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RESEARCH Open Access

Recent advances in clustering methods for
protein interaction networks
Jianxin Wang1,2*, Min Li1*, Youping Deng3, Yi Pan2

From The ISIBM International Joint Conference on Bioinformatics, Systems Biology and Intelligent
Computing (IJCBS)
Shanghai, China. 3-8 August 2009

Abstract

The increasing availability of large-scale protein-protein interaction data has made it possible to understand the
basic components and organization of cell machinery from the network level. The arising challenge is how to ana-
lyze such complex interacting data to reveal the principles of cellular organization, processes and functions. Many
studies have shown that clustering protein interaction network is an effective approach for identifying protein
complexes or functional modules, which has become a major research topic in systems biology. In this review,
recent advances in clustering methods for protein interaction networks will be presented in detail. The predictions
of protein functions and interactions based on modules will be covered. Finally, the performance of different clus-
tering methods will be compared and the directions for future research will be discussed.

Background
Within cells, proteins seldom act as single isolated spe-
cies to perform their functions. It has been observed
that proteins involved in the same cellular processes
often interact with each other [1]. Protein-protein inter-
actions are thus fundamental to almost all biological
processes [2]. As advances in high-throughput technolo-
gies, such as yeast-two-hybrid, mass spectrometry, and
protein chip technologies, huge data sets of protein-pro-
tein interactions are available [3]. Such protein-protein
interaction data can be naturally represented in the
form of networks, which not only give us the initial glo-
bal picture of protein interactions on a genomic scale
but also help us understand the basic components and
organization of cell machinery from the network level.
A protein interaction network is generally represented

as an interaction graph with proteins as vertices (or
nodes) and interactions as edges. Various topological
properties of protein interaction networks have been
studied, such as the network diameter, the distribution
of vertex degree, the clustering coefficient and etc.

These network analyses have shown that protein inter-
action networks have the features of a scale-free net-
work [4-7] and “small-world effect” [8,9]. Beyond the
discussions of the scale-free and small-world properties,
an important challenge for system biology is to under-
stand the relationship between the organization of a net-
work and its function. It has been shown that clustering
protein interaction networks is an effective approach to
achieve this goal [10].
Clustering in protein interaction networks is to group

the proteins into sets (clusters) which demonstrate
greater similarity among proteins in the same cluster
than in different clusters. In protein interaction net-
works, the clusters correspond to two types of modules:
protein complexes and functional modules. Protein
complexes are groups of proteins that interact with each
other at the same time and place, forming a single mul-
timolecular machine, such as the anaphase-promoting
complex, RNA splicing and polyadenylation machinery,
protein export and transport complexes, etc [11]. Func-
tional modules consist of proteins that participate in a
particular cellular process while binding each other at a
different time and place, such as the yeast pheromone
response pathway, MAP signaling cascades, etc [11].
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Recently, many research works have been done on the
problem of clustering protein interaction networks.
These works rely on very different ideas and approaches.
This paper tries to help readers keep up with recent and
important developments in the field, and to give readers
a comprehensive survey on the different approaches.
This paper is organized as follows: At first, the graph-
based clustering methods including the density-based
and local search algorithms, the hierarchical clustering
algorithms, and other optimization-based algorithms, are
given in Section 2. Then the approaches of combination
with other information are discussed and some ensem-
bles are given in Section 3. In Section 4, the validation
and comparison of the clustering methods are discussed.
Then the application of the clustering methods for pro-
tein function prediction and protein-protein interaction
prediction are given in Section 5. At last, challenges and
directions for future research are discussed in Section 6.

Graph-based clustering methods
In general, a protein interaction network is represented
as an undirected graph G(V,E), where vertices represent
proteins and edges represent interactions. The relation-
ship between two proteins can be the simple binary
values: 1 or 0, where 1 denotes the two proteins interact
and 0 denotes the two proteins do not interact. In such
cases, the graph is unweighted. Sometimes, the edges of
graph G are weighted with a value between 0 and 1. In
such cases, the weight represents the probability that
this interaction is a true positive.
In recent years, various graph-based clustering algo-

rithms have been developed for detecting protein com-
plexes and functional modules in protein interaction
networks. According to whether the algorithm can iden-
tify overlapping clusters, these algorithms can be classi-
fied into two types: Non-overlapping clusters detecting
algorithms and overlapping clustering identifying algo-
rithms. These algorithms can also be divided into the
follows: density-based and local search algorithms, hier-
archical clustering algorithms, and other optimization-
based algorithms, according to different definition and
ideas.

Density-based and local search algorithms
Based on the assumption that the members in the same
protein complex and functional module strongly bind
each other, a cluster can be referred as a densely con-
nected subgraph within a protein interaction network.
Several algorithms for finding dense subgraphs have
been proposed.
The density (d) of a subgraph with n vertices and m

edges is generally defined as d=2m/(n(n-1)) [11].
A dense subgraph is a clique when its density equals to
1, that is, every two vertices in which are connected by

an edge. Spirin and Mirny [11] detected protein com-
plexes and functional modules by enumerating all the
maximal cliques. In general, the enumeration of all cli-
ques within a graph is a NP-complete problem. Fortu-
nately, protein interaction networks are scale-free and
very sparse. Thus, this could be done quickly. However,
only mining maximal cliques can not accurately repre-
sent the real structures of protein complexes and func-
tional modules. This is because that the protein-protein
interactions available are not complete and the protein
interaction networks have the false negatives.
To avoid this limitation, Spirin and Mirny [11] intro-

duced two new approaches: superparamagnetic cluster-
ing (SPC) and Monte Carlo optimization (MC). SPC
uses an analogy to the physical properties of an inhomo-
genous ferromagnetic model to find highly-connected
clusters in a large graph. MC formulates the problem of
finding highly connected clusters as an optimization
problem: find a set of n vertices that maximizes the
function d. It starts with a connected set of n vertices
randomly picked on the graph and proceeds by “mov-
ing” selected nodes along the edges of the graph to
maximize d. Moves are accepted according to Metropo-
lis criteria. In [11], the comparison of MC and SPC
algorithms have been done, and the comparison results
show a better performance of MC for clusters that share
common vertices and for high density graphs, whereas
SPC has an advantage identifying clusters that have very
few connections to the rest of the graph.
Bu et al.[12] proposed a quasi-clique algorithm to find

clusters. In their studies, they used the spectral analysis
method to protein interaction networks and represented
the network as a bi-directed graph which was denoted
by a symmetric n*n adjacent matrix. Their key idea is
that the proteins corresponding to absolutely larger
components tend to form a quasi-clique for each eigen-
vector with a positive eigenvalue. To quantify a quasi-
clique’s tendency to form a cluster, Bu et al also used
the density (in [12], they call it clustering coefficient,
however, the two definitions are the same for a sub-
graph with n vertices and m edges, ie. 2m/(n(n-1)).).
Except quasi-cliques, Bu et al also detected the quasi-
bipartites as clusters. Cui et al.[13] also developed an
efficient algorithm for finding cliques and near-cliques
in protein interaction networks and showed a quasi-cli-
que as well as a clique often represented a biologically
meaningful unit such as functional module or protein
complex.
More recently, Xiong et al[14] applied an association

pattern discovery method to find the ‘hypercliques’ in
the yeast protein interaction network. A hyperclique
pattern is defined as a type of association pattern con-
taining proteins that are highly affiliated with each
other. Their studies revealed that proteins within the
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same hyperclique pattern tend to present in the protein
complex together, also more likely perform the same
function and participate in the same biological process.
The most important contribution of their studies is that
they discussed the identified hypercliques with 3-D
structures, which has hardly been done in other papers’
validation of clusters. Their 3-D structural views show
that proteins within a hyperclique pattern physically
interact with each other.
In addition to the above mentioned methods related

to cliques, another effective approach for clustering
protein interaction networks is molecular complex
detection algorithm (MCODE), which is proposed by
Bader and Hogue [15]. MCODE consists of three stages:
vertex weighting, complex prediction and optionally
post-processing. In the first stage, MCODE weights all
the vertices based on the core clustering coefficient. Dif-
ferent from the standard clustering coefficient, the core
clustering coefficient of a vertex v is defined to be the
density of the highest k-core of the immediate neighbor-
hood of v (vertices connected directly to v) including v.
A k-core is a graph of minimal degree k. Once the
weights are computed, MCODE seeds a cluster with the
highest weighted vertex and recursively moves outward
from the seed vertex. A new vertex will be added to the
cluster if its weight is larger than a given threshold. By
such a greedy fashion, MCODE can isolate densely con-
nected regions iteratively. In the post-processing step,
MCODE filters or adds proteins based on connectivity
criteria. MCODE has been a Cytoscape [17] plugin for
detecting clusters in a network and used in several
recent publications [18,19]. Zhang et al[18] created a
protein-protein relationship network (PPRN) by using a
kernel-based integration of protein interaction data and
protein functional annotation data. They applied
MCODE to the created PPRN network and the original
protein interaction network, respectively. Their experi-
ment results showed that the functional annotation
could improve the ability of prediction of complexes.

More recently, Cline et al[19] integrated biological net-
work and gene expression data and identified putative
complexes and functional modules by using MCODE.
However, MCODE cannot guarantee that the predicted
clusters are highly connected to each other, since the
highly weighted vertices may not be highly connected to
each other. Moreover, many proteins are left ungrouped
into any cluster by MCODE in practice [20].
The aim of the previous density-based algorithms is to

detect the densely connected subgraphs. However,
ensuring density alone is not enough for this aim, just
as discussed in [21]. Altaf-UI-Amin et al.[21] illustrated
this question by exampling two typical graphs of the
same size and density (both consist of 8 vertices and are
of density 0.5), as shown in Fig. 1.
From Fig.1 we can see that the topologies of these two

graphs Fig.1 (a) and Fig.1 (b) are very different, though
they have the same size and density. Fig.1 (a) looks
more likely to be a single cluster than Fig.1 (b).
To mine dense subgraphs, Altaf-UI-Amin et al[21]

proposed a new concept “periphery” and developed an
algorithm DPClus based on the combination of density
and periphery. For a given cluster k with density dk, the
cluster property cpvk of any vertex v is defined as cpvk=|
Evk|/(n×dk), where |Evk| is the total number of edges
between the vertex v and the vertices of cluster k and n
is the number of vertices in cluster k. Similar to
MCODE, DPClus also weightes all the vertices in its
first step and started at a highest weighted vertex. In
DPClus, a vertex’s weight is defined as the sum of the
weights of the edges connected to the vertex and the
weight of an edge (u,v) is the number of the common
neighbors of the vertices u and v. DPClus takes the
highest weighted vertex as an initial cluster and extends
the cluster gradually by adding vertices from its neigh-
bors. All neighbors are sorted by their priorities.
A neighbor’s priority to a cluster is determined by the
sum of the weights and the number of the edges
between the neighbor and the vertices in the cluster.

Figure 1 Two typical graphs of the same size and density [20].
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DPClus uses two parameters din (a value of minimum
density) and cpin (a minimum value for cluster prop-
erty), to determine whether a neighbor should be added
to the cluster. Once a cluster is generated, DPClus
removes it from the graph. Then, the weights of all the
vertices in the remaining graph are recomputed and the
next cluster is formed in the remaining graph. The pro-
cess goes on until no edge is left in the remaining
graph. In such cases, DPClus can only generate non-
overlapping clusters. To generate overlapping clusters,
DPClus extends the non-overlapping clusters by adding
their neighbors in the original graph (rather than in the
remaining graph). The contribution of DPClus is that
the concept “periphery” is proposed to distinguish differ-
ent graph topologies from the same densities. However,
its drawback is that a new cluster is removed from the
graph and the vertex weights are needed to be recom-
puted based on the remaining graph. Such operations
are not only time consuming, but also may neglect
some useful biological information.
More recently, Li et al[22] investigated the structures

of known protein complexes in MIPS and revealed that
most protein complexes have a very small diameter and
a very small average vertex distance. Li et al[22] pro-
posed an algorithm IPCA for clustering protein interac-
tion networks based on the combination of vertex
distance and subgraph density. Similar to DPClus, IPCA
also consists of four stages: weighting vertex, selecting
seed, extending cluster, and extend-judgment. However,
the rules of IPCA and DPClus for expanding clusters
and weighting vertices are different. Especially, they look
for different topological structure for the identified clus-
ters. IPCA uses diameter (or average vertex distance)
and interaction probability INvk to determine whether a
neighbor v should be added to a cluster k. For a cluster
k, the interaction probability INvk of a vertex v to it is
defined as INvk=|Evk|/n. In [22], Li et al discussed the
relationships among INvk, cpvk, and dk. One of the
attractive features of IPCA is that, unlike DPClus, it will
generate overlapping clusters directly and does not need
to consider the identified clusters’ neighbors in the ori-
ginal graph. Moreover, IPCA avoids the recomputation
of vertex weights, which is time consuming.

Hierarchical clustering algorithms
Hierarchical clustering is one of the most common
methods of classification used in biology and bioinfor-
matics. In recent years, hierarchical clustering algo-
rithms have been used widely for the analysis of
biological networks. The hierarchical organization of
biological networks has been frequently discovered. For
example, Yook et al.[23] discovered the underlying hier-
archical structure in the yeast protein interaction net-
work, and Ng et al.[24] extended the studies from one

species (S. cerevisiae) to seven species (E. coli, H. pylori,
C. elegans, D. melanogaster, H. sapiens, M. musculus,
and S. cerevisiae), and Farkas et al.[25] found out the
hierarchical organization of the yeast transcriptional reg-
ulatory network. Generally, the hierarchical clustering
algorithms can represent the hierarchy of a complex
network as a tree. According to the difference of the
processes of the tree’s construction, hierarchical cluster-
ing algorithms can be divided into two classes: the
agglomerative algorithm and the divisive algorithm.
Agglomerative algorithms start at the top of the tree
and iteratively merge vertices, whereas divisive algo-
rithms begin at the bottom and recursively divide a
graph into two or more subgraphs. For merging vertices
or separating the graph, various heuristic rules have
been used, such as betweenness centrality [26-36], clus-
tering coefficient [29,37-41], minimum cut [42], and etc.

Betweenness centrality-based clustering algorithms
Betweenness centrality is an important metric for ana-
lyzing protein interaction network [26]. There are two
types of betweenness centrality: the vertex betweenness
and the edge betweenness. The vertex betweenness cen-
trality BC(v) of a vertex vÎV is the sum over all pairs of
vertices s,tÎV, of the fraction of shortest paths between
s and t that pass through v, as the formula (1) [26]:

BC v
vst

sts t V s t v

( )
( )

, ,

=
∈ ≠ ≠
∑ 

 (1)

where sst(v) denotes the total number of shortest
paths between s and t that pass through vertex v and sst
denotes the total number of shortest paths between s
and t. Similarly, the edge betweenness centrality BC(e)
of an edge e Î E is defined as formula (2) [27,28]:

BC e
est

ststV s t

()
()

, ,

=
∈ ≠
∑ s

s (2)

where sst(e) denotes the total number of shortest
paths between s and t that pass through edge e.
As suggested by Girvan and Newman [27], the edges

with highest betweenness values are least central, which
are most likely to lie between clusters, rather than inside
a cluster. Thus, one can separate a network into clusters
by removing edges from the original graphs based on
the edge betweenness centrality. Girvan and Newman
[27] developed a divisive algorithm (G-N algorithm) to
detect community structures in complex networks as
follows:
(1) Calculate the betweenness for all edges in the

network;
(2) Remove the edge with the highest betweenness;
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(3) Recalculate betweennesses for all edges affected by
the removal;
(4) Repeat from step (2) until no edges remain.
The output of algorithm G-N is a tree (or dendro-

gram) which represents an entire nested hierarchy of
possible community divisions for the network. However,
one can not know where the tree should be cut to get a
good division for the given network. In general, we
would like to get the best division. To obtain this aim,
Newman and Girvan proposed a measure, called modu-
larity[28], to evaluate the quality of a particular division
of a network. Let the network be divided into k clusters
and element eij of matrix e (a k×k symmetric matrix cor-
responding to the k clusters) be the fraction of all edges
in the network that link vertices in cluster i to vertices
in cluster j. Then, a modularity measure Q[28] is

defined as Q e a Tre eii i
i

= − = −∑ ( )2 2 , where

ai j
= ∑ eij represents the fraction of edges that con-

nect to vertices in cluster i and Tre eiii
= ∑ gives the

fraction of edges that connect vertices in the same clus-
ter. A larger value of Q indicates that the division is

better. Typically, the values of Q fall in the range from
about 0.3 to 07 [28].
In stead of modularity measure, another effective

method for obtaining good division is to define module
quantitatively. There are several definitions of modules
which have been proposed [29-31,39,40], as shown in
Table 1.
Based on the division process of algorithm G-N,

Radicchi et al[29] proposed two types of module defini-
tions: strong module and weak module. They gave a
new self-contained algorithm to identify modules from
networks as follows [29]:
(1) Choose a definition of module (strong module or

weak module);
(2) Compute the edge betweenness for all edges and

remove those with the highest score.
(3) If the removal does not split the (sub-)graph go to

point 2.
(4) If the removal splits the (sub-)graph, test if at least

two of the resulting subgraphs fulfill the definition. If
they do, draw the corresponding part of the
dendrogram.

Table 1 Different Definitions of module in protein interaction network[29-31,39,40]

Module Definitions References

Module
Names

Computational Formula Descriptions

Strong
Module k H k H i Hi

in
i
out( ) ( ),> ∀ ∈ In a strong module each vertex has more connections within the

module than with the rest of the graph.
[29]

Weak
Module k H k Hi

in

i H

i
out

i H∈ ∈
∑ ∑>( ) ( )

In a weak module the sum of all degrees within subgraph H is larger
than the sum of all degrees toward the rest of the network.

[29]

Chen et
al. k H k H

k k k k k

i
in

i

r

i
out

i

r

in in
r
in out

( ) ( )

, , , ,

>

±{ } >>
= =
∑ ∑

1 1

1 2 1 2

and

 oout
r
outk, ,{ }

A combination of weak module and a new less stringent condition,
which is that, collectively, the in-degrees of the vertices in the
subgraph are significantly greater than the out-degrees.

[30]

Luo et
al.

M
ind H

outd H

k H

k H
H

i
in

i H

i
out

i H

= = >∈

∈

∑
∑

( )
( )

( )

( )

1
2

1

A subgraph H ⊂ G is a module if its modularity MH >1. In the
definition, ind(H) denotes the number of edges within H and outd(H)
denotes the number of edges that connect H to the remaining part
of G.

[31]

l-
module k H k Hi

in

i H

i
out

i H

( ) ( )
∈ ∈
∑ ∑> 

l-module is a general version of weak module. When l=1, it would
be the same as weak module defined by Radicchi et al. By changing
the values of parameter l, one can get different modules in the
protein interaction networks.

[39]

l*-
module w k H w k Hi

in

i H

i
out

i H

_ ( ) _ ( )
∈ ∈
∑ ∑> 

l*-module is a more general version of l-module, which is used for
weighted protein interaction networks.

[40]

In Table 1, different criterions are shown that the given subgraph H ⊂ G is a module.
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(5) Iterate the procedure (going back to point 2) for
all the subgraphs until no edges are left in the
network.
Later, Chen et al[30] extended the G-N algorithm for

clustering in weighted protein interaction network. They
suggested that the shortest path should be computed
based on edge weights since the protein interactions are
not all equally important. They weighted the edges by
using microarray datasets. They combined the weak
module and a new less stringent condition, which was
that, collectively, the in-degrees of the vertices in the
subgraph were significantly greater than the out-degrees,
to identify the modules in the protein interaction net-
works. Another contribution of their work is that they
modified the original definition of edge betweenness to
try to eliminate the unbalanced partition in it. The mod-
ified betweenness of an edge is the maximum number of
non-redundant all-against-all shortest paths passing
through it, i.e., the end points must be distinct when the
number of shortest paths for an edge is counted [30].
More recently, Luo et al[31] modified the definition of

weak module by extending the concept of degree from
single vertex to subgraph. They suggested that the edges
inside a subgraph should not be counted multiple times
(in the weak module definition, each edges are counted
two times). In their definition, the “in-degree” of a sub-
graph H ïƒŒ G was defined as the number of edges
within H and the “out-degree” of H was defined as the
number of edges that connect H to the remaining part
of G. In fact, the “in-degree” of H is just half of the sum
of degrees of vertices within H, as shown in Table 1.
Thus, the module definition of Luo et al is more strin-
gent than weak module. Based on the new definition of
module and G-N algorithm, Luo et al[31] developed an
agglomerative algorithm MoNet. MoNet initialed each
vertex as a cluster and then assembled the clusters into
modules by gradually adding edges to the clusters in the
reverse order of deletion by the G-N algorithm. In [31],
Luo et al compared the MoNet modules, the weak mod-
ules and the strong modules defined by Radicchi et al
[29]. The comparison results showed that MoNet mod-
ules represented stronger coclustering of related genes
and were more robust to ties in betweenness values.
The betweenness-based clustering algorithm has been

used widely due to its good performance in hierarchical
clustering. It has also been used to predict biological
function in protein interaction networks [32] and pre-
dict missing links in complex networks [33]. However,
most of the betweenness-based clustering algorithms
grouped vertices into separated clusters. To allow ver-
tices to be presented in multi-modules, Pinney et al[34]
proposed an alternative formulation of betweenness-
based decomposition, which was based on vertex
betweenness instead of edge betweenness. They

guaranteed to detect overlapping modules by dividing
the network at the vertices with the highest betweenness
and copying such vertices into the divided subnetworks.
Another drawback of betweenness-based clustering

approaches is that it is computationally expensive
because it requires the repeated evaluation for each
edge in the system [28,29]. Up to now, the best algo-
rithm of calculating betweenness for all m edges in a
graph of n vertices is in time O(mn) [29]. Thus, the
complexity of repeated calculation of each edge
betweenness is O(m2n). As pointed out by Radicchi et al
[29], the betweenness-based approaches are unfeasible
to be used in networks larger than 10000 vertices. To
reduce the running time, one might be tempted to cal-
culate the betweennesses of all edges only once and
removing the edges with the largest betweenness
orderly. Girvan and Newman [28] discussed this strategy
and found that it did not work well because there was
no guarantee that all edges between modules would
have high betweenness when there were more than one
edges between two modules. Another appealing solution
for improving computational efficiency is parallelization.
Yang et al[35,36] developed a parallel edge-betweenness
clustering tool for implementation of Girvan and New-
man’s clustering algorithm that achieved almost linear
speed-up for up to 32 processors.

Clustering coefficient-based clustering algorithms
Clustering coefficient is first proposed to describe the
local property of vertex and used widely to analyze the
topologies of protein interaction networks [16,37,38]. To
develop fast hierarchical clustering algorithm, Radicchi
et al[29] began to consider using the local quantity
instead of the global quantity (betweenness centrality) to
single out the edges connecting different clusters. They
generalized the clustering coefficient of a vertex to an
edge and defined it as the number of triangles to which
a given edge belonged, divided by the number of trian-
gles that might potentially include it. Given an edge e(u,
v), its clustering coefficient [29] is defined as:

CC
Z

k ku v
u v

u v
,

( ) ,
( )

min[( ),( )]
3

3

1 1
=

− −
(3)

where Zu v,
( )3 is the number of triangles built on that

edge e(u,v) and min [(ki-1),( kj-1)] is the maximal possi-
ble number of them. The idea behind the use of this
definition in [29] is that many triangles exist within
clusters and those edges between different clusters are
included in few or no triangles. Thus, edges with small

values of Cu v,
( )3 tend to lie between different clusters.

Based on this idea, Radicchi et al[29] developed a fast
divisive algorithm using the same steps as their
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proposed self-contained algorithm. In their algorithm,
they also extended the definition from triangles to
higher order cycles, such as squares, and defined the

clustering coefficient of order g as C
Z

S
u v
g u v

g

u v
g,

( ) ,
( )

,
( )=

+ 1
[29]

where Zu v
g
,

( ) is the number of cyclic structures of order

g built on the edge e(u,v) and Su v
g
,

( ) is the number of

possible cyclic structures of order g.
However, this definition is not feasible when the net-

work has few triangles or higher order cycles. To avoid
of the limitation, Li et al[39] redefined the edge cluster-
ing coefficients again by calculating the common neigh-
bors instead of triangles, as shown in formula (4):
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where Nu is the set of neighbors of vertex u and Nv is
the set of neighbors of vertex v, respectively.
Based on the definitions of edge clustering coefficients

and l-module (as shown in Table 1), Li et al[39] pro-
posed a fast agglomerative algorithm FAG-EC. FAG-EC
can generate different size of clusters by changing the
value of parameter l. More recently, Li et al[40] gave a
new definition of edge clustering coefficient in weighted
protein interaction networks, as shown in formula (5):
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where w(u,v) denotes the weight of edge e(u,v), Iu,v
denotes the set of common vertices in Nu and Nv (i.e. Iu,v
= Nu∩Nv). Correspondingly, Li et al defined l*-module of
weighted protein interaction networks, as shown in Table
1. The experimental results in [40] shows that the new
definition of edge clustering coefficient and l *-module
of weighted protein interaction networks can help
improve the accuracy of clustering. Another contribution
of their work is that FAG-EC and HC-Wpin can identify
the functional modules in a hierarchy by changing the
values of parameter l and such hierarchical organization
of modules approximately corresponds to the hierarchical
structure of GO annotations. More attractive strength of
FAG-EC and HC-Wpin is their efficiencies. The total
time complexities of FAG-EC and HC-Wpin are both O
(k2m). As is well known the scale-free of protein interac-
tion networks, k is very small and can be considered as a
constant. Thus, FAG-EC and HC-Wpin are very fast
which can be used in large protein interaction networks
as the protein-protein interactions accumulate.

Recently, Wang et al[41] combined the local metric
(Clustering Coefficient, which is named Commonality in
[41]) and the global metric (Betweenness) to generate
clusters for balance and consistency.

Other hierarchical clustering algorithms
Besides the two typical metrics discussed above, a num-
ber of other metrics have also been suggested to be
used in the hierarchical clustering algorithms. Hartuv
and Shamir [42] used the minimum cut to remove
edges recursively and developed a divisive algorithm
HCS for the discovery of highly connected subgraphs.
Recently, HCS [43] has been successfully applied in
clustering the protein interaction networks. Arnau et al.
[44] developed a hierarchical clustering algorithm,
named UVCLUSTER, based on the shorted path
between any two vertices on protein interaction net-
works. Lu et al.[45] suggested a simple graphical mea-
sure to depict the relationship between proteins and
extracted the topological information of the network,
such as quasi-cliques and spoke-like modules, into a
clustering tree. Several similarity measures, such as dif-
fusion kernel similarity, shortest path based similarity,
and adjacency matrix based similarity, are evaluated by
Wang et al. in [46]. They proposed a nonnegative
matrix factorization (NMF)-based method with the
usage of diffusion kernel similarity for clustering com-
plex networks and biological networks.
The definition of similarity metric or distance measure

is a crucial step for hierarchical clustering. How to eval-
uate the metrics is another challenge in hierarchical
clustering. Two evaluation schemes suggested by Lu et
al, which are based on the depth of hierarchical tree and
width of ordered adjacency matrix, may be useful.
Moreover, Chen et al [47] gave a formal definition of
similarity metric and discussed the relationship between
similarity metric and distance metric, they also pre-
sented general solutions to normalizing a given similar-
ity metric or distance metric, which have provided a
theory basis for constructing metrics.
The obvious advantage of hierarchical clustering

approach is that it can present the hierarchical organiza-
tion of protein interaction networks. Its drawback is that
it can not generate overlapping clusters except that spe-
cial pre-processing or other strategies are used. In addi-
tion, the hierarchical clustering approaches are known
to be sensitive to the noisy data in protein interaction
networks [48].

Other optimization-based algorithms
In addition to the density-based and local search algo-
rithms and hierarchical clustering algorithms, some
other optimization-based algorithms are also frequently
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used. For example, King et al[49] proposed the
Restricted Neighborhood Search Clustering (RNSC)
algorithm which aimed at exploring the best partition of
a network by using a cost function. RNSC starts with
randomly partitioning a network, and iteratively moves a
vertex from one cluster to another to decrease the total
cost of clusters. It ends up when some moves have been
reached without decreasing the cost function. It can get
the best partition by running multi-times. Its drawback
is that it needs the number of clusters as prior knowl-
edge and its results depend heavily on the quality of
initial clustering.
Another optimization model for the discovery of clus-

ters was proposed by Newman and Girvan [28], in
which a quantitative measure, called modularity Q, was
used to evaluate the quality of a partition for a given
network. The detection of clusters in a network thus
was translated into searching for the divisions of a net-
work with high modularity Q. This optimization model
has been widely adopted, and several algorithms have
been developed to optimize modularity Q. For example,
Guimera and Amaral[50] and later Danon et al.[51] sug-
gested to optimize Q by using simulated annealing.
Unfortunately, optimizing Q is NP-hard [52], and opti-
mization by simulated annealing requires too much
computational effort and is not suitable for large net-
works. Therefore, a number of alternative heuristic
methods have been developed, such as greedy algo-
rithms [53], extremal optimization [54], and spectral
approach [55-57].
Recently, Hwang et al.[58] presented a novel func-

tional module detection algorithm STM by using a
pharmaco dynamic signal transduction network model.
STM consists of four steps [58]:
(1) Compute signals transduced between all vertex

pairs;
(2) Select cluster representatives for each vertex;
(3) Formation of preliminary clusters;
(4) Merge preliminary clusters.
In STM, the Erlang distribution is used to model the

signal transduction behavior of the network. STM con-
siders only the least resistance paths between protein
pairs in a network and propagates the occurrence prob-
ability through a shortest path between a protein pair.
More recently, Hwang et al extended STM to CAS-
CADE [59], in which the occurrence probability of a
series of pairwise interactions is propagated through the
protein interaction network via the QAP (Quasi all
paths) extension. The QAP algorithm enumerates all the
possible paths approximately.
Among others, the Markov Cluster Algorithm (MCL)

[60,61] has been proved to be a very successful cluster-
ing procedure, which has been developed in different

languages, such as C, R, JAVA and PERL. MCL simu-
lates random walks on networks, by alternating two
operations: expansion and inflation. It constructs a sto-
chastic “Markov” matrix representing the transition
probabilities between all pairs of vertices. As MCL is
fast and scalable, it has been used for predicting pro-
tein family [61] and in a number of other domains.
Pereira-Leal et al[62] transformed the protein interac-
tion network into a line graph and then applied MCL
to find functional modules. The line graph is recon-
structed from the original graph by using vertices
representing edges and edges representing shared ver-
tices. The advantages of line graph being used is that
it is more highly structured than the original graph by
taking into account the higher-order local neighbor-
hood of interactions. In a recent comparison of graph
clustering algorithms [10], MCL was shown to be the
most robust algorithm for identifying protein com-
plexes and outperforming SPC [11] and RNSC [48].
More recently, another comparison work by Vlasblom
J and Wodak [63] showed that MCL outperformed the
Affinity Propagation (AP) for the partitioning of pro-
tein interaction graphs. Cannataro et al[64] have pro-
vided a web portal, allowing remote users to access
MCL functions through the Internet, for the identifica-
tion of protein complexes.
Furthermore, in the recent past, some novel optimal

clustering approaches have been proposed for the discov-
ery of protein complexes or functional modules. Mete et
al.[65], for example, proposed a new structural clustering
algorithm, called SCAN, for detecting functional modules
from large biological networks. The basic idea behind
SCAN is that two vertices should be assigned into a clus-
ter or not according to how they share neighbors. In
other words, SCAN is a method based on common
neighbors. Both connectivity and local structures are
used in SCAN. One contribution of SCAN is that it not
only can achieve an optimal clustering of the protein
interaction network, but also can identify hubs and out-
liers. Luo et al[66] investigated the core and periphery
structures in protein interaction networks. The model of
core/periphery structure was first formalized by Borgatti
and Everett [67] in social networks. In the core/periphery
structure model, members in the core set are cohesively
connected to each other, and those in the periphery set
are loosely connected to the core members.
In [66], the core was defined as a local maximal k-plex

[68] with k≤n/2, for a given k, where n was the number
of vertices in the cluster, and the peripheries of a core
was defined as the set of vertices that were not in the
core and whose distances to any member in the core
were equal to l (only 1- and 2-peripheries were mainly
considered in [66]).
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Finding overlapping clusters
In recent years, much attention has been focused on the
clustering algorithms for finding overlapping clusters.
For the overlapping clusters, each protein may be
involved in multiple complexes or functional modules.
This is particularly true of protein interaction networks
for most proteins having more than one biological func-
tion. Some of the above mentioned clustering algo-
rithms, such as STM [48], can be used for generating
overlapping clusters. In this subsection, we mainly dis-
cuss the algorithms which are proposed for the purpose
of finding overlapping clusters.
In 2005, Palla et al.[69] investigated the overlapping

structures in complex networks and proposed a Clique
Percolation Method (CPM). CPM generates overlapping
clusters by finding k-clique percolation communities. A
k-clique is a complete subgraph of size k. Two k-cliques
are said to be adjacent, if they share exactly k-1 vertices.
A cluster is defined as a union of all k-cliques that can
be reached from each other through a series of adjacent
k-cliques. Based on CPM, a powerful tool CFinder for
finding overlapping clusters has been developed by
Adamcsek et al.[70]. Though with many attractive char-
acters, CPM is limited in the followings: 1) its results
are highly correlated to the value of parameter k; 2) the
proteins not included in any k-cliques are neglected. To
overcome the disadvantages of CPM, people often adopt
some pre-processing or post-processing when using it.
Jonsson et al.[71] constructed a weighted protein inter-
action network for rat proteome and used CPM to iden-
tify key protein clusters involved in cancer metastasis.
Zhang et al proposed two types of strategies: size con-
trol [72] and line graph transformation [73] when using
CPM. For size control, they used k=3 to generate initial
clusters and then iteratively used k+1 to separate the
clusters of size larger than a given integer S until all the
identified clusters of size were less than S.
Zhang et al[74] suggested a simple method, called

MC(2), to identify functional modules by enumerating
and merging cliques and applied it to a yeast protein
interaction network. Instead of finding all the maximal
cliques, Li et al[75] proposed to detect the local cliques
for each protein and then to merge the detected local
cliques according to their affinity. The affinity between
two identified clusters is determined by their intersec-
tion sets and each cluster’s size. Two clusters are more
similar and have larger affinity if they have larger inter-
section sets and similar sizes. For best matching with
the known complexes, the value of affinity is suggested
to be 0.4. Considering the incompleteness of current
protein interaction data and the fact that many dense
but non-clique subgraphs for each vertex could also
form parts of a complex, Li et al[76] proposed an
improved algorithm DECAFF based on LCMA. In

DECAFF, They used a Hub removal algorithm to detect
multiple dense subgraphs with densities larger than the
given threshold δ.
Another method based on clique for identifying over-

lapping clusters is COD (Complex Overlap Decomposi-
tion) proposed by Zotenko et al.[77]. COD requires the
network satisfying certain mathematical properties. It
builds on chordal graph, which does not contain chord-
less cycles of length greater than three. Thus, the first
step of COD is to construct a chordal graph from the
original graph by graph modification. Each chordal
graph has a corresponding clique tree representation or
clique tree [78]. The vertices in the tree are maximal cli-
ques. The topology of the tree is determined by the
structure of overlaps between the maximal cliques. The
drawback of COD is that it will not work if the modified
graph is not chordal.
The essential proteins have always been counted as

having a close connection to the overlapping clusters
[79-82].Typically, a few highly connected vertices, also
known as hubs, tend to be essential proteins [4]. These
hubs generally are linked to several protein complexes
or functional modules. Ucar et al.[79] proposed a refine-
ment method based on neighborhoods and the biologi-
cal importance of hubs. They detected the overlapping
clusters by using hub duplication. Li et al.[80] suggested
a graph split and reduction method to discover overlap-
ping clusters with the restriction that only the highly
connected hubs could belong to more than one func-
tional modules. Pei et al.[81] developed a seed-refine
algorithm for detecting the overlapping clusters by using
a two-layer seeding heuristic method to find good seeds
and adopting a subgraph refinement approach for con-
trolling the overlap between clusters. The information
flow-based approach for identifying overlapping clusters
proposed by Cho et al.[48,82] was also based on the
informative proteins selection. In [82], the informative
vertices were selected based on the weighted connectiv-
ity where the weight was estimated by using coexpres-
sion profiles of normalized microarray gene expression
data from SMD [83]. Later in [48], Cho et al. combined
the flow-based approach with two new metrics: semantic
similarity and semantic interactivity, where Gene Ontol-
ogy (GO) annotations were used to weight protein-pro-
tein interactions. Different methods adopted for the
selection of essential proteins will result in different
overlapping clusters. Thus, to select the informative ver-
tices more exactly will help to identify the overlapping
clusters more accurately.
Moreover, some extended hierarchical clustering algo-

rithms can also be used for the identification of overlap-
ping clusters. Pinney et al[34], for instance, proposed an
alternative formulation of betweenness-based decompo-
sition, which was based on vertex betweenness instead
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of edge betweenness. They guaranteed to detect overlap-
ping modules by dividing the network at the vertices
with the highest betweenness and copying such vertices
into the divided subnetworks. Similarly, Gregory devel-
oped an algorithm CONGA [84] based on the key defi-
nition of “split betweenness” to decide when to split
vertices, which vertices to split, and how to split them.
In addition, the algorithms of detecting overlapping

community structures in other complex networks, such
as fuzzy clustering [85], EAGLE [86], and node fitness-
based clustering [87], probably can also be used in pro-
tein interaction networks.

Combination with other information and
ensemble
Integration of Multiple Sources
The above discussed methods for identifying clusters are
mostly based on graph theoretic properties solely and
only require the protein-protein interaction data. Unfor-
tunately, protein interaction networks, as we all know,
can not avoid of the false positives and false negatives
[10]. To lessen the effect of them, one can add a pre-
processing [88] for evaluating the reliability of the inter-
actions, filtering the false positives, or predicting the
false negatives, to improve the robustness of the cluster-
ing algorithms. Other than the adoption of pre-proces-
sing, several authors have suggested to develop robust
clustering algorithms by integrating data from multiple
sources, such as genomic data [89-91], structure infor-
mation [92], gene expression [19,93-101], Gene Ontol-
ogy (GO) annotations [48,102,103], etc. The approaches
differ in the way the sources are combined.
Jiang and Keating [89] described the first integrative

framework, named AVID which integrates experimental
results with sequence information, for the discovery of
functional relationships among proteins. Zheng et al.
[90] integrated seven genomic features and four experi-
mental interaction data sets by using a Bayesian-net-
works-based data integration approach. From the
inferred protein interaction networks, they implemented
algorithm MCL to detect protein complexes. Zhang et
al.[91] developed another multi-step but easy-to-follow
framework for the detection of protein complexes which
estimated the affinity between each pair of proteins
based on their co-purification patterns derived from MS
data. Dittrich et al.[92] presented an integrated exact
approach for clustering protein interaction networks
based on integer-linear programming and its connection
to the prize-collecting Steiner tree problem. Their
approach allows a smooth integration of data from var-
ious sources. Instead of yeast, they applied their method
on a large interaction network of HPRD in combination
with associated survival data.

Jung et al.[93] presented a method to detect protein
complexes based on the integration of protein-protein
interaction data and mutually exclusive interaction infor-
mation which were drawn from structural interface data
of protein domains. PSIMAP [105], a tool and Database
for constructing interactomes, provides interfacial residue
pairs in physical domain-domain interactions. By exclud-
ing interaction conflicts, Jung et al.[93] extracted coop-
erative sets of proteins as the Simultaneous Protein
Interaction Cluster (SPIC) from the protein interaction
network. Then, they applied conventional graph-based
clustering algorithms, MCODE [14] and LCMA [75], to
estimate the density of clusters.
Owing to the attribute that members in a cluster typi-

cally perform a specific biological function [106], several
clustering algorithms have been proposed with a combi-
nation of protein-protein interaction data and gene
expression data. For example, Jansen et al.[94] related
whole-genome expression data with protein-protein
interactions and scored expression activity in complexes.
Hanisch et al.[95] proposed a Co-clustering methodol-
ogy by using a distance function which combined simi-
larity of gene expression profiles with network topology.
Ideker et al.[96] developed a clustering algorithm for
the discovery of active subnetworks which showed sig-
nificant changes in expression over a particular subset
of the conditions. Unfortunately, this method requires
an activity p-value for every measurement, a situation
which is rather uncommon [97]. Segal et al.[98] intro-
duced a probabilistic graphical model to detect func-
tional modules from gene expression measurements
combined with protein-protein interaction data, in
which a module was expected to contain a significant
portion of the possible interactions. Maraziotis et al.[99]
presented an algorithm to identify dense subnetworks in
the weighted graph by expanding a kernel protein sets
from a seed protein via integration of protein interaction
and gene expression data. The weighted graph was con-
structed by using the gene expression information. Cho
et al.[100] also introduced an algorithm based on infor-
mative protein selection from a weighted graph where
the weight was computed by using co-expressional pro-
files. Moreover, graph reduction and hierarchical clus-
tering based on minimum cut were also used in [100].
Recently, Lu et al.[101] proposed a hierarchical cluster-
ing algorithm based on the integration of high-through-
put protein-protein interaction data with the added
subcellular localization and expression profile data. They
were the smart few who distinguished protein com-
plexes from functional modules when clustering in pro-
tein interaction networks.
More recently, Ulitsky and Shamir [97] transformed the

high-throughput data into similarity values, on the basis

Wang et al. BMC Genomics 2010, 11(Suppl 3):S10
http://www.biomedcentral.com/1471-2164/11/S3/S10

Page 10 of 19



of which they found clusters, named as Jointly Active
Connected Subnetworks (JACSs), which manifested high
similarity. Also, a program called MATISSE (Module
Analysis via Topology of Interactions and Similarity SEts)
was developed for the discovery of JACSs. The problem
of seeking for JACSs was actually to discover the subnet-
works of maximum likelihood by transforming edge
weights to attain probabilistic meaning. For the problem
of discovering the heaviest-subnetwork is computation-
ally hard, Ulitsky and Shamir introduced several heuristic
methods, see in [97]. One advantage of MATISSE is its
flexibility. Except gene expression similarity, other simi-
larity measures, such as functional similarity or similarity
in protein-DNA binding profiles, can also be used in
MATISSE. Even more recently, Ulitsky and Shamir [102]
presented another novel confidence-based method for
extracting functionally coherent co-expressed gene sets,
named Co-Expression Zone ANalysis using NEtworks
(CEZANNE), by using expression profiles and confi-
dence-scored protein interactions. CEZANNE is available
as part of the MATISSE software.
Except for gene expression data, authors also usually

combined protein interaction networks with GO annota-
tions. Typically, the flow-based approach proposed by
Cho et al.[48], as already discussed, is a method com-
bined with GO annotations. Besides, Lubovac et al.[103]
suggested a Semantic WEights for MODule Elucidation
(SWEMODE) by using an alternative measure, called
weighted clustering coefficient, and a weighting scheme
according to semantic similarity between the proteins.

Turanalp and Can [104] mapped known functional
annotations onto a protein interaction network and
adopted a frequent pattern identification technique, PPI-
Span, to detect recurring functional interaction patterns
instead of single clusters.
With the rapidly expanding resource of microarray

data and other biological information, such as structure
profiles [92] and phylogenetic profiles [107], combina-
tion with these information is believed to be an intri-
guing method to solve the problem of unreliable
interaction data when clustering in protein interaction
networks.

Ensemble clustering framework
Ensemble clustering [108,109] has been proposed to
obtain a single, comprehensive consensus clustering by
combining multiple, diverse and independent clustering
results. As different datasets may be generated using dif-
ferent approaches and even from the repeated applica-
tion of a given approach with different parameters when
clustering in the same protein interaction network,
ensemble clustering may be a good choice to get more
desirable clustering results. Asur et al.[109] first pre-
sented an ensemble framework, as shown in Fig.2, for
clustering in protein interaction networks.
In [109], initially three conventional graph partition-

ing algorithms: repeated bisections, direct k-way parti-
tioning, and multilevel k-way partitioning, with two
topology driven distance metrics were used to obtain
six base clusterings, and then a consensus method

Figure 2 Overview of the ensemble framework [108].
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based on Principal Component Analysis (PCA) was
developed to reduce the dimensionality of the consen-
sus problem. Asur et al.[109] also designed an adapta-
tion to allow for soft ensemble clustering in protein
interaction networks.
Another ensemble framework for clustering protein

interaction networks was proposed by Greene et al.[110].
They first produced a collection of non-negative matrix
factorizations (NMF) and then combined the factoriza-
tions to produce an improved clustering. NMF proposed
by Lee and Seung [111] was adopted for accurately
detecting overlapping groups. A latest study on clustering
complex networks and biological networks by non-nega-
tive matrix factorization with various similarity measures
can be seen in [112]. Consensus solution given by Greene
et al.[110] was a soft hierarchical clustering.
As being in nascent stage, ensemble clustering

approach inevitably faces some challenges for the dis-
covery of protein complexes and functional modules. A
series of crucial factors, such as choosing the basic clus-
tering methods, building a consensus, and adapting for
soft clustering, must be taken into account carefully.

Validation and comparison of clustering methods
Validation
Biological validation of the predicted clusters in protein
interaction networks is very essential. As previous dis-
cussed, disparate results can be obtained from the same
protein interaction network with different algorithms or
even with the same algorithm where different para-
meters are chose. Therefore, different solutions must be
carefully compared in order to select the approach and
parameters which provide the best outcome. Validation
is a process of evaluating the performance of the clus-
tering or prediction results derived from different
approaches. This section will introduce several basic
validation approaches for clustering in protein interac-
tion networks.

♦ Validation based on functional homogeneity
Previous studies have showed that proteins in the same
cluster often have high functional homogeneity [49].
The functional homogeneity of proteins in a predicted
cluster with known function annotation is generally
evaluated with P-value, as shown in formula (6):
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where the predicted cluster C contains k proteins in
the functional group F, and the entire protein

interaction network contains |V| proteins. P-value with
a hypergeometrical distribution shows the probability
that a given set of proteins is enriched by a given func-
tional group merely by chance. Smaller P-value indicates
that the predicted cluster is not accumulated at random
and is more significant biologically than one with a lar-
ger P-value. The function annotation can be obtained
from MIPS [113] or GO (Gene Ontology) [114]. Differ-
ent from MIPS, GO provides three types of annotations:
molecular function, biological process, and cellular com-
ponent which can all be used to assess the biological
significance of each predicted cluster.
As the P-value of a single cluster is statistically not

representative, a measure named clustering score,
defined as formula (7), has been suggested to quantify
the overall clusters.
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where nS and nI denotes the number of significant and
insignificant clusters, respectively and min(pi) denotes
the smallest P-value of the significant clusters i (i=1 to
n). The cutoff is used to distinguish a significant cluster
from insignificant clusters. We say a cluster is significant
if its corresponding smallest P-value is lower than the
cutoff value.
Another method for assessing the functional homoge-

neity of proteins within a predicted cluster is redun-
dancy [62], as shown in formula (8):
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where n represents the number of classes in the classi-
fication scheme, and psrepresents the relative frequency
of the class in the predicted cluster. All values of R lie
between 0 and 1. With this scoring system, clusters con-
taining many proteins with highly consistent classifica-
tions will receive high scores (R closer to 1), whereas
those with disparate or conflicting classifications will
receive low scores (R closer to 0).

♦ Validation based on known complexes
To evaluate the performance of algorithms for cluster-
ing in protein interaction networks, a comparison of
the predicted clusters (Pc) and the known complexes
(Kc) is often done. The gold-standard data used as
known complexes are available form those catalogued
in the MIPS database [113]. The overlapping score OS
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(Pc,Kc) between a predicted cluster Pc and a known
complex Kc is generally calculated by formula (9)
[15,21,22]:

OS Pc Kc
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where |VPc∩VKc| is the size of the intersection set of
the predicted cluster Pc and the known complex Kc,
|VPc| is the size of Pc and |VKc| is the size of Kc. A
known complex and a predicted cluster are considered
as a match if their overlapping score OS(Pc,Kc) is larger
than a specific threshold δ. Generally, 0.2 is used in the
literature [15].
Obviously, known complexes and predicted clusters

are expected to be matched as many as possible. Sensi-
tivity and specificity [15,22] are two important aspects
to estimate how they are matched. Sensitivity is the frac-
tion of the true-positive predictions out of all the true
predictions, defined as Sn=TP/(TP+FN), where TP (true
positive) is the number of the predicted clusters
matched by the known complexes with OS(Pc,Kc)≥δ,
and FN (false negative) is the number of the known
complexes that are not matched by the predicted clus-
ters [15,22]. Specificity is the fraction of the true-posi-
tive predictions out of all the positive predictions,
defined as Sp=TP/(TP+FP), where FP (false positive) is
equal to the total number of the predicted clusters
minus TP. Generally, another integrated method, called
f-measure, as shown in formula (10) [22], is also used to
estimate the matching results by taking into account of
both the sensitivity and the specificity.
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Also, we can determine a best matched known com-
plex for a predicted cluster by minimizing the probabil-
ity Pol of a random overlap between them. The Pol is
defined as:
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where i is the number of the common proteins
between the predicted cluster Pc and the known com-
plex Kc. The smaller the Pol is, the more consistent they
are.
One can also match the clustering result with the

known protein complexes by building a contingency
table T, as that has been done by Brohée and Helden

[10]. Given n known complexes and m predicted clus-
ters, the contingency table is a n*m matrix where row i
corresponds to the ith known complex, and column j to
the jth cluster. The value of a cell Tij indicates the num-
ber of common proteins that appear both in complex i
and cluster j. In addition, some other measurements,
such as positive predictive value (PPV), accuracy, and
separation, can also be used to evaluate the match
between a set of known complexes and a clustering
result. More details about these measurements, the
reader are referred to [10].

♦ Validation cased on other methods
Besides the above measurements, a comparison of the
clustering results performed on protein interaction net-
works and on random networks is usually used. The
random network requires having the same size and the
same degree distribution as the original protein interac-
tion network. Generally, one can get a corresponding
random network by shuffling the edges between vertices
in the original network [21,22]. Sometimes, a topology-
based Modularity metric, as previous discussed, can also
be used to estimate the performance of a clustering
algorithm. It is mainly used to investigate whether the
clustering algorithms group the highly connected ver-
tices in a cluster. The proteins included in the same
cluster, as reported in [115] by Zhang et al., generally
tend to share similar temporal expression profiles, sub-
cellular localizations, and gene phenotypes, which sup-
port the functional relevance of modular organization.
Moreover, the robustness of a clustering algorithm can
be validated by different levels of graph alterations, such
as proportions of edges added or deleted at random can
be used to test the algorithm’s robustness against the
false positives and false negatives.

Comparison of clustering methods
Up to now, there have been few special works for quan-
titative evaluation of the clustering algorithms except for
some comparison works that have been done in each
proposed algorithm for demonstrating its validity. Only
in 2006, a systematic quantitative evaluation of four
clustering algorithms: MCL [60,61], MCODE [15],
RNSC [49], and SPC [11] was done by Brohée and Hel-
den [10]. They constructed a test graph using 220
known complexes represented as cliques and generated
41 altered graphs by randomly adding or removing
edges in various proportions. Their comparison results
show that MCL has the best performance on both simu-
lated and real data sets and is robust to graph alterna-
tions. This comparison was done on unweighted
networks, whereas the MCL and SPC algorithms can
deal with weighted graphs and are likely to give better
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performances if weights are assigned to reflect the relia-
bility of the interactions.
Tuji et al.[116] compared two different types of clus-

tering algorithms: DPClus [21], a density based algo-
rithm and G-N [28], a hierarchal clustering algorithm.
Their comparison results show that each method has its
own advantage. G-N algorithm may be better by taking
into account the global structure of the network, but
cannot eliminate ambiguities in its early step of cluster-
ing. By contrast, DPClus does not focus on any type of
global optimization, but introduces local optimizing
parameters which help for more precise detection. In
the following Table 2, we give a rough comparison of 20
typical clustering algorithms for extracting clusters from
protein interaction networks. More information can be

found in the previous discussion and original
publications.

Applications
Typical applications of clustering protein interaction
networks are protein function prediction and protein-
protein interaction prediction. For a cluster, as pointed
by Hartwell et al.[106], its members are generally a
group of cellular components and their interactions that
can be attributed to a specific biological function. Thus,
one can identify clusters firstly and then coherently
annotate the whole subset of proteins of a given cluster
instead of predicting function for individual proteins.
Such cluster-assisted methods for predicting protein
function differ mainly in their clustering technique. As

Table 2 Main features of 20 typical clustering algorithms for extracting clusters from protein interaction networks

Authors Methods Weighted
graphs

supported

Overlapping
clusters

supported

Objective Web-Tool Available

Girvan and Newman
2002 (G-N)

Hierarchical clustering based on
betweenness

Functional module Upon request

Van Dongen S 2000,
Enright et al.2002 (MCL)

Flow simulation √ Protein family
detection

http://micans.org/mcl/

Spirin and Mirny 2003
(SPC)

Hierarchical √ Protein complex http://www.vcclab.org/lab/
spc/

Bader and Hogue 2003
(MCODE)

Local neighbourhood density
search

√ Protein complex http://baderlab.org/
Software/MCODE

King et al. 2004 (RNSC) Local search cost based Protein complex upon request

Radicchi et al. 2004 (self
contained G-N)

Hierarchical, module definition Strong module or
weak module

upon request

Pržulj et al. 2004 Minimum cut (HCS) Protein complex upon request

Palla et al. 2005 (CPM) Clique Percolation √ Protein complex;
functional module

http://www.cfinder.org/

Li et al. 2005 (LCMA) Local clique merging √ Protein complex upon request

Altaf-UI-Amin et al. 2006
(DPClus)

Local density and periphery
search

√ Protein complex http://kanaya.naist.jp/
DPClus/

Hwang et al. 2006 (STM) signal transduction √ Functional module upon request

Zotenko et al. 2006
(COD)

Complex Overlap
Decomposition

√ Protein complex upon request

Luo et al. 2007 (MoNet) Hierarchical, module definition √ Functional module upon request

Cho et al. 2007
(Semantic integration)

flow-based clustering and
Semantic integration

√ √ Functional module upon request

Ulitsky and Shamir 2007
(MATISSE)

Module Analysis via Topology
of Interactions and Similarity

√ √ Functional module http://acgt.cs.tau.ac.il/
matisse/

Gregory 2007 (CONGA) split betweenness √ Functional module upon request

Li et al.2008 (IPCA) Local density and distance-
based search

√ Protein complex http://netlab.csu.edu.cn/
bioinformatics/limin/IPCA/

Mete et al. 2008 (SCAN) structural clustering based on
common neighbors

√ Functional module upon request

Turanalp and Can 2008
(PPISpan)

gSpan √ √ Frequent patterns http://bioserver.ceng.metu.
edu.tr/PPISpan/

Li et al. 2009 (HC-Wpin) Hierarchical clustering based on
local metric

√ Functional module http://netlab.csu.edu.cn/
bioinformatics/limin/HC-PIN/
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we have discussed above, distinct clustering results will
be obtained by different clustering techniques. After
obtaining the clustering result, the methods for protein
function prediction are similar. The simplest method is
to assign the function shared by the majority of the
cluster’s proteins to the function-unknown proteins.
Alternatively, a hypergeometric enrichment P-value is
calculated for every function of the identified cluster,
and the function with the lowest P-value is assigned to
the function-unknown proteins.
As there exits a large number of function-unknown

proteins, even for the most well-studied yeast, about
one-fourth of the proteins remain uncharacterized [117],
and the prediction of protein function by laboratory
experiments is costly and time consuming, the
approaches for predicting protein function based on
clustering protein interaction networks are very attrac-
tive. Though the prediction can not be the substitute of
a lab experiment, it provides references for biologists
and experimenters. Moreover, many studies [118,119]
have shown that the predictions based on clusters are
effective. In a recent review, Sharan et al.[117] have
given an excellent summary of network-based functional
annotation methods and roughly compared direct and
cluster-assisted methods for functional annotation. The
validation of prediction accuracy highly depends on the
knowledge of known annotations. Moreover, the predic-
tion accuracy of the cluster-assisted methods will be
affected by the reliabilities of protein interaction
networks.
It is well known that the protein-protein interaction

data available now are incomplete, though a number of
high-throughput biotechnologies have been applied to
biological systems. Recently, a series of computational
methods have been developed for predicting protein-
protein interaction data [120,121]. Especially, the well-
developed clustering techniques in protein interaction
networks provide new opportunities for completing the
protein-protein interaction data. For instances, Yu et al.
[122] predicted the false negatives based on completing
defective cliques, Wang et al.[123] suggested an
improved method based on maximal cliques for the pro-
tein-protein interactions prediction. All these methods
are to find highly connected subgraphs in protein inter-
action networks and to predict the protein-protein inter-
actions based on the supposition that proteins in the
same cluster should connect to each other.
Clustering protein interaction networks can be used

not only for predicting false negatives, but also for puri-
fying false positives, as shown in Fig.3. These two opera-
tions: prediction and purification, in turn can also be
used as a pre-processing step to improve the accuracy
of currently available protein interaction networks.

Challenges and future researches
In the post-genomic era, an important work is to analyze
biological systems from network level, in order to under-
stand the topological organization of protein interaction
networks, identify protein complexes and functional
modules, discover functions of uncharacterized proteins,
and obtain more exact networks. To achieve this aim, a
series of clustering approaches have been proposed. For
different types of clustering algorithms, each has its own
advantages and disadvantages. Every algorithm has cer-
tain problems while it exhibits good performances in
other cases. The main challenges for clustering protein
interaction networks are identified as follows:
(1) Up to now, all methods for predicting protein-pro-

tein interactions are known to yield a nonnegligible
amount of noise (false positives) and to miss a fraction
of existing interactions (false negatives) [10]. Therefore,
the protein interaction data available for clustering are
very noisy. How to define the quality of a cluster and
develop robust algorithm in the presence of noisy edges
are challenging.
(2) Clusters of a protein interaction network may

overlap with each other. Most proteins have more than
one molecular function and participate in more than
one biological process. For example, some proteins form
transient associations and are part of several complexes
at different stages. Most cellular processes are carried
out by multi-protein complexes. Therefore, the tradi-
tional clustering approaches of putting each protein into
one single cluster do not suit this problem well. More-
over, how heavily two clusters should overlap with each
other is not certain.
(3) Recent advances in the development of high-

throughput techniques have led to an unprecedented
amount of protein-protein interaction data becoming
available in a variety of simple organisms. It is computa-
tionally difficult for most of current clustering algo-
rithms to accurately identify protein complexes or
functional modules from large-scale protein interaction
networks, especially to discover meso-scale clusters.

Figure 3 Predicting false negatives and purifying false
positives are done on the identified clusters
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(4) There are little priori knowledge for clustering
protein interaction networks, such as cluster number
and cluster size. How many clusters should we produce?
How large are clusters suitable? How to validate differ-
ent clustering results with various sizes? These are all
challenges for designing effective clustering algorithms.
(5) Current clustering approaches mainly focus on

detecting clusters in static protein interaction networks
for most existing biological data are static. However, both
the protein-protein interactions and protein complexes
are dynamically organized when implementing special
functions. Dynamic modules generally correspond to the
sequential ordering of molecular events in cellular sys-
tems. How to explore dynamic modules from static pro-
tein interaction networks is a very difficult task.
While some clustering approaches have been applied

successfully in the discovery of protein complexes or
functional modules, methods for clustering and analyz-
ing protein interaction networks are less mature. Parti-
cularly, the methods for identifying dynamic modules
are in a nascent stage. Methods which use time-series
gene expression profiling data to manifest the temporal
complexity of protein interaction networks may be use-
ful to the exploration of dynamic modules. For example,
Li et al.[124] have successfully detected dynamic mod-
ules by using the time-series gene expression profiling
data. Moreover, spatial constraints [125] may also be an
interesting means for further research because proteins
belonging to the same functional module should be
expressed in the same place.
Furthermore, techniques and methods for developing

both robust and fast clustering algorithms are directions
for further researches. In the future, “overlap” will con-
tinue to be a hot topic for clustering protein interaction
networks, which include how many molecular functions
a protein can perform, how many biological processes a
protein can participate in, and how many cellular com-
ponents a protein can be associated with or located in.
Moreover, we should investigate the question that if
there some relationship between the two properties:
overlapping and hierarchical organization of clusters,
which were usually taken into account separately before.
Some works have been done in complex networks, such
as word association networks and scientific collaboration
networks [86], to detect both the overlapping and hier-
archical properties of a community structure. Are the
properties also true in protein interaction networks?
Additionally, integration of multiple resources will help
to detect clusters more accurately and will continue to
be interesting.
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