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Abstract: Carbon–carbon bond formation by [3,3]-sigmatropic rearrangement is a fundamental and
powerful method that has been used to build organic molecules for a long time. Initially, Claisen
and Cope rearrangements proceeded at high temperatures with limited scopes. By introducing
catalytic systems, highly functionalized substrates have become accessible for forming complex
structures under mild conditions, and asymmetric synthesis can be achieved by using chiral catalytic
systems. This review describes recent breakthroughs in catalytic [3,3]-sigmatropic rearrangements
since 2016. Detailed reaction mechanisms are discussed to enable an understanding of the reactivity
and selectivity of the reactions. Finally, this review is inspires the development of new cascade
reaction pathways employing catalytic [3,3]-sigmatropic rearrangement as related methodologies for
the synthesis of complex functional molecules.

Keywords: Claisen rearrangement; Cope rearrangement; [3,3]-sigmatropic rearrangement; C–C bond
formation; catalysis; transition metal; organocatalyst

1. Introduction

Claisen rearrangement was first introduced by L. Claisen in 1912. The initial reaction
involved the thermal [3,3]-sigmatropic rearrangement of allyl vinyl ether to γ,δ-unsaturated
carbonyl compounds [1]. As a useful method of forming carbon–carbon bonds, numerous
related reactions have been developed to achieve enhanced reactivity as well as to con-
struct natural products. The substrate scope has been expanded from oxygen-containing
molecules to nitrogen- and sulfur-containing congeners, where alkenes as well as alkynes
and allenes are used for various transformations [2–5].

Cope rearrangement also involves [3,3]-sigmatropic rearrangement, and is used to form
new carbon–carbon bonds via the thermal pseudocyclic reaction of hexa-1,5-dienes [6,7].
Since the first discovery by A. C. Cope in 1940 [8], Cope rearrangement, including the
reaction with hetero-analogues, has been extensively studied for application in synthesis,
as well as from the theoretical perspective [9–11].

Both representative [3,3]-sigmatropic rearrangements have remained powerful tools in
organic synthesis for a long time, and a variety of catalytic versions of these rearrangement
reactions were recently developed to achieve the highly reactive and enantioselective
synthesis of functionalized molecules by overcoming the limits of the common thermal
pathway [12–15]. The combination of transition metals and chiral ligand systems enables
the challenging asymmetric synthesis of chiral quaternary carbon–carbon centers, where
the highly optically pure corresponding products were obtained in excellent yields. To
avoid the drawbacks of unsustainability and economic issues associated with heavy metals,
organocatalytic versions of these reactions were actively studied.

In this review, we summarize the developments in the catalytic Claisen and Cope rear-
rangements since 2016. We describe the detailed mechanism of transition metal-mediated
reactions in order to provide deeper understanding of the specific reactivity of metals as
well as the regio- and stereoselective pathways. Not only the first-row transition metals,
but also the second-row transition metals and lanthanides are reviewed as metal catalysts,
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along with their reactivity, including cascade reactions. Organocatalytic versions of the
reactions, which proceed via various catalytic pathways, such as Brønsted acid catalysis,
Brønsted base catalysis, Lewis base catalysis, and Lewis acid catalysis, are also described.

2. Catalytic Claisen Rearrangement
2.1. Transition Metal Catalyzed Claisen Rearrangement

In the Claisen rearrangement, Lewis acid metal catalysts promote the reaction by
coordinating to the oxygen atom of the substrates. These catalysts enable the chiral products
and promote the formation of chiral carbon–carbon bonds with excellent stereoselectivity.
Among various transition metals, Ni and Cu species have recently produced big advances
in this area.

Feng and colleagues recently developed several enantioselective Claisen rearrange-
ment using chiral Ni(II) catalysts to generate all-carbon quaternary stereocenters (Scheme 1).
In 2016, they achieved the kinetic resolution of racemic propargyl vinyl ethers by asym-
metric propargyl Claisen rearrangement in the presence of Ni(II) species and the chiral
N,N′-dioxide ligand L1 (Scheme 1a) [16]. In general, propargyl vinyl ether could be con-
verted into an allene by Claisen rearrangement. By exploiting kinetic resolution, the racemic
phosphonate-substituted substrate 1 provided the highly enantio-enriched allene 2 in high
yield from the corresponding stereoisomer 1 in the presence of a chiral catalyst, and the
unreacted stereoisomer form of 1 was also isolated in high yield with high optical purity.
With the achiral single isomer 1 (R1 = H, R2 = nPr, R3 = Me, R4 = phenyl), the reaction
produced the allene 2 with 95% ee in 87% yield.
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Scheme 1. Ni(II)-catalyzed asymmetric Claisen rearrangement reactions.

In the same year, an asymmetric allenyl Claisen rearrangement was developed by
using the same Ni catalyst and chiral ligand system (Scheme 1b) [17]. Allenylmethyl
vinyl ethers 3 were converted into 1,3-dienyl substituted compound 4 with a chiral all-
carbon quaternary center. This study represents the first example of the enantioselective
rearrangement of allenylmethyl vinyl ethers, as well as diastereoselective reactions using a
chiral auxiliary. In this reaction, a catalytic amount of NaBArF improved the reaction yield
by increasing the catalytic turnover while suppressing the binding of the metal catalyst to
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the product through the noncoordinating counter-anion. With different alkyl substituents
containing allene 3 (R3 6= R4), both E- and Z-isomers were obtained with 99% ee, but the
E/Z ratio was only 2:3.

In 2018, the catalytic asymmetric Claisen rearrangement of allyl furyl ethers 5 was
developed to produce the chiral γ,δ-unsaturated carbonyl compounds 6 (Scheme 1c) [18].
By controlling the chirality of the ligand and olefin geometry, all possible stereochemistries
could be generated at the adjacent two quaternary carbon centers. This approach is directly
applicable in the synthesis of hyperolactone natural products and their epimers. Figure 1
illustrates the stereoselectivity of the reaction based on the catalyst and olefin structure. The
chiral catalyst binds to the oxygen of the ether and carbonyl group of the substrate 5a. The
Re-facial approach provides the favored geometry for the [3,3]-sigmatropic rearrangement
to afford enantioselectivity at the α-position, whereas the stereochemistry at the β-position
is derived from the olefin structure.
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Figure 1. Proposed stereochemical model of Ni(II)-catalyzed asymmetric Claisen rearrangement of
allyl furyl ether 5a.

Recently, the Ireland–Claisen rearrangement involving Cu-catalyzed reductive reac-
tions was demonstrated by Chiu and co-workers. The Ireland–Claisen rearrangement is
a useful pathway for forming carbon–carbon bonds from readily accessible ester carbon–
oxygen bonds [19,20]. In 2016, the copper hydride-catalyzed reductive Ireland-Claisen
rearrangement was reported (Scheme 2) [21]. The rhodium hydride-catalyzed reaction
was previously reported in 2002 [22], but the need for an expensive catalyst and moisture-
sensitive reductant limited the practicality of the protocol. Copper hydrides are economical
and versatile metal catalysts for the conjugate reduction of Michael acceptors. Here, cop-
per hydride and (EtO)2MeSiH (as a reductant) afforded the silyl ketene acetals 9 from
the acrylate 7, followed by the Ireland–Claisen rearrangement. In the case of the silyl
ketene acetals 9, the (E)-ketene acetal is more stable than the (Z)-isomer, which affects the
diastereoselectivity of the reaction.
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Scheme 2. Copper hydride-catalyzed reductive Ireland–Claisen rearrangement of hex-2-enyl acrylates.

In 2021, copper-catalyzed reductive Ireland–Claisen rearrangements were expanded
to propargylic acrylates 10 and allylic allenoates 13 (Scheme 3) [23]. Silane and borane
were used as reductants, and the substrates 10 and 13 were, respectively converted into the
silyl and boron enolates 11 and 14 via the in situ conjugated reduction by a copper hydride
catalyst. The generated enolates underwent the Ireland–Claisen rearrangement through a
chair-like transition state. In the same way as the previous case, (E)-ketene acetals were the
major product due to their stability, leading to the diastereoselectivity of the reaction.
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Scheme 3. Copper-catalyzed reductive Ireland–Claisen rearrangements of propargylic acrylates and
allylic allenoates.

In 2020, the production of acetylenic and allenic amides via radical-mediated catalytic
Claisen rearrangement was reported (Scheme 4) [24]. Copper or silver metal catalysts
provided the radical-metal complex 21 with the corresponding isobutyronitrile radical
20 from AIBNs 17. The ketenimine complex 22 is generated by the capture of another
isobutyronitrile radical 20 (Figure 2). Electrophilic ketenimine 22 was converted into
propargyl vinyl ether 23 by the nucleophilic addition of propargyl alcohol 16, and the
Claisen rearrangement ensued to form an allenic amide 19. Isomerization of allene 19 into
the propargyl group 18 proceeded via 1,3-hydrogen transfer, which may be promoted by
the stabilization of the attached aromatic group. The metal catalyst plays an important role
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in this reaction for promoting the Claisen rearrangement by the coordination effect, as well
as through ketenimine generation by radical–radical cross-coupling.
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Figure 2. Proposed mechanism of radical-mediated catalytic Claisen rearrangement of propargylic
alcohols with nitrile-containing azoalkanes.

Lanthanide(III) species are highly oxophilic Lewis acids, and several Claisen rear-
rangement reactions were achieved with the assistance of lanthanide catalysts. Ye and
co-workers developed yttrium-catalyzed cascade reactions involving the hydroalkoxylation
and Claisen rearrangement of ynamide substrates. Medium-sized lactams were synthesized
by the yttrium(III)-catalyzed intramolecular cascade reaction (Scheme 5) [25]. Many tandem
reactions involving intramolecular alkoxylation and Claisen reaction were developed with
novel metal catalysts, such as gold and platinum [13]. Ye and co-workers reported the
production of benzazocinones 25 and medium-sized lactams from ynamides 24 through
yttrium(III)-catalyzed tandem intramolecular hydroalkoxylation and Claisen rearrange-
ment. The reaction was initiated by the activation of ynamide 24 via the coordination of
yttrium metal at the alkyne, followed by the intramolecular attack of the hydroxyl group on
the activated alkyne to produce intermediate 26. The ensuing proton transfer and Claisen
rearrangement formed the lactam compound 25. By using this reaction, both medium-sized
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lactams (8- to 12-membered cycles) and large-sized lactams (15- and 19-membered cycles)
28 were obtained through this highly efficient and atom-economical pathway.
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of ynamides.

An intermolecular version of the reaction was also developed (Scheme 6) [26]. Alcohol
30 was added to a yttrium(III)-activated ynamide to form the vinyl yttrium intermediate 32,
which by a sequential proton transfer and Claisen rearrangement furnished γ,δ-unsaturated
amide 31 in good yield with high diastereoselectivity.
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Scheme 6. Yttrium-catalyzed tandem intermolecular hydroalkoxylation and Claisen rearrangement.

A europium(III) species was also employed in the catalytic Claisen rearrangement
system, and an example of the aryl-Claisen rearrangement of 2-bromoallyl aryl ethers 34
to produce useful ortho-2-bromoallylphenols 35 is reported (Scheme 7) [27]. The products
bearing alkenylbromide functionality were expected to be valuable building blocks for the
Suzuki–Miyaura cross-coupling reaction.
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Scheme 7. Europium(III)-catalyzed aryl-Claisen rearrangement of 2-bromoallyl aryl ethers.

A scandium-catalyzed asymmetric Claisen rearrangement was developed in 2017
(Scheme 8) [28]. 2-Allyloxyindoles 36 and 2-propargyloxyindoles 38, respectively, provided
3-allyloxindoles 37 and 3-allenyloxindoles 39 with a high yield and enantioselectivity in the
presence of a Sc(OTf)3 catalyst and chiral bisoxazoline ligand L2. The gram-scale reaction
was successfully demonstrated with 5 mol% catalyst, affording 98% yield and 99% ee.

Catalysts 2022, 12, x FOR PEER REVIEW 7 of 29 
 

 

 

Scheme 7. Europium(III)-catalyzed aryl-Claisen rearrangement of 2-bromoallyl aryl ethers. 

A scandium-catalyzed asymmetric Claisen rearrangement was developed in 2017 

(Scheme 8) [28]. 2-Allyloxyindoles 36 and 2-propargyloxyindoles 38, respectively, pro-

vided 3-allyloxindoles 37 and 3-allenyloxindoles 39 with a high yield and enantioselectiv-

ity in the presence of a Sc(OTf)3 catalyst and chiral bisoxazoline ligand L2. The gram-scale 

reaction was successfully demonstrated with 5 mol% catalyst, affording 98% yield and 

99% ee. 

 

Scheme 8. Scandium(III)-catalyzed asymmetric Claisen rearrangement of 2-allyloxy- and 2-propar-

gyloxyindoles. 

An iron(III)-catalyzed tandem reaction was developed for synthesizing naphtho[2,1-

b]furans 41 from β-naphthyl-substituted allenylmethyl ethers 40 via a tandem allenic 

Claisen rearrangement and dehydrogenative cyclization (Scheme 9) [29]. This highly re-

gio- and chemoselective reaction is initiated by the coordination of the iron catalyst to the 

oxygen of allene 40 (Figure 3). Thereafter, the Claisen rearrangement occurs through a 

chair-like transition state, and subsequent keto-enol tautomerization and homolytic cleav-

age produce the 2-naphthoxy radical 42 and FeCl2. Intramolecular radical cyclization pro-

duces the cyclic radical 43, and the series of reactions involving oxidation by FeCl3 and 

deprotonation finally produce the naphtho[2,1-b]furan 41. The reduced catalyst (FeCl2) 

can be regenerated into FeCl3 by aerobic oxidation. 

 

Scheme 9. Iron(III)-catalyzed tandem allenic Claisen rearrangement and dehydrogenative cycliza-

tion. 

Scheme 8. Scandium(III)-catalyzed asymmetric Claisen rearrangement of 2-allyloxy- and 2-
propargyloxyindoles.

An iron(III)-catalyzed tandem reaction was developed for synthesizing naphtho[2,1-
b]furans 41 from β-naphthyl-substituted allenylmethyl ethers 40 via a tandem allenic
Claisen rearrangement and dehydrogenative cyclization (Scheme 9) [29]. This highly regio-
and chemoselective reaction is initiated by the coordination of the iron catalyst to the oxygen
of allene 40 (Figure 3). Thereafter, the Claisen rearrangement occurs through a chair-like
transition state, and subsequent keto-enol tautomerization and homolytic cleavage produce
the 2-naphthoxy radical 42 and FeCl2. Intramolecular radical cyclization produces the
cyclic radical 43, and the series of reactions involving oxidation by FeCl3 and deprotonation
finally produce the naphtho[2,1-b]furan 41. The reduced catalyst (FeCl2) can be regenerated
into FeCl3 by aerobic oxidation.
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Figure 3. Plausible mechanism of iron(III)-catalyzed tandem allenic Claisen rearrangement and
dehydrogenative cyclization.

Gold and platinum catalysts are excellent alkynophilic Lewis acids that can activate
alkynes for reaction with nucleophiles; thus, a number of useful reactions involving tandem
alkyne alkoxylation and Claisen rearrangement in the presence of novel metal catalysts
were developed [13]. In 2019, α-allylbutenolides 45 were obtained from allyl ynoates 44 by
tandem gold(I)-catalyzed alkyne isomerization and cyclization, with subsequent Claisen
rearrangement (Scheme 10) [30]. Ynoate substrate 44 was isomerized into allenoate 46
by a gold catalyst, and the cyclic cationic intermediate 47 was obtained by intramolecu-
lar cyclization. Due to the tertiary amine-functionality of ligand L3, aromatization was
followed by deprotonation, and protodeauration delivered alkoxyfuran 48. Subsequent
Claisen rearrangement and double-bond migration produced the α-allylbutenolide 45 in
excellent yield.
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Bimetallic cooperative catalytic reactions may enable the creation of new reactions by
combining the advantages of each constituent catalytic system. For example, an achiral
gold(I) catalyst and chiral nickel(II) catalyst operate sequentially to produce α-allyl β-
keto esters 51 with excellent yields and enantioselectivities via tandem intermolecular
hydroalkoxylation and asymmetric Claisen rearrangement (Scheme 11) [31]. Initially, the
gold-activated alkyne intermolecularly reacted with allylic alcohol 50 to produce the vinyl
gold complex 52, and the subsequent protodeauration produced the vinyl allylic ether
53. The chiral nickel catalyst promoted asymmetric Claisen rearrangement to produce the
product 51.
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Scheme 11. Au/Ni bimetal-catalyzed tandem intermolecular hydroalkoxylation and asymmetric
Claisen rearrangement.

Similarly, tandem insertion and asymmetric Claisen rearrangement catalyzed by
a rhodium(II) and indium(III) bimetallic catalyst was developed (Scheme 12) [32]. N-
Sulfonyl-1,2,3-triazole 54 firstly provided the rhodium(II) imino carbene intermediate
57, and the O-insertion of allyl alcohol 55 into the carbene intermediate 57 produced
zwitterionic intermediate 58. Allyl vinyl ether 59 was obtained by proton transfer and
Rh(II) regeneration, and chiral indium-mediated catalytic Claisen rearrangement delivered
γ-oxo-β-amino ester 56 with high diastereo- and enantioselectivity.
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2.2. Organocatalyzed Claisen Rearrangement

Organocatalyzed-Claisen rearrangement was also studied and various small molecules
were successfully utilized as organocatalysts. Guanidinium salts, N-heterocyclic carbenes
(NHCs), phosphoric acid and derivatives, and organic bases constitute representative
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examples. Inspired by the results of the Lewis acid-type transition metal catalysis in
Claisen rearrangements [33], Claisen rearrangement with organocatalysis were also studied,
and various small molecules were successfully utilized in the Claisen rearrangement or
related transformations. Guanidinium salts, N-heterocyclic carbenes (NHCs), phosphoric
acid and derivatives, and organic/inorganic bases are representative transition metal-free
organocatalysts for the Claisen rearrangement.

An efficient and powerful organocatalyzed Claisen rearrangement was developed by
Jacobsen and co-workers in 2008 (Scheme 13) [34]. Starting from urea and urea derivatives,
which enabled H-bonding-based catalysis [35], the chemistry of the guanidinium salts was
widely investigated for application to organic reactions. Due to the great accessibility and
N-rich characteristics of guanidinium, various applications, including organocatalysis, were
studied [36–38]. Notably, the simple N,N’-diphenylguanidinium BArF salt 62 displayed
great efficiency for Claisen rearrangement. The main reaction was performed at 22–40 ◦C
with 20 mol% of guanidinium salt. Moreover, this guanidium chemistry was successfully
expanded to enantioselective reactions. As a compound having C2-symmetry, the guanid-
iumium BArF salt 62 incorporating the trans-1-pyrrolo-2-aminocyclohexane moiety was
efficiently subjected to asymmetric Claisen rearrangement. In general, 73–92% yields with
>81% ee were achieved and the diastereomeric ratios were determined to exceed 19:1. These
pioneering studies enabled various organocatalyzed Claisen rearrangements, accompanied by
the significant development of guanidine-based H-donor catalysts and ligands.
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In 2010, Bode and colleagues reported an enantioselective NHC-catalyzed Claisen
rearrangement between ynals and enols to produce enantiomerically enriched dihydropy-
ranones [39]. Most recently, in 2018, Vedachalam and co-workers reported a NHC-catalyzed
Coates–Claisen rearrangement to construct the dihydropyran core of secoiridoids
(Scheme 14a) [40]. Although traditional imidazolinium-based NHCs with both aliphatic
chains and aromatic groups are not reactive in the Coates–Claisen rearrangement, the use of
the fused NHC 66 afforded the corresponding compound dihydropyran-based lactone 65
in 62% yield and 82% ee. Interestingly, the absence of an external base (e.g., DBU or DIPEA)
favored both the reactivity and stereoselectivity of the reaction. In general, the external
base has dual roles: it activates the NHC salts and generates the reactive enol. However, in
this system, the chloride anion from the NHC salts acts as an external mild base. Ultimately,
the methodology was successfully applied to the preparation of monoterpene elenolide
67-based secoiridoids.

One year later, Rafinski’s research team applied NHC catalysis to the aza-Claisen
rearrangement to construct dihydropyrido[2,3-d]pyrimidine scaffolds (Scheme 14b) [41].
The reaction between α,β-unsaturated aldehydes 68 and N-substituted 6-aminouracils 69
yielded the N-unprotected lactam moiety 70 through simultaneous C–C bond formation
and amide formation. In this case, all tested NHC salts were reactive for the aza-Claisen
rearrangement. Indeed, the abnormal NHC with a single mesitylene substituent 71 was
the most effective compound for aza-Claisen rearrangement. The reaction was generally
performed in toluene solvent with K3PO4 as an external base. A broad substrate scope
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constituting both α,β-unsaturated aldehydes 68 and N-substituted 6-aminouracils 69 was
fully investigated. Moreover, the enantioselective aza-Claisen rearrangement was also
achieved with chiral pinene-derived NHC salt 72. Although the addition of a Lewis acid
or Brønsted acid did not accelerate the aza-Claisen rearrangement, a maximum yield of
84% and 67% ee were achieved with the chiral NHC salt. Lastly, the synthetic utility of the
obtained products was clearly demonstrated.
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Brønsted acids are also very important catalytic species for Claisen rearrangement. Ye’s
group applied a simple and strong Brønsted acid, bistriflimide (HNTf2, (CF3SO2)2NH, 1,1,1-
trifluoro-N-((trifluoromethyl)sulfonyl)methanesulfonamide) in the synthesis of bridged
[4.2.1] lactones 74 (Scheme 15a) [42]. This reaction consisted of multiple steps, where the
carbo-oxygenation of alkenes and Claisen rearrangement are considered as the main steps
in constructing the bridged lactone moiety. The proposed mechanism involves several
cationic intermediates, including carbocations. Therefore, the low nucleophilicity of Tf2N−

is important for maintaining the reactivity of multiple intermediates.
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Two years later, Ye’s group expanded the Brønsted acid-catalyzed Claisen rearrange-
ment to another useful Brønsted acid, phosphoric acid, in an enantioselective manner
(Scheme 15b) [43]. This is a [3,3]-stereospecific reaction accompanied by the dearomatiza-
tion of non-activated arenes. Starting from the benzyl alcohol-tethered ynamide 75, the
main reaction was performed with strong Brønsted acids, such as TfOH, TsOH, or MsOH.
Moreover, the BINOL-derived phosphoric acid 77a was the most active agent for producing
the dearomatization product 76. Moreover, the chiral nature of the BINOL-derived phos-
phoric acid 77b allowed the kinetic resolution of racemic ynamides (±)-75 to afford the
recovered ynamides (−)-75 and spirolactames (+)-76. A variety of substrates with various
substituents was tested, and the synthetic utility of the dearomatized spirolactam moiety
was also clearly demonstrated.

In 2020, the research groups of Sigman and Toste utilized the double-axial chiral
phosphoric acid sodium salt 81 to catalyze the reaction of allenolates 78 and tertiary
allylaminers 79 to obtain β-amino acid derivatives 80 (Scheme 15c) [44]. The effect of
the ligand structure on the allenolate-Claisen rearrangement, as well as the effect on the
preparation of doubly axially chiral phosphonate, were investigated in depth. The DFT
calculations fully supported the proposed mechanism and observed selectivity.

In 2019, Cramer and co-workers reported an organocatalyst for the efficient reductive
Ireland–Claisen rearrangement of allyl acrylates 82 (Scheme 16) [45]. The traditional Ireland–
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Claisen rearrangement typically requires stoichiometric strong bases and low-temperature
conditions. At the same time, the reductive Ireland–Claisen rearrangement employing
transition metal catalysis and a silane additive (R3SiH) was developed. In that study,
Cramer and co-workers utilized the unique 1,3,2-diazaphospholene 84 as a catalyst and
reductant for HBpin to produce a strong hydride donor 85, and the initial addition of 85 can
provide either intermediate 86a or 86b. From 86a (Path a), σ-bond metathesis with HBpin
produced enolate 87, and following [3,3]-sigmatropic rearrangement delivered a boron
carboxylate 89. Intermediate 86b has more options to reach the desired carboxylate 89. One
is σ-bond metathesis with HBpin, followed by [3,3]-sigmatropic rearrangement (Path b).
The other pathway uses the direct [3,3]-sigmatropic rearrangement to produce phosphorus
carboxylate 88, and the desired carboxylate 89 was produced by the regeneration of 85
(Path c). According to Path c, the diastereoselectivity and the enantioselectivity could
be controlled by chiral diazaphospholene catalyst. The authors demonstrated a catalytic
asymmetric reductive Claisen rearrangement from 82a with chiral 90, with an enantiomeric
ratio of 68.5:31.5 in 96% yield (11.7:1 dr).
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Scheme 16. 1,3,2-Diazaphopholene-catalyzed Ireland–Claisen rearrangement.

As an organocatalyst, simple Lewis bases are also employed in the tandem
hydroalkoxylation-Claisen rearrangement–cyclization (Scheme 17) [46]. The represen-
tative organic base 1,4-diazabicyclo[2.2.2]octane (DABCO) was revealed to be an efficient
Lewis base catalyst for the hydroalkoxylation of ynones 92 with allylic cyanohydrin 91 to
produce O-alkenyl substituted cyanohydrin 94 and a subsequent Claisen rearrangement
to 1,3-dicarbonyl compounds 95. Finally, 2,3-dihydrofurans 93 were obtained through
tautomerism and an intramolecular oxa-Michael addition. Furthermore, the sequential
addition of primary amines provided 2,3-dihydropyrroles 97 by aza-Michael addition. A
broad range of 2,3-dihydrofurans 93 and 2,3-dihydropyrroles 97 was produced by this
Lewis base–catalyzed tandem reaction in a good-to-high yield from the readily available
materials.
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Scheme 17. DABCO-catalyzed Claisen rearrangement.

In 2021, the Glorius Group reported the synthesis of tertiary carboxylic acids by merging
a Giese-type radical addition and an Ireland–Claisen rearrangement (Scheme 18) [47]. The
photocatalytic-enabled reductive radical-polar crossover (RRPCO) and [3,3]-sigmatropic
Ireland–Claisen rearrangement were successfully combined under transition metal-free pho-
toredox conditions. The 4CzIPN molecule (1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene)
was revealed to be the most efficient photocatalyst for this process. This methodology en-
abled the efficient synthesis of highly interesting α,α-dialkylated γ-amino butyric acids (i.e.,
GABA derivatives). Although the Ireland–Claisen rearrangement is not directly performed
by 4CzIPN, the coexistence of two different catalytic systems and their connection afforded
insight and highlighted the challenges for further applications.
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2.3. Catalytic Aza- and Thio-Claisen Rearrangement

Apart from oxygen-containing compounds, nitrogen- and sulfur-containing congeners
are also well-established for the [3,3]-sigmatropic rearrangement, i.e., aza- and thio-Claisen
rearrangement, to produce the corresponding aza- and thio-compounds. Similar to previ-
ously described Claisen rearrangements involving oxygen-containing compounds, these
reactions incorporate various catalysts.

In 2016, Sakai and co-workers reported the copper-catalyzed [3 + 2] annulation of
2,3-disubstituted indoles 100 from propargylic acetates 99 and anilines 98 via aza-Claisen
rearrangement (Scheme 19) [48]. The reaction starts from the generation of propargylic
amine 101 by C–N bond formation involving aniline 98 and propargylic acetate 99. Aza-
Claisen rearrangement occurs through the Cu-activated alkyne 101, and intramolecular
cyclization and protodemetalation ensue the formation of the desired 2,3-disubstituted
indoles 100.
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Scheme 19. Copper-catalyzed [3 + 2] annulation via aza-Claisen rearrangement.

Cao’s group developed the copper(I)-catalyzed stereoselective synthesis of α-allylic
amidines 104 via cascade ketenimine formation and aza-Claisen rearrangement (Scheme 20) [49].
The reaction was successfully demonstrated on the gram scale using only 1 mol% catalyst in
a one-pot synthesis with three components, namely, the terminal alkyne 102 and TsN3, and
tertiary allylic amine 103. Ketenimine intermediate 105 was obtained by the Cu-catalyzed
reaction [50,51], and top- or bottom-side additions of the tertiary amine delivered diamine
intermediates 106. More stable chair-like transition state 106b provided the α-allylic ami-
dine 104 containing a quaternary carbon center, with excellent diastereoselectivity.
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Breinbauer’s group reported the Pd-catalyzed α-allylation of imine-containing het-
erocycles and subsequent aza-Claisen rearrangement (Scheme 21) [52]. This reaction is
initiated by N-allylation followed by deprotonation to deliver the N-allylvinylamine 109,
which transforms into imine 108 by the aza-Claisen rearrangement.
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Scheme 21. Pd-catalyzed α-allylation of imine-containing heterocycles via aza-Claisen rearrangement.

In the rearrangement of N-alloc-N-allyl ynamides 110, the Pd catalyst plays two dis-
tinct roles: decarboxylative π-allylic rearrangement [53] and Pd-promoted aza-Claisen
rearrangement (Scheme 22) [54]. Based on the DFT calculation, the aza-Claisen rearrange-
ment incorporates the Pd(0) catalyst to reduce the energy barrier, where the results are
well-matched with deuterium-labeling and crossover experiments.
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Scheme 22. Pd-catalyzed rearrangement of N-alloc-N-allyl ynamides via decarboxylative π-allylic
rearrangement and aza-Claisen rearrangement.

In 2018, Stevens and co-workers developed an Au-catalyzed domino reaction involv-
ing cyclization and aza-Claisen rearrangement for forming highly substituted pyrazoles in
a one-pot procedure (Scheme 23) [55]. The reaction of N-allyl hydrazine with alkynyl alde-
hyde or ketone 113 produced hydrazone 115. Due to the high thermal stability, hydrazine
oxalate 112 was used instead of hydrazine. The generated hydrazone intermediate 115
underwent 5-endo-dig cyclization in the presence of the Au catalyst, and the subsequent
[3,3]-sigmatropic rearrangement produced the desired polysubstituted pyrazoles 114.
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Scheme 23. Au-catalyzed domino reaction involving 5-endo-dig cyclization and aza-Claisen rear-
rangement for forming polysubstituted pyrazoles.

In 2020, the Feng’s group developed the nickel(II)-catalyzed asymmetric thio-Claisen
rearrangement of α-diazo pyrazoleamides (Scheme 24) [56]. The chiral nickel carbene com-
plex 119 is initially formed from diazo compound 117, and the enantioselective nucleophilic
attack of thioindole 116 follows to produce sulfonium ylide 120. The subsequent thio-Claisen
rearrangement delivers the highly optically pure C3-substituted thioindole 118.
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3. Catalytic Cope Rearrangement
3.1. Transition Metal Catalyzed Cope Rearrangement

Recently, various Ir-catalyzed tandem reactions involving asymmetric allylation and
Cope rearrangement were developed with chiral phosphoramidite ligands. For example, in
2016, Stolz and colleagues reported an Ir-catalyzed asymmetric allylic alkylation and Cope
rearrangement toward the γ-alkylation of α,β-unsaturated malonates 123 (Scheme 25) [57].
The α,β-unsaturated carbonyl compound 121 acts as a nucleophile to produce the 1,5-diene
124 by asymmetric allylic alkylation, and subsequent Cope rearrangement delivers the
highly optically pure product 123.
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Scheme 25. Ir-catalyzed sequential one-pot reactions involving asymmetric allylic alkylation and
Cope rearrangement.

In 2019, the Ir-catalyzed asymmetric synthesis of α-tetrasubstituted α-trifluoromethyl
homoallylic amines was reported by Wang’s group [58] and Niu’s group [59] at the same
time (Scheme 26). Both groups used fluoroenylidene trifluoromethylamines 125 and allylic
carbonates 126 as starting materials; the reaction involved a catalytic asymmetric tandem
umpolung allylation of the imine and aza-Cope rearrangement. When R1 was a phenyl
group, a stabilizing π–π interaction between the phenyl and fluorenyl rings in the allylated
intermediate 128 was observed by X-ray crystallography.
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Wang’s group expanded the Ir-catalyzed tandem asymmetric allylation and aza-Cope
rearrangement to the synthesis of chiral homoallylic amines 131 (Scheme 27) [60–62]. With
aldimine esters 129 in basic media (Scheme 27a), nucleophilic metalated azomethine ylide
132 and 2-azallyl carbanion 133 were, respectively, formed in the presence and absence of a
copper catalyst. These umpolung nucleophiles reacted with the chiral Ir-π-allyl complex
134, and subsequent aza-Cope rearrangement delivered chiral homoallylic amines 131.
With aminomalonates 135 (Scheme 27b), the umpolung nucleophile was also generated
under basic conditions, and enantioselective homoallylic amine synthesis was achieved in
the same way as above.
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Again, considering the α-trifluoromethyl chiral quaternary center, Wang and col-
leagues synthesized asymmetric quaternary α-trifluoromethyl α-amino acids by Ir-catalyzed
allylation [63]. Chiral α-trifluoromethyl α- to ε-amino acid derivatives 138 were synthe-
sized by Ir-catalyzed cascade allylation and the aza-Cope rearrangement of ketoimine
esters 137 (Scheme 28) [64]. The Re-Face asymmetric umpolung allylation of the chiral
Ir-π-allyl complex occurs at either the Re- or Si-face of the ketoimine ester nucleophile
to form diastereoisomeric allylation intermediates. The intermediates are converted into
the desired amino acid derivatives 138 with high enantioselectivity. When n is not 0, the
Re-Re coupled intermediate cannot undergo the [3,3]-sigmatropic rearrangement due to the
increased steric hindrance; thus, the isomerized product 139 is obtained.
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Using Ir-catalyzed tandem asymmetric allylation and aza-Cope rearrangement, ox-
azolones and isoxazolinones were subjected to enantioselective and regioselective α-
alkylation (Scheme 29) [65,66]. With oxazolones 140 (Scheme 29a), asymmetric allyla-
tion occurred at the α-position, and aza-Cope rearrangement delivered highly enantio-
enriched oxazolones 142 containing a quaternary carbon center. On the other hand, N-
allylation of isoxazolinone 143 with the chiral Ir-π-allyl complex 146 and subsequent [3,3]-
sigmatropic rearrangement delivered the chiral quaternary carbon-centered isoxazolinone
145 (Scheme 29b).
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Scheme 29. Ir-catalyzed tandem asymmetric allylic alkylation and aza-Cope rearrangement of
oxazolones and isoxazolinones.

Marek’s group used Ir-catalyzed Cope rearrangements to produce medium-sized ring
structures through ring expansion reactions. In 2019, 7-memebered dienes were synthesized
from alkenylω-ene cyclopropanes or epoxides 147 via Ir-catalyzed tandem olefin migration
and Cope rearrangement (Scheme 30) [67,68]. Migration of the terminal olefin successfully
occurred in the presence of a cationic Ir catalyst system to produce 1,5-dienes 148. Subsequent
Cope arrangement furnished 7-membered cycles 149 with high diastereoselectivity.
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Tehrani and colleagues developed the FeCl3-catalyzed synthesis of α-substituted
homoallylic amines through an aza-Cope rearrangement (Scheme 31) [69]. The Lewis-acid
assisted reaction of aldehyde 150 and allyl amine 151 generated the imine 152, which,
by a 2-aza-Cope rearrangement, produced the corresponding α-substituted homoallylic
amine 152 and regenerated catalyst. This is the first example of Fe-catalyzed 2-aza-Cope
rearrangement affording α-substituted homoallylic amines 153.
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A bismuth(III)-catalyzed 2-aza-Cope rearrangement was reported into the synthesis
of α-allyl substituted β-aminophosphonates 156 from α-phosphoryl aldehydes 154 and
homoallylic amines 151 (Scheme 32) [70]. The Bi-catalyzed aza-Cope rearrangement of the
alkenyl imine intermediate provides the allylic substituted β-aminophosphonates 155.
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Whereas the tandem 2-aza-Cope–Mannich cyclization reaction is widely used in many
natural product syntheses [71], the 3-aza-Cope–Mannich reaction homologous received
scarce attention, in spite of the fact that this reaction provides 3-aminocyclopentanones [72].
Sakai’s group developed a gold-catalyzed tandem 3-aza-Cope–Mannich cyclization reaction
to furnish the fused N-heterocycles 158 and 158′ from cyclic tertiary alkynyl amines 157
(Scheme 33) [73]. The [Au]-catalyst activates the alkyne for the N-cyclization to generate the
heterocycle 159, which further rearranges to the iminium 160 (3-aza-Cope rearrangement).
Finally, the Mannich cyclization creates the tricyclic nitrogen- containing heterocycles 158 and
158′. The total synthesis of (−)-cephalotaxine was accomplished using this methodology.

An indium-catalyzed 2-oxonia-Cope rearrangement was developed into the synthesis
of 1,3-dienols 163 from 1,4-dienols 162 (Scheme 34) [74]. 1,4-Dienols 162 were prepared from
aldehydes 161 with 5-bromopenta-1,3-diene 164 by indium-mediated addition. Subsequent
indium-catalyzed 2-oxonia-Cope rearrangement was initiated by the formation of the
oxocarbenium ion 165 by Lewis acid activation of aldehyde 161. Following [3,3]-sigmatropic
rearrangement delivered the conjugated diene 166, and 1,3-dienols 163 were obtained by
catalyst regeneration.
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3.2. Organocatalyzed Cope Rearrangement

The firstly developed organocatalyzed Cope rearrangement was reported in 2016
by the Gleason’s group (Scheme 35) [75,76] in the synthesis of α-substituted enals 168
from 1,5-hexadienyl-2-carboxyaldehydes 167, using the pair hydrazide 148/ TfOH as the
catalyst. The reaction mechanism was elucidated through DFT calculation [77]. The authors
found that the 7-membered hydrazide catalyst 169 was ten times more reactive than its
6-membered homologous. Asymmetric Cope rearrangement was demonstrated with the
chiral catalyst 172, affording aldehyde 171 in 54% yield with 47% ee (Scheme 35b).
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In 2020, Jacobsen’s group reported an urea-catalyzed enantiosective anionic oxy-
Cope rearrangement (Scheme 36) [78]. The authors attempted to elucidate the reaction
mechanism by testing various reaction conditions using structurally different catalysts and
additives. The bifunctional urea catalyst 173 cooperatively promoted the rearrangement by
H-bonding and cation-binding. Additionally, large charge separation between the reacting
oxyanion and its counteraction is required.
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In 2018, Han’s group developed a highly stereoselective 2-oxonia-Cope rearrangement
for the vinylogous aldol reactions of aldehydes (Scheme 37) [79,80]. From the stereo-defined
homoallylic alcohols 174 and 178, the oxocarbenium ion 176 and 176′ were generated by
Lewis acid activated aldehydes. Following 2-oxonia-Cope rearrangement, stereoselectively
delivered the product-side oxocarbenium ion 177 and 177′ by reducing the steric repulsion
of the initial oxocarbenium ion 176 and 176′. Using this methodology, 5-hydroxy-2,3-
unsaturated carbonyl compounds 175 and ε-hydroxy-α,β,γ,δ-unsaturated esters 179 were
obtained with excellent regio-, enantio-, and diastereoselectivity.
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4. Conclusions and Outlooks

This review summarizes the recently developed catalyzed [3,3]-sigmatropic rearrange-
ment reactions. After the first discovery of the Claisen rearrangement by L. Claisen in 1912
and the Cope rearrangement by A. C. Cope in 1940, various syntheses were achieved. Based
on this powerful [3,3]-sigmatropic rearrangement, unique carbon–carbon bond formation
reactions were developed using transition metals or small organic compounds for the
catalytic reactions.

Various transition metals were significantly studied for the Claisen and Cope rear-
rangement reactions with various substrate types. Not only the first-row transition metals,
but also the second-row transition metals were utilized in the reactions to achieve improved
reactivity and selectivity. Notably, the combination of transition metal and chiral ligands
for catalysis allowed enantioselectivity in the reaction. The lanthanides were also applied
to catalytic rearrangement reactions, especially Sc, Y, and Eu.

Organocatalysts are good alternatives to avoid the environmental and economic issues
associated with the use of metal-containing catalysts, where various reactions have been
intensively studied, including Brønsted acid catalysis, Brønsted base catalysis, Lewis base
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catalysis, and Lewis acid catalysis. The chiral environment of the small organic molecular
catalyst is transferred into the rearrangement reaction to achieve asymmetric synthesis. In
the case of organocatalysis for the Cope rearrangement, both hydrazides and ureas were
representatively studied.

In spite of the recent breakthroughs in catalytic [3,3]-sigmatropic rearrangement, heavy
metal catalyzed reactions are still dominant, and the development of more sustainable
methodologies is required. Enhancing the efficiency and selectivity by metal-free catalysis
can boost the synthetic utility of these reactions and application fields. Organocatalyzed
photoredox-induced reactions, an emerging field in organic synthesis, may expand cascade
reactions involving [3,3]-sigmatropic rearrangement to afford highly functionalized and
fused cyclic compounds with excellent enantioselectivity.
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