chemical duty group, the exceptional yield for uptake storage 
potential. Further, the carbon nanotubes were achieved as a 
proper adsorbent for CO

2
 uptake (Abuilaiwi et al. 2010; Sriv-

astava and et al. 2003). Recently, Ghosh and Ramaprabhu 
(2019) have studied transition metal (iron, cobalt and nickel) 
salt-encapsulated nitrogen-doped bamboo-like carbon nano-
tubes for CO

2
 uptake across a broad range of temperature 

and pressure (Fig. 12). The observed results reveal that the 
CO

2
 adsorption potential completely improves for all transi-

tion metals covered the nitrogen-doped bamboo-like carbon 
nanotubes in both the pressure range. Further, the adsorption 
potentials lessen with the increment in temperature to all the 
studied samples inferring that physical uptake is the prin-
cipal adsorption mechanism. Also, the sample used the Fe 
as an encapsulating metal shows the most chief adsorption 
potential, whereas the sample used Ni as an encapsulating 
metal uptake was the least between the studied samples. Fur-
thermore, the adsorption potentials of the Fe encapsulated 

Fig. 10  A Activated carbon prepared by varying biochar and KOH 
mass ratios, B large ideal adsorption solution theory (IAST) selectiv-
ity factors of (a) biochar/KOH(1:5) (AC-5), (b) chitosan@ biochar/
KOH(1:5) (CAC-5), (c) chitosan@biochar/KOH(1:6) (CAC-6) and 
(d) chitosan@biochar/KOH(1:7) (CAC-7) at 298 K, 0–101 kPa, 
C isosteric heat of CO

2
 uptake on (a) biochar/KOH (1:5) (AC-5), 

(b) chitosan@biochar/KOH(1:5) (CAC-5), (c) chitosan@biochar/
KOH(1:6) (CAC-6) and (d) chitosan@ biochar/KOH (1:7) (CAC-7) 
estimated, and D CO

2
 adsorption isotherms of (a) biochar/KOH(1:5) 

(AC-5) sample fitted to various isotherm models. Adapted with per-
mission from He et al. (2021), Copyright 2020, Elsevier
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the nitrogen-doped bamboo-like carbon nanotubes is reached 
0.0015  mol/g, whereas the Co covered the nitrogen-doped 
bamboo-like carbon nanotubes uptakes 0.00115 mol/g, and 
the Ni coated the nitrogen-doped bamboo-like carbon nano-
tubes uptakes 0.00098 mol/g at 298 K which increment with 
the reduction in temperature.

Also, Su et al. (2011) have prepared multiwalled carbon 
nanotubes were functionalised with a large weight load of 
3-aminopropyltriethoxysilane to examine their performances 
in the CO

2
 uptake. The adsorption potential of multiwalled 

carbon nanotubes@ 3-aminopropyltriethoxysilane was 
significantly impacted through the existence of vapour of 
water. Whereas raising the water amount, the uptake poten-
tial increased, which revealed that the uptake process is an 
exothermic reaction. Also, they observed that the uptake 
potential declined with increasing temperature. The CO

2
 

uptake potential reached 0.0026 mol/g at 293 K for multi-
walled carbon nanotubes@ 3-aminopropyltriethoxysilane. 
The outcome implies that the solid multiwalled carbon 

Fig. 11  A Activated porous 
carbon spheres fabricated from 
d-glucose, B CO

2
 adsorption 

isotherms of (a) activated 
porous carbon spheres sample, 
(b) activated porous carbon 
spheres—1 g of potassium 
acetate, (c) activated porous car-
bon spheres—2g of potassium 
acetate, (d) activated porous 
carbon spheres—3g of potas-
sium acetate, and (e) activated 
porous carbon spheres—4 g of 
potassium acetate at 0 ◦

C , and 
C CO

2
 adsorption isotherms 

of activated porous carbon 
spheres—3 g of potassium 
acetate at (a) 0 ◦

C , (b) 10
◦
C and 

(c) 25 ◦C . Adapted with permis-
sion from Singh et al. (2019), 
Copyright 2020, Elsevier

Fig. 12  Synthesis of transi-
tion metal (iron, cobalt and 
nickel) salt-encapsulated 
nitrogen-doped bamboo-like 
carbon nanotubes. Adapted with 
permission from Ghosh and 
Ramaprabhu (2019), Copyright 
2020, Elsevier
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nanotubes@ 3-aminopropyltriethoxysilane are a promising 
system for CO

2
 uptake.

Jena et al. (2019) have presented the synthesis of the 
nanohybrid (3-aminopropyl) triethoxysilane@zinc oxide@ 
multiwalled carbon nanotubes. The nanohybrid displays 
mesoporous features possessing a unique surface area 
( ∼ 27 m2∕g ) with a pore size of about 3.8 nm. The multi-
walled carbon nanotubes surface that is adjusted with the 
zinc oxide considerably enhances the CO

2
 uptake potential 

(0.00132 mol/g). Furthermore, the increase in the ZnO den-
sity that is attached at the surface of multiwalled carbon 
nanotubes produced a tremendous affinity for the sake of 
CO

2
 uptake at low pressure.

Graphene Graphene is a unique category of carbonaceous 
substances with superior adsorption potential and lately got 
extensive consideration (Abdel Maksoud et al. 2020). Vari-
ous investigations applied different strategies to qualify the 
surface of graphene and introduce an extraordinary surface 
area and acceptable pore volume (Kumar and Xavior 2014). 
Recently, Varghese et al. (2020) have progressed the gra-
phene oxide foam via the ultraviolet irradiation and inves-
tigated for CO

2
 uptake potential (Fig. 13). They found that 

CO
2
 recover potential increased as the ultraviolet exposure 

increase. The CO
2
 recover potential reached about 90% for 

the graphene oxide foam exposed to 5 hours for ultraviolet 
irradiation and reached 91% as the exposed time for ultra-
violet irradiation increased to ten hours in contrast to the 
untreated graphene oxide foam were recovered 65% of CO

2
 . 

Furthermore, with boosting the regeneration temperature, 
the CO

2
 recovery improved.

Hsan et al. (2019) have confirmed chitosan grafted gra-
phene oxide aerogels for CO

2
 uptake. The result of the 

uptake potential of CO
2
 via the prepared grafted sample is 

around 0.26 mmol/g at the pressure 1 bar, which is notably 
greater in contrast to the uptake potential of pure chitosan 
sample. The outcomes affirm that this examination assists 
to decrease the cost-effectiveness of adsorbents where chi-
tosan is abundant with a large amount in marine waste, and 
therefore, this research intends to decrease the cost of CO

2
 

uptake with suitable temperature and pressure.
Wang et al. (2020c) have combined unique hierarchical 

porous C acquired from poly(p-phenylenediamine) with 
reduced graphene oxide for CO

2
 uptake technology. The 

obtained reduced graphene oxide on poly(p-phenylenedi-
amine) sample has a surface area around 860 m2∕g besides 
it displays superior CO

2
 uptake potential (0.00465 mol/g at 

a temperature of 298 K and pressure of 5 bar).
Meng and Park (2012) have declared that exfoliated 

nanoplate of graphene was a highly proper adsorbent for 
CO

2
 uptake. The graphene nanoplate was synthesised from 

graphene oxide through a low-temperature approach. The 
treated adsorbents performed an extraordinary CO

2
 removal 

of about 0.056 mol/g. Further, the remarkable adsorption 
potential of graphene nanoplates was ascribed to the larger 
inter-layer spacing and essential interior volume. The treated 
graphene nanoplates showed excellent capture uptake 

Fig. 13  a Synthetic stages of graphene oxide foam and ultraviolet 
irradiation (UV-GOF), b CO

2
 adsorption isotherms of untreated gra-

phene oxide foam (GOF) and treated graphene oxide foam via ultra-
violet irradiation (UV-GOF) adsorbents and c CO

2
 and N

2
 adsorption 

selectivity of untreated graphene oxide foam (GOF) and treated gra-
phene oxide foam via ultraviolet irradiation (UV-GOF) adsorbents 
at different pressures. Adapted with permission from Varghese et al. 
(2020), Copyright 2020, Elsevier
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(248 wt%) at the operating conditions. Also, Hong et al. 
(2013) have proposed progressing the basicity via improving 
the surface of graphite using 3-aminopropyl-triethoxysilane, 
which can increase the CO

2
 removal. The outcomes stated 

that amine adjustment enhances the CO
2
 uptake; hence, the 

increment of the basicity is the principal factor in advancing 
CO

2
 uptake which is agreeable with the adherent molecules 

of amine that attached into the graphite surface.

Non-carbonaceous dry adsorbents

Zeolites Zeolites are another category of physical adsorbents 
found in nature and can be manufactured in the investiga-
tion laboratory also it comprises a microporous crystalline 
framework compositing of aluminosilicates. Zeolites were 
broadly applied in the carbon dioxide elimination in the con-
cern of their molecular sieving influence, and the electro-
static interactions occurred among carbon dioxide and alkali 
cations inside the zeolite frameworks (Singh et al. 2020). 
The gas uptake features of the zeolites are notably reliant 
upon the size, the density of charges and the distribution 
of the commutable cations in the pored framework (Zhang 
et al. 2008).

The replacement of aluminium ions with silicon ions 
produces a negative charge, that can be rebalanced via the 
exchangeable cation into the construction of alkalies such 
as sodium and potassium cations or alkaline earth metal 
calcium and magnesium ions. Zeolites possess many tradi-
tional kinds such as zeolite A, X and Y or natural zeolites 
such as chabazites, clintopiles, ferrierites and mordenite 
(Dong et al. 1999). The zeolites 13X and 5A that possess 
reasonable pores size exhibit more proper for CO

2
 uptake 

than their rival that have pores with little sizes such as 
Chabazite and Na-A in the low applied pressures (Song et al. 
2018). Mason et al. (2015) have reported that the zeolite 
5A (Na0.28Ca0.36AlSiO4) including Linde Type A com-
position and zeolite 13X(NaAlSi1.18O4.36) with Faujasite 
composition comprising calcium and sodium cations exhib-
ited amazing CO

2
 uptake potential 0.0031 mol/g at pressure 

0.15 bar.
Wang et al. (2020b) have prepared X zeolite via waste 

rice hull ash and qualified via rare-earth metals (La and Ce) 
ion-exchange into the zeolite (Fig. 14). The NaX exhibited 
high CO

2
 uptake ( 0.0061 mol g−1 ), whereas LaLiX shows 

0.0043 mol g−1 for CO
2
 uptake. Also, the selectivity of car-

bon dioxide and nitrogen for LaNaX was improved more 
than three times. Further, the qualified zeolite samples lost 
about 3.5% of its original adsorption over 20 adsorption-
desorption cycles.

Liu et  al. (2020) have prepared (3-Aminopropyl)-
t r i e t h o x y s i l a n e  a n d  a l k y l - f u n c t i o n a l i s e d - 
(3-Aminopropyl)-triethoxysilane and grafted it on zeo-
lite beta by a reflux reaction. The results showed that the 

alkyl-functionalised- (3-Aminopropyl)-triethoxysilane @ 
zeolite displayed an uptake potential of about 0.00144 mol/g. 
Also, the studied absorbent sample displayed an extraordi-
nary uptake rate of about ∼ 0.7 min (after 90% of the whole 
uptake potential in five min), and great stability after 20 
cycles. Furthermore, alkyl-functionalised- (3-Aminopropyl)-
triethoxysilane @ zeolite beta provided more chief uptake 
potential and stability than (3-Aminopropyl)-triethoxysilane 
@ zeolite at CO

2
 mixture uptake and CO

2
 flow regeneration.

The affected metal ions incorporated in the zeolitic frame-
work could likewise promote the CO

2
 uptake potentials. 

Theoretical and practical examination of nontreated zeolite 
(13X), lithium comprising zeolite (LiX) and polymetallic 
zeolite (LiPdAgX) with Faujasite composition proved that 
the LiPdAgX system is a more efficient candidate not alone 
for CO

2
 uptake but likewise for the selectivity of carbon 

dioxide and nitrogen as compared to 13X and LiX sam-
ples. Further, the LiPdAgX system presented ∼ 25% greater 
CO

2
 uptake and ∼ 180% more chief selectivity (Chen et al. 

2018b).
Notwithstanding the superior merits of affected metal 

qualified zeolite, the progress remarked in the isosteric heat 
of uptake was not notably great. A related statement decided 
that the thermal conductivity was improved through the 
incorporation of palladium and silver ions within the zeo-
lite framework could efficiently consume the heat of uptake, 
appearing in the enrichment of the CO

2
 uptake potential at 

post-combustion uptake conditions (Chen et al. 2017).
Silica materials The materials based on silica are different 

types of adsorbed non-carbonaceous substances for carbon 
dioxide uptake, which distinguish with an extraordinary 
surface area, pore size and excellent mechanical stability. 
Silica is commonly applied as a support on which different 
substances are combined for CO

2
 elimination. Consequently, 

most of the investigation goes on adsorbents based on silica 
are principally induced in adjusting several natures of silica 
and utilising proper amines types since numerous investiga-
tions noted the performance of silica materials-based adsor-
bents for CO

2
 (Qin et al. 2014; Sanz-Pérez et al. 2018).

Henao et al. (2020) have estimated the CO
2
 uptake per-

formance of a range of amine-functionalised silicas with 
distinct pore compositions: SBA-15 (2D hexagonal), SBA-
11 (3D cubic) and disordered silica. The rice husk ash was 
utilised as a silica source. Afterwards, the silica is function-
alised by polyethyleneimine through wet impregnation. The 
CO

2
 uptake achievement is considered sensitive to the pore 

characteristics of the silica supports and the impregnated 
value of polyethyleneimine. Between the developed sam-
ples, the polyethyleneimine on SBA-15 presented the most 
superior amine employ and CO

2
 uptake potential (0.0616 g 

for every 1g of CO
2
 ) under moderate conditions.

Minju et al. (2017) have prepared sorbents and used three 
amines (tetraethylenepentamine, tetraethylenepentamine 
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acrylonitrile and a hybrid of aminopropyltrimethoxysi-
lane coupled with the two amines individually) for the sur-
face qualification intention. The CO

2
 uptake isotherms of 

the modified samples revealed that the sorbents coupled 
with aminopropyltrimethoxysilane presented excellent 
uptake achievement than the other samples. The specimen, 

Fig. 14  Isotherms of uptake of CO
2
 via a NaX zeolite, b LaNaX zeolite, c CeNaX zeolite, d LaLiX zeolite and e CeLiX zeolite Adapted with 

permission from Wang et al. (2020b), Copyright 2020, Elsevier
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including a hybrid of aminopropyltrimethoxysilane and 
tetraethylenepentamine, exhibited the most remarkable 
achievement between the other samples for a CO

2
 uptake 

potential about of 0.00326  mol/g. The tetraethylene-
pentamine acrylonitrile immobilised sorbents displayed 
more accelerated kinetics at all applied temperatures.

Lashaki and Sayari (2018) have examined the influ-
ence of the provider pore composition on the CO

2
 uptake 

achievement of triamine-tethered SBA-15 silica. The SBA-
15 silica compounds assistance by varying pore extents and 
pore volumes have been manufactured, accompanied via 
triamine functionalisation by grafting process. The results 
of CO

2
 uptake estimations confirmed the certain influence 

of support large pore size and extraordinary pore capacity 
on uptake features, with the former signifying predominant. 
Also, the exceptional pore promotes showing the principal 
surface density about amine groups, and exceptional CO

2
 

elimination ( ∼ 0.0019 mol g−1 ). Further, if the pore capacity 
declined to 47% of its original value of samples including 
likewise pore sizes, the CO

2
 adsorption declined to ∼63% 

and more delayed adsorption kinetics has been seen.
Fayaz and Sayari (2017) have examined the hydrothermal 

durability of triamine-grafted commercial-grade silica for 
CO

2
 adsorption. The results of uptake showed extraordinary 

CO
2
 uptake of 0.0019 mol/g at best grafting statuses ( 1.5 cm3 

of amino silane per each gram of silica with a small vol-
ume of water). Also, the increase of the duration exposure 
time for steam lessened CO

2
 capture to 44% of its original 

value. Nonetheless, the CO
2
 uptake decreased (21–4%) with 

increasing the adsorption temperatures by 25 ◦C.
Metal–organic frameworks materials Metal–organic 

frameworks materials are a unique type of adsorbed sub-
stances that have fabricated via the incorporation of metal 
cations combined with the coordination bonds (Li et al. 
2012a, b). The metal-organic frameworks materials had 
classified as organic-inorganic mixtures, superporous 
solid materials. Among the identified substances to time, 
metal–organic frameworks possess an exceptional uptake 
surface area for every gram. They hold an outstanding 
achievement for CO

2
 uptake, able to be flexible in whether 

structure and function behaviours. All these unique features 
made these materials broadly applied in the investigation 
operations of CO

2
 capture.

Further, the metal–organic frameworks have appeared 
and first performed via Hoskins and Robson and further 
recognised as coordination polymers (Abd et  al. 2020; 
Düren 2007). Further to the unique structural chemistry of 
metal–organic frameworks, the composition agents such as 
extraordinary surface area around 7 × 103 m2∕g and excep-
tional pore volume ( ∼ 4.5 cm3∕g ) besides with more com-
fortable control of the pore structure and surface and the 
other concerning characteristics of metal–organic frame-
works, which offer a marked state for their utilisation in the 

area of CO
2
 uptake (Farha et al. 2012). The high surface 

area to weight ratio in the metal–organic frameworks is a 
remarkably critical agent for their CO

2
 uptake potential at 

low pressures, which allow them to perform more reliable 
CO

2
 uptake than other substances such as zeolites. Moreo-

ver, the metal–organic frameworks had well utilised for the 
selective uptake of CO

2
 by utilising the force of polarisable 

for the CO
2
 molecule and quadrupole moment.

Liu et al. (2012) have revealed that the metal–organic 
frameworks possess numerous merits such as tunable three-
dimensional construction, exceptional values of the surface 
area, managed pore configurations and tunable porosity of 
surface characteristics. The cations and a broad array of 
organic varieties can work to compose metal–organic frame-
works. A couple of relevant principles pointers for choosing 
a suite metal–organic framework for CO

2
 uptake are that 

the porosity of the studied adsorbent must be proper with 
the CO

2
 molecules’ radius. Moreover, the studied adsorbent 

should originate with polar, where the porosity of the sur-
face possesses a more considerable CO

2
 storing ascribing to 

that the carbon dioxide particles possess electric quadrupole 
moments. Consequently, examining these criteria in the form 
of the metal–organic frameworks adsorbents can turn in a 
tremendous enhancement of the CO

2
 uptake.

Li et al. (2011a) have divided the metal–organic frame-
works into two classes; rigid and dynamic. The rigid type 
of metal–organic frameworks should possess tunable frame-
works that produce more pores alike to zeolite substances. 
In contrast, the dynamic kind possesses simple frameworks 
whose constructions alternate via outer influences alike 
pressure, temperature and the incorporated molecules. The 
numerous current procedures are to perform an untreated 
metal position overlying the porous via the release of the 
molecule of the coordinating solvent.

The enrichment in the potential of metal–organic frame-
works to uptake CO

2
 of the mix of the various gases is 

reliant on the fundamental features of the metal–organic 
frameworks. Further, the enrichment is depended on 
the characteristics of the gases or mix that uptake in the 
metal–organic frameworks. These features comprise the 
construction and configuration of the metal–organic frame-
works, fabrication and porous of metal–organic frameworks 
(Li et al. 2011a).

For example, Millward and Yaghi (2005), Furu-
kawa et  al. (2010) and Li et  al. (1999) has developed 
four separated uptake materials of metal–organic frame-
works, viz. metal–organic framework-180, metal–organic 
framework-200, metal–organic framework-2015 and 
metal–organic framework-210. The metal–organic frame-
work-210 uptake material displayed outstanding porous of 
the surface and extraordinary carbon dioxide uptake achieve-
ment. Metal–organic framework-210 uptake material pre-
sented carbon dioxide removal of about 2.87 g/g of CO

2
 . The 
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fabricated adsorbent possesses a density of the bulk around 
0.25 g per unit volume, the volume of porous of 3.6 cm

3 per 
gram and a more exceptional surface area of 6240 m

2 per 
gram that is the greatest recorded for all crystalline sub-
stances. Further, they observed that metal–organic frame-
work-2, metal–organic framework-505, Cu

3
(BTC)

2
 (BTC 

= 1,3,5-benzene tricarboxylate), isoreticular metal–organic 
frameworks-11, isoreticular metal–organic frameworks-3 
and isoreticular metal–organic frameworks-6 are consid-
erably suitable adsorbents for carbon dioxide elimination. 
Additionally, they suggested metal–organic framework-177 
that possesses a particularly exceptional surface area 
( 4.5 × 103m2∕g ) with CO

2
 removal of ∼ 0.014 mol g−1 at 35 

bars.
The uptake achievement of metal–organic frameworks 

materials has further enhanced via using a suitable linker, 
which can alter the surface of adsorbents whether the porous 
and exceptional surface area for carbon dioxide particles. 
Zheng et al. (2013) have developed an expanded 4,4-pad-
dlewheel combined metal–organic framework-505 analog 
of a nanostructured rectangular diisophthalate associated 
by alkyne associations. The produced adsorbent exhibited 
extraordinary CO

2
 uptake of 0.024 mol g−1 at room tempera-

ture and unique selectivity.
The CO

2
 uptake into remarkable metal–organic frame-

works can improve via the incorporation of heterocyclic 
ligands. It is obvious that these metal–organic frameworks 

composite of a heterocyclic ligand that is propitious for 
improving the CO

2
 uptake potential of the metal–organic 

frameworks. Their pristine samples metal–organic frame-
works, UiO-67 (the UiO-67 composites of a cubic frame-
work of cationic Zr

6
O

4
(OH)

4
 nodes and biphenyl-4,4’-

dicarboxylate (BPDC) linkers), displayed depressed value 
of CO

2
 uptake abilities than of those qualified metal–organic 

frameworks holding heterocyclic ligands in their construc-
tions (Fig. 15) (Hu et al. 2018).

Membranes separation

Among the substitutional technologies obtainable, mem-
brane technology deems the most suitable. Also, it offers 
many merits in terms of energy lost and cost-effective. Mem-
brane technology categorised into three classes based on the 
technique operated such as non-dispersive contact through 
microporous membranes, gas penetration into high-density 
membranes, and supported (Sreedhar et al. 2017b).

The non-dispersive contact via microporous membranes 
that utilised concerning post-combustion carbon separation. 
It possesses merits additionally, traditional uptake columns, 
viz. elasticity in working conditions and classes of mem-
brane contactors that could be applied (Xu and Hedin 2014). 
The CO

2
 uptake by gas permeation results ascribed to selec-

tivity and permeability of a high-density membrane towards 
an appropriate gas coupled in a mixture. The membrane 

Fig. 15  Geometries of a Zr core and b biphenyl-4, 40-dicarbo-
xylate (BPDC), c 2, 20-bipyridine-5, 50-dicarboxylate (BPYDC), 
d 2, 20-bithiophene-5, 50-dicarboxylic (BTDC), e 2, 20-bifuran-5, 
50-dicarboxylic (BFDC)ligands. Crystal structure of f UiO-67 (the 
UiO-67 composites of a cubic framework of cationic Zr

6
O

4
(OH)

4
 

nodes and biphenyl-4,4’-dicarboxylate (BPDC), g UiO(BPYDC), 
h Zr-BTDC and i Zr-BFDC. (Zr: cyan; C: grey; O: red; N: blue; S: 
yellow; H: white). Adapted with permission from Hu et  al. (2018), 
Copyright 2020, Elsevier
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has comprised of polymer in which the highest layer is a 
particular high-density layer posted on a cost-effective non-
selective membrane (Lee et al. 2013). In supported liquid 
membranes, the liquid has loaded into the porous of the 
surface. The principal–agent that manages the selectivity in 
supported liquid membranes is the attraction towards CO

2
 . 

The backing does not influence the membrane permeabil-
ity, restricts the stability of the complete construction (Krull 
et al. 2008).

Guo et al. (2020) have reported amino-decorated orga-
nosilica membranes that utilise bis(triethoxysilyl)acetylene 
(BTESA) and (3-aminopropyl) triethoxysilane (APTES) raw 
materials. The studied membranes exhibit high CO

2
 per-

meance in the range 2550 gas permeance unit to 3230 gas 
permeance unit, while the selectivity for carbon dioxide and 
nitrogen reached values ranged between 31 to 42 during the 
carbon dioxide and nitrogen separation (Fig. 16).

The metal–organic frameworks have further examined 
for membrane synthesis. Usually, there are two techniques 
to utilise metal–organic frameworks into a membrane: the 
establishment of metal–organic frameworks into a polymer 
matrix to produce a combined form membrane and the depo-
sition of a thin film of the metal–organic framework on a 
spongy substrate (Prasetya et al. 2019). Habib et al. (2020) 
have addressed simultaneous improvement in CO

2
 permea-

bility and selectivity using unique metal–organic frameworks 
[ Al

2
(OH)

2
(L) ] (L = biphenyl-3,3’,5,5’-tetracarboxylate) 

NOTT-300 and polyether-block-amide (Pebax®1657) as a 
polymer matrix. In contrast to the unadulterated polyether-
block-amide membrane, the incorporation of the framework 
[ Al

2
(OH)

2
(L) ] (L = biphenyl-3,3’,5,5’-tetracarboxylate) 

with filler ratio 40% improved the permeability of CO
2
 with 

380%, and selectivity to 68% for CO
2
∕CH

4
 and CO

2
∕N

2
 

selectivity 26%. The outcomes confirmed the possibility 
of NOTT-300 as filler material for commixed matrix mem-
branes endeavour at CO

2
 uptake ascribed to their extraordi-

nary porosity and CO
2
 specific properties.

Also, Jiamjirangkul et al. (2020) have studies on gas 
sorption suggested that the immersion of chitosan nanofi-
bres in Cu-BTC (copper benzene-1,3,5-tricarboxylate) 
metal–organic frameworks. The chitosan nanofibres on 
(copper benzene-1,3,5-tricarboxylate) metal–organic frame-
works presented great specific surface area ( 104.6 m2∕g ), 
with uptake potential of CO

2
∕N

2
 above 14 times possesses 

an exceptional potential for uptake and filtration of CO
2
.

Magnesium oxide MgO is a suitable filler substance in 
commixed matrix membranes ascribed to its exceptional 
carbon dioxide uptake potential and cost-effective in con-
trast with metal–organic frameworks. Lee et al. (2020) have 
synthesised bimodal-porous, hollow magnesium oxide MgO 
spheres by spray pyrolysis and precipitation technique. 
The synthesised bimodal- magnesium oxide spheres were 
injected into poly (vinyl chloride)-graft-poly(oxyethylene 
methacrylate), forming commixed matrix membranes for 
carbon dioxide to nitrogen separation. Furthermore, particu-
lar interactions that occurred within the bimodal-magnesium 
oxide and carbon dioxide surface molecules improved the 
solubility carbon dioxide and accelerated the carbon dioxide 
molecules compared to those for the nitrogen molecules. 
The bifunctional bimodal-magnesium oxide improved the 
carbon dioxide permeability within physical and chemical 
mechanisms, together. The most suitable gas separation 

Fig. 16  Structure of 
bis(triethoxysilyl)acetylene 
(BTESA) and (3-aminopropyl) 
triethoxysilane (APTES) raw 
materials and the produced 
materials. Adapted with permis-
sion from Guo et al. (2020), 
Copyright 2020, Elsevier
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achievement was achieved in the commixed matrix mem-
branes with bimodal-magnesium oxide fillers (10 wt%), 
which confirmed a carbon dioxide permeability of 179.2 
gas permeance unit and about of 42.6 of carbon dioxide to 
nitrogen selectivity.

Hydrophobic membranes with anti-moistening sur-
faces assist as the interface separating the aqueous amine 
absorbents and the CO

2
 combined gases. The CO

2
 gases go 

along into the first frontage of a hydrophobic membrane 
and are uptake via the amine solvent that streams on the 
opposite frontage of the hydrophobic membrane. If the 
membranes possess weak porosity and are moisten over 
the amine solution, the resistance of the transportation for 
the CO

2
 gases, will be improved, pointing to a reduction 

in CO
2
 uptake fluxes (Tuteja et al. 2007; Kobaku et al. 

2012). Lin et al. (2018) have successfully synthesised eco-
friendly, fluorine-free and watertight breathable polydi-
methylsiloxane on polystyrene membranes with extraor-
dinary porosity reached about 89% via an electrospinning 
technique. Contrasted among pure polystyrene nanofibrous 
membranes, polydimethylsiloxane incorporating in poly-
styrene nanofibrous membranes succeeded inhibits liquid 
droplets from agglutinating on their surfaces, appearing 
in the prosperous synthesis of a membrane possess anti-
moistening surface. The CO

2
 uptake flux of the studied 

polydimethylsiloxane on polystyrene membranes is around 
0.0019 mol/m

2
s.

Absorption-microalgae

Microalgae CO
2
 fixation possesses the benefit of extraordi-

nary photosynthetic performance, quick growth rate, excellent 
environment ductility, great lipid richness and the capacity to 
isolate carbon and therefore has been considered as a suit-
able approach for post-combustion CO

2
 uptake and utilisation 

(Cheah et al. 2015; Zhou et al. 2017). Normally, dissolved 
inorganic carbon presences in culture solution water cover 
carbon dioxide, bicarbonate, carbonate and carbonic acid 
during the dynamic ionisation equilibrium are given, unless, 
particularly carbon dioxide and bicarbonate are fundamental 
dissolved inorganic carbon patterns which can be applied by 
microalgae cells in several approaches (Zhao and Su 2014). 
The bicarbonate has proved to be practised not exclusively 
through a straight approach, viz. active transportation and cat-
ion exchange, but additionally through an indirect approach 
which catalyses bicarbonate as carbon dioxide and hydroxyl 
ions with periplasmic carbonic anhydrase. It gave the feasibil-
ity of incorporating microalgae agriculture with carbon diox-
ide uptake methods through utilising bicarbonate assembled at 
the uptake column as a carbon origin rather of carbon dioxide 
(Zhao and Su 2014; Song et al. 2019b).

Yang et al. (2020) have applied purified terephthalic acid 
wastewater was as the growing medium of chlorella pyr-
enoidosa microalgae for CO

2
 biouptake (Fig. 17). The alga 

was incapable of originating in the unmodified wastewater 
ascribed to low pH value, while it favoured bearing and 

Fig. 17  The two stages of the untreated (Type A) and treated (Type B) purified terephthalic acid wastewater for CO
2
 uptake. Adapted with per-

mission from Yang et al. (2020), Copyright 2020, Elsevier
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acclimation in the pH ( pH = 7.40 ) conform wastewater and 
the modified wastewater. The obtained outcomes confirmed 
that the rate of CO

2
 uptake and the photosynthetic rate of 

the algae if the growing medium is treated by wastewater 
were greater than these with the untreated using wastewater. 
The most chief algal CO

2
 capture rate was obtained around 

∼ 82.2% for the growing medium unmodified with wastewater 
and ∼ 91.6% for growing medium modified with wastewater.

Azhand et al. (2020) have conducted the hydrodynamic 
comparison of inner and outer spargers in an airlift biore-
actor and carbon dioxide biofixation investigation below 
various gas speeds. Also, they reviewed the input gas speed 
influence on the fixation of carbon dioxide through chlo-
rella vulgaris microalgae in an airlift reactor with an outer 
sparger. The investigation reveals that the hydrodynamic out-
come of inner and outer spargers considerably relies on the 
cross-sectional area. Besides, the outcomes designate that 
chlorella vulgaris can increase to ∼ 2.695 × 107 cell/mL and 
eliminate the carbon dioxide with 94% performance in the 
smallest outer gas speed of ∼ 1.9 × 10

−3
m s

−1.
As an example of the numerous considered carbon uptake 

techniques, thermal regeneration of intense CO
2
 uptake 

solvent is a significant challenge due to its rising energy 
exhaustion. Song et al. (2019a) have offered a concept of 
bioregeneration via microalgae for bicarbonate transform to 
amount-attached biomass. Also, various intense solutions 
(including ammonium bicarbonate, potassium bicarbonate 
and sodium bicarbonate) were examined to estimate the 
achievement of bioregeneration. The outcomes showed that 
ammonium bicarbonate could be a suitable bicarbonate car-
rier for the aimed uptake-microalgae mixture method, which 
possessed more extraordinary biomass productivity opposed 
to potassium bicarbonate and sodium bicarbonate and carbon 

sequestration potential reached up to ∼ 0.16 g/L per day. At 
the same time, pH modification was an efficient procedure 
to additional enhance the achievement of the hybrid method.

Geological CO
2
 storage

Global CO
2
 storage

In order to limit the global warming to 1.5 ◦C above the pre-
industrial level, IPCC (2014) estimated that the amount of CO

2
 

that must be captured and permanently stored by the middle of 
this century are around 5000–10,000 million tonnes per year. 
Carbon Capture and Geological Storage is a process whereby 
CO

2
 is captured from flue gases, transported, compressed and 

finally injected in supercritical or liquefied form into suit-
able subsurface formations, either in a saline aquifer (Brad-
shaw et al. 2007; Michael et al. 2010) or, potentially, used for 
enhanced oil recovery (Godec et al. 2013). Ideally, the storage 
formation, which needs to be at a depth greater than 1 km to 
ensure that CO

2
 remains in the supercritical phase, is charac-

terised by numerous intercalations of tight aquitrade rocks, 
e.g. shales, within the reservoir rock units, e.g. sandstone or 
carbonate. Such multiple confinements ensure the retention 
security necessary to impede the upward migration and leak-
age of the injected CO

2
 (Benson and Cole 2008).

The petrophysical properties of shale, where the poros-
ity’s range (−) is 0.01–0.10, the mean pore size’s range nm 
is 5–100, a high capillary pressure’s range (MPa) up to 
∼ 400 and the permeability’s range (m2 ) is 10

−21 to 10
−19 , 

make the favourable conditions for the aquitrade in lim-
iting the potential CO

2
 leakage to be minimal (Armitage 

et al. 2010) (Fig. 18a). Compared to the basement complex, 

(A) (B)

Pore

Quartz

Pore

Fig. 18  A visual comparison in the pore-connectivity system between 
aquitard rocks (a) and the reservoir or aquifer rocks (b). Each of these 
images represents a 2D slice through the volume of Synchrotron Radia-
tion X-ray Tomographic Microscopy (SRXTM) dataset with voxel size 
is 0.65 μm3 . a SRXTM’s image for Posidonia shale—a typical cap-

rock found in the Molasse Basin, Switzerland. b SRXTM’s image for 
Nubian Sandstone—a typical reservoir rock found in the Gulf of Suez 
Basin, Egypt. Dark grey areas are pore space (air), while light grey 
areas represent the mineral grains (quartz). The full SRXTM raw data-
set ( 2560 × 2560 × 4320 pixels and 8-bits) is provided by Hefny (2019)
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sedimentary rocks, e.g. sandstone, fall into the category of 
a porous medium where the injected fluids can freely move 
through, or be stored in the intrinsic void space without 
requiring hydraulic stimulation. Figure 18b shows a 2D 
grey-level slice of a high-resolution Synchrotron Radiation 
X-ray Tomographic Microscopy for the Nubian Sandstone, 
a typical reservoir rock type found in the Gulf of Suez Basin 
(Egypt) with a porosity (−) up to 0.3, a mean pore size (nm 
of 44 × 10

4 , capillary pressure (MPa) 25.3 and permeability 
(m2) of 2.56 × 10−12 (Hefny et al. 2020).

Sedimentary basins are the subsidence areas of the 
earth’s crust that is underlain by a thick sequence of such 
sedimentary rocks (Selley and Sonnenberg 2015). Over 800 
sedimentary basins worldwide based on basement outcrop, 

structure, total sediment isopachs, subsidence regime, basin 
evolution and petroleum systems and other public data are 
defined and shown in Fig. 19 (IPCC 2005). Mostly, the sedi-
mentary rocks are inherently heterogeneous assemblages of 
depositional lithofacies, each with characteristic mineralogi-
cal content and bedding architectures (i.e. foliation, shear 
and compaction banding). These geological variations are 
resulting directly from the formation of the rock, from the 
stress fields applied to it later (Zoback and Byerlee 1976) or 
from diagenetic changes (Aplin et al. 2006). Moreover, the 
orientation of both the mineral grains and the pores (Wright 
et al. 2009) or crack (Guéguen and Schubnel 2003) along 
a preferential direction can also constitute barriers to flow, 
or at least reduce it (Clavaud et al. 2008), and resulting in 

Table 1  Adsorbents for carbon dioxide capture

BET Brunauer–Emmett–Teller

Adsorbent BET Surface 
area ( m2∕g)

Pore size (nm) CO
2
 adsorp-

tion capacity 
( mol g−1)

References

Activated carbon/coconut shell 370.72 1.63 0.0018 Rashidi et al. (2014)

Activated carbon/sustainable palm – – 0.00732 Nasri et al. (2014)

Activated carbon/cellulose 2370 1.2 0.0058 Sevilla and Fuertes (2011)

Activated carbon/starch 2850 1.2 0.0055 Sevilla and Fuertes (2011)

Activated carbon/olive stone 1215 – 0.0031 González et al. (2013)

Activated carbon/algae 2390 1.8 0.0038 Sevilla et al. (2012)

Activated carbon/baggase 923 – 0.0017 Boonpoke et al. (2012)

Activated carbon/bamboo 1846 – 0.007 Wei et al. (2012)

Activated carbon/rice husk 927 – 0.0013 Boonpoke et al. (2011)

Activated carbon/coffee ground 831 – 0.0049 Plaza et al. (2012)

Activated carbon/nut shell 573 – 0.00348 Bae and Su (2013)

Three-dimensional graphene 477 – 0.0007

N-doped porous carbon@polypyrrole/reduced graphene 
oxide

1588 14.7 0.0043 Chandra et al. (2012)

Polyaniline @ graphene – – 0.075 Mishra and Ramaprabhu (2012)

Graphene–manganese oxide 541 4.3 0.00259 Zhou et al. (2012)

Zeolitic imidazolate frameworks-8@ graphene oxide 1120 – 0.01636  Kumar et al. (2013)

Fe
3
O

4
-graphene 98.2 3.8 0.06 Mishra and Ramaprabhu (2014)

ZnO-based N-doped reduced graphene oxide 1122 0.71 0.0355 Li et al. (2016)

Montmorillonite clay/reduced graphene oxide 50.77 – 0.00049 Stanly et al. (2019)

Zeolite SSZ-13 – – 0.00398 Hudson et al. (2012)

Zeolite NaX 672.09 – 0.00553 Xu et al. (2019)

Zeolite-5A@meta–organic framework-74 – – 0.0138  Al-Naddaf et al. (2020)

Silica @ amine-like motifs 199 67 0.0014 Zhao et al. (2010)

Sodium metasilicate 908 – 0.00292 Lin and Bai (2010)

Amines immobilised double-walled silica nanotubes 348 – 0.0023  Ko et al. (2013)

Amino-modified silica fume 271.2 – 0.0013 Liu and Lin (2013)

HMS (wormhole) 1181 – 0.0056 Sanz-Pérez et al. (2015)

3-Aminopropyltriethoxysilane@ SBA-15 silica 572 – 0.0041 Ribeiro et al. (2019)

[Co
4
(OH)

2
(p-CDC)

3
DMF

2
]

n
1080 – 0.0037 Farha et al. (2009)

Amine-chromium terephthalate metal–organic framework 2297 – 0.002  Yan et al. (2013)

Metal–organic framework MIL-53(Al)/graphene nanoplates 1281 – 0.001295 Pourebrahimi et al. (2015)
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different elastic responses (Helbig and Thomsen 2005). 
Therefore, the deployment challenges of large-scale CO

2
 

storage in the geological formations will be affected by 
quantification of the geological heterogeneity which influ-
ences both the microscopic fluid displacement processes, 
thermo-hydro-mechanical (THM) processes, caprock integ-
rity, induced seismicity and well’s ( CO

2
 ) injectivity. These 

challenges will be discussed in details as follows.
Given the fact that CCUS entails cyclic fluid(s) injection 

into (and possibly retrieval from) these geological forma-
tions, unintended changes in dynamic reservoir properties 
(e.g. saturation, pressure) will be often induced and needs to 
be quantified using the inversion of the geophysical field data 
(such as time-lapse seismic data, gravity data). However, the 
time-lapse seismic inversion will be quite problematic, if not 
impossible, without proper rock physics models which can 
capture these geological features at small scale and find the 
relationship of that complexity to the fluids flow (and seismic 
waves propagation) through it. The regional heterogeneities at 
field scale include lithofacies geometries and continuity, thick-
ness variability, preferential alignment of the faults network 
and bulk reservoir properties (Fig. 19). On the other hand, the 
heterogeneities of wellbore scale can be extended down to the 
microscopic pore network, grain size and mineral contents 
and orientation. Therefore, the impact of these geological fea-
tures (such as heterogeneity scale, anisotropic behaviour, the 
topology of a porous medium and mineralogical contents) on 
rock physics model (including seismic-waves velocity, perme-
ability tensor, two-phase constitutive relationships) needs to 
be considered for the geophysical data inversion.

Moreover, the geological heterogeneity contributes 
towards the quantification of the basin-scale CO

2
 storage 

capacity of the reservoir. For a consistency with methods 
used in previous studies to assess the prospective geologic 
storage of buoyant fluids in subsurface formations (van der 
Meer 1995; Doughty et al. 2001; Kopp et al. 2009; Good-
man et al. 2011; NETL 2015; Hefny et al. 2020), Eq. (6) is 
used to estimate the theoretical (in a conservative approach) 
reservoir storage capacity.

where, Meff

CO
2

 is the effective storage capacity (kg), Vbulk

res
 is 

the bulk reservoir volume (m3) and �
CO

2
 is the CO

2
 density 

(kg m−3 ) as a function of the corresponding reservoir tem-
perature and pressure. The dimensionless CO

2
-storage effi-

ciency factor, �
eff

 (−), represents the fraction of the total pore 
volume that can be occupied by the injected CO

2
 . �

eff
 can be 

estimated based on a combination of coefficients for the geo-
metric capacity, the geological heterogeneity capacity and 
reservoir porosity.

An additional parameter for the safekeeping of under-
ground stored CO

2
 is the sealing capacity of the caprock, 

(6)Meff

CO2

= �effVbulk

res
�CO2

(T , p),

despite faults and fractures, which may occur in it. The CO
2
 

injection pressure at the bottom-hole must remain below 
the fracture stress gradient to avoid caprock integrity, while 
being larger the in situ fluid pressure to displace the resident 
formation fluid (brine) by CO

2
 . As a continuous CO

2
 injec-

tion, excess fluid pressure will be built up in the reservoir—a 
condition that develops high permeability pathways within 
the caprock unless water-extraction wells operate concur-
rently with CO

2
 injection (Bergmo et al. 2011). Ideally and 

according to Espinoza and Santamarina (2017), a leak rate of 
3 kg/m2∕year corresponds to ∼ 2 cm of the CO

2
 pool height 

is enough to saturate the pore water in a shallow 100 m sedi-
ment column in 100 years.

Moreover, the potential physicochemical interactions 
between the dry supercritical CO

2
 , the resident formation 

fluid and rocks may cause formation dry-out, whereby min-
erals (mainly salts) precipitate due to continuous evapo-
ration of water into the scCO

2
 stream. Depending on the 

spatial distribution of the salt precipitate within the pore 
system, the intrinsic permeability can be significantly 
impaired, leading to a considerable decrease in the well’s 
( CO

2
 ) injectivity index (Muller et al. 2009; Grimm Lima 

et al. 2020).
Of the previously mentioned technologies, Carbon Capture 

and Geologically Storage has been implemented in practice, 
albeit thus far only at relatively small scales, with the Norwe-
gian Sleipner site in the North Sea being the longest-running 
and largest-scale carbon capture and storage project in the 
world (Furre and Eiken 2014; Eiken et al. 2011; Eiken 2019). 
Roughly 0.85 million tonnes of CO

2
 are injected annually for 

a cumulative total of over 16.5 million tonnes as of January 
2017. In Sleipner site, 2D, 3D and 4D geophysical data have 
been acquired to ensure that there is no CO

2
 leakage.

The time-lapse high-quality seismic field datasets have 
been acquired covering roughly the same 4 × 7 km

2 area. The 
seismic data consist of (1) the benchmark (base) model and 
(2) twelve (a huge number, given the complexity of acquir-
ing 3D seismic data in the field, in this case even off-shore 
in the North Sea) time-lapse seismic surveys as a function of 
CO

2
 injection. All surveys and differences have high signal-

to-noise ratios due to the large contrast in acoustic proper-
ties between the in situ saline aquifer and the injected CO

2
 

and have been valuable for understanding the CO
2
-plume 

development (Fig. 20).

Thermophysical fluid properties

The subsurface CO
2
-plume migration at a representative 

geological scale depends on: (1) rock properties at the pore 
scale, such as relative permeability and capillary pressure 
curves in addition to their intrinsic characteristic features, 
and (2) fluid pairs ( CO

2
-brine) properties such as density 

and viscosity differences, mobility ratios, interfacial tensions 
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and CO
2
 solubilities. Two NaCl brine molalities have been 

chosen to replicate the salinity at (I) the Gulf of Suez in 
Egypt (0.66 mol/kg) and (II) the Aquistore Carbon Capture 
and Storage site in Canada (4.63 mol/kg). Moreover, regions 
with large geothermal gradients exhibit different thermo-
physical properties than those regions that exhibit smaller 
geothermal gradients.

The thermophysical properties of the fluid pairs ( CO
2
 and 

brine) describe the multiphase flow behaviour and define 
the functionality of a CPG system. The thermophysical 
properties of fluids were chosen to represent those found 
in a deep geological formation, typical for depleted oil and 
gas reservoirs. Above these conditions ( T

crit
= 31.1

◦
C and 

P
crit

= 7.38 MPa ), CO
2
 acts as a super-critical fluid with a 

gas-like viscosity but a liquid-like density.

Density and dynamic viscosity

For a given pressure and temperature, the density and 
dynamic viscosity of supercritical CO

2
 are iteratively cal-

culated using the Span and Wagner equation of state Span 
and Wagner (1996) and Fenghour et al. (1998)’s correlation, 
respectively. The results are shown in Fig. 21. Primarily, 
the densities (kg/m3) and dynamic viscosities (μPa.s) for 
both CO

2
 and brine increase with increasing pressure and 

decreasing temperature.

Sedimentary basins

Highs

Fold belts

Schields

Shale facies

Sandsand 

facies

Shale facies

Sandsand 

facies

Shaly sand 

facies
Shaly sand 

facies
1 km 1 km

(A)

(B) (C)

Fig. 19  a Distribution of sedimentary basins around the world show-
ing the potential sites for CO

2
 geosequestration. The map is modified 

after IPCC (2005), Bradshaw et al. (2005) and USGS (2001). Three-
dimensional perspective views of b porosity distribution model and c 
the calculated permeability distribution model of Nubian Sandstone 
III compartmentalised reservoir at the Gulf of Suez Basin (Egypt), 
(Hefny 2020). The calculated permeability is based on a realisation 
of the rock physics model biased with lithofacies well-logs. The pref-

erential alignment of faults (white channels among fault blocks) are 
considered as sources of regional anisotropy and potential hydrau-
lic transmissive structures. This 3D rendering of property models is 
representing only the blocks of Nubian Sandstone III reservoir and 
showing how field-scale heterogeneities can affect the fluids injectiv-
ity. Histograms showing the dominance of the distributed property 
values are included in the legend box. A generalised depth to the res-
ervoir top is ∼ 3350 m with an average reservoir thickness of ∼ 38 m
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The density can then be used to calculate the other fluid 
properties, such as internal energy, directly. In fact, the CO

2
 

dynamic viscosity is one of the most crucial parameters 

for successful implementation and forecasting of numer-
ous applications including CO

2
-based geothermal system 

and CO
2
-Enhanced Oil Recovery. In CO

2
-based geothermal 

system, such as CPG, dividing the density of CO
2
 by its 

dynamic viscosity results in high mobility (i.e. the inverse of 
kinematic viscosity) compared to brine. The mobility will be 
described in details in “CO2 mobility ratio” section. Moreo-
ver, the dynamic viscosity can be indirectly related through 
the Reynolds number with the pressure drop during flow 
in pipelines, which in turn affects the power consumption 
of pumps. It was reported that a viscosity underestimation 
of 30%, will lead to a 30% underestimation of the pump-
compressor power consumption (Li et al. 2011b).

Interfacial tension in CO
2
-brine systems

We used the empirical relationships derived from the most 
comprehensive dataset after Li et al. (2012c) and Bachu and 
Bennion (2009) in order to calculate the interfacial tension 
between supercritical CO

2
 and aqueous solutions with differ-

ent salt molalities (mol/kg). The interfacial tension is devel-
oped as a function of pressure, temperature and brine salin-
ity and primarily decreases with increasing CO

2
 solubility. 

At conditions relevant to the CPG subsurface reservoir, the 
interfacial tension ranges from 24 mN/m at high tempera-
ture, low salinity (0.66 mol/kg) and high-pressure conditions 

Fig. 20  Relative changes in seismic p-wave velocity (solid and 
dashed black lines) and density assuming CO

2
 density of 675 kg/m3 

(dashed blue line) and density assuming CO
2
 density of 425 kg/m3 

(solid blue line) versus CO
2
 saturation. The two double arrows indi-

cate which saturation bands can be resolved by time-lapse seismic 
(grey box) and gravity data, respectively. These parameters (velocity 
and density) are key input parameters to estimate the changes in seis-
mic impedance and the reflection coefficients. The figure is modified 
after Eiken (2019)

Fig. 21  Thermophysical properties of the fluids, brine and super-
critical CO

2
 , used for fluid flow simulation. The P–T conditions are 

representative of relevant conditions typical of CCUS reservoirs. 

(Top) Densities and density ratio of the CO
2
-brine system calculated 

at 0.66  mol/kg salinity. (Bottom) Dynamic viscosities and viscosity 
ratio of the CO

2
-brine system calculated at 0.66 mol/kg salinity
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to 52 mN/m at low-temperature, high-salinity (4.63 mol/kg) 
and high-pressure conditions (Fig. 22).

CO
2
 solubility in aqueous solution

Given that the dissolution of CO
2
 in aqueous solution is 

extremely slow, it can minimally affect the CO
2
 circulation 

during the time frames considered in CPG systems. Alter-
natively and during carbon capture and storage, convective 
dissolution, driven by a small increase in brine density with 
CO

2
 saturation, is considered to be the primary mechanism 

of CO
2
 dissolution trapping, critical for the long-term fate of 

CO
2
 and storage security (Martinez and Hesse 2016; Kong 

and Saar 2013).
The most commonly used thermodynamic models to 

describe the mole fraction (solubility) of CO
2
 for a CO

2
-

brine system are provided by Duan and Sun (2003) and Duan 
et al. (2006). Generally, CO

2
 solubility in brine increases 

with increasing pressure and temperature and decreasing 
brine salinity, but at the pressures relevant to geologic CO

2
 

storage, the CO
2
 solubility decreases with increasing tem-

perature (Fig. 22).

CO
2
 mobility ratio

In the continuity equation, we assume that fluid flow obeys 
Darcy’s law and that heat is both advected by the fluids and 
conducted through the rock-fluid system.

where P is the pressure (Pa) , L is the reservoir thickness 
(m) , k is the reservoir permeability (m2) , A cross-sectional 
area (m2) , c

p
 is specific heat capacity at constant pressure 

[kJ/(kg.◦C)] , � is the dynamic viscosity (�Pa.s) , � is the 
density (kg/m3 ) and T is the temperature (◦C) . The fluid 
mass flowrates for any given driving force is proportional 
to the ratio of density to dynamic viscosity, also known as 
Mobility, M = �∕� (i.e. the inverse of kinematic viscosity), 
given all else parameters in Eq. (7) being equal. In the case 
of water, M is mostly a function of temperature and much 
less pressure that reflects the primary dependence of both 
water’s density and viscosity on temperature as previously 
introduced. In the case of CO

2
 , density and viscosity have 

significant dependence on both temperature and pressure. 
For conditions relevant for fluid injection (i.e. T lower than 
50 ◦C ), CO

2
 mobility is larger than for water by factors rang-

ing from 4 to 10. For temperatures near 100
◦
C , CO

2
 is larger 

by a factor of approximately 4 than that of water. Addition-
ally, the mobility ratio between CO

2
 and brine depends on 

salinity. Figure 22 shows that the mobility ratio is large for 
a more saline aqueous solution than those with less salinity.

(7)Q = ΔP
kA

L

�

�
c

p
ΔT ,

Specific heat capacity

The specific heat capacity is the ratio of the heat transfer to a 
body to the associated temperature change and its weight. It 
describes the ability of a material to store heat and is temper-
ature-dependent. The volumetric heat capacity is the product 
of specific heat capacity and density and is used to calculate 
the thermal capacity of geothermal projects. The constant-
pressure (isobaric) specific heat capacity, cp [kJ/(kg.◦C)] , of 
the working fluid, as it flows through the reservoir, is calcu-
lated by Eq. (8).

where �h is the fluid’s heat changes for a given fluid’s tem-
perature changes, �T . A comparison of the specific heat 
capacity for water and supercritical CO

2
 is shown in Fig. 23. 

At high pressure of more than 30 MPa, the increase in spe-
cific heat capacity with constant temperature for CO

2
 is less 

than half of the increase of water, indicating that more than 
twice the CO

2
 mass flowrate would be needed to achieve the 

same rate of sensible heat transport.

CO
2
 utilisation pathways

Various CO
2
 utilisation routes were successfully researched 

in term of technical and economic feasibility. Currently, the 
gross global utilisation of CO

2
 is lower than 200 million 

tonnes per year which is roughly negligible compared with 
the extent of global anthropogenic CO

2
 emissions (higher 

than 32,000 million tonnes per year) (Rafiee et al. 2018). 
Applicability of waste CO

2
 in different fields such as direct 

routes (i.e. beverage carbonation, food packaging and oil 
or gas recovery), material and chemical industries (i.e. 
acrylates, carbamates, carbonates, polyurethanes, polycar-
bonates, formaldehyde and urea) and fuels (i.e. biofuels, 
dimethyl ether, tertiary butyl methyl ether and methanol) 
are currently operated (Srivastava et al. 2020). Poliakoff 
et al. (2015) stated 12 principles to assess CO

2
 utilisation 

approaches. In another comprehensive study articulated by 
Otto et al. (2015), they evaluated 123 reaction pathways to 
divert into chemicals (i.e. 100 for fine chemicals and 23 
for bulk chemicals). Lee (2016) investigated CO

2
 capture 

and utilisation based on industrial waste-desulphurisation 
gypsum ( CaSO

4
 ) and waste concrete (Ca(OH)

2
 ) through 

biobutanol and green polymer that utilises nearly 5.55 mil-
lion tonnes per year of CO

2
 . Masel et al. (2016) claimed the 

successful conversion (98%) of CO
2
 to CO with an over-

all energy efficiency of 80%. Besides, they announced the 
economic feasibility of acrylic acid, carbon monoxide, for-
maldehyde and formic acid of CO

2
 separation costs of $60 

(8)cp =

�h

�T

|
|
|
|p

,
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Fig. 22  Thermophysical properties of the CO
2
-brine system calcu-

lated for brine with molality (mol/kg) of 0.66 (left column) reflect-
ing the salinity conditions in the Gulf of Suez and 4.63 (right col-
umn) reflecting the salinity conditions in Aquistore (Canada). (Top): 

Interfacial tension, (Middle): CO
2
 Solubility in aqueous solution and 

(bottom): Mobility ratio between CO
2
 and brine (inverse of kinematic 

viscosity)
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per tonne and without a tax on emissions. Lifecycle and 
techno-economic analyses were performed for CO

2
 (waste 

gas) recovery from power plant into algal biomass produc-
tion system (annual CO

2
 production rate of 30.3 million kg 

per year). The algal process captured 70% of the flue-gas 
CO

2
 and produced 42,400 ton of dry algal biomass per year.

Production of fuel, biofuel and chemicals from CO
2

Because of the growing reliance on fossil fuels and dwin-
dling resources, seeking alternatives to them is considered 
a high priority worldwide. Generally speaking, the sustain-
able alternative of converting CO

2
 from harmful greenhouse 

gas, causing global warming into a renewable carbon source 
has become a critical issue. CO

2
 can be converted directly 

into a number of valuable chemicals via either exergonic or 
endergonic reactions (Rafiee et al. 2018). During the reform-
ing process, converting non-value-materials into valuable 
fuels and chemicals is associated with the release of syn-
gas (intermediate product). Often, it consists of major frac-
tions of hydrogen and carbon monoxide accompanied by 
small fractions of water and carbon dioxide (Ayodele et al. 
2015). Reforming can take place in a solid state and with or 

without gaseous state into syngas throughout pyrolysis or 
gasification of biomass or natural gas conversion, respec-
tively. Significant quantities of CO

2
 emitted from different 

industrial installations (i.e. fossil fuel-fired power plants) 
can be used as feedstocks in various CO

2
 recycling routes. 

The availability of source feedstocks (i.e. CO
2
 and H

2
 ) is the 

main factor controlling large-scale applications of biofuel 
developed. Numerous biofuel products such as methanol 
( CH

3
OH ) and dimethyl ether ( CH

3
OCH

3
 ) may be produced 

from CO
2
 utilisation. This direction opens up the possibility 

of developing a wide variety of fuels for both stationary and 
mobile applications.

Production of methanol ( CH
3
OH ) based on CO

2

Generally, methanol is one of the most appropriate alter-
native fuels due to its relatively high energy content of 
726.3 kJ/mol (Din et al. 2019). Its productivity is the third 
in the world after ethylene and propylene. It is exploited 
in the manufacturing of different industrial chemicals (i.e. 
formaldehyde and methyl tertiary butyl ether) in addition to 
be a good hydrogen carrier. Despite its lower energy content 
( ∼ 57,250 Btu/ga) compared with gasoline ( ∼ 116,090 Btu/
gal), it is suitable for vehicles powered by internal combus-
tion engines due to its perfect combustion features. The price 
rate of a gallon for methanol is $3.23 per gallon, which is a 
little bit lower than that of a gallon of gasoline $3.80 (Olah 
et al. 2009). Despite, its cetane number value is low, it can 
operate in the diesel engines; nevertheless, it cannot be con-
sidered the best alternate for diesel fuel. The self-ignition 
propensity of the fuel under environmental conditions of 
high temperature and pressure defines the fuel’s cetane num-
ber. Higher cetane number is required for providing feasible 
operation of the engine. Chemists have studied the reaction 
of CO

2
 conversion into methanol for more than 80 years. In 

fact, in the 1920s and 1930s, the emitted CO
2
 (waste gases) 

produced from other process was subjected into methanol 
production in the first methanol operating plant located in 
USA (Dinca et al. 2018). Commonly, the catalytic conver-
sion of CO

2
 in the presence of hydrogen is the most studied 

scenario to produce methanol-based CO
2
 as given by Eq. (9):

The use of captured CO
2
 can be considered as an accept-

able alternative over the traditional synthesis method. From 
the technical, financial and environmental aspects, produc-
tion of methanol using CO

2
 and H

2
 has been commercially 

developed (Quadrelli et al. 2011). Numerous plants in Ice-
land and Japan have already been developed via integrat-
ing CO

2
 with renewable H

2
 plants (González-Aparicio et al. 

2017). In 2011, Carbon Recycling International opened the 
first plant in Iceland with a productivity of 5 Mt/year of 

(9)CO
2
+ 3H

2
↔ CH

3
OH + H

2
O

Fig. 23  Specific heat capacity, cp [kJ/(kg.◦C)] of water and supercriti-
cal CO

2
 as a function of pressure and at a constant temperature. These 

thermal conditions correspond to a geological formation at depth 
ranges from 0.8 to 5.7 km and with three different geothermal gradi-
ents. The figure is prepared from the data published by Lemmon et al. 
(2018)
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methanol production in order to boost the plant economy 
for larger scales. Besides, Carbon Research International is 
interested in the Horizon 2020 project, which aims to subject 
overabundant and intermediate sources of renewable energy 
for the development of CO

2
 chemicals and fuels obtained 

from coal-fired power plants (An et al. 2007). Besides, for 
this conversion, an effective catalyst (i.e. metals and their 
oxides) was proposed, for instance combining zinc and cop-
per oxides. In order to promote the synthesis of methanol, 
carbon monoxide (CO) found in the syngas can be diverted 
into CO

2
 employing the water gas shift reaction (WGSR) to 

produce excessive H
2
 and CO

2
 forms. After that, methanol 

is produced based on the reaction of CO
2
 with hydrogen 

(Jadhav et al. 2014):
The overall reaction for the synthesis of methanol is given 

by Eq. (10):

Iaquaniello et al. (2017) defined a methodology to exploit 
untapped municipal solid wastes (carbon source) for pro-
ducing methanol via gasification pathway. The estimated 
economic analysis reported that running plant generates 
methanol at 110 €/t with manipulating of 300 t/d of wastes 
in term of waste to methanol. Efficacy of waste to metha-
nol plant operates with a capacity of 40% under 30–35% 
decrement in greenhouse gas emissions. Other study estab-
lished by Rezaei and Catalan (2020) aimed to investigate the 
operability of a plant to afford 2000 tonnes/day of methanol 
using CH

4
 tri-reforming for syngas production. The opti-

mised operational parameters in terms of feed composition 
( CO

2
∶ H

2
O ∶ O

2
 ) were 0.20, 0.35 and 0.48, respectively, 

for each mole of CH
4
 . This has led to a successful CO

2
 con-

version of 50% and a stoichiometric number of 1.57. The net 
current value of the facility was evaluated to be $161 million 
for a 15-year economic life considering the advertised sell-
ing price of $390 for tonne methanol. Economically, Monte 
Carlo studies affirmed the applicability of 84% for the plant, 
simultaneously considered the uncertainties of the global 
economy. Environmentally, the net CO

2
 emissions of the 

plant are 0.91 kg CO
2
/Kg methanol, which is 50% and 35% 

lower than the traditional running methanol plants based on 
methane steam reforming and other running plants based on 
CH

4
 tri-reforming, respectively.

Production of dimethyl ether (DME) based on CO
2

Dimethyl ether (methoxymethane) is a colourless, environ-
mentally benign and clean gas, widely provided as an addi-
tive in diesel engines referring to its autoignition character 
(Semelsberger et al. 2006). Its high oxygen content improved 
the combustion, which is evident by a fewer of CO, NOx, 
SOx and particulate matter (Cai et  al. 2016). Besides, 

(10)CO
2
+ 2H

2
↔ CH

3
OH

attributing to the similarity of its own properties with the 
properties of liquid petroleum gas, dimethyl ether can be 
produced via infrastructure with minor adjustment. Besides, 
it is proven as a higher quality propellant utilised to pro-
duce healthcare commodities safer than other prepared via 
traditional petroleum-based scenarios. Also, it is believed 
to be a substitute for various chemicals (i.e. chlorofluoro-
carbons, ethylene and propylene (Saravanan et al. 2017). 
Dimethyl ether is usually produced via two pathways; indi-
rect synthesis (dual-step) and direct synthesis (single-step). 
The indirect route comprises two consecutive steps. Firstly, 
the feedstock is converted into syngas, followed by the pro-
motion of methanol synthesis process and finally methanol 
dehydration as given by Eqs. (11) and (12), respectively 
(Vafajoo et al. 2009). Mitsubishi Gas Company, Toyo Udhe 
and Lurgi companies are producers of dimethyl ether via the 
indirect strategy.

Methanol synthesis:

Methanol dehydration:

However, direct synthesis of dimethyl ether is applied in 
the hydrogenation process of CO

2
 via various catalysts 

(i.e. ZnO–Al
2
O

3
 ). Zhang et al. (2014) stated that 15% of 

the obtainable dimethyl ether with a CO
2
 conversion rate of 

30.6% was achieved under the optimum concentration of as-
used Cu/ZnO/Zeolite catalyst. Economically, it is expected 
that the total worth of dimethyl ether facility to be roughly $ 
9.7 billion by the end of 2020 including its main categories; 
(1) liquid petroleum gas blend, (2) diesel, (3) gas turbine fuel 
and (4) precursor for various chemicals (i.e. acetic acid and 
ethers oxygenates). China is the biggest dimethyl ether pro-
ducer employing 90% of its productivity in liquid petroleum 
gas blending (Mondal and Yadav 2019).

Production of methane ( CH
4
 ) based on CO

2
 (methanation)

Methane (natural gas) is a prevalent energy carrier globally. 
It is the major contributor of natural gas supplies, being the 
most heat supplier to in Germany. Given the strong dynamic 
characteristics, natural gas power plants have gained a grow-
ing share of Germany’s power generation compared with the 
current coal-fired power plants (Billig et al. 2019). Further-
more, its utilisation in vehicles instead of gasoline minimises 
CO

2
 emissions compared with the traditional counterpart 

due to its higher H:C ratio. The following are the reactions 
occurring within the methanation reactor (Bailera et al. 
2017):

(11)CO + 2H
2
↔ CH

3
OH

(12)2CH
3
OH ↔ CH

3
OCH

3
+ H

2
O
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The inertness of CO
2
 hinders its transformation into value-

added chemicals and causes difficulty in its implementation. 
However, this issue can be overcome with the help of certain 
catalysts (Wannakao et al. 2015). Park et al. (2015) reported 
a twofold increase in the yield of CH

4
 formation from CO

2
 

through photocatalytic conversion using TiO
2
/Cu–TiO

2
 

(double layer) catalyst compared with traditional TiO
2
 

(film catalyst). Besides, hydrogenation of carbon oxides 
to methane was carried out to purify syngas in ammonia 
plants. This could also produce carbon-neutral (methane) 
fuel (Rafiee et al. 2018). Biological processes such as the 
use of methanogens may also transform CO

2
 into methane. 

An anoxic enrichment of waste activated sludge generates 
methane-producing organisms (methanogens). The utilisa-
tion of the organism’s activated cultures caused roughly 70 
folds enhancement in the efficacy of methane production 
(Mohd Yasin et al. 2015).

Production of liquid hydrocarbons based on CO
2
 (Fischer–

Tropsch)

Liquid hydrocarbons are a suitable alternative for the storage 
of renewable energy. They are the primary source of energy 
for transportation and aviation purposes Pietzcker et al. 
(2014). Among several technologies subjected to upcycling 
of waste CO

2
 , Fischer–Tropsch is a notable scenario for liq-

uid fuels production. It is hydrogenation of CO (heteroge-
neous catalysis) with a polymerisation character. At most, 
liquid hydrocarbons (i.e. kerosene) can be produced through 
this process. As a consequence of the catalytic process, the 
synthesis products are sulphur-free and contain less soot dur-
ing combustion (König et al. 2015). For Fischer–Tropsch 
process, syngas may be generated from variable feedstock; 
(1) steam reforming and (2) gasification in term of gas-to-
liquid and biomass-to-liquid, respectively. Typically, two 
stages integrating reverse WGSR and Fischer–Tropsch are 
involved, as shown in Eqs.  (16) and (17).

The produced hydrocarbons are segregated from non-reacted 
feed and gaseous hydrocarbons, and after that, they can be 
upgraded via undergoing of hydrocracking and isomerisation 
(Piermartini et al. 2017).

(13)CO
2
+ 4H

2
↔ CH

4
+ 2H

2
O

(14)CO
2
+ H

2
↔ CO + H

2
O

(15)CO + 3H
2
↔ CH

4
+ H

2
O

(16)CO
2
+ H

2
↔ CO + H

2
O ΔH

◦

r298K
= 415 kJ∕mol

(17)
nCO + 2nH

2
↔

(

−CH
2
−
)

n + nH
2
O ΔH

◦

r298K
= − n ∗ 152 kJ∕mol

Production of biofuel (green fuel) using CO
2

In contrast to traditional fuels, biofuels derived from renew-
able sources are ultimately the best appropriate choice given 
its environment and economic benefits (Santamaría and 
Azqueta 2015). Algae are a promising green energy source 
due to their high protein and oil content. Conversion of 
algal biomass into biofuel was successfully implemented 
as shown in Fig. 24. Atmospheric carbon, either inorganic 
or organic origin, can be fixed using different algal species 
(Singh and Olsen 2011). Successful absorption of CO

2
 (i.e. 

1.83 kg CO
2
/kg biomass) using algal biomass in non-mild 

water condition was efficiently recorded (Wu et al. 2018). 
The generated waste (flue) gases released from industrial 
activities as well as power stations containing a high CO

2
 

concentration, which, in turn, enhances the algal photosyn-
thetic activity (Faried et al. 2017). For instance, the flue gas 
emitted from ammonia production units (reforming phase) 
with highly concentrated CO

2
 , can be directly delivered to 

the vicinity algal production sites. Direct injection of these 
waste streams (carbon source) into the algal production 
ponds provides a clean and green opportunity to cultivate the 
microalgal biomass and hence mitigate the negative impacts 
on the biosphere as well as their high operational costs (Col-
lotta et al. 2018). Numerous studies have been registered 
for microalgal cultivation through flue gas pathway. The 
substitute utilisation of biofuel effectively declined the net 
carbon emissions (78%), comparing with the non-renewable 
petroleum-based fuels (Ali et al. 2017). One of the largest 
biofuel production centres in the world is located in Western 
Australia. It was located 50 km away from the power plant 
and biocrude oil refinery sites. The anticipation of environ-
mental, economic and sustainable benefits was elucidated 
regarding the input and output analyses derived from algal 
biocrude producing plant and conventional crude oil-pro-
ducing plant using life cycle assessment (LCA) tool. The 
obtained results revealed the applicability of algal biocrude 
operating plant over the traditional crude oil-operating plant. 
The rate of carbon capturing/biocrude output/carbon emis-
sion was (1.5:1:0.5 tons), respectively. From an economic 
point of view, the analysis approximately evidences that 
one million tons of the biocrude production would generate 
roughly 13,200 new jobs employment along with a $4 billion 
economic stimulus (Malik et al. 2015).

Bioalcohols

Alcohol-based fuels (bioalcohols) are other strategic prod-
ucts based on carbon dioxide emissions feedstock. Normally, 
they are derived from biological sources rather than petro-
leum sources. Commonly, four bioalcohols; methanol, etha-
nol, propanol and butanol are employed as motor fuels. In 
particular, the economic and technical features characterised 



829Environmental Chemistry Letters (2021) 19:797–849 

1 3

to methanol and ethanol, allowing them to be suitable as 
fuels for the internal combustion engines (Demirbas 2008). 
Despite, the lower energy density of methanol compared 
with gasoline, its higher-octane rating enhances its compres-
sion character before the initiation of the ignition process. 
Whereas ethanol can be used as a petrol additive through 
mixing (combining) it with gasoline (Niven 2005), the 
developed gasohol with the chemical composition of etha-
nol/gasoline (10:90%), respectively, can be further applied 
in the internal combustion engines of most modern automo-
biles (Larson 2006).

Production of urea from CO
2

Urea is another non-toxic commodity derived from carbon 
dioxide. Being a rich with nitrogen qualifies it to be exces-
sively used in fertilisers facilities. Furthermore, it can be 
used as feedstock (backbone) in various chemicals industries 
(i.e. adhesives, plastics and synthetic resins) (Ishaq et al. 
2020). Other derivatives-based urea such as urea (nitrate, 
formaldehyde and melamine–formaldehyde) are prepared. 
About 180 Mt/year of urea were estimated to be produced 
globally. Mathematically, to achieve this aimed amount of 
urea, 132 Mt/year of CO

2
 is needed (Koohestanian et al. 

2018). The most prevalent way for its synthesis is reforming 
of natural gas which results in the formation of ammonia and 
carbon dioxide. Urea synthesis equation is given, as shown 
in Eq. (18):

The above reaction comprises two subsequent stages. Firstly, 
the heterogeneous reaction between ammonia and carbon 
dioxide results in the formation of ammonium carbamate 
( NH

2
OCONH

4
 ), as shown in Eq. (19). After that, ammo-

nium carbamate (liquid form) dehydration results in the for-
mation of urea as given by Eq. (20):

Moreover, CO
2
 usage in the manufacture of urea has great 

economic feasibility taking into account the growing global 
demand on it. Globally, more than 50% of the produced CO

2
 

has subjected to the urea synthesis process. Barzagli et al. 
(2016) studied the potential of CO

2
 capture via aqueous and 

gaseous ammonia under ambient conditions. Based on the 
ammonia concentrations, they emphasised that capturing 
amounts achieved up to 99%. Also, urea synthesis process 
from the produced ammonium carbamate was experimen-
tally performed at 120–140

◦
C . Apak presented research on 

investigating the role of ammonia to mitigate the emissions 
of CO

2
 . Indeed, he discussed the possibility of urea forma-

tion via a reaction between the emitted CO
2
 and ammonia 

(Apak 2007).

(18)2NH
3
+ CO

2
↔ NH

2
CONH

2
+ H

2
O

(19)2NH
3
+ CO

2
↔ NH

2
OCONH

4

(20)NH
2
OCONH

4
↔ NH

2
CONH

2
+ H

2
O

Different scenarios for algal biomass conversion into biodiesel

Pyrolysis

Bio-char

Bio-gas

Bio-oil

Direct 

combus�on

Carbon 

dioxide

Energy

Anaerobic 

diges�on

Bio-gas

Gasifica�on

Bio-jet

Fermenta�on

Bio-ethanol

Transesterifica�on

Bio-diesel

Fig. 24  Scenarios for algal biomass conversion into biodiesel and other biofuels. This can be achieved via various processes such as pyrolysis, 
direct combustion, anaerobic digestion, gasification, fermentation and transesterification
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 Utilisation of CO
2
 in different thermochemical 

processes

CO
2
 as a gasifying agent in biomass gasification

Gasification is a critical thermochemical process that trans-
forms biomass into gaseous products. As natural sequenc-
ing of incomplete combustion, combustible gases emit-
ted. Biomass gasification operates at a lower temperature 
( ∼ 900

◦
C ) compared with conventional coal gasification 

referring to biomass nature (Molino et al. 2016). From the 
viewpoint of CO

2
 consumption, the injection of CO

2
 as a 

gasifying agent has numerous benefits compared over the 
conventional gasification atmospheres. Large quantities of 
CO

2
 caused by different industrial processes can be recycled 

as feedstock for post-consumers. Theatrically, the water gas 
shift unit needed for syngas amendment can be averted (Ye 
et al. 2020). Additionally, syngas with controllable H

2
∕CO 

ratio can be obtained. Parvez et al. 2016 explored an Aspen 
Plus

TM estimation on CO
2
 assisted gasification, clarifying the 

impacts of CO
2
 on the performance of biomass gasification. 

The susceptibility of dimethyl ether produced from biomass 
gasification to improve the biomass gasification was suc-
cessfully researched. CO

2
 contributes to controlling the syn-

gas ratio and hence offers flexibility for the whole process 
adjustment, which ensures the less effect of the presented 
biomass on the gasification process (Parvez et al. 2016).

CO
2
 as an activating medium in biomass pyrolysis

Biochar is a product (solid form) resulted from biomass 
pyrolysis in the absence of oxygen content (oxygen-free 
atmosphere) (Dhyani and Bhaskar 2018; Balajii and Niju 
2019). It is beneficial as an energy supplier because of its 
remarkable merits (i.e. high energy density) (Weber and 
Quicker 2018). Besides, it has been used in different appli-
cations (i.e. wastewater treatment and soil amendment). 
The physicochemical characters of the produced char dif-
fer depending on the operational pyrolysis parameters (i.e. 
feedstock, heating rate and residence time) (Cha et al. 2016). 
Physiochemical features of biochar (i.e. surface area, poros-
ity and constituent functional groups) were optimised in CO

2
 

atmosphere rather than pure N
2
 atmosphere. The presence of 

CO
2
 has led to inhibition of polymerisation reaction; crack-

ing of tar compounds into light gases and consequently 
reducing the secondary char formation and an enhancement 
in the yield of the produced gas (Guizani et al. 2015).

Moreover, the chemical reaction between CO
2
 fraction 

and hydrogenated or oxygenated groups spontaneously 
occurs and thus enhances the yield of high carbon content-
char. Decrement of the secondary char amount associates 
with an improvement in its microporosity as well as carbon 
content. Notably, CO

2
 had a crucial role in the mitigation of 

toxic chemicals generated during the pyrolysis process of 
benzene derivatives and polycyclic aromatic hydrocarbons 
(Lee et al. 2017b). The profile of as-designed temperature-
programmed oxidation confirmed that CO

2
-char gasification 

and N
2
-char gasification was portrayed by a single reaction 

pathway and multiple reaction pathways, respectively. An 
increase in the secondary char formation may occur by the 
action of one of these pathways. Deposition of great amounts 
of impurities (i.e. hydrogenated and oxygenated groups) on 
the engineered CO

2
 char has probably led to blocking off of 

its pores and hence decreases its surface area.

Impact of CO
2
 on the produced chars

Surface area and porosity

Numerous studies investigated the impact of CO
2
 as a gasi-

fying agent on the textural properties (i.e. surface area, 
morphology and porosity) on the produced char (Lee et al. 
2017a, b, c, d, e). Lee et al. (2017d) used a tubular reactor 
to study the influence of atmospheric CO

2
 on the textural 

properties of the as-formed char. The outlined results con-
firmed that CO

2
 promotes the formation of new pores on 

the produced char. The higher surface area ( 93 m2∕g ) under 
CO

2
 atmosphere compared with the other measured under 

N
2
 atmosphere ( 85 m2∕g ), may be referred to the hetero-

geneous reaction between char surface and CO
2
 . Another 

study established by Lee et al. (2017c) aimed to compare 
the physiochemical properties characterised to the pyrolysis 
products prepared from red pepper stalk under a different 
atmospheric medium ( CO

2
 and N

2
 ). This greatly confirms 

the role of CO
2
 as an expediting agent towards the improve-

ment of the char properties through the thermal cracking of 
different volatile organic carbons.

Tar reduction

Numerous studies investigated the impact of CO
2
 as a gasify-

ing agent on the tar reduction (Wang et al. 2018; Luo et al. 
2016; Jeremiáš et al. 2018). For this purpose, various bio-
masses such as seaweed (Cho et al. 2016), rice (Pinto et al. 
2016) and swine manure (Lee et al. 2019) were tested as 
feedstock for these studies. Results showed that CO

2
 has 

multiple effects on the tar reduction as well as an enhance-
ment in the syngas production throughout the pyrolysis 
process. Briefly, it accelerates the thermal cracking rate 
of volatile organic carbons and consequently increases the 
formation of benzene derivatives via carbonisation and 
dehydrogenation, (2) less formation of polycyclic aromatic 
hydrocarbon and (3) homogenous reaction directly occurs 
between CO

2
 and volatile organic carbons (gas phase reac-

tion). As stated by (Luo et al. 2016), the operating pressure 
of the gasification process directly affects tar reduction. 
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At pressure lower than 5 atm, fewer char was produced 
in N

2
 atmosphere compared with the formed one in CO

2
 

atmosphere, whereas, at higher pressure higher than 5 atm, 
fewer tar amounts were produced at atmospheric CO

2
 . Even 

though, the magnitude of CO
2
 sensitivity on the gasification 

process and CO emissions mainly depends on other key fac-
tors (i.e. feedstock type, temperature and pressure) which 
directly influence on the gasification products. For example, 
tar reduction was observed to be 23% (Lee et al. 2017a), 45% 
(Pinto et al. 2016) and 70% (Cho et al. 2016). In the same 
way, CO generation often differs with feedstock type in the 
CO

2
 atmosphere.

Syngas production

Numerous studies evaluated the effect of CO
2
 addition on the 

production of syngas from the pyrolysis process (Kim and 
Lee 2020). An increase in the production rate of CO from 
the pyrolysis process was announced by several researchers 
(Lee et al. 2017a)–Jung et al. 2016). This attributes to the 
chemical composition of CO

2
 (C and O source), which raise 

the CO emissions resulting from the conversion of volatile 
organic carbons. An increment in the C H

4
 and H

2
 production 

rates was successfully investigated to be associated with the 
existence of CO

2
 , attributing to its expedition ability towards 

thermal cracking of volatile organic carbons species (Kim 
et al. 2017).

Desalination of seawater by CO
2

Currently, water scarcity has become one of the most critical 
challenges facing our world due to different reasons impli-
cated in this global problem such as climate change, environ-
mental contamination and uncontrollable population growth. 
An urgent necessity of clean water for different biota cannot 
be ignored (Dadson et al. 2017). Recently, World Bank states 
that about 450 million people around the world in about 29 
countries do not have the accessibility for clean freshwater 
supply. Roughly, 71% of the world’s population suffers from 
water shortage for a minimum one month per year, which 
leads to sociopolitical instability (Hanjra and Qureshi 2010). 
Mostly, surface water and seawater have a salinity content 
of 10,000 ppm and (35,000 and 45,000 ppm), respectively 
(Zhou and Tol 2005). World Health Organization reports 
that the acceptable limits of salinity content in water to be 
500 ppm (Tavakkoli et al. 2017). Desalination scenario was 
adapted by different countries to face the global issue of 
water scarcity. The global quota of desalination (i.e. services 
and products) was expected to be $13.4 billion in 2015. More 
than 11,000 water desalination treatment plants located in 
150 countries supply fresh water to 300 million people with 
an annual enhancement of 8% (Morad et al. 2017). Com-
monly, desalination is operated in two ways: distillation and 

reverses osmosis (RO). Distillation is a heat-based treat-
ment process at which a large volume of warm seawater 
was predominantly treated. Contrarily, reverse osmosis is a 
membrane-based treatment process at which brackish water 
was manipulated.

Seawater desalination working mechanism using CO
2

Naturally, the reaction between CO
2
 and water in a specific 

depth of ocean (low temperature and high pressure) pro-
duces crystalline CO

2
 hydrates in the form of crystalline 

aggregates, as shown in Fig. 25. They characterise by pos-
sessing a three-dimensional, hydrogen bounded and CO

2
 

molecules can be entrapped inside them. An induced of pres-
sure transition between orthorhombic and cubic hexagonal 
forms has dependently brought by the crystalline nature of 
CO

2
 hydrates. They are denser than water and so that they 

sink to the seafloor and stay on it for a longer period without 
returning to the atmosphere. Due to of their negative charge, 
they are suitable for CO

2
 sequestration. However, a posi-

tively charged hydrates are approached for seawater desali-
nation purpose. Therefore, it can be achieved by injecting the 
dense CO

2
 (liquid form) to an ocean depth (below 1000 m) 

where the surrounding temperature of the medium is slightly 
above 0 ◦

C . Moreover, injection of CO
2
 (liquid form) will 

positively mitigate the harmful threats associated with injec-
tion of CO

2
 (gas form). CO

2
 injection at the stability zone of 

the formed hydrates, especially at these conditions of low 
temperature and high pressure retained formation of hydrant 
shells ( ∼ 4–10 μm thick) on the water surface. These shells 
rise and are collected before the unstable hydrate zone. The 
rounded shape crystals (solid form) can be easily removed 
from saline water. By sudden shifting the temperature and 
pressure to ambient conditions, purified water can be deliv-
ered. Recycling of CO

2
 is suggested to continue in the next 

cycle, and because of its nature as a chemicals-free tech-
nique, membrane separation is not required.

Utilisation of CO
2
 in construction and building 

materials

Globally, the prolonged usage of cement and concrete based 
materials in construction materials are attributed to their 
remarkable merits (i.e. high strength and durability). The 
cement industry is one of the most intensive CO

2
 emitters, 

accounting for 5–8% of global anthropogenic CO
2
 emissions 

(Scrivener and Kirkpatrick 2008). Incorporation of CO
2
 

into cement-based materials involves a chemical reaction 
between CO

2
 and cement hydrates which can be summarised 

in term of the carbonation process of (calcium hydroxide, 
calcium silicate hydrates, calcium sulphoaluminate hydrates, 
cement clinker minerals, magnesium-derived hydrates and 
supplementary cementitious materials).
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Carbonation of calcium hydroxide

During the carbonation reaction, cement paste hardening 
was expressed, as shown in Eqs.  (21) and (22):

CO
2
 is proceeded to react with calcium hydroxide and upon con-

tinuing the reaction, decrement in the content of calcium hydrox-
ide, an opposite increment of calcium carbonate content and 
reduction in the pH value of the hardened paste (Jang et al. 2015).

Carbonation of calcium silicate hydrates

The proportion of each hydration product, calcium silicate 
hydrate (C–S–H), calcium hydroxide Ca(OH)

2
 and calcium 

sulphoaluminate hydrates, varies considering the cement 
composition (Jang and Lee 2016). Once most of calcium 
hydroxide amount is consumed, carbonation of (C–S–H) is 
suggested to be initiated as shown in Eq. (23):

(21)
Ca(OH)2(s → aq) + CO2(g → aq) → CaCO3(aq → s) + H2O(aq)

(22)
CO

2
+ H

2
O → H

2
CO

3
→ 2H

+
CO

2−

3

Ca(OH)
2
+ 2H

2
CO

3
→ CaCO

3
+ 2H

2
O

(23)xCaO ⋅ ySiO
2
⋅ zH

2
O + xCO

2
→ xCaCO

3
+ y

(

SiO
2.tH2

O
)

+ (z − y)H
2
O
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Fig. 25  Seawater desalination working mechanism using CO
2
 . (1) 

Formation of CO
2
 crystalline hydrates resulting from CO

2
 and water 

reaction under specific conditions (low temperature and high pres-
sure), (2) inducing in the pressure transition between orthorhombic 
and cubic hexagonal forms, (3) sinking of the CO

2
 hydrates (aggre-

gates) to the seafloor, (4) injection of CO
2
 (liquid form) below a depth 

of 1000 m and temperature around 0
◦
C , (5) formation of hydrant 

shells round in shape ( ∼ 4–10 μm thick), (6) rising of the produced 
shells and their collection before the unstable hydrate zone and (7) 
producing of pure water by shifting temperature and pressure to 
ambient, followed by the possible recycling of CO

2
 in the next cycles

Carbonation of cement clinker minerals

As time proceeds, hydration of cement clinker minerals is 
carried out. As conducted by Papadakis, within the curing 
period of 28 days, hydration degrees of 67%, 79%, 91% and 
96% were recorded for C

2
S , C

4
AF , C

3
S and C

3
A , respec-

tively (Jang and Lee 2016). Once, the hydration reaction 
ends, carbonation is suggested to be initiated. The unreacted 
C

3
S and C

2
S through carbonation in the first stage can form 

calcite and C–S–H, respectively. Finally, calcite and silica 
gel are produced in the last stage, as expressed in Eqs. (24) 
and (25).

CO
2
-curing of cement-based materials

The utilisation of CO
2
 in cement industries (carbonation) 

has been proposed during the product-curing stage (Jang and 
Lee 2016). Numerous studies have shown the role of CO

2
 

(24)
3CaO ⋅ SiO

2
+ 3CO

2
+ nH

2
O → SiO

2
⋅ nH

2
O + 3CaCO

3

(25)
2CaO ⋅ SiO

2
+ 2CO

2
+ nH

2
O → SiO

2
⋅ nH

2
O + 2CaCO

3
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in improving the characteristics of cement-based materials 
(i.e. microstructure densification, mechanical stability and 
durability). Additionally, CO

2
-curing is preferred over the 

conventional methods of curing using (i.e. heat, water and 
steam) (Zhan et al. 2016). Shao and Morshed (2013) con-
cluded that CO

2
 significantly decreased the duration of the 

curing stage and increased the strength compared with the 
heat curing technique. Incorporation of different admixtures 
during CO

2
 curing of cement-based products was retained 

as a pursuit of environmental-friendliness. For instance, fly 
ash concrete cured with CO

2
 for less than 12 h had higher 

achievable strength and better durability, accompanied by 
a reduction in carbon emissions ( ∼ 36%). Furthermore, the 
strength of fly ash was effectively enhanced by inoculation 
of magnesium oxide (Mo et al. 2015). Tu et al. (2016) stated 
that CO

2
 pressure strongly impacted on the calcium carbon-

ate form; poorly crystalline calcium carbonate and highly 
crystalline calcium carbonate polymorphs are formed under 
lower and higher CO

2
 pressure, respectively.

Utilisation of CO
2
 for co-polymers and polymer 

blends

The development of engineered polymers based on sustain-
able feedstocks has become necessary to face the growing 
utilisation of polymers based on finite fossil resources (i.e. 
plastics) (Mekonnen et al. 2014; Chaterjee and Krupadam 
2019). For instance, the extraordinary growth of the plastic 
synthesising reached about 407 million tons in 2017. Pres-
ently, 70% of the overall commodity plastics production 
process includes polypropylene, polyvinyl chloride, polysty-
rene, polyethylene terephthalate, low-density polyethylene, 
linear low-density polyethylene and high-density polyethyl-
ene. Economically, employing CO

2
 for synthesising differ-

ent biodegradable polymers is considered a cost-effective 
approach. The action of microorganisms can degrade these 
biopolymers under specific optimised conditions. One of the 
direct ways for CO

2
 utilisation is the production of polyes-

ters (polyhydroxyalkanoates) via a biological process (Tro-
schl et al. 2018). For example, purple sulphur bacteria have 
been reported to generate polyhydroxyalkanoates (intracel-
lular energy and carbon storage compound) under anaerobic 
conditions, by taking advantage of the fact that CO

2
 and 

sunlight are sources for carbon and energy, respectively. 
Despite the nature of CO

2
 to be thermo-dynamically stable, 

some reactions are not required to be supplied with external 
energy because it can be available through co-reactants (i.e. 
amines and hydroxides). Moderate energy can be provided to 
other reaction types by appending the entire CO

2
 moiety to 

the other reactant in order to produce polycarbonates based 
on CO

2
 and epoxides. Due to the stable chemical nature of 

CO
2
 , some active catalysts have been added to promote the 

activation of inherently inactive CO
2
 and smoothly stimulate 

the copolymerisation process. On the contrary of aromatic 
polycarbonates, aliphatic polycarbonates are thermoplastic 
polycarbonates with repeating carbonate backbone linkages 
with no aromatic groups between these linkages. Alternat-
ing aliphatic polycarbonate co-polymers are produced by 
copolymerising of CO

2
 with some cyclic ethers (i.e. aziri-

dines and cyclohexene). Other aliphatic polycarbonates such 
as poly (ethylene, propylene, butylene, hexane, styrene, 
cyclohexene, cyclopentene and cyclohexadiene) carbonates 
are synthesised through copolymerisation of CO

2
 with epox-

ides (Darensbourg et al. 2013; Honda et al. 2014). Among 
them, poly (propylene, ethylene, butylene and cyclohexene) 
carbonates are the master of industrial CO

2
 applications 

(Klaus et al. 2011). Significantly, fixation of waste CO
2
 

into polypropylene carbonate is an exceptional accomplish-
ment referring to its versatility in different polypropylene 
carbonate-related products (i.e. foaming, electrolyte, etc.). 
In 2006, a polypropylene carbonate production facility with 
a design capacity of 5000 t/annum (t/a) was established 
in Tian-Guan Enterprise (Group) Co. Ltd, Henan, China. 
With the tremendous scientific progress, the capacity has 
raised to 25,000 t/annum (t/a) in 2012 (Murcia Valderrama 
et al. 2019). Annually, the company produces nearly 550 
(kt/a) of ethanol using corn via the alcoholic fermentation 
process. The importance of waste CO

2
 recycling instead of 

releasing to the atmosphere has been realised in recent years. 
Copolymerisation of propylene oxide with the recycled CO

2
 

facilities the production of biodegradable polypropylene 
carbonates (43% wt. CO

2
 ). Eventually, zero pollution scope 

was accomplished by converting waste CO
2
 emissions into 

biodegradable plastic (Murcia Valderrama et al. 2019).

Utilisation of CO
2
 in food processing

In general, CO
2
 is usually advantageous in food processing 

as it can be used as a food preserving as well as antimicrobial 
agents (dual benefits) (Puligundla et al. 2012). Frequently, 
it is employed as a flushing gas in modified atmosphere 
packaging. Presence of CO

2
 in the package’s atmosphere 

may minimise the package’s pressure or volume attributing 
to its high solubility character in food matrices and thus 
balancing (managing) the pressure between the inside of 
headspace and the outside of the package. This is sometimes 
helpful for good products marketing in the environment of 
low pressure and temperature (Chaix et al. 2014). The CO

2

-based modified atmosphere packaging strategy should be 
applied with high professionalism in line with food proper-
ties and operational conditions to avoid high CO

2
 dissolution 

into foods. A high concentration of dissolute CO
2
 negatively 

results in package collapse associated with very poor quality 
(i.e. bad texture and flavour). Besides, CO

2
 is used to prevent 

food oxidation. N
2
 gas is widely used to inhibit oxidation; 
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however, a combination of CO
2
 with N

2
 is desirable for anti-

oxidative food packaging (Lee 2016).
On the other hand, the antimicrobial behaviour of CO

2
 

was documented in different literature. This helps enor-
mously in the preservation of food freshness and hence, 
enhances its shelf life. The antimicrobial activity is closely 
related to the solubility rate as well as the dissolved amount 
of CO

2
 in the food product. Readily, it is soluble in aqueous 

and fatty food with observable high solubility rate at a lower 
temperature. Besides, its solubility differs considering food 
properties (i.e. pH, surface area and composition) in addition 
to the partial pressure of the as-used gas. Numerous pub-
lished papers largely focused on high-pressure carbon diox-
ide (HPCD) as a novel methodology for the food facilities, 
as shown in Fig. 26 . Briefly, it is nonthermal pasteurisation, 

operates pressurised CO
2
 (1–500 bar) at most microbes can 

be inhibited (inactivation process). Different operational fac-
tors directly affect the whole process (i.e. microorganism 
species, cell concentration, pH, water content, the physical 
state of CO

2
 , operational time, pressure and temperature) 

(Corbo et al. 2009). Briefly, the subjected CO
2
 can dam-

age and disturb cell surface and intracellular organisation, 
respectively. There is an alteration in the microbial cell mor-
phology intracellular organisation, respectively. An altera-
tion in the microbial cell morphology after HPCD treatment 
was clarified by scanning and transmission electron micro-
scopes (SEM and TEM). A great number of bulges appeared 
on the extracellular surface of HPCD-treated cell, intracel-
lular organisation, respectively. An alteration in the micro-
bial cell morphology after HPCD treatment was clarified by 

Fig. 26  High-pressure carbon dioxide (HPCD) inactivation mecha-
nisms on vegetative microbial cells. (1) subjecting of bacterial cells to 
high pressurised CO

2
 (HPCD), (2) higher clumping of bacterial cells 

because of severe shear force effect resulting from HPCD technique, 
(3) disruption of the intracellular organisation (cell surface damage) 
associated with numerous bulges presence on the extracellular surface 
of HPCD-treated cells, (4) enhancement in the CO

2
 diffusion rate as 

well as the conversion of CO
2
 into HCO

−

3
 and CO

2−

3
 , (5) an increase in 

the membrane permeabilisation and fluidity, (6) destroying the charge 
balance of membrane surface attributing to decrement in the pH and 
HCO

−

3
 generated from CO

2
 , (7) loss of activity characterised to some 

proteins and enzymes due to HPCD treatment, (8) inducing of intra-
cellular precipitation by the internal ribosomes and CO

2−

3
 produced 

from CO
2
 and (9) stimulation and inhibition of metabolic pathways 

that require and produce CO
2
 , respectively
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scanning and transmission electron microscopes (Del Pozo-
Insfran et al. 2006).

CO
2
 utilisation: turning CO

2
 into a power resource

Carbon capture and permanent geologic storage of CO
2
 

can be utilised (U) threefold to U1) CO
2
-based geothermal 

energy extraction and conversion to electricity at about twice 
the efficiency of standard water-based geothermal power 
plants, U2) provide grid-scale subsurface energy storage 
that can operate over a range of duration from a diurnal to 
biannual (seasonal) energy storage cycle and U3) operate as 
a heat sink that provides cold for district cooling and cryo-
genic direct air CO

2
 capture. All-above mentioned technolo-

gies are constituting a CCU
3
S system (Fig. 27), which entails 

cyclic fluid(s) injection into (and possibly retrieval from) 
the subsurface geological formations. Therefore, unintended 
changes in dynamic reservoir properties (e.g. saturation, 
pressure) will be often induced and need to be quantified and 
properly monitored by the inversion of the geophysical field 
data (such as time-lapse seismic data). The CCU

3
S system 

will be documented in details upon what follows.

CO
2
-based geothermal system: U1

The base CCU
3
S system is a so-called CO

2
-plume geother-

mal power system (CPGs), where the captured CO
2
 is cir-

culated underground in deep saline aquifers or hydrocarbon 
reservoirs (e.g. during enhanced oil recovery) (Randolph 
and Saar 2011; Adams et al. 2015; Garapati et al. 2015; 
Ezekiel et al. 2020). In these reservoirs, the CO

2
 is naturally 

geothermally heated and produced to the surface, where 
it is expanded in a turbine to generate electricity. At the 
surface power plant, CO

2
 is subsequently cooled using wet 

cooling towers to increase its density, compressed and then 
combined with any CO

2
 stream, from a CO

2
 emitter, before 

it is reinjected into the subsurface reservoir (Fig. 27). The 
reinjection of cold and dense CO

2
 results in the continued 

growth of the subsurface CO
2
 plume and ensures that 100% 

of the subsurface-injected CO
2
 is eventually permanently 

stored underground. This combined cycle couples CO
2
 

sequestration with geothermal energy utilisation in low-to-
medium enthalpy systems; the conditions that are widely 
distributed across global sedimentary basins and correspond 
to a depth range of 2.0–5.0 km (Fig. 19).

Fig. 27  A conceptual model on how carbon capture, threefold utilisa-
tion and geological storage ( CCU

3
S ) system operates using the three 

different modes: [U1] generate geothermal power that roughly dou-
bles the electricity output, compared to using groundwater to extract 
the geothermal heat, all else being equal, [U2] Energy storage where 
the system consumes electrical power to cool, compress the CO

2
 , and 

injected into a shallow (temporal storage) reservoir. Power is pro-
duced by extracting CO

2
 from the shallow reservoir to the surface, 

expanded in a turbine to produce power, partially cooled and injected 
into a shallow, storage reservoir and [U3] district cooling and cryo-
genic direct air CO

2
 capture. The figure is a perspective drawing from 

Fleming et al. (2018)’s results
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Alternatively, when geologic CO
2
 storage is uneconomic, 

CPGs could be operated with a limited, finite amount of 
CO

2
 , initially stored underground and thereafter run with 

little or no additional makeup CO
2
 (Garapati et al. 2015). 

Compared to brine, the favourable properties of CO
2
 (Brown 

2000; Adams et al. 2014) are: 

1. The density of CO
2
 changes substantially between the 

geothermal reservoir and surface plant, resulting in a 
buoyancy-driven convective current—a strong CO

2
 ther-

mosiphon phenomenon—that increases the mass flow-
rate, compared to water, while reducing or eliminating 
parasitic pumping power required for fluid circulation 
through the injection and production boreholes (Fig. 21).

2. Given the fact that the fluid flow in porous media obeys 
Darcy’s law and that heat is both advected by the fluids 
and conducted through the rock-fluid system, an effec-
tive heat advection using CPG system can be secured 
because the kinematic viscosity of supercritical CO

2
 is 

low (i.e. high mobility).
3. CO

2
-based geothermal energy utilisation can result in 

diminished mineral dissolution-precipitation — a major 
problem often encountered during water-based geother-
mal energy extraction and utilisation.

Underground grid-scale energy storage: U2

There will be an urgent need to diversify the portfolio of 
grid-connected storage technologies to ensure inter-seasonal 
energy security from a system that generates power at higher 
than 80% from intermittent renewables. For underground 
(solar and wind) energy storage, the CPGs cycle is separated 
into two operations (energy discharge and energy storage) by 
temporarily storing the CO

2
 , after expansion in the turbine 

and subsequent cooling in a shallow ( ∼ 1 km deep) reser-
voir during the energy discharge mode (Fig. 27). For energy 
storage, the CO

2
 is released from the shallow reservoir and 

reinjected into the deep ( ∼ 2.5 km deep) and thus warm 
“geothermal” reservoir. Fleming et al. (2018) found that the 
seasonal energy storage cycle has power ratios (i.e. the total 
generation energies to the total storage energies) of 1.55 and 
1.05, for the 200 kg/s and 300 kg/s mass flowrate cases, 
respectively. However, these ratios increase to 2.93 and 1.95, 
because of the increase in the storage energy consumption, 
the decrease in the generation energy output and variation 
in the duty cycle. This type of subsurface (solar and wind) 
energy storage in the deep and warm reservoir is highly effi-
cient, as geothermal energy is added during pressurised CO

2
 

(energy) storage underground and at the power-grid scale 
(i.e. in the several GWh ranges).

Gasometer-based CO
2
-plume geothermal energy storage 

system: U3

In the above-described subsurface-CO
2
-based energy storage 

system, the “shallow” reservoir may be replaced by a gas-
ometer, which results in a heat sink (cold source), enabling 
district cooling and cryogenic direct air CO

2
 capture (cryo-

DACC), powered by geothermal energy (Fig. 27). Thus, if 
desired, the system can, after initial priming with sufficient 
CO

2
 (to begin operation), capture its own CO

2
 from the air 

and thus grow in size as more CO
2
 is captured and perma-

nently stored in the deep geologic reservoir.

Bibliometric analysis

To acquire the appropriate data from the web of science 
core collection database and the exported data files, some 
Boolean operator logic was implemented in the search meth-
odology to find suitable publications and identify evidence 
gaps in the knowledge and research surrounding carbon cap-
ture storage and utilisation. The raw data of the bibliometric 
mappings in Fig. 28a, b were collected from the Web of 
Science then plotted with the VOSviewer software show-
ing the co-occurrence of keywords in the literature between 
2010 and 2020. The research methodology is shown below 
where 1748 results were collected from the Web of Science 
Core Collection

You searched for: Title: (“CO
2
-capture and utilization” 

OR “pre-combustion” OR “pre combustion” OR “oxyfuel 
combustion” OR “oxy-fuel combustion” OR “post-combus-
tion” OR “post combustion” OR “carbon capture and stor-
age utilization” AND “chemical looping” AND “monoetha-
nolamine” AND “membrane separation” AND “chemical 
absorption” AND “physical adsorption”)

Refined by: DOCUMENT TYPES: (ARTICLE OR PRO-
CEEDINGS PAPER OR REVIEW)

Timespan: 2010–2020.
The bibliometric mapping over the last ten years 

(2010–2020) shows that the post-combustion route is 
dominating the keywords in the literature, with significant 
keywords such as absorption, amines, optimisation of post-
combustion and flue gas. Interestingly, the oxyfuel combus-
tion approach has attracted the attention of scientists and 
engineers over the last decade with keywords such as oxy-
fuel combustion, oxy-combustion and oxygen. The oxyfuel 
combustion route is linked through the literature with bio-
mass and pulverised coal. The pre-combustion technology 
is represented with major keywords such as gasification, 
hydrogen production and gasification combined cycle, as 
shown in Fig. 28a.

The density visualisation mapping, as shown in Fig. 28b, 
shows that the literature during the last decade focused on 
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the area of post-combustion, especially the absorption route. 
Furthermore, keywords such as oxyfuel combustion, flue 
gas, kinetics, coal and separation showed frequent utilisa-
tion in carbon capture and storage during the last ten years. 
The less dense (darker) areas in the bibliometric mapping 
of Fig. 28b show the research gap in the literature in this 
field that need intensive investigation in the near future. 
For instance, the area of designing new and stable ionic 
liquids, pore size and selectivity of metal–organic frame-
works (MOFs) and enhancing the adsorption capacity of 
novel solvents needs further examination. Moreover, areas 
such as the techno-economic evaluation of novel solvents, 
process design and dynamic simulation need further effort 
in the laboratory-scale and research & development before 
pilot- and commercial-scale trials.

A promising approach for carbon capture 
and conversion into recycled fuel

One of the most promising approaches in CCUS route is CO
2
 

capture using physical adsorption where the sorbent is in the 
form of a metal oxide (MeO, where Me denotes the metal 
species), such as calcium oxide (CaO), as shown in Fig. 29. 
After CO

2
 adsorption, the metal adsorbent becomes a metal 

carbonate in the form of MeCO
3
 , where the later reacts with 

renewable hydrogen derived from water electrolysis, and 
the source of electricity is renewable; either from solar or 
wind energies. The interaction between the metal carbonate 
and the renewable hydrogen will lead to the formation of 
methane (Fig. 29), which is the main constituent in natu-
ral gas, that consequently can be compressed and used as 

Fig. 28  The bibliometric map-
ping of technologies used in 
the carbon capture and storage 
route: (top) network visualisa-
tion of most of the prominent 
keywords in literature in the 
period of 2010–2020, (bottom) 
the density visualisation of 
most of the prominent keywords 
in literature in the period of 
2010–2020, where the lighter 
areas are studied and investi-
gated more in the literature and 
vice versa
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a recycled fuel in power plants (Sun et al. 2021; Lux et al. 
2018). When combusting natural gas (methane), it releases 
a large amount of heat along with lower emissions com-
pared to other hydrocarbons (Osman et al. 2018b). Thus, this 
CCUS approach, when integrated with biomass utilisation as 
a solid fuel, could eventually lead to a negative carbon emis-
sion system if the CO

2
 is stored or utilised in applications 

such as construction, where the possibility of CO
2
 entering 

the atmosphere once more is eliminated.

Conclusion

Despite the speed of maturity in renewable technologies, we 
still rely on fossil-based fuels to generate the energy demand 
needed globally. While waiting for renewable energy tech-
nologies to mature enough and replace fossil-based fuel, 
carbon capture storage and utilisation of fossil-based emis-
sions are crucial as a transition state. Herein, we reviewed 
the three main routes of carbon capture, storage and utilisa-
tion: pre-combustion, post-combustion and oxy-fuel com-
bustion routes along with the carbon storage and utilisation 
technologies.

Pre-combustion technology is promising in carbon cap-
ture, while there are many challenges to improving its over-
all efficiency. For instance, the solvent regeneration tem-
perature needs to be conducted at a lower temperature than 
currently used to avoid any reduction in the solvent. In the 

oxy-fuel combustion route, investigating new novel routes 
of air separation is quite important herein, such as ion-trans-
port and oxygen-transport membranes along with chemical 
looping methods. Traditional and novel technologies that 
are used in carbon capture have been evaluated such as post-
combustion (traditional) and partial oxy-combustion (novel). 
In the post-combustion technology, there are desirable prop-
erties in novel solvents such as the high cyclic capacities, 
low production cost, low corrosiveness, lower degradation 
and thus lower by-products along with the environmental 
impact. At the same time, there are many challenges associ-
ated with membrane separation, such as water condensa-
tion on the membrane, rapid diminution of selectivity and 
permeance after operation along with emissions (NOx and 
SOx) that pass through the membrane. Although the pre-
combustion technology offers higher efficiency than that of 
post-combustion technology, it is more expensive. To reduce 
the cost associated with the pre-combustion route, finding a 
superior absorption solvent is crucial. Currently, post-com-
bustion technology is the most mature and widely used route 
among the three main routes of carbon capture and storage.

Valorisation of the captured CO
2
 was divided into two 

main categories; (1) conversion into fuels or chemicals and 
(2) physical utilisation of CO

2
 . It may be used directly in 

other uses, in addition to carbonated beverages (i.e. fire 
extinguisher, refrigerant and welding medium). Direct appli-
cations of CO

2
 are limited in scope and have a minor impact 

on the overall reduction of CO
2
 emissions. Additionally, 

Fig. 29  The loop process where the flue gas derived from power 
plants or any other source of CO

2
 is then combined with renewable 

hydrogen gas over adsorbent materials to produce methane as recy-
cled fuel. The hydrogen fuel could be obtained from water hydroly-

sis, where the source of electricity is either from solar or wind energy 
sources. The recycled methane (main consistent in natural gas) is then 
dried and compressed before further utilisation in the process
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indirect utilisation of CO
2
 in large-scale industries is con-

ceived to improve the performance of different processes. 
Such geologically stored and geothermally heated CO

2
 can 

be utilised for a base-load power generation with doubles 
of the electricity output, compared to using groundwater to 
extract the geothermal heat, all else being equal.
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