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T
he vision of one-on-one human tutoring being the

most effective solution to instruction and learning has

attracted the attention of many for decades. Encour-

aged by the effectiveness of one-on-one human tutoring

(Bloom 1984), computer tutors that mimic human tutors

have been successfully built with the hope that a computer

tutor could be available to every child with access to a com-

puter. An extensive review of tutoring research by VanLehn

(2011) showed that computer tutors are as effective as human

tutors. VanLehn reviewed studies published between 1975

and 2010 that compared the effectiveness of human tutor-

ing, computer-based tutoring, and no tutoring. The conclu-

sion was that the effectiveness of human tutoring is not as

high as it was originally believed (effect size d = 2.0) but much

lower (d = 0.79). The effectiveness of computer tutors (d =

0.78) was found to be as high as the effectiveness of human

tutors. So, there is something about the one-on-one connec-

tion that is critical, whether the student communicates with

humans or computers. Graesser, Person, and Magliano (1995)

argued that the remedial part of tutorial interaction in which

tutor and tutee collaboratively improve an initial answer to a

problem is the primary advantage of tutoring over classroom

instruction. Chi, Siler, and Jeong (2004) advanced a related

hypothesis: tutoring enhances students’ capacity to reVect

iteratively and actively on domain knowledge. Furthermore,

one-on-one instruction has the advantage of engaging most

students’ attention and interest as opposed to other forms of

instruction such as lecturing or monologue in which the stu-

dent may or may not choose to pay attention (VanLehn et al.

2007).

Intelligent tutoring systems (ITSs) with conversational dia-

logue form a special category of educational technologies.

These conversational ITSs are based on explanation-based

constructivist theories of learning and the collaborative con-

structive activities that occur during human tutoring. They
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ment and ultimately for learning.



ity of ITSs; and (c) modeling students’ affective states
in addition to their cognitive states (D’Mello et al.
2013); affect-enabled components improve the
microadaptivity capabilities of ITSs. It should be not-
ed that LPs can have a signiUcant impact on microad-
aptivity as well but we do not emphasize these
aspects in this article. Furthermore, affect-enabled
components may affect macroadaptivity as well but
we do not emphasize these aspects either.
Taken together, these advances presented in this

article form one promising approach to increasing
the effectiveness of tutoring systems beyond the
interaction plateau (VanLehn et al. 2007, VanLehn
2011).

Intelligent Tutoring Systems with
Animated Conversational Agents

Conversational ITSs have several advantages over
other types of ITSs. They encourage deep learning as
students are required to explain their reasoning and
reVect on their basic approach to solving a problem.
Conceptual reasoning is more challenging and bene-
Ucial than mechanical application of mathematical
formulas. Furthermore, conversational ITSs have the
potential of giving students the opportunity to learn
the language of scientists, an important goal in sci-
ence literacy. A student associated with a more shal-
low understanding of a science topic uses more infor-
mal language as opposed to more scientiUc accounts
(Mohan, Chen, and Anderson 2009). 
The impact of conversational ITSs allegedly can be

augmented by the use of animated conversational
agents that have become more popular in contem-
porary advanced learning environments (Graesser et
al. 2008). The animated agents interact with students
and help them learn by either modeling good peda-
gogy or by holding a conversation with the learners.
Both single agents and ensembles of agents can be
carefully choreographed to mimic virtually any activ-
ity or social situation: curiosity, inquiry learning,
negotiation, interrogation, arguments, empathetic
support, helping, and so on. Agents not only enact
these strategies, individually or in groups, but can
also think aloud while they do so.
Examples of successful conversational ITSs are

AutoTutor (Graesser et al. 2008), Why2 (VanLehn et
al. 2007), CIRCSIM-Tutor (Evens and Michael 2005),
and GuruTutor (Olney et al. 2012). DeepTutor,1

described here, is an emerging conversational ITS. 
We will focus next on AutoTutor, a conversational

ITS described in the AI Magazine report by Graesser
and colleagues (2001) and on VanLehn’s (2006) two-
loop framework for describing ITSs. The advances in
conversational ITSs that we emphasize in this article
can be best understood with respect to AutoTutor’s
basic dialogue and pedagogical framework and Van-
Lehn’s (2006) two-loop framework for describing
ITSs.
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have proven to promote student learning gains up to

an impressive effect of 1.64 sigma when compared to

students learning the same content in a canned text

remediation condition that focuses on the desired

content (VanLehn et al. 2007). Of course, not all

meta-analyses and research reports are so rosy, as

indicated in the Dynarsky et al. (2007) report on

commercial learning systems in K–12 environments

and also some experimental conditions investigated

by VanLehn and colleagues (2007). For instance,

when intermediate students are given intermediate

content and when novice students are given novice

content, then tutoring is no better than canned text

remediation. The true impact of conversational tutor-

ing on learning is still not settled empirically.

The conventional wisdom of the last decade has

speculated that as interactivity of tutoring increases,

the effectiveness of tutoring should keep increasing.

However, VanLehn (2011) reported that as interactiv-

ity of tutoring increases, the effectiveness of human

and computer tutors plateaus. VanLehn’s Unding

challenged ITS developers to Und new approaches to

further increase computer tutors’ effectiveness.

Indeed, novel approaches to ITS development, such

as the ones presented here, are needed to push their

effectiveness beyond the interactivity plateau. 

There are several aspects of state-of-the-art conver-

sational ITSs that may explain the plateau in their

effectiveness. First, they do not emphasize macroad-

aptation through selection of learner-tailored con-

tent and tasks, which is needed when students begin

tutoring sessions with different backgrounds. Second,

conversational ITSs rely on dialogue and language-

processing algorithms to guide the interaction

between the tutor and tutee. The quality of these

algorithms has a direct impact on core ITS tasks such

as summative and diagnostic assessment, that is, the

detection and tracking of students’ knowledge states,

and providing formative feedback. Assessment and

feedback are critical components of any tutoring sys-

tem that is fully adaptive. There is room for improve-

ment when it comes to dialogue and language pro-

cessing in conversational ITSs. Third, existing

conversational ITSs emphasize mostly cognitive

aspects when providing microadaptation. Other

aspects of learning, such as affect and motivation, are

typically not considered to guide microadaptation.

In this article, we present advances in conversa-

tional ITSs that address the above weaknesses and

that have been proposed over the last decade, since

the 2001 AI Magazine report by Graesser et al. (2001)

on the state of the art in conversational ITSs. We

highlight (a) the addition of the learning progres-

sions (LPs) framework to increase macroadaptivity

(Corcoran, Mosher, and Rogat 2009); (b) deeper dia-

logue and natural language processing to increase

accuracy of student input assessment and quality of

tutor feedback (Rus and Graesser 2006; Rus and Lin-

tean 2012); this improves macro- and microadaptiv-
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AutoTutor Overview

AutoTutor is a conversational ITS that helps students
learn science topics by holding a mixed-initiative dia-
logue with students in natural language (Graesser et
al. 2008). The structure of the dialogue in both Auto-
Tutor and human tutoring follows an expectation
and misconception tailored (EMT) dialogue. EMT
dialogue is the primary pedagogical method of scaf-
folding good student answers. 
The dialogue moves and the problems AutoTutor

can tutor on are stored in a curriculum script. The
curriculum script is a knowledge structure employed
by novice tutors that largely determines the content
and Vow of a tutoring session. AutoTutor promotes
active construction of knowledge by providing expla-
nations only when the learner is Voundering. Moves
at the beginning of the tutorial interaction for each
new problem (that is, pumps and hints) provide less
information to the student than later moves (that is,
prompts and assertions).
The behavior of AutoTutor and that of any ITS,

conversational or not, can be described using Van-
Lehn’s (2006) two-loop framework. According to
VanLehn, ITSs can be described in broad terms as
running two loops: the outer loop, which selects the
next task to work on, and the inner loop, which man-
ages the student-system interaction while the student
works on a particular task. AutoTutor’s outer loop is
usually just an iteration over the set of existing tasks
(which represent the main questions or problems;
Graesser et al. [2003]). That is, all students go
through the same set of tasks in the same order. Some
level of adaption does exist as the set of tasks can be
chosen based on known student conceptions and
misconceptions. However, once the tasks are
designed all students see the same tasks regardless of
their individual differences. It should be noted that
sometimes this one-size-Uts-all approach of selecting
training tasks is required by experimental design con-
straints, which dictate that all students must be
exposed to the same content. Ideally, students should
work on tasks that best suit their background. The
use of LPs in the emerging conversational ITS Deep-
Tutor will enable achieving this goal.
The inner loop of an ITS monitors students’ per-

formance through embedded assessment, updates its
model of students’ levels of understanding (that is,
the student model), and uses the updated student
model to provide appropriate scaffolding in the form
of feedback and other scaffolds. In dialogue-based
ITSs, embedded assessment relies heavily on lan-
guage understanding algorithms as students’
responses are natural language utterances. AutoTu-
tor’s language-processing algorithms rely on co-
occurrence methods such as Latent Semantic Analy-
sis (LSA; Landauer et al. [2007]), inverse weighted
word frequency overlap, and regular expressions. As
previously mentioned, another important aspect of
the inner loop is to provide appropriate scaffolding

while the student is working on a task, for example,
correct a misconception immediately through appro-
priate feedback. We discuss in this article advances
about how to better assess students’ natural language
inputs and how to better tailor scaffolding using
affect-sensitive components while the student is
working on a task.
The three major advances in conversational ITSs

described in this article will have direct impact on
both the outer and inner loops of ITSs and will lead
to improvements in core tasks handled by ITSs: mod-
eling the task domain, tracking students’ knowledge
states, selecting appropriate learning trajectories, and
the feedback mechanisms. Advances in these core
tutoring tasks will move state-of-the-art ITSs closer to
implementing fully adaptive tutoring, which implies
tailoring instruction to each individual student at
both macro- and microlevel.

Advanced Macroadaptivity 
in DeepTutor

DeepTutor is a conversational ITS that is intended to
increase the effectiveness of conversational ITSs
beyond the interactivity plateau by promoting deep
learning of complex science topics through a combi-
nation of advanced domain modeling methods, deep
language and discourse processing algorithms, and
advanced tutorial strategies. DeepTutor has been
developed as a web service and a Urst prototype is ful-
ly accessible through a browser from any Internet-
connected device, including regular desktop com-
puters and mobile devices such as tablets. A snapshot
of the learner view is shown in Ugure 1. DeepTutor
currently targets the domain of conceptual Newton-
ian Physics but it is designed with scalability in mind
(cross-topic, cross-domain). The spin-off project of
AuthorTutor2 aims at efUciently porting DeepTutor-
like ITSs to new domains by investigating well-
deUned principles and processes as well as developing
software tools that would enable experts to efUcient-
ly author conversational computer tutors across
STEM disciplines. Another authoring tool, called
SEMILAR (derived from semantic similarity toolkit;
Rus et al. [2013]), is being developed as well to assist
with authoring algorithms for deep natural language
processing of student input in conversational ITSs.3

It is beyond the scope of this article to describe all
the novel aspects of DeepTutor or related projects.
Instead, we focus on two components of DeepTutor:
domain modeling based on LPs and deeper dialogue
and natural language processing.

Learning Progressions

LPs have been developed by the science education
research community as a way forward in science edu-
cation. The National Research Council (2001) report
called for better descriptions of how students learn
based on models of cognition and learning. Based on
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such descriptions of how students learn, “assess-

ments can be designed to identify current student

thinking, likely antecedent understandings, and next

steps to move the student toward more sophisticated

understandings” (National Research Council [2001],

p. 182). This was basically a call for developing learn-

ing progressions (Corcoran, Mosher, and Rogat

2009). 

LPs adopt a learner-centered view of a topic by

modeling students’ successful paths toward mastery

as opposed to paths prescribed by domain experts

following a logical decomposition of the big ideas of

a domain. The logical decomposition provided by

experts could be useful as a starting point that needs

to be reorganized based on evidence of how students

actually develop mastery of the big ideas. These actu-

al, developmentally proven paths must be docu-

mented and guide instruction.

Learning progressions in DeepTutor. LPs are the cen-

tral theme in DeepTutor around which everything

else (domain modeling, assessment, and instruction-

al tasks) is organized and aligned. This centrality of

the LP can be seen in Ugure 2. Inside the circle in the

middle of the Ugure, we show a snapshot of the LP.

The shown LP is a partial view, for illustration pur-

poses, of our Newtonian Physics LP.

The LP in DeepTutor is organized in a set of strands

along the horizontal axis with strands more to the

right signifying more sophisticated topics. For

instance, the circular motion strand (rightmost col-

umn in the LP) is more complex compared to the

Mass-and-Motion strand (third column). Along the

vertical axis, each strand is organized more like a tra-

ditional LP (Alonzo and Steedle 2009), in levels of

sophistication. Each level corresponds to a set of

coherent ideas or models that students use to reason

about the domain. The higher the level in the LP, the

stronger the model, that is, the model explains more

phenomena of the domain. We call our LP a two-

dimensional or 2-D LP due to its organization in two

dimensions. A typical LP, for example, Alonzo and

Steedle’s, is unidimensional (single-strand) showing

only levels of sophistication for a major theme. The

hierarchal structure of the LP levels within a strand

can be accomplished by following several method-

ologies, such as how close a model is to the best mod-

el (the mastery model is the top level in an LP, also

called the upper anchor), item difUculty, and also

based on developmental and cognitive considera-

tions. It should be noted that LP developers acknowl-

edge that there is no unique, perfect progression or

hierarchical structure of ideas but rather a family of

Figure 1. DeepTutor Physics Problem and Dialogue History.

The screenshot of DeepTutor shows a Physics problem on the top right pane and a Dialogue history on the left pane. The

Multimedia box synchronizes with the dialogue showing identiUed information, for example, velocity and force vectors,

visually.
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such progressions. The goal is to document the alter-
natives and the most frequent progressions or levels
of understanding that students experience in their
journey toward the upper anchor. 
Our 2-D LP is the most comprehensive and Une-

grained LP compared to any other existing Physics
LP. The actual LP has seven strands and up to nine
levels for certain strands. It should be noted that a
complex and Unely grained LP is needed to drive the
operations of an effective educational technology
such as DeepTutor. 
There is an interesting interplay among assess-

ment, LPs, instructional tasks, and advanced tutoring
strategies that is Unely orchestrated by DeepTutor.
The LPs are aligned with the initial assessment instru-
ment (that is, pretest — shown on the left side of Ug-
ure 2), which students must complete before they
interact with the system. Based on this Urst summa-
tive assessment, an initial map of students’ knowl-
edge levels across all strands in the LP is generated.
This corresponds to the solid, wavy line (shown in
red or gray) across the middle layers of the LP in Ug-
ure 2. Basically, we get a Urst impression of where stu-
dents are with respect to the upper anchor of each LP
strand. Based on recent research by others (Bao and
Redish 2006; Alonzo and Steedle 2009) and our own
experience, this Urst assessment of a student’s knowl-
edge state is just an approximation. In fact, the two
wavy, dotted lines below and above the thick line
indicate a range of levels that a student might be at.
We are moving toward a probabilistic model (called a
cloud model, inspired from the cloud model of the
electron in modern physics) of assessing students’
levels of understanding in which we can only assert
with a certain probability at which level students are.

The cloud model assumes that students can be at
multiple levels in the LP, that is, have multiple mod-
els simultaneously active in their minds, some
stronger than others, which they activate depending
on various factors. For instance, Bao and Redish
(2006) studied different student models for Newton’s
third law and identiUed the probability with which
a student activates a particular model based on three
features of instructional tasks that target Newton’s
third law. 
Our cloud model for assessing students’ knowl-

edge states is work in progress as of this writing. A
glimpse of it can be seen in Ugure 3 where we show
three strands of our LP and an actual student model
indicating his performance with respect to the LP
levels. The leftmost column indicates the level in the
LP. Each of the other columns represents an LP-
strand. Each strand is further divided into three
inner-columns: left — number of potential answer
choices in the pretest that map to the corresponding
LP level; middle — number of correct student-cho-
sen answer choices; right — number of incorrect stu-
dent-chosen answer choices. Because each multiple-
choice question in the pretest has Uve choices of
which only one is correct and because the answer
choices of a question can map to different levels and
strands in the LP, the relationship among the num-
bers shown in Ugure 2 is more complex. A simple
pattern does exist: the number of (correct and incor-
rect) student answer choices should add up to the
number of questions in the pretest. From the Ugure,
we can notice that this particular student has two rel-
atively persistent models for the force and motion
topic. These two models correspond to the LP levels
most chosen by the student: level 1 (corresponding

strand
 

 

 

 
 

 

 

 

 

Student
Model

2-D Learning Progression
Levels of
Understanding 

Toxic
Complexity

Instructional Tasks
(Formative/Embedded

Assessment

Pre-Test
(Initial 

Assessment)

Pre-Test

Problem 1:

Answers A, B. C, D

Problem 2:

Answers A, B, C, D

Problem 3:

Answers A, B, C, D

          Student Model Update

Figure 2. Alignment of Curriculum, Instruction, and Assessment in DeepTutor Using Learning Progressions.
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to the four incorrect answer choices picked by the

student) and level 2 (corresponding to the six student

choices of which Uve are incorrect and one correct).

These are weak models because they are in the mid-

lower part of the force and motion strand. Based on

the placement of the student in the LP, instructional

tasks that are appropriate for levels 1 and 2 in the

force and motion LP strand are selected for this par-

ticular student.

Tailored Learning Trajectories.

The set of instructional tasks that are selected at the

outer loop should, ideally, be tailored to each indi-

vidual learner because learners start interacting with

an ITS at different levels of understanding, and also

they learn at different paces. We call the set of

instructional tasks a student is assigned a learning

trajectory. It should be noted that there is a distinc-

tion between the hypothetical learning trajectory,

which is Urst computed based on a student’s pretest

performance, and the actual learning trajectory,

which is a dynamically updated version of the hypo-

thetical learning trajectory based on students’ actual

performance while working on tasks (Battista 2011). 

In DeepTutor, we select the hypothetical learning

trajectory based on the alignment between the (sum-

mative and formative) assessment and the LPs, on

one hand, and the LPs and instructional tasks, on the

other hand. We have tasks corresponding to each cell

in our 2-D LP. In fact, for each cell we have a set of

tasks that enable us to implement advanced tutoring

strategies to address some of the illusions of tutoring

(Graesser, D’Mello, and Person 2009). For instance,

consider the “illusion of mastery,” the unwarranted

assumption that the student has mastered much
more than the student has really mastered. Indeed,
one provocative Unding in the tutoring literature is
that there is sometimes a positive correlation
between a student’s knowledge of the material (based
on pretest or posttest scores) and the student’s likeli-
hood of saying no rather than yes to the tutors’ com-
prehension-gauging questions (Graesser, Person, and
Magliano 1995). Thus, it is the knowledgeable tutees
who tend to say “No, I don’t understand.” We detect
the illusion of mastery in DeepTutor and activate a
tutoring strategy to penetrate the potential illusion.
For instance, one way to detect it is to identify stu-
dents who keep saying “I understand” when asked if
they understood a previously discussed idea or con-
cept but actually have a low pretest score. The tutor-
ing strategy triggered for such students consists of
challenging them to solve a similar problem in order
to demonstrate that they truly understood the con-
cept. This is why each cell in the 2-D LP has a set of
corresponding instructional tasks (see the layered
tables on the right side of Ugure 2). Each table indi-
cates a set of LP-aligned tasks. Tasks in corresponding
cells in the different tables are equivalent. Sets of
equivalent tasks for the same cell in the LP are need-
ed such that DeepTutor can trigger as many tasks at a
particular level of understanding as needed.
There are many possible learning trajectories that

can be chosen for a particular student. For instance,
drilling tasks that offer training on one big idea or
theme covered in one LP strand will more likely help
students move up the level of understanding within
that strand while not making progress on ideas in
other strands. For some strands, for example, New-
ton’s third law, for which the correct answer to many
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Figure 3. The Visualization of a Student’s Level of  Understanding Along Three LP Strands: 
Force and Motion, Free Fall Near Earth, and Vectors and Motion.
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problems is the same (the tasks are isomorphic to
some degree), such a drilling training strategy is less
effective. Students may learn the jingle (“the action
and reaction forces are equal and opposite”) after see-
ing the solution to a few problems and just recite the
jingle when prompted to solve subsequent tasks,
without actually developing a deep understanding of
Newton’s third law. Smarter sequencing of problems
must be adopted as isomorphic problems lead to
copying and therefore shallow learning (VanLehn
2011, Renkl 2002).
DeepTutor is still under development as of this

writing, but components of the system have been
validated. For instance, we have validated our hypo-
thetical learning progressions (HLP) designed by our
experts based on data collected from students in six
different high school classes that form a develop-
mental progression: Physics, Honors Physics, IB
Physics 1, IB Physics 2, AP Physics C-1, and AP
Physics C-2. The data was collected at one time across
all these classes. That is, different students were
accounted for in different classes. Ideally, a longitu-
dinal study is needed to observe how a group of stu-
dents’ taking these classes progress over time. The
adopted procedure is the best approximation within
the constraints of collecting data in one semester.

Deeper Dialogue and 
Natural Language Processing

In this section, we present DeepTutor’s advanced dia-
logue and natural language-processing algorithms.
We distinguish between dialogue processing compo-
nents that handle aspects of managing the dialogue
and components that deeply understand students’
contributions as a way to assess their level of under-
standing.

Dialogue Processing
The dialogue manager in DeepTutor implements
conversational goals used in existing dialogue-based
tutoring systems, such as coaching students to artic-
ulate expectations, correcting students’ misconcep-
tions, and attempting to answer students’ questions
when they are sufUciently inquisitive to ask ques-
tions. However, DeepTutor has additional conversa-
tional goals that attempt to achieve accurate ground-
ing at each turn (that is, the system and tutor
perfectly understand each other at every turn and
over many turns), accurate feedback on students’
contributions, error-handling (for cases when the sys-
tem cannot accurately interpret what the student is
saying), naturalistic dialogue, and optimized knowl-
edge transfer. To achieve the new goals, we added
components that explicitly handle dialogue moves
associated with these goals to the core dialogue man-
agement module. For instance, we have a component
to detect the need for establishing common ground
and another to initiate and handle the dialogue
moves necessary to establish common ground. Con-
sider the scenario in which the tutoring system pres-

ents a rare or unseen word X to a student and the stu-
dent replies with “What is X?” That is an indication
of a request for grounding. By the same token, we
can imagine a student replying “Yes” to a compre-
hension-gauging question (“Do you understand?”)
asked by the tutoring system. The system would then
skeptically challenge the student with a veriUcation
statement to double-check the student’s understand-
ing. If the student stumbles, it is an indication of
knowledge transfer failure and thus the system must
activate a component to optimize the transfer of
knowledge.

Speech Act ClassiUcation
An important component of the dialogue manager
is the identiUcation of students’ intentions based on
their utterances, that is, the task of speech act classi-
Ucation (SAC; Rus et al. [2012b]). The SAC uses a
multileveled taxonomy of speech act categories with
4 major categories at the top (metacognitive, meta-
communicative, question, and contribution) and 35
categories total at the second and third level. In case
a student utterance is labeled as being a contribu-
tion, which is a content-rich statement, it is passed
on to the semantic processing component that is
described in the next section. Contributions from
students can be relevant or irrelevant (for example, a
content-rich statement that talks about food or
friends when the topic is physics). Only relevant
contributions are passed on for further semantic
analysis.

Advanced Algorithms for Understanding Students’
Natural Language Essays and Contributions 
Algorithms are needed to interpret the meaning of
students’ natural language contributions at each
turn in the dialogue as well as assessing the more
comprehensive essay-type answers that students are
required to provide immediately after being prompt-
ed to solve a problem. This section describes
advances including the addition of negation han-
dling and syntactic information as well as proposing
algorithms that incorporate optimized semantic
matching solutions.
Semantic similarity is the underlying principle for

understanding student contributions. We assess how
similar a student contribution is to an expert answer.
The expert answer is deemed correct and therefore
the student contribution is deemed correct if it is
semantically similar to the expert answer (and incor-
rect otherwise). More nuanced assessments are made
(for example, partially correct or partially correct and
partially incorrect at the same time) but we focus
here on simple binary judgments (correct versus
incorrect). The alternative to the semantic similarity
approach is the true or full understanding approach
in which the student response is fully interpreted.
The full understanding approach is intractable for
real-world, sizeable applications such as ITSs because
it requires vast amounts of world and domain knowl-
edge. Domain knowledge and world knowledge are
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captured to some extent by semantic similarity
approaches.
It should be noted that because student contribu-

tions can vary in length, from very short, for exam-
ple, including just one content word such as equal, to
a sentence or even a paragraph, methods that apply
across different granularities of texts are needed. The
methods presented next are generally applicable to
texts of various sizes although some are more suited
for a certain granularity level. For instance, when
syntactic information is used in a particular method
then the method cannot be applied at the word lev-
el directly.
We present next one method addressing the task of

semantic similarity in the context of dialogue-based
ITSs, which we explored and embedded in our SEMI-
LAR tool (Rus et al. 2013) for exploring semantic sim-
ilarity methods. Several broad categories of semantic
similarity methods were investigated and are includ-
ed in our SEMILAR toolkit: vectorial methods includ-
ing LSA (Landauer et al. 2007, Lintean et al. 2010),
probabilistic methods including Latent Dirichlet
Allocation (LDA; Blei, Ng, and Jordan [2003]; Niraula
et al. 2013), greedy methods, optimal methods (Rus
et al. 2012a; Rus and Lintean 2012), and some others.
Due to space reasons, we only discuss one of the most
recent and most advanced methods we developed.

Optimal Word-to-Word and Syntactic Matching
Through Quadratic Assignment 
This method looks for an optimal global assignment
of words in one sentence (for example, a student
response) to words in the other sentence (for exam-
ple, the expert answer) based on their word-to-word
similarity, while simultaneously maximizing the
match between the syntactic dependencies. Account-
ing for the syntactic dependencies among words is
the primary advantage of the quadratic assignment
problem (QAP; Koopmans and Beckmann [1957])
formulation versus the job-assignment formulation
of the student response assessment task (Rus and Lin-
tean 2012). We formulate Urst the quadratic assign-
ment problem and then show how we model the
semantic similarity task based on it.
The goal of the Koopmans-Beckmann (1957) for-

mulation of the QAP problem, Urst proposed for eco-
nomic activities, is to minimize the objective func-
tion QAP (see below) where matrix F describes the
Vow between any two facilities, matrix D indicates
the distances between locations, and matrix B pro-
vides the cost of locating facilities to speciUc loca-
tions. F, D, and B are symmetric, nonnegative matri-
ces.

The f(i,j) term denotes the Vow between facilities i
and j, which are placed at locations π(i) and π(j),
respectively. The distance between these locations is
d(π(i)π(j)). In our case, F and D describe dependencies
between words within one sentence (or the other,

minQAP F,D,B( )=  i=1

n
! j=1

n
! fi ,jd" i( )! j( )+ i=1

n
! bi ," i( )

respectively) while B captures the word-to-word sim-
ilarity between words in opposite sentences. Also, we
have weighted each term in the above formulation
and instead of minimizing the sum we are maximiz-
ing it, resulting in the following formulation: 

The f(i,j) term quantiUes the syntactic relation
between words i and j in text A, which are mapped to
words π(i) and π(j) in text B, respectively. The dis-
tance d(π(i)π(j)) quantiUes the syntactic relation
between words π(i) and π(j). For words i and j that
have a direct dependency relation, that is, an explic-
it syntactic relation among two words, such as sub-
ject or direct object, the Vow f(i,j) is set to 1 and 0 oth-
erwise. Similarly, the distance d(π(i)π(j)) between words
π(i) and π(j) is set to 1 in case there is a direct depend-
ency relation among them and 0 otherwise. We also
experimented with a variant in which we enforced
that the type of dependency between words i and j
and the type of dependency between the correspon-
ding words in the other text, π(i) and π(j), be identi-
cal. That is, we prefer matchings between words in
texts A and B, respectively, that not only lead to
direct dependencies among words in A and the cor-
responding matched words in B but those dependen-
cies must be of the same type.
A brute force solution to the QAP problem, which

would generate all possible mappings from facilities
(words in a sentence) to locations (words in the oth-
er sentence), is infeasible because the solution space
is too large. For example, when considering all possi-
ble pairings of words between sentence A, of size n,
and sentence B of size m, where n < m, and we pose
no limitations on the type of pairings that can be
made, there are m!/(m – n)! possible solutions. For
sentences of average size n = m = 20 words, there are
2.4  1018 possible pairings.
An efUcient branch-and-bound algorithm has been

developed to reduce the explored space in search for
the optimal solution. This is possible by deUning a
bounding function that always overestimates or
underestimates solutions, depending on what type of
optimal solution is sought, maximum or minimum
cost, respectively. In our case, a maximum cost solu-
tion is desired. Our solution yielded the best per-
formance (accuracy = 77.6 percent) reported so far on
a benchmark text-to-text similarity task at sentence
level, that is, the Microsoft Research Paraphrase cor-
pus (Dolan, Quirk, and Brockett 2004).

Designing for Affect

Another important advancement of the ITSs’ inner
loop focuses on techniques that target students’ affec-
tive states. Although ITSs and other advanced learn-
ing technologies (ALTs) have traditionally paid less
attention to affect, the tide is gradually shifting as

maxQAP F,D,B( )

=! i=1
n
" j=1

n
" fi ,jd# i( )# j( )+ 1$!( ) i=1

n
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affect-enabled (affect-aware, affect-sensitive, or affec-

tive) learning technologies are coming online. These

systems are motivated by a preponderance of

research that suggests that cognition and affect are

inextricably coupled, and meaningful learning

always encompasses some blend of the two. In this

section, we brieVy discuss some of the research in the

growing area of affect-enabled learning technologies

and closely examine one system that takes a some-

what nonconventional route toward leveraging the

affect-cognition relationship to increase learning

gains.

Types of Affect-Enabled 
Learning Technologies

One simple categorization of affect-enabled tech-

nologies broadly distinguishes between proactive

and reactive systems. Proactive systems aspire to

increase the incidence of affective states deemed ben-

eUcial (for example, interest, curiosity, engagement),

while simultaneously decreasing the incidence of cer-

tain negative states (for example, boredom). For

example, some ALTs aspire to leverage the facilitating

effects of games on engagement by implementing

some of the competitive and motivational features of

games. Others take this a step further by carefully

embedding the learning content in games that sup-

port narrativity, realism, and immersion.

Reactive systems make no notable a priori attempt

to up-regulate or down-regulate positive and negative

affect, respectively. Instead, they simply detect and

respond to affective states as they arise. This involves

fully automated detection of learner affect, which is

accomplished with top-down predictive models inde-

pendently or in conjunction with bottom-up sensor-

driven models. Once the learner’s affective state is

detected with reasonable accuracy, the system then

dynamically alters its pedagogical plan in response to

the sensed state.

A number of reactive affect-enabled ALTs have

been developed and tested. The Affective AutoTutor

is a dialog-based ITS that monitors contextual cues

(for example, learner response accuracy, response

time, tutor feedback), body movements, and facial

features to detect when a learner is confused, bored,

or frustrated, and responds with motivational dia-

logue moves to encourage learners to persist in their

learning despite these negative emotions (D’Mello et

al. 2010). Forbes-Riley and Litman (2011) have

recently endowed a speech-enabled dialog-based

physics ITS with the ability to tailor its actions on the

basis of the uncertainty and correctness of learner

responses. Uncertainty is detected by fusing an

acoustic-prosodic analysis of the learners’ spoken

responses with features extracted from the ensuing

tutorial dialogue (for example, turn number). Yet

another example is Gaze Tutor, a learning environ-

ment for biology that monitors eye movements to

infer when learners are disengaged or zoning out and

launches gaze-reactive dialogues in an attempt to
reengage the learners (D’Mello et al. 2012).
Although the proactive and reactive strategies rep-

resent the major research thrusts in the area of affect-
enabled ALTs, there are additional possibilities as
well. One possibility is to intentionally induce cer-
tain affective states that have a somewhat counter-
intuitive relationship with learning. Confusion is a
particularly compelling example of such a state.
Though most would consider confusion to be a neg-
ative affective state, both in terms of its subjective
experience (that is, most people do not like being
confused) and its assumed impact on learning (that
is, intuition suggests that confusion is harmful to
learning), there is some correlational evidence that
suggests a positive relationship between confusion
and learning gains (D’Mello et al., 2013). We were
intrigued by this Unding, so we developed a learning
environment to investigate whether there are any
beneUts to intentionally inducing confusion.

Case Study of an Affect-Enabled ALT: 
Using Confusion to Promote Clarity

The idea that some forms of confusion can be bene-
Ucial to learning is grounded in theories that high-
light the beneUts of impasses, cognitive conVict, and
cognitive disequilibrium to learning at deeper levels
of comprehension. These theories suggest that con-
fusion signals that something is wrong with the
learner’s state of knowledge and can engender deep-
er modes of processing to the extent that the learner
engages in effortful cognitive activities to resolve the
confusion. Importantly, it is not the confusion itself,
but the cognitive activities that accompany confu-
sion resolution that lead to any improvement in
learning gains.

A Model of Confusion Induction and Resolution

Figure 4 depicts some of the key processes of our
model. ALTs, by and large, strive to promote clarity
and understanding by providing hints, explanations,
elaborated feedback, and other cognitive scaffolds.
This might lead to illusions of clarity and under-
standing, but not necessarily to deep conceptual
understanding. An alternate approach is to tem-
porarily suspend clarity by interleaving contradic-
tions, erroneous opinions, inaccurate feedback, and
other confusion-inducing events. The idea is that the
induced confusion will inspire learners to actively
engage in deliberation, problem solving, and other
forms of sense making in order to restore clarity by
resolving their confusion. The learning environment
can also assist by providing hints and targeted expla-
nations when confusion resolution fails and the
learner risks being hopelessly confused.
The success of this strategy will ultimately depend

on the extent to which confusion has been induced
and effectively resolved. Learning is not expected to
be affected if the induction fails or if the induced
confusion is simply ignored. Learning might also be
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negatively affected if the induced confusion is too

severe, the pedagogical scaffolds are insufUcient, and

learners are hopelessly confused. However, some

form of deep learning is expected if learners effort-

fully engage in confusion-resolution processes, even

if they do not fully resolve their confusion. Learners

might also experience a form of conceptual change if

problematic misconceptions are identiUed and cor-

rected during confusion resolution. This is, of course,

the sine qua non of learning.

Testing the Model

We tested the model by developing a learning envi-

ronment that strategically induced confusion at crit-

ical points during the learning of scientiUc research

methods, such as learning about the importance of

random assignment to substantiate causal claims.

The multimedia learning environment, modeled

after the educational game Operation ARA (Halpern

et al. 2012), taught research method concepts by pre-

senting example cases of studies (including the

research design, participants, methods, results, and

conclusions) that were frequently Vawed. Learners

were instructed to evaluate the merits of the studies

and point out problems over multiple trials. The cri-

tiques were accomplished by holding multiturn con-

versations in natural language with embodied con-

versational agent(s) and the human learner.

One rendition of the system (contradiction-only

version) included a tutor agent who led the tutorial

lessons and served as an expert on scientiUc inquiry

and a peer agent who simulated a peer of the human

learner. Confusion was induced by having the ani-

mated agents contradicting each other by occasion-

ally disagreeing on ideas and voicing inaccurate

information, and asking the human learner to inter-

vene and decide which opinion had the most scien-

tiUc merit. There was also a delayed-contradiction

version in which the agents initially agreed on a con-

cept but abruptly contradicted each other as the con-

versations progressed. A third version of the system

(false-feedback version) implemented dialogues

between the tutor agent and the human learner

(there was no peer agent). This version used a false-

feedback manipulation to induce confusion in which

the tutor provided positive feedback to incorrect

learner responses and negative feedback to correct

responses.

The interface for contradiction-only and delayed-

contradiction versions shown in Ugure 5 consisted of

the tutor agent (A), the peer agent (B), a description

of the research case study (C), a text-transcript of the

dialogue history (D), and a text box for learners to

enter and submit their responses (E). The agents

delivered the content of their utterances through

Confusion

Clarity

individual differences

confusion
resolution

learning
outcomes

(aptitude, prior knowledge,
motivation, etc.)hints, explanations

contradictions,
erroneous information,
false feedback partial or complete

confusion resolution

deep learning
and conceptual

change

negative or
negligible
learning

confusion
ignored or

hopeless confusion

Learning
Environment

Figure 4. Model of Confusion Induction and Resolution.
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synthesized speech while the human learner typed

his or her responses. Text transcripts of the trialogues

were stored in log Ules for ofVine analysis.

The different versions also varied the amount of

help provided to learners to resolve their confusion.

The delayed-contradiction and the false-feedback

versions provided learners with a short explanatory

text to read after the confusion inductions. The con-

tradiction-only version provided no explicit scaffold,

with the exception that all misleading information

(contradictions and false feedback) was corrected at

the end of the discussion for each case study (this was

the same in all versions).

We conducted four experiments (total N = 474) in

which college students learned between four and

eight research method concepts by discussing the sci-

entiUc merits of sample research studies with the ani-

mated agent(s). Experiments 1 and 2 used the con-

tradiction-only version (D’Mello et al., in press),

Experiment 3 used the delayed-contradiction plus

explanatory text version (D’Mello et al., in press),

and Experiment 4 used the false-feedback plus

explanatory text version (Lehman et al., unpub-

lished). All four experiments used a within-subjects

design in that learners analyzed some case studies

with the confusion-induction methods enabled and

other studies with these methods disabled.

Confusion was tracked through ofVine cued-recall

procedures (experiments 1 and 2), online self-reports

(experiments 3 and 4), and learner behaviors (for

example, response times after confusion induction,

accuracy on probing questions immediately follow-

ing the manipulations — all experiments). Learning

was measured through multiple-choice retention

tests (all experiments) and a transfer task involving

detection of Vaws in new case studies (experiments 3

and 4).

The results of all four experiments generally indi-

cated that the manipulations had the desired effect

of inducing confusion. Importantly, learning was

not affected by the manipulations alone or when the

manipulations failed to induce confusion. However,

performance on the learning measures was substan-

tially higher in the experimental conditions com-

pared to the control conditions when the manipula-

tions were successful in inducing confusion.

The results of these four experiments are signiU-

cant because they constitute some of the Urst exper-

Figure 5. Interface for Contradiction-Only and Delayed-Contradiction Learning Sessions.
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imental evidence on the moderating

effect of confusion on learning. The

most obvious implication is that there

might be some beneUts for ALTs that

intentionally perplex learners. Of

course, this is only if learners have the

requisite knowledge and skills to

resolve the confusion and the learning

environment provides appropriate

scaffolds to help with the confusion-

resolution process. But, when done

right, confusion is one road to clarity.

Concluding Remarks

Much has changed in the last decade

since Graesser and colleagues’ (2001)

article. We now know that conversa-

tional ITSs are more effective than

noninteractive text controls, their

effectiveness depends on the extent of

the alignment between the content

and students’ prior knowledge, they

are as effective as nonconversational

ITSs, and they rival or outperform

novice human tutors on comparable

content (Olney et al. 2012; VanLehn et

al. 2007; VanLehn 2011). We also

know that the content of the tutorial

dialogues is the primary driver of

learning gains, at least when compared

to other aspects of the interaction,

such as whether the tutors or students

communicate through speech or text

or whether animated pedagogical

agents are present or absent.

Though several of the earlier predic-

tions pertaining to the hypothesized

effectiveness of conversational ITSs

have generally been supported, two

counterintuitive Undings, one positive

and one negative, stand out. On the

positive front, a recent meta-analysis

by VanLehn (2011) revealed that the so

called “expert” human tutors rarely

achieve the much touted two sigma

effect noted by Bloom (1984) and that

conversational ITSs are equally effec-

tive as these human tutors. This posi-

tive Unding is tempered by the fact

that the effectiveness of conversation-

al tutors plateaus at about one sigma

(approximately a letter grade), a point

at which increased interactivity has lit-

tle or no additional impact in increas-

ing learning.

This article has focused on some of

our recent research on next-generation

conversational agents that aspire to

ascend the interactional plateau into
the land of two sigma effects. We have
described DeepTutor, a conversational
ITS that implements learning progres-
sions and deeper natural language
understanding. We have also discussed
affect-aware ITSs that take the student-
tutor interaction to the next level by
modeling both the affective and the
cognitive aspects of learning.
Our hope for the next decade is a

world in which these and other con-
versational ITSs autonomously help
hundreds of thousands of students
develop content mastery, learning
strategies, critical thinking, writing
proUciency, and other 21st century
skills in a manner that effectively inte-
grates cognition, motivation, and emo-
tion. This is a tall order indeed, but the
task of educating the next generation
of students is not for the faint of heart.
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toolkit is available at www.semanticsimilar-

ity.org.

4. See www.deeptutor.org.

5. See www.autotutor.org.

6. See emotion.autotutor.org.
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