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Abstract: Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative
imprint across multiple disciplines. Within computational biology, it is expediting progress in the
understanding of Protein–Protein Interactions (PPIs), key components governing a wide array of
biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate
biological system dynamics and unveiling potential avenues for therapeutic interventions. As the
deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists
an immediate demand for an exhaustive review that encapsulates and critically assesses these novel
developments. Addressing this requirement, this review offers a detailed analysis of the literature
from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI
analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting
an overview of the recent studies in the field. This consolidation helps elucidate the dynamic
paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent
dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and
newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications
in PPI analysis.

Keywords: deep learning; protein–protein interactions; computational biology; artificial intelligence;
PPI prediction; bioinformatics; machine learning; AI; protein networks

1. Introduction

In the current era, Artificial Intelligence (AI) forms a transformative underpinning of
our scientific progress [1–3]. Leveraging advancements in generative deep learning archi-
tectures, such as Generative Adversarial Networks (GANs) [4–8], Neural Radiance Fields
(NeRF) [9–14], and models such as the Generative Pre-training Transformer (GPT) [15–18],
we are facing the proposition that creative intuition, once perceived as an exclusive human
trait, may potentially be replicated or even surpassed within an algorithmic framework.

Deep learning has demonstrated exceptional prowess in uncovering complex patterns
within high-dimensional data, resulting in ground-breaking applications across various
domains [19–21]. By exploiting multiple layers of non-linear processing units for feature
extraction and transformation, deep learning models can learn hierarchical representations
from vast and complex datasets, a characteristic that has found utility in computational
biology [22–24], and in particular, the prediction of Protein–Protein Interactions (PPIs).

PPIs, pivotal elements in cellular processes, play an instrumental role in various
biological functions [25–28]. These interactions enable proteins to form complex, dynamic
networks, which in turn govern biological phenomena spanning from signal transduction
to enzymatic activity. Understanding these interactions is crucial, not only for deciphering
the complex orchestration of biological systems but also for the identification of novel
therapeutic targets for disease intervention. PPIs can be classified into several categories,
each with unique characteristics and functional implications. This classification includes
direct (physical) and indirect (functional) interactions, permanent and transient interactions,
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as well as homomeric and heteromeric interactions. Each of these types of PPIs has
distinct attributes and implications, necessitating a thorough understanding for successful
prediction and analysis.

One groundbreaking application of deep learning in protein studies is embodied by
AlphaFold [29], a remarkable AI system developed by DeepMind. AlphaFold stands as a
prime example of the confluence of computational prowess and biological understanding,
demonstrating the transformative power of AI in deciphering complex biological systems.

AlphaFold utilizes a deep-learning-based approach to predict protein structure, a
problem of profound significance in biology. The AI model has been meticulously trained
on a wealth of data derived from the Protein Data Bank, integrating a vast multitude of
known protein structures into its learning framework. The system leverages this training
to predict the arrangement of amino acids within a protein, generating a comprehensive
three-dimensional model that illuminates the protein’s spatial conformation.

With the emerging developments in deep learning, an increasing number of research
endeavors have explored its application to PPIs. Deep learning holds the promise of
revolutionizing PPI prediction, ushering in an era of highly accurate, efficient, and insightful
computational methodologies. This paper, therefore, provides a comprehensive review of
the most recent literature that employs deep learning for PPI analysis, with a particular
focus on works published during the period of 2021–2023.

In an era where deep learning technologies are experiencing unprecedented growth
and innovation, it is imperative to stay abreast of the most recent developments. This
review, therefore, serves as a crucial resource for researchers in the field, encapsulating the
state-of-the-art techniques in PPI analysis using deep learning, thereby providing insights
into this rapidly evolving domain.

2. Literature Review Methods
2.1. Study Selection Process

The primary objective of the paper selection process was to ascertain the incorporation
of high-quality, related research in the deep learning for PPIs domain. This was accom-
plished by adopting an algorithmic approach primarily hinged on the scholarly search
engine, Web of Science (WOS). The search keywords were meticulously selected, focusing
on crucial topics such as “deep learning”, “protein–protein interactions”, and “artificial
neural network”. This was done with the intention of identifying pertinent articles for a
comprehensive review. The review is strictly confined to papers published in peer-reviewed
journals. This restriction was instated on account of two main reasons. First, peer-reviewed
journals typically uphold the quality and reliability of the scientific literature by subject-
ing the papers to an intense review by experts in the field. Second, they are considered
trustworthy sources for the publication of scientifically robust and influential research.

Despite acknowledging the presence of preprints and conference papers in this domain,
it was decided to concentrate solely on peer-reviewed journal articles. This decision was
motivated by the need to enhance the reliability and validity of the review, by ensuring the
inclusion of studies that have undergone an intense review process. Moreover, in order
to retain the novelty and originality of the review, certain article types like review articles
and perspectives were deliberately excluded. The aim was to emphasize the integration of
primary research-based studies, aligning with the purpose of the review.

The temporal scope of the review was restricted to articles published during the last
three years, from 2021 to 2023. This timeframe was selected to guarantee the relevance and
contemporaneity of the review. This allows for a thorough understanding of the most recent
developments and trends in deep learning for PPIs. It is important to mention that the data
collection for 2023 was conducted up to May, in line with the present timeline, thereby ensuring
that the review remains concurrent with the latest advancements in the field. Throughout
the data collection process, we gathered information about the number of citations and the
publication log for each selected article. These details served as vital factors in appraising the
scope, impact, and acceptability of the research within the scientific community.
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To provide a structured overview of deep learning for PPIs, the selected papers were
categorized based on the objectives of the specific studies. This classification contributes
to a comprehensive understanding of the varied methodologies employed in the field,
thereby enhancing our understanding of the deep learning landscape for PPIs. Despite
many papers aligning with multiple categories, they were assigned to a single category
that best represented the main theme of the paper. Table 1 presents a summary of the
reviewed papers.

Table 1. Overview of Deep Learning Methods for Protein–Protein Interactions.

Deep Learning Methods Brief Description Studies

Graph Neural Networks
(GNNs)

Utilize graph data
processing with deep
learning

Albu et al. [30], Azadifar and Ahmadi [31], Baranwal et al. [32],
Dai et al. [33], Gao et al. [34], Hinnerichs and Hoehndorf [35],
Jha et al. [36], Kim et al. [37], Kishan et al. [38],
Mahbub and Bayzid [39], Quadrini et al. [40], Reau et al. [41],
Saxena et al. [42], Schapke et al. [43], St-Pierre Lemieux et al. [44],
Strokach et al. [45], Wang et al. [46], Wang et al. [47],
Williams et al. [48], Yuan et al. [49], Zaki et al. [50], Zhou et al. [51],
Zhou et al. [52]

Convolutional Neural
Networks (CNNs)

Utilize spatial data
processing with deep
learning

Chen et al. [53], Gao et al. [54], Guo et al. [55], Hu et al. [56],
Hu et al. [57], Kozlovskii and Popov [58], Mallet et al. [59],
Song et al. [60], Tsukiyama and Kurata [61], Wang et al. [62],
Xu et al. [63], Yang et al. [64], Yuan et al. [65]

Representation Learning
and Autoencoder

Utilize autoencoding for
learning representations
with deep learning

Asim et al. [66], Czibula et al. [67], Hasibi and Michoel [68],
Ieremie et al. [69], Jha et al. [70], Jiang et al. [71], Liu et al. [72],
Nourani et al. [73], Orasch et al. [74], Ray et al. [75],
Sledzieski et al. [76], Soleymani et al. [77], Wang et al. [78],
Yue et al. [79]

Recurrent Neural
Networks (including
LSTM)

Utilize sequential data
processing with deep
learning

Alakus and Turkoglu [80], Aybey and Gumus [81], Fang et al. [82],
Li et al. [83], Mahdipour et al. [84], Ortiz-Vilchis et al. [85], Szymborski
and Emad [86], Tsukiyama et al. [87], Zeng et al. [88], Zhang et al. [89],
Zhou et al. [90]

Attention Methods and
Transformers

Based on attention
mechanism and
position-specific encoding
with deep learning

Asim et al. [91], Baek et al. [92], Li et al. [93], Li et al. [94],
Nambiar et al. [95], Tang et al. [96], Warikoo et al. [97], Wu et al. [98],
Zhang and Xu [99], Zhu et al. [100]

Multi-task and
Multi-modal Learning

Perform multiple task or
use multiple types of data
simultaneously

Capel et al. [101], Li et al. [102], Linder et al. [103], Pan et al. [104],
Peng et al. [105], Schulte-Sasse et al. [106], Thi Ngan Dong et al. [107],
Zheng et al. [108]

Transfer Learning
Use pretrained deep
learning models for
feature extraction

Chen et al. [109], Derry and Altman [110], Si and Yan [111],
Yang et al. [112], Zhang et al. [113]

Generic/Applications
(including MLP) and
Others

Includes models that do
not fit specifically into
other categories, or using
PPIs as inputs of deep
learning models

Abdollahi et al. [114], Burke et al. [115], Dai and Bailey-Kellogg [116],
Dholaniya and Rizvi [117], Dhusia and Wu [118], Han et al. [119],
Humphreys et al. [120], Jovine [121], Kang et al. [122], Li et al. [123],
Lin et al. [124], Ma et al. [125], Madani et al. [126],
Mahapatra et al. [127], Nikam et al. [128], Pan et al. [129],
Pei et al. [130], Pei et al. [131], Singh et al. [132], Song et al. [133],
Sreenivasan et al. [134], Stringer et al. [135], Sun and Frishman [136],
Tran et al. [137], Wang et al. [138], Wee and Xia [139], Xie and Xu [140],
Xu et al. [141], Yan and Huang [142], Yang et al. [143], Yin et al. [144],
Zhang et al. [145], Zhong et al. [146], Zhu et al. [147], Zhu et al. [148]

2.2. An Analysis of Selected Papers

An examination of the selected papers was undertaken to elucidate the utilization
of deep learning methodologies for protein–protein interactions. These deep learning
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techniques have been enumerated in Table 1 alongside a brief description and their corre-
sponding studies.

Graph Neural Networks have been exceedingly utilized for deep learning applications
in numerous studies, capitalizing on graph data processing. They have been effectively
employed to model PPIs, given the inherent graph-like structure of protein interaction
networks. A non-negligible portion of the studies employed Convolutional Neural Networks.
Capitalizing on their capacity for spatial data processing, CNNs have been utilized for
deep learning purposes in PPI research. In a different vein, certain studies have exploited
Representation Learning and Autoencoders for obtaining representations with deep learning,
which has proven instrumental in discerning novel features and protein interaction patterns.
The sequential data processing capabilities of Recurrent Neural Networks, including Long
Short-Term Memory networks, have been harnessed in various studies, which underscores
their utility in handling time-series data and capturing temporal dependencies, a feature
especially relevant for sequential biological data such as protein sequences. Noteworthy
is the application of Attention Methods and Transformers that rely on the attention mecha-
nism and position-specific encoding for deep learning. Their ability to model long-range
interactions and complex dependencies makes them suitable for tasks such as predicting
PPIs. Moreover, Multi-task and Multi-modal Learning methods have found their application
in a number of studies. These methods can effectively handle multiple tasks or data types
simultaneously, thus, they can simultaneously predict multiple types of PPIs or utilize dif-
ferent kinds of biological data. Several studies have adopted Transfer Learning approaches,
reaping the benefits of pre-trained deep learning models for feature extraction, and thus
reducing the requirement for vast quantities of training data.

The category of Generic/Applications (including Multi-Layer Perceptrons (MLPs)) and Others
encompasses a broad range of models and applications, including some that do not specifically
fit into the aforementioned categories or those that use PPIs as inputs for deep learning models.
This signifies the breadth and diversity of deep learning applications in the field of PPIs. The
landscape of deep learning for PPIs is marked by a diverse array of methodologies, each
having its unique capabilities and advantages, which have been adeptly utilized in various
studies for unveiling the complex patterns of protein interactions.

2.3. Journals of Publications

The journals in which the selected papers were published provide insight into the
scientific communities that are actively engaged in deep learning for PPIs. An analysis
of the publication outlets for these articles can also shed light on their impact and reach
within the scientific community.

Table 2 presents a breakdown of the journals where the selected articles were published.
The journal ’Bioinformatics’ featured the highest count with 21 articles, constituting 17.6%
of the total publications. This indicates the journal’s significant role in promulgating
research on deep learning for PPIs.

The ’Briefings in Bioinformatics’ and ’BMC Bioinformatics’ journals both housed
12 publications, each comprising 10.1% of the total reviewed articles. This underscores
their substantial contribution to the dissemination of research in this field.

The ’IEEE-ACM Transactions on Computational Biology and Bioinformatics’ journal,
with seven articles, constitutes 5.9% of the total publications. This suggests a substantial
interest in this topic within the computational biology and bioinformatics community.

The ’Computational and Structural Biotechnology Journal’ and ’Frontiers in Genetics’,
each with four articles, represents 3.4% of the total papers reviewed, indicating their role in
the research landscape of deep learning for PPIs.
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Table 2. Journals of Publication.

Journal Counts Percentage (%)

Bioinformatics 21 17.6
Briefings in Bioinformatics 12 10.1
BMC Bioinformatics 12 10.1
IEEE-ACM Transactions on Computational Biology and Bioinformatics 7 5.9
Computational and Structural Biotechnology Journal 4 3.4
Frontiers in Genetics 4 3.4
Computers in Biology and Medicine 3 2.5
BMC Genomics 2 1.7
IEEE Access 2 1.7
IEEE Journal of Biomedical and Health Informatics 2 1.7
Scientific Reports 2 1.7
Science 2 1.7
Protein Science 2 1.7
Journal of Proteome Research 2 1.7
Interdisciplinary Sciences-Computational Life Sciences 2 1.7
Mathematics 2 1.7
Journal of Chemical Information and Modeling 2 1.7
Nature Machine Intelligence 2 1.7
Others (< 2 Publication) 34 28.6

A host of other journals, each with two publications, embody 1.7% of the total, in-
cluding prestigious titles like ’Science’ and ’Nature Machine Intelligence’, highlighting the
interdisciplinary and cross-field interest in this research area.

2.4. Year and Citations of Publications

The dynamics of publications in the domain of deep learning for PPIs can be analyzed
in terms of temporal distribution. As illustrated in Figure 1, the number of publications has
seen a remarkable increase over the years, reflecting the growing interest in and significance
of this research area.

Figure 1. Overview of the Distribution of Publication Years and Citation Frequencies. (A) Illustrates
the distribution of publication years; (B) displays the distribution of citation frequencies.

In 2021, a total of 40 studies were published that applied deep learning methods to
PPIs. This represents a significant contribution to the field, reflecting a mature state of
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research interest. The following year, 2022, witnessed a substantial surge in the number
of publications, amounting to 56. This represents an approximately 40% increase from
the previous year. This rapid growth signals the emerging enthusiasm and considerable
advancements in the application of deep learning methods to PPIs.

As for 2023, until May, there have already been 23 papers published. If the current
publication rate persists throughout the year, the total number of publications in 2023
is projected to surpass that of the previous years. This trend underlines the continuous
evolution of the field, as well as the persistent pursuit for improved methodologies for
understanding and leveraging PPIs using deep learning techniques.

An examination of citation distribution offers insights into the reception and influence
of publications within the sphere of deep learning for PPIs. Statistical metrics, such as
median and mean, can provide a robust summary of the overall citation landscape. The
median number of citations for these publications is recorded as 2, while the mean is
observed to be slightly higher at 5.3. A notable point is the high number of studies that
have not yet been cited, implying that these are relatively recent contributions, or perhaps
they have yet to be discovered or appreciated by the wider research community. This lack
of citations may also be an artifact of the current data collection process, as data for 2023 is
not fully collected and updated by the WoS.

The disparity between the mean and median citation count can be indicative of a
skewed distribution, likely due to a small number of highly cited papers. It highlights the
breadth of research impact, where a handful of studies may have profoundly influenced
the field, while the majority of studies are yet to make a substantial impact. These find-
ings, combined with the awareness that the field is still young and in a constant state of
evolution, paint a promising picture for the future of deep learning applications in PPIs.
It reinforces the idea that this research area is rich with opportunity and potential for
transformative discoveries.

Overall, the increasing trend in the number of publications underscores the vitality of
this research domain and implies the potential for future development. This continuous
growth reflects the ongoing refinement of deep learning methods applied to PPIs and the
recognition of their valuable contributions in biological and computational research.

3. Historical Deep Learning Methods for Protein–Protein Interaction Analysis

The emergence and development of historical deep learning methodologies for PPI
analysis have significantly facilitated the comprehensive understanding of complex cellular
processes. They have been instrumental in enabling thorough investigation and prediction
of these interactions. In this section, two representative frameworks (PIPR and DPPI) and
their limitations are discussed.

The PIPR framework [149] introduces an innovative approach for PPI prediction cen-
tered around amino acid sequences. This method is anchored in a Siamese architecture,
leveraging a deep residual recurrent convolutional neural network (RCNN). The integration
of recurrent and convolutional layers allows PIPR to accurately capture fundamental local
and sequential attributes inherent in protein sequences. To further augment the feature
extraction process, PIPR employs an automatic multi-granular feature selection mechanism.
This assists PIPR in identifying and giving precedence to the most informative and dis-
tinguishing features within the sequences. In addition to this, PIPR amalgamates diverse
aspects of PPI data, which includes sequence similarity, evolutionary preservation, and
domain-domain interactions, to establish a comprehensive and thorough predictive model.
The DPPI model addresses both homodimeric and heterodimeric protein interactions. It can
also replicate binding affinities. The creation of the RCNN employed bidirectional gated
recurrent units (i.e., bidirectional-GRU), yet GRUs have demonstrated limited learning
efficiency and slow convergence [150].

The DPPI method [151] introduces a distinct approach for PPI prediction by harnessing
deep learning techniques. The use of deep Siamese-like CNNs, combined with random
projection and data augmentation, allows DPPI to deliver accurate sequence-based PPI
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predictions. This method concentrates on capturing critical aspects of a protein pair’s
composition, which includes the amino acid sequence and the co-occurrence of overlapping
sequence motifs. DPPI employs PSI-BLAST to generate probabilistic sequencing profiles for
each protein to extract pertinent features, offering a holistic description. The convolutional
module, made up of multiple layers, identifies sequence patterns within each protein’s
profile. Furthermore, DPPI applies random projection to the representations sourced from
the convolutional module, projecting them into two unique spaces. The Siamese-based
learning architecture captures the reciprocal influence of protein pairings, allowing for
generalization in addressing diverse PPI prediction problems without the necessity for
predefined features. However, based on 5-fold cross-validation, DPPI’s performance in
terms of PPI prediction accuracy on the S.cerevisiae core dataset was found to be inferior to
that of PIPR [149].

4. Graph Neural Networks for Protein–Protein Interactions

Graph Neural Networks (GNNs) [152–155] have emerged as a versatile and powerful
class of methods in the computational prediction of PPIs. They represent a specific form of
deep learning architecture specially designed for dealing with data structured as graphs.
Given the complex nature of biomolecular data, such as proteins, which can be naturally
represented as graphs, GNNs provide a unique opportunity to capture intricate patterns
and relationships within these datasets.

In essence, a graph can be seen as a collection of nodes and edges, where nodes
represent entities (e.g., proteins), and edges denote relationships or interactions (e.g.,
PPIs). GNNs take advantage of this structured data format by applying various forms of
convolutions directly on the graph, enabling them to learn from both local node features and
the broader network topology. This ability is particularly useful in the study of PPIs, where
the biological significance of an interaction often depends not only on the properties of the
interacting proteins but also on their position and role within the larger protein network.

The unique capacity of GNNs to exploit the underlying structure of graph data is
achieved through several key mechanisms. Firstly, GNNs use neighborhood aggregation
or message-passing frameworks, wherein each node in the graph gathers information
from its local neighbors to update its state. This allows GNNs to incorporate local context
into node representations, thereby capturing the immediate interaction dynamics in PPIs.
Secondly, through multiple rounds of these aggregations, GNNs can learn increasingly
abstract representations of nodes, thereby modeling higher-order interaction effects and
uncovering complex interaction patterns.

Various types of GNNs have been employed in the study of PPIs, with each offering
unique advantages. Graph Convolutional Networks (GCNs) [156–158], for instance, are par-
ticularly adept at learning from homophily in networks, wherein nodes that are connected
or nearby in the graph have similar features. Graph Attention Networks (GATs) [159–161]
add another level of sophistication by introducing attention mechanisms that allow differ-
ent weights to be assigned to different neighbors during the aggregation process. These and
other variants of GNNs provide a flexible and robust toolset for tackling the challenging
task of PPI prediction.

Research leveraging GNNs for PPI prediction spans a wide range of applications, from
identifying specific interaction sites on proteins, predicting the existence of interactions
between protein pairs, to classifying proteins based on their interaction profiles. These
studies typically involve formulating the PPI problem as a graph-based learning task, such
as node classification, link prediction, or graph classification, and employing suitable GNN
architectures to solve it.

Recent studies have witnessed a prominent trend in utilizing GNNs for PPI predic-
tions. These studies have explored various models and techniques, aiming to enhance
the accuracy and efficiency of PPI prediction tasks. Notably, researchers have focused
on leveraging GNNs, such as augmented GATs and GCNs, to capture structural invari-
ance, learn graph representations, and improve prediction performance. Additionally,
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the integration of multimodal data sources, biological features, and prior knowledge has
emerged as a significant aspect of recent research efforts. These studies have demonstrated
remarkable advancements in predicting PPIs and utilizing PPI information for various
predictive tasks, reinforcing the critical role of deep learning methods, particularly GNNs
and GCNs, in advancing our understanding of PPIs and their implications in biological
systems. Continued research and methodological advancements are expected to drive
further progress in this field. The summary of recent studies can be observed in Table 3.

Table 3. Summary of Contributions in Studies on Graph Neural Networks for Protein–Protein Inter-
actions. Note that each study employed varied datasets, cross-validation methods, and simulation
settings for evaluation, making direct comparisons potentially inconclusive. The highest reported
accuracy is presented when models were assessed using multiple datasets.

Author Metrics and Results Contributions

Albu et al. [30] AUC: 0.92
AUPRC: 0.93

Developed MM-StackEns, a deep multimodal stacked generalization
approach for predicting PPIs.

Azadifar and Ahmadi [31] AUC: 0.8847 Introduced a semi-supervised learning method for prioritizing
candidate disease genes.

Baranwal et al. [32]
ACC: 0.9889
MCC: 0.9779
AUC: 0.9955

Presented Struct2Graph, a GAT designed for structure-based
predictions of PPIs.

Dai et al. [33] MSE: 0.2446
PCC: 0.8640

Formulated a method for predicting protein abundance from
scRNA-seq data.

Gao et al. [34] ACC: 0.778 Developed the Substructure Assembling Graph Attention Network
(SA-GAT) for graph classification tasks.

Hinnerichs and Hoehndorf [35] AUC: 0.94 Devised DTI-Voodoo, a method combining molecular features and PPI
networks to predict drug-target interactions.

Jha et al. [36]

ACC: 0.9813
MCC: 0.9520
AUC: 0.9828
AUPRC: 0.9886

Proposed the use of GCN and GAT to predict PPIs.

Kim et al. [37]
Precision: 0.60
F1: 0.52
NMI: 0.404

Proposed DrugGCN, a GCN for drug response prediction using gene
expression data.

Kishan et al. [38] AUC: 0.936
AUPRC: 0.941 Developed a higher-order GCN for biomedical interaction prediction.

Mahbub and Bayzid [39]

ACC: 0.715
MCC: 0.27
AUC: 0.719
AUPRC: 0.405

Introduced EGRET, an edge aggregated GAT for PPI site prediction.

Quadrini et al. [40]
ACC: 0.731
MCC: 0.054
AUC: 0.588

Explored hierarchical representations of protein structure for PPI site
prediction.

Reau et al. [41] AUC: 0.85 Developed DeepRank-GNN, a graph neural network framework for
learning interaction patterns.

Saxena et al. [42] ACC: 0.9113
F1: 0.90

Proposed a network centrality based approach combined with GCNs
for link prediction.
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Table 3. Cont.

Author Metrics and Results Contributions

Schapke et al. [43] AUC: 0.9043
AUPRC: 0.7668 Developed EPGAT, an essentiality prediction model based on GATs.

St-Pierre Lemieux et al. [44] ACC: 0.84
MCC: 0.94

Presented several geometric deep-learning-based approaches for PPI
predictions.

Strokach et al. [45] Spearman’s R: 0.62 Described ELASPIC2 (EL2), a machine learning model for predicting
mutation effects on protein folding and PPI.

Wang et al. [46]
ACC 0.9365
MCC 0.4301
AUC 0.6068

Developed SIPGCN, a deep learning model for predicting
self-interacting proteins.

Wang et al. [47] ACC: 0.413 Introduced PLA-GNN, a method for identifying alterations of protein
subcellular locations.

Williams et al. [48] AUC: 0.85 Developed DockNet, a protein–protein interface contact
prediction model.

Yuan et al. [49]

ACC: 0.776
MCC: 0.333
AUC: 0.786
AUPRC: 0.429

Proposed GraphPPIS, a deep graph-based framework for PPI
site prediction.

Zaki et al. [50] F1: 0.616 Developed a method for detecting protein complexes in PPI data
using GCNs.

Zhou et al. [51] AUC: 0.5916
AP: 0.85

Conducted a comparative study on various graph neural networks for
PPI prediction.

Zhou et al. [52]

ACC: 0.856
F1: 0.569
AUC: 0.867
AUPRC: 0.574

Presented AGAT-PPIS, an augmented graph attention network for PPI
site prediction.

4.1. Pairwise PPI Prediction

Albu et al. [30] presented MM-StackEns, a deep multimodal stacked generalization
approach for predicting PPIs, employing a Siamese neural network and graph attention
networks, with superior performance on Yeast and Human datasets. Similarly, Jha et al. [36]
used Graph Convolutional Network (GCN) and Graph Attention Network (GAT) for PPI
prediction, yielding superior results on Human and S. cerevisiae datasets.

4.2. PPI Network Prediction

Baranwal et al. [32] offered Struct2Graph, a graph attention network for structure-
based PPI predictions, potentially identifying residues contributing to protein–protein
complex formation. Gao et al. [34] designed the Substructure Assembling Graph Attention
Network (SA-GAT) for graph classification tasks, including potential applications in PPI
networks. Zaki et al. [50] proposed a method for detecting protein complexes in PPI data
using GCNs, formulating protein complex detection as a node classification problem and
implementing the Neural Overlapping Community Detection (NOCD) model.

4.3. PPI Site Prediction

Quadrini et al. [40] used Graph Convolutional Networks for PPI site prediction,
exploring a novel abstraction of protein structure termed as hierarchical representations.
Mahbub and Bayzid [39] introduced EGRET, an edge aggregated graph attention network
for PPI site prediction, reporting significant improvements in performance. Yuan et al. [49]
proposed GraphPPIS, a deep graph-based framework for PPI site prediction that delivered
significantly improved performance over other methods.
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4.4. Docking

Williams et al. [48] developed DockNet, a high-throughput protein–protein interface
contact prediction model utilizing a Siamese graph-based neural network. Reau et al. [41]
developed DeepRank-GNN, a graph neural network framework that converts protein–
protein interfaces into graphs to learn interaction patterns.

4.5. Auxiliary PPI Prediction Tasks

Azadifar and Ahmadi [31] introduced a semi-supervised learning method based on
GCNs for prioritizing candidate disease genes. Dai et al. [33] formulated PIKE-R2P, a graph
neural network method incorporating PPIs for predicting protein abundance from scRNA-
seq data. Hinnerichs and Hoehndorf [35] developed DTI-Voodoo, a method combining
molecular features and PPI networks to predict drug-target interactions. Kim et al. [37] pro-
posed DrugGCN for drug response prediction using gene expression data. Wang et al. [46]
developed SIPGCN, a GCN-based model for predicting self-interacting proteins (SIPs) from
sequence information.

The range and depth of these studies underscore the crucial role deep learning meth-
ods, particularly GNNs and GCNs, continue to play in advancing PPI predictions. With on-
going research and methodological enhancements, the future promises continued progress
in understanding and predicting PPIs and their influence on biological systems.

5. Convolutional Neural Networks for Protein–Protein Interactions

Convolutional Neural Networks (CNNs) [162–164] represent another major deep
learning architecture that has found substantial application in the prediction of PPIs.
Inspired by the organization of the animal visual cortex, CNNs are specialized kinds
of neural networks for processing data with a grid-like topology, such as an image, which
can also be extended to handle 1D sequence data, like protein sequences, or 3D data, like
protein structures.

A CNN typically consists of multiple layers, which may include convolutional layers,
pooling layers, and fully connected layers. The distinctive feature of CNNs is the con-
volutional layer that performs a convolution operation. In the context of a 1D sequence
such as a protein sequence, a convolution involves a filter (or kernel) moving across the
input sequence and performing an element-wise multiplication and sum operation, thereby
capturing local dependencies within the sequence. In the case of 2D data like images
or 3D data like protein structures, similar operations are performed but in two or three
dimensions, respectively.

This local receptive field, embodied in the convolution operation, allows the model
to automatically and adaptively learn spatial hierarchies of features. For instance, lower
layers of the network might learn to recognize simple patterns such as certain sequence
motifs in a protein sequence, while higher layers could learn to recognize more complex
patterns based on the lower-level features, analogous to recognizing complex shapes or
objects from simple edges in image data.

Pooling layers within a CNN perform a down-sampling operation along the spatial
dimensions, which helps to make the representation invariant to small translations and
reduce the computational complexity. The fully connected layers typically come towards
the end of the network and can be seen as a traditional multi-layer perceptron that uses the
high-level features extracted by the preceding convolutional and pooling layers to perform
classification or regression.

In PPIs, CNNs are often employed to learn from protein sequence or structure data,
where they can effectively capture local dependencies and hierarchies of biological features.
For instance, studies in this category might involve predicting whether a given pair of
proteins interacts based on their sequence or structural features, or identifying the specific
sites of interaction on a given protein.

Additionally, CNNs have been combined with other types of networks, such as RNNs
or attention networks, to better model complex dependencies in the data. These hybrid
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models allow researchers to leverage the strengths of multiple architectures to improve PPI
prediction performance.

Recent studies have showcased notable trends in the application of CNNs for PPI
analysis. These studies have explored diverse models and approaches, aiming to enhance
the accuracy and effectiveness of PPI prediction tasks. Researchers have developed deep
residual neural networks, ensemble residual CNNs, and Siamese-ensemble models, among
others, to leverage sequence-driven features, improve prediction performance, and cir-
cumvent local optima. Additionally, the application of CNNs in protein docking, binding
site prediction, and human-virus PPI analysis has demonstrated significant advancements.
The integration of deep learning frameworks, such as recurrent CNNs and three-track
neural networks, has proven valuable in predicting protein interactions, phosphorylation
sites, and protein–peptide binding sites. Moreover, advancements in protein sequence
encoding formats and graph-regularized CNNs have contributed to the coherence and
biological interpretation of gene clusters in spatial gene expression analysis. The range and
depth of these studies highlight the importance of CNNs in advancing our understanding
and prediction of PPIs, emphasizing their potential for future research endeavors. Table 4
provides an overview of the latest research findings.

Table 4. Summary of Contributions in Studies on Convolutional Neural Networks for Protein–
Protein Interactions. Note that each study employed varied datasets, cross-validation methods, and
simulation settings for evaluation, making direct comparisons potentially inconclusive. The highest
reported accuracy is presented when models were assessed using multiple datasets.

Author Metrics and Results Contributions

Chen et al. [53]
ACC: 0.9303
F1: 0.9268
MCC: 0.8609

Developed DCSE, a sequence-based model using MCN and MBC for
feature extraction and PPI prediction.

Gao et al. [54]
ACC: 0.9534
MCC: 0.9086
AUC: 0.9824

Introduced EResCNN, an ensemble residual CNN integrating diverse
feature representations for PPI prediction.

Guo et al. [55] ACC: 0.884
PCC: 0.366

Introduced TRScore, a 3D RepVGG-based scoring method for ranking
protein docking models.

Hu et al. [56]
ACC: 0.9755
MCC: 0.9515
F1: 0.9752

Developed DeepTrio, a PPI prediction tool using mask multiple
parallel convolutional neural networks.

Hu et al. [57]

ACC: 0.859
MCC: 0.399
AUC: 0.824
AUPRC: 0479

Developed D-PPIsite, a deep residual network integrating four
sequence-driven features for PPI site prediction.

Kozlovskii and Popov [58] AUC: 0.91
MCC: 0.49

Developed BiteNet, a 3D convolutional neural network method for
protein–peptide binding site detection.

Mallet et al. [59] ACC' 0.70 Developed InDeep, a 3D fully convolutional network tool for
predicting functional binding sites within proteins.

Song et al. [60]

ACC: 0.776
MCC: 0.333
AUC: 0.786
AUPRC: 0.429

Presented a method for clustering spatially resolved gene expression
using a graph-regularized convolutional neural network, leveraging
the PPI network graph.

Tsukiyama and Kurata [61]

ACC: 0.956
F1: 0.955
MCC: 0.912
AUC: 0.988

Proposed Cross-attention PHV, a neural network utilizing
cross-attention mechanisms and 1D-CNN for human-virus PPI
prediction.
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Table 4. Cont.

Author Metrics and Results Contributions

Wang et al. [62] ACC: 0.784
MCC:0.5685

Proposed an enhancement to a 2D CNN using
Sequence-Statistics-Content (SSC) protein sequence encoding format
for PPI tasks.

Xu et al. [63] ACC: 0.9617
F1: 0.9257

Introduced OR-RCNN, a PPI prediction framework based on ordinal
regression and recurrent convolutional neural networks.

Yang et al. [64] AUC: 0.885
MCC: 0.390

Proposed PhosIDN, an integrated deep neural network combining
sequence and PPI information for improved prediction of protein
phosphorylation sites.

Yuan et al. [65] ACC: 0.9680
Presented a deep-learning-based approach combining a
semi-supervised SVM classifier and a CNN for constructing complete
PPI networks.

5.1. Pairwise PPI Prediction

Chen et al. [53] designed the Double-Channel-Siamese-Ensemble (DCSE) model,
a sequence-based computational approach, for pairwise PPI prediction, with superior
performance. Additionally, Gao et al. [54] developed EResCNN, a predictor for PPIs based
on an ensemble residual convolutional neural network, outperforming existing models in
PPI prediction on various datasets. Hu et al. [56] developed DeepTrio, a PPI prediction
tool using mask multiple parallel convolutional neural networks, outperforming several
state-of-the-art methods.

5.2. PPI Network Prediction

Yuan et al. [65] introduced a deep-learning-based approach for constructing complete
PPI networks. By combining a semi-supervised SVM classifier and a CNN, they facilitated
protein complex detection with superior performance on benchmark datasets.

5.3. PPI Site Prediction

Hu et al. [57] presented D-PPIsite, a deep residual neural network for PPI site predic-
tion. It achieved superior performance with an average accuracy of 80.2% and precision of
36.9% when tested on five independent datasets.

5.4. Docking

Guo et al. [55] developed TRScore, a 3D RepVGG-based method for ranking protein
docking models. This method was designed to improve the accuracy of traditional scoring
functions for recognizing near-native conformations. Mallet et al. [59] introduced InDeep,
a 3D fully convolutional neural network tool for predicting functional binding sites within
proteins. When compared with state-of-the-art ligandable binding site predictors, InDeep
exhibited superior performance.

5.5. Auxiliary PPI Prediction Tasks

Kozlovskii and Popov [58] developed BiteNet(P)(p), a 3D CNN method for protein–
peptide binding site detection. The method is ideal for large-scale analysis of protein–
peptide binding sites. Tsukiyama and Kurata [61] proposed Cross-attention PHV, a cross-
attention-based neural network for predicting human-virus PPIs. This model outperformed
existing models on a benchmark dataset and accurately predicted PPIs for unknown viruses.
Song et al. [60] proposed a method for clustering spatially resolved gene expression data
using a graph-regularized convolutional neural network. This method leverages the graph
of a PPI network, improving the coherence of spatial patterns and providing biological
interpretation of the gene clusters in the spatial context.

Wang et al. [62] proposed an enhancement to a 2D CNN for PPI tasks using the
Sequence-Statistics-Content (SSC) protein sequence encoding format. Their method en-
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riched unique sequence features to improve the performance of the deep learning model.
Xu et al. [63] introduced OR-RCNN, a deep learning framework for PPI prediction based
on ordinal regression and recurrent convolutional neural networks. This method out-
performed other PPI prediction models when tested on S. cerevisiae and Homo sapiens
datasets. Yang et al. [64] developed PhosIDN, an integrated deep neural network for
improving the prediction of protein phosphorylation sites. By integrating sequence and
PPI information, this model achieved superior performance over existing phosphorylation
site prediction methods.

6. Representation Learning and Autoencoder for Protein–Protein Interactions

A core challenge in PPIs and related biological properties using deep learning ap-
proaches is the representation of the protein sequences or structures. Representation
learning [165–167], also known as feature learning, is a set of methods that allows a ma-
chine or a model to automatically discover the representations needed to classify or predict
outcomes from the raw data. This method has proven its effectiveness in various domains,
including protein science, by providing an efficient way to transform raw biological data
into a format that is suitable for analysis.

In the context of protein studies, representation learning methods have been used to
transform protein sequence and structure information into meaningful features that capture
the biological properties of the proteins. These methods can range from simple techniques
such as one-hot encoding or count-based representations, to more sophisticated methods
based on word embeddings like Word2Vec [168–170], or even advanced techniques that
take into account the sequential nature of proteins, such as RNN embeddings.

Representation learning plays a significant role in PPI analysis by efficiently encoding
and representing protein sequences or structures. This involves transforming raw bio-
logical data into an informative, reduced-dimensional format that can facilitate further
computational analysis and predictive modeling. In the context of PPI studies, this en-
compasses the development of methodologies and models that convert protein sequences
or structural information into meaningful features that capture the essential biological
properties of proteins.

The autoencoder [171–173], a particular type of artificial neural network, is a powerful
tool for representation learning. An autoencoder is designed to learn an efficient encoding
and decoding scheme for a set of data, typically aiming to learn a compact representation
that preserves as much information about the original data as possible. An autoencoder
consists of two parts: the encoder, which maps the input data to a lower-dimensional
representation, and the decoder, which reconstructs the original data from this lower-
dimensional representation.

By training an autoencoder to minimize the difference between the original and
the reconstructed data (known as reconstruction error), we can use the learned lower-
dimensional representation as a new feature set for our data. This approach has been
particularly useful for PPI prediction, where the complexity and high-dimensionality of
protein data often make it difficult to devise hand-crafted features.

Autoencoders can take on various forms depending on the specific use case. For
example, denoising autoencoders [174] are trained to reconstruct the original data from a
corrupted version of it, making them robust to noise in the input data. Variational autoen-
coders [171], on the other hand, are a type of generative model that adds a probabilistic
spin to autoencoders, allowing them to generate new data that resemble the training data.

A wide range of studies involving PPIs fall within the purview of representation learn-
ing and autoencoders. This includes work that uses autoencoders or other representation
learning methods to transform protein sequence or structural data into a format suitable for
PPI prediction, studies that use these methods to predict specific properties related to PPIs,
like interaction sites or interaction types, and those that integrate these methods with other
machine learning or deep learning techniques to improve PPI prediction performance.
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Recent studies have highlighted the significant role of autoencoders and representation
learning in PPI analysis. Researchers have developed innovative frameworks and models
that leverage autoencoders to encode protein structures and primary sequences, leading to
enhanced computational efficiency and low complexity. Additionally, the integration of
graph autoencoders and deep sequence features has demonstrated superior performance
in predicting abnormal phenotype-human protein associations. Autoencoders have also
been applied in ensemble models for PPI prediction, utilizing separate autoencoders for
positive and negative interactions. Representation learning techniques, including hashing
methods, have emerged as effective approaches for reducing time complexity in predicting
PPI relationships. Deep learning models directly utilizing protein sequences have proven
highly accurate, even with limited training data, providing valuable insights into protein
characterization. Researchers have also explored interdisciplinary applications, such as
viral-host PPI prediction and SARS-CoV2-human host protein interaction analysis, where
deep learning methodologies have showcased remarkable advancements. Moreover, the
incorporation of GO terms and attention mechanisms has led to the development of
models that capture deep semantic relations and outperform traditional semantic similarity
measures in PPI prediction. These recent studies collectively underscore the importance of
autoencoders and representation learning techniques in advancing our understanding and
prediction of PPIs. Recent studies are summarized in Table 5.

Table 5. Summary of Contributions in Studies on Representation Learning for Protein–Protein Inter-
actions. Note that each study employed varied datasets, cross-validation methods, and simulation
settings for evaluation, making direct comparisons potentially inconclusive. The highest reported
accuracy is presented when models were assessed using multiple datasets.

Author Metrics and Results Contributions

Asim et al. [66]

ACC: 0.82
MCC: 0.6399
F1: 0.6399
AUC: 0.88

Developed LGCA-VHPPI, a deep forest model for effective viral-host
PPI prediction using statistical protein sequence representations.

Czibula et al. [67]
ACC: 0.983
F1: 0.984
AUC: 0.985

Introduced AutoPPI, an ensemble of autoencoders designed for PPI
prediction, yielding strong performance on several datasets.

Hasibi and Michoel [68] MSE: 0.133 Demonstrated a Graph Feature Auto-Encoder that utilizes the
structure of gene networks for effective prediction of node features.

Ieremie et al. [69] AUC: 0.939 Proposed TransformerGO, a model predicting PPIs by modeling the
attention between sets of Gene Ontology (GO) terms.

Jha et al. [70] ACC: 0.8355
F1: 0.8349

Utilized a stacked auto-encoder for PPI prediction, showcasing
effective feature extraction approach for addressing PPI problems.

Jiang et al. [71]
ACC: 0.990
MCC: 0.975
F1 0.990

Introduced DHL-PPI, a deep hash learning model to predict
all-against-all PPI relationships with reduced time complexity.

Liu et al. [72] AUC: 0.658 Designed GraphPheno, a graph autoencoder-based method to predict
relationships between human proteins and abnormal phenotypes.

Nourani et al. [73] AP: 0.7704 Presented TripletProt, a deep representation learning approach for
proteins, proving effective for protein functional annotation tasks.

Orasch et al. [74] AUC 0.88
Presented a new deep learning architecture for predicting interaction
sites and interactions of proteins, showing state-of-the-art
performance.

Ray et al. [75] ND Presented a deep learning methodology for predicting high-confidence
interactions between SARS-CoV2 and human host proteins.

Sledzieski et al. [76] AUPRC: 0.798 Presented D-SCRIPT, a deep-learning model predicting PPIs using
only protein sequences, maintaining high accuracy across species.
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Table 5. Cont.

Author Metrics and Results Contributions

Soleymani et al. [77] ACC: 0.9568
AUC: 0.9600

Proposed ProtInteract, a deep learning framework for efficient
prediction of protein–protein interactions.

Wang et al. [78]
ACC: 0.633
AUC: 0.681
AUPRC: 0.339

Introduced DeepPPISP-XGB, a method integrating deep learning and
XGBoost for effective prediction of PPI sites.

Yue et al. [79] ACC: 0.9048
AUC: 0.93

Proposed a deep learning framework to identify essential proteins
integrating features from the PPI network, subcellular localization,
and gene expression profiles.

6.1. Pairwise PPI Prediction

Several models have been proposed to predict pairwise PPIs. Ieremie et al. [69]
proposed TransformerGO, which predicts PPIs by modeling the attention between sets
of Gene Ontology (GO) terms. Similarly, Jha et al. [70] utilized a stacked auto-encoder
for PPI prediction, a deep learning method that accepts a 92-length feature vector derived
from protein sequences. Also, Asim et al. [66] introduced LGCA-VHPPI, a deep forest
model for viral-host PPI prediction. Moreover, Sledzieski et al. [76] presented D-SCRIPT, a
deep-learning model predicting PPIs using only their sequences.

6.2. PPI Network Prediction

Several works have focused on the prediction of PPI networks. Hasibi and Michoel [68]
demonstrated an end-to-end Graph Feature Auto-Encoder, utilizing the structure of gene
networks for prediction of node features. In a similar vein, Jiang et al. [71] proposed DHL-
PPI, a deep hash learning model, to predict all-against-all PPI relationships in a database of
proteins. In the context of disease, Ray et al. [75] presented a deep learning methodology
for predicting high-confidence interactions between SARS-CoV2 and human host proteins.

6.3. PPI Site Prediction

Predicting the sites of protein–protein interactions has also been a subject of focus.
Wang et al. [78] introduced DeepPPISP-XGB, a method integrating deep learning and
XGBoost for the prediction of PPI sites. In another study, Orasch et al. [74] presented
a new deep learning architecture based on graph representation learning for predicting
interaction sites and interactions of proteins.

6.4. Auxiliary PPI Prediction Tasks

Several studies have applied representation learning and autoencoders for auxiliary
PPI prediction tasks. Liu et al. [72] designed GraphPheno, a semi-supervised method based
on graph autoencoders, for predicting relationships between human proteins and abnormal
phenotypes. Nourani et al. [73] presented TripletProt, a deep representation learning
approach for proteins, based on Siamese neural networks. Additionally, Yue et al. [79]
proposed a deep learning framework integrating features from the PPI network, subcellular
localization, and gene expression profiles to identify essential proteins.

Czibula et al. [67] introduced AutoPPI, an ensemble of autoencoders designed for PPI
prediction. AutoPPI utilized two autoencoders for positive and negative interactions. Also,
Soleymani et al. [77] proposed ProtInteract, a deep learning framework for predicting PPIs,
providing low computational complexity and fast response. Both AutoPPI and ProtInteract
can be considered general tools applicable to several auxiliary PPI prediction tasks.

7. Recurrent Neural Networks for Protein–Protein Interactions

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed
to recognize patterns in sequences of data, such as text, speech, or, in this case, protein
sequences [175–177]. They offer a powerful tool for processing sequential data due to their
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inherent ability to “remember” previous inputs in the sequence using hidden states. This
memory feature makes RNNs uniquely suitable for tasks where the order of elements is
crucial, such as in the prediction of PPIs from protein sequences.

An RNN contains a layer of hidden units, whose activations are calculated based
on the current input and the previous hidden state. This recurrent connection allows
information to be passed along from one step in the sequence to the next, creating an
internal state of the network that allows it to exhibit dynamic temporal behavior.

One of the major variants of RNNs, particularly effective for PPI prediction, is the
Long Short-Term Memory (LSTM) network [175]. LSTMs were introduced to combat the
“vanishing gradients” problem encountered when training traditional RNNs. They do this
by introducing a set of gating mechanisms: the input gate, forget gate, and output gate.
These gates, together with a cell state, allow the LSTM to regulate the flow of information
through the network.

The cell state acts as a kind of conveyor belt, allowing important information to be
carried forward with minimal modification, while the input, forget, and output gates
control the extent to which new information is added, old information is removed, and the
current state is revealed, respectively. This mechanism allows LSTMs to learn long-term
dependencies, making them particularly effective when dealing with protein sequences,
which can be quite long and exhibit complex dependencies.

The utility of RNNs, and LSTMs in particular, for the prediction of PPIs is related to
the sequential and interdependent nature of protein sequences. The prediction of whether
two proteins interact is often dependent not just on the individual amino acids in each
protein, but also on the order of these amino acids, and the broader context they are in.

Given this inherent suitability, many studies in PPI prediction use RNNs as a funda-
mental part of their methodology. This might involve using RNNs to learn a representation
of protein sequences, which is then used as input to a prediction algorithm, or integrating
RNNs with other machine learning techniques to create hybrid models that combine the
strengths of different approaches.

Recent studies have demonstrated notable trends in the utilization of RNNs for PPI
analysis. Researchers have developed innovative strategies, such as bidirectional LSTM
models, to generate relevant protein sequences and incorporate complex network analysis.
Ensembles of deep learning models, including LSTM-based approaches, have showcased
superior performance in PPI site prediction by integrating diverse features and auxiliary
information. Furthermore, the application of regularization techniques during training has
proven effective in improving the accuracy of PPI prediction models. RNNs have also been
instrumental in bridging the gap between PPI research and the understanding of complex
interactions, such as plant-pathogen interactions and virus–host interactions. Machine
learning models incorporating frustration indices, structural features, and word2vec analy-
sis of amino acid sequences have demonstrated promising results in PPI prediction. Deep
learning methods have been successfully applied to predict protein interactions related
to SARS-CoV-2 and to identify essential proteins. The incorporation of novel features,
ensemble models, and network embedding techniques has further improved the accu-
racy and performance of RNN-based PPI prediction models. Additionally, deep learning
approaches have been leveraged for PPI network alignment and sequence-based protein–
protein binding predictions, yielding remarkable results and outperforming traditional
machine learning methods. These recent studies collectively highlight the significance of
RNNs in advancing our understanding and prediction of PPIs, paving the way for further
research and innovation in the field. Table 6 presents a condensed version of recent studies.
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Table 6. Summary of Contributions in Studies on Recurrent Neural Networks for Protein-Protein In-
teractions. Note that each study employed varied datasets, cross-validation methods, and simulation
settings for evaluation, making direct comparisons potentially inconclusive. The highest reported
accuracy is presented when models were assessed using multiple datasets.

Author Metrics and Results Contributions

Alakus and Turkoglu [80]
ACC: 0.9776
F1: 0.7942
AUC: 0.89

Proposed a deep learning method for predicting protein interactions
in SARS-CoV-2.

Aybey and Gumus [81]
AUC: 0.715
MCC: 0.227
F1: 0.330

Developed SENSDeep, an ensemble deep learning method, for
predicting protein interaction sites.

Fang et al. [82] ACC: 0.9445
ROC: 0.94

Employed an integrated LSTM-based approach for predicting
protein–protein interactions in plant-pathogen studies.

Li et al. [83]
ACC: 0.848
AUC: 0.746
AUPRC: 0.326

Proposed DELPHI, a deep learning suite for PPI-binding sites
prediction.

Mahdipour et al. [84] ACC: 1.0
F1: 1.0

Introduced RENA, an innovative method for PPI network alignment
using a deep learning model.

Ortiz-Vilchis et al. [85] ACC: 0.949 Utilized LSTM model to generate relevant protein sequences for
protein interaction prediction.

Szymborski and Emad [86] AUC: 0.978
AUPRC: 0.974

Introduced RAPPPID, an AWD-LSTM twin network, to predict
protein–protein interactions.

Tsukiyama et al. [87] ACC: 0.985
AUC: 0.976

Presented LSTM-PHV, a model for predicting human-virus
protein–protein interactions.

Zeng et al. [88] ACC: 0.9048
F1: 0.7585

Introduced a deep learning framework for identifying essential
proteins by integrating multiple types of biological information.

Zhang et al. [89] ACC: 0.83
AUC: 0.93

Presented protein2vec, an LSTM-based approach for predicting
protein–protein interactions.

Zhou et al. [90] ACC: 0.75 Implemented LSTM-based model for predicting protein–protein
interaction residues using frustration indices.

7.1. Pairwise PPI Prediction

Several models have been proposed to predict pairwise PPIs using RNNs. Alakus and
Turkoglu [80] proposed a method for predicting protein interactions in SARS-CoV-2 using a
protein mapping method inspired by the AVL tree and bidirectional RNNs. Zhang et al. [89]
introduced protein2vec, an LSTM-based approach for predicting protein–protein interac-
tions, which outperformed traditional semantic similarity methods. Tsukiyama et al. [87]
presented LSTM-PHV, an LSTM model with word2vec for predicting human-virus PPIs.

7.2. PPI Site Prediction

Aybey and Gumus [81] proposed SENSDeep, an ensemble deep learning method
that integrates different deep learning models including RNNs for predicting PPI sites
(PPISs). SENSDeep demonstrated superior performance in various metrics. In a similar
vein, Li et al. [83] proposed DELPHI, an ensemble model combining a CNN and a RNN
component for PPI-binding sites prediction.

7.3. PPI Network Prediction

For PPI network prediction, Mahdipour et al. [84] introduced RENA, an innovative
method for PPI network alignment based on recurrent neural networks. Ortiz-Vilchis et al. [85]
employed a bidirectional LSTM model for generating relevant protein sequences with partial
knowledge of interactions, demonstrating an ability to retain a significant portion of proteins
in the original sequence.
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7.4. Auxiliary PPI Prediction Tasks

Several works have utilized RNNs for auxiliary PPI prediction tasks. Zeng et al. [88]
introduced a deep learning framework for identifying essential proteins, using bidirectional
LSTMs to capture non-local relationships in gene expression data. Similarly, Szymborski
and Emad [86] introduced RAPPPID, an AWD-LSTM twin network designed for predicting
protein–protein interactions, which outperformed other methods on stringent interaction
datasets composed of unseen proteins. Zhou et al. [90] implemented an LSTM model for
PPI prediction based on frustration, a statistical potential.

8. Attention Mechanism and Transformer for Protein–Protein Interactions

The attention mechanism and transformer networks represent breakthroughs in the
field of deep learning and have proven to be highly effective for a variety of
applications [15–18], including the prediction of PPIs. At the core of these methodolo-
gies is the capability to handle sequence data, recognize patterns, and assign varying
importance to different parts of the input data.

The attention mechanism was introduced to improve the performance of recurrent
neural network architectures, particularly in tasks dealing with sequences of data. The
central idea behind the attention mechanism is to allow the model to focus on different
parts of the input sequence when producing an output. This is done by assigning weights,
or “attention scores,” to different elements in the sequence, which determine the amount
of attention each element should receive. The attention scores are computed dynamically
and depend on the context within which the data is processed. This concept allows the
model to ’focus’ on relevant parts of the input for each step in the output sequence, thereby
improving its ability to handle long sequences and complex dependencies.

The transformer network, on the other hand, represents a new class of model archi-
tectures that exclusively use attention mechanisms, eliminating the need for recurrence
altogether. Proposed by Vaswani et al. [178], the transformer model is composed of a
stack of identical layers, each of which has two sub-layers: a multi-head self-attention
mechanism, and a simple, position-wise fully connected feed-forward network.

In the multi-head attention mechanism, the model computes attention scores multiple
times with different learned linear projections of the input. This allows the model to focus
on different types of information in different parts of the input sequence. Meanwhile, the
position-wise feed-forward networks are applied identically to each position, allowing the
model to learn complex patterns within the sequence.

For the prediction of PPIs, these methodologies provide significant advantages. Due
to their ability to capture dependencies regardless of their distance in the sequence, at-
tention mechanisms and transformers can efficiently process protein sequences, which
are inherently sequential and can exhibit complex, long-range dependencies. This makes
them well-suited to tasks that involve recognizing patterns in protein sequences to predict
whether and how proteins interact.

Given their effectiveness and versatility, attention mechanisms and transformer models
have been used in a variety of ways in PPI prediction. Some studies employ these methods
to learn robust representations of protein sequences, while others incorporate them into
more complex models designed to leverage different types of biological information for
PPI prediction.

Recent studies have showcased the growing popularity of attention mechanisms and
Transformer models in the field of PPI prediction. Researchers have explored innovative
approaches that integrate attention mechanisms into deep learning architectures to improve
the accuracy and performance of PPI prediction models. These attention-based models
have demonstrated remarkable results across various datasets and tasks. The integration
of attention mechanisms with LSTM, convolutional, and self-attention layers has yielded
powerful hybrid models for PPI prediction. Moreover, the utilization of Transformer
neural network architectures, originally designed for natural language processing, has
shown great potential in pre-training sequence representations and fine-tuning them for
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specific PPI-related tasks. The effectiveness of attention networks and Transformer models
is evident in their superior performance compared to existing computational methods
for PPI site prediction, protein interaction prediction, bio-entity relation extraction, and
protein interaction network reconstruction. These recent studies highlight the significance
of attention mechanisms and Transformer models in advancing our understanding and
prediction of PPIs, paving the way for further research and development in the field. The
findings of recent studies are outlined in Table 7.

Table 7. Summary of Contributions in Studies on Attention and Transformer for Protein-Protein In-
teractions. Note that each study employed varied datasets, cross-validation methods, and simulation
settings for evaluation, making direct comparisons potentially inconclusive. The highest reported
accuracy is presented when models were assessed using multiple datasets.

Author Metrics and Results Contributions

Asim et al. [91]
ACC: 0.926
F1: 0.9195
MCC: 0.855

Proposed ADH-PPI, an attention-based hybrid model with superior
accuracy for PPI prediction.

Baek et al. [92]

ACC: 0.868
MCC: 0.768
F1: 0.893
AUC: 0.982

Utilized a three-track neural network integrating information at
various dimensions for protein structure and interaction prediction.

Li et al. [93] F1: 0.925 Offered a PPI relationship extraction method through multigranularity
semantic fusion, achieving high F1-scores.

Li et al. [94]
ACC: 0.9519
MCC: 0.9045
AUC: 0.9860

Introduced SDNN-PPI, a self-attention-based PPI prediction method,
achieving up to 100% accuracy on independent datasets.

Nambiar et al. [95] ACC: 0.98
AUC: 0.991

Developed a Transformer neural network that excelled in protein
interaction prediction and family classification.

Tang et al. [96] ACC: 0.631
F1: 0.393

Proposed HANPPIS, an effective hierarchical attention network
structure for predicting PPI sites.

Warikoo et al. [97] F1: 0.86 Introduced LBERT, a lexically aware transformer-based model that
outperformed state-of-the-art models in PPI tasks.

Wu et al. [98] AUPRC: 0.8989 Presented CFAGO, an efficient protein function prediction model
integrating PPI networks and protein biological attributes.

Zhang and Xu [99] ACC: 0.856 Introduced a kernel ensemble attention method for graph learning
applied to PPIs, showing competitive performance.

Zhu et al. [100]
ACC: 0.934
F1: 0.932
AUC: 0.935

Introduced the SGAD model, improving the performance of Protein
Interaction Network Reconstruction.

8.1. Pairwise PPI Prediction

Several studies have leveraged the power of attention mechanisms and transformers
for pairwise PPI prediction. Asim et al. [91] proposed ADH-PPI, a deep hybrid model that
uses a combination of long short-term memory, convolutional, and self-attention layers.
Li et al. [94] introduced SDNN-PPI, a method that employs self-attention to enhance deep
neural network feature extraction from protein sequences. Nambiar et al. [95] presented a
Transformer neural network for pre-training task-agnostic sequence representations, which
was fine-tuned for protein interaction prediction tasks.

8.2. PPI Site Prediction

In the domain of PPI site prediction, Tang et al. [96] proposed HANPPIS, a novel
hierarchical attention network structure that integrates six effective features of protein
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sequence into its predictive model, demonstrating superior performance compared to other
computational methods.

8.3. PPI Network Prediction

For PPI network prediction, Zhu et al. [100] introduced the Structural Gated Attention
Deep (SGAD) model, a deep-learning-based framework that leverages multiple protein
sequence descriptors, topological features, and information flow of the PPI network.

8.4. Auxiliary PPI Prediction Tasks

Several models have been developed for auxiliary PPI prediction tasks. Li et al. [93]
utilized a Transformer for embedding words of a sentence into distributed representations
for PPI relationship extraction. Zhang and Xu [99] introduced a multiple kernel ensemble
attention method for graph learning applied to PPIs, which automatically learns the optimal
kernel function from a set of predefined candidate kernels. Warikoo et al. [97] presented
LBERT, a lexically aware transformer-based bidirectional encoder representation model for
bio-entity relation extraction (BRE). Wu et al. [98] proposed CFAGO, a protein function pre-
diction method that integrates single-species PPI networks and protein biological attributes
via a multi-head attention mechanism.

8.5. Protein Docking

Baek et al. [92] utilized a three-track neural network that integrates information at
different dimensional levels for protein structure and interaction prediction, showing nearly
comparable performance to DeepMind’s system in the 14th Critical Assessment of Structure
Prediction (CASP14) conference.

9. Multi-task or Multi-modal Deep Learning Models for Protein–Protein Interactions

The utilization of multi-task and multi-modal deep learning models [179,180] has
been increasingly recognized as an efficient approach to deal with the complexity and
heterogeneity of PPI prediction problems. These models are designed to leverage multiple
related tasks or multiple sources of information to improve predictive performance, offering
a promising direction for the exploration and prediction of PPIs.

Multi-task learning models are designed to improve learning efficiency and predictive
performance by learning multiple related tasks concurrently [179]. The fundamental
concept behind multi-task learning is the sharing of representations among tasks, which can
improve the generalization performance by leveraging the commonalities and differences
across tasks. In a standard multi-task learning framework, each task has its own specific
layers (task-specific layers), while some layers (shared layers) are shared among all tasks.
During training, each task’s loss function is typically optimized, and the overall objective is
a weighted sum of these individual loss functions. The shared layers learn a representation
that captures the common features among tasks, while the task-specific layers learn the
unique features for each task.

Multi-modal deep learning models [180], on the other hand, aim to integrate infor-
mation from multiple sources or modes. The basic principle of multi-modal learning is to
construct a joint representation that leverages the complementarity and correlation among
different modalities to improve prediction performance. In a standard multi-modal learning
framework, the model first learns a representation for each modality using modality-specific
layers and then integrates these representations using shared layers. The modalities can
be different types of data (e.g., sequence data, structure data), each of which provides a
unique perspective on the problem.

In the context of PPI prediction, these methodologies offer several advantages. Multi-
task learning models can learn from multiple related tasks (e.g., predicting different types
of protein interactions), thereby leveraging the shared information among tasks to improve
prediction performance. Similarly, multi-modal models can integrate information from
multiple sources (e.g., sequence data, structural data, functional data), thereby leverag-
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ing the complementarity among different types of data to obtain a more comprehensive
understanding of the protein interaction mechanisms.

Given their potential for dealing with complex and heterogeneous PPI prediction
problems, multi-task and multi-modal deep learning models have found broad applications
in the PPI field. They have been used to leverage multiple related tasks or multiple sources
of information, improving prediction performance and providing a more comprehensive
understanding of the protein interaction mechanisms.

Recent studies have focused on the development of multi-task or multi-modal deep
learning models to enhance the prediction of PPIs. These models aim to leverage multiple
sources of information, such as protein sequences, structural annotations, gene features,
multiomics data, and GO information, to improve the accuracy and robustness of PPI
predictions. By incorporating various tasks or modalities into the learning process, these
models have demonstrated superior performance compared to single-task methods. Addi-
tionally, efforts have been made to enhance the interpretability of deep learning models by
incorporating explainable features or methodologies. These advancements in multi-task
and multi-modal deep learning approaches have opened up new possibilities for predicting
PPIs and expanding our understanding of complex biological interactions in diverse areas,
including disease research and infectious disease studies. Table 8 outlines the main points
from recent research.

Table 8. Summary of Contributions in Studies on Multi-task or Multi-modal Models for Protein-
Protein Interactions. Note that each study employed varied datasets, cross-validation methods, and
simulation settings for evaluation, making direct comparisons potentially inconclusive. The highest
reported accuracy is presented when models were assessed using multiple datasets.

Author Metrics and Results Contributions

Capel et al. [101] AUC: 0.7632
AUPRC: 0.3844

Proposed a multi-task deep learning approach for predicting residues
in PPI interfaces.

Li et al. [102] AUC: 0.895
AUPRC: 0.899

Developed EP-EDL, an ensemble deep learning model for accurate
prediction of human essential proteins.

Linder et al. [103] AUC: 0.96 Introduced scrambler networks to improve the interpretability of
neural networks for biological sequences.

Pan et al. [104]
ACC: 0.8947
MCC: 0.7902
AUC: 0.9548

Proposed DWPPI, a network embedding-based approach for PPI
prediction in plants.

Peng et al. [105] AUC: 0.9116
AUPRC: 0.8332

Introduced MTGCN, a multi-task learning method for identifying
cancer driver genes.

Schulte-Sasse et al. [106] AUPRC: 0.76 Developed EMOGI, integrating MULTIOMICS data with PPI networks
for cancer gene prediction.

Thi Ngan Dong et al. [107] AUC: 0.9804
F1: 0.9379

Developed a multitask transfer learning approach for predicting
virus-human and bacteria-human PPIs.

Zheng et al. [108] AUPRC: 0.965 Developed DeepAraPPI, a deep learning framework for predicting
PPIs in Arabidopsis thaliana.

9.1. Pairwise PPI Prediction

A range of models have been proposed to predict pairwise PPIs. For instance, Capel
et al. [101] proposed a multi-task learning strategy to predict residues in PPI interfaces
from protein sequences. Similarly, Li et al. [102] developed EP-EDL, an ensemble deep
learning model, to predict human essential proteins using protein sequence information.
Thi Ngan Dong et al. [107] employed a multitask transfer learning approach for predicting
PPIs between viruses and human cells, showing the effectiveness of this method across
multiple PPI prediction tasks.
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9.2. PPI Network Prediction

Several models have been developed to predict PPI networks. Peng et al. [105]
introduced MTGCN, a multi-task learning method based on the Graph Convolutional
Network, to identify cancer driver genes using gene features from the PPI network. Schulte-
Sasse et al. [106] developed EMOGI, which utilizes graph convolutional networks to
integrate multiomics pan-cancer data with PPI networks for cancer gene prediction. Finally,
Pan et al. [104] proposed DWPPI, a network embedding-based approach that integrates
deep neural networks for PPI prediction in plants, demonstrating superior performance
across multiple datasets.

9.3. PPI Site Prediction

In the PPI site prediction, Capel et al. [101] have demonstrated a promising approach,
utilizing a multi-task learning strategy to predict residues in PPI interfaces from protein
sequences, outperforming single-task methods significantly.

9.4. Auxiliary PPI Prediction Tasks

A variety of models have been proposed for auxiliary PPI prediction tasks.
Linder et al. [103] introduced scrambler networks, a feature attribution method designed
for discrete sequence inputs, to improve the interpretability of neural networks for biologi-
cal sequences. These networks have been used for interpreting effects of genetic variants,
cis-regulatory elements interactions, and PPI binding specificity. Lastly, Zheng et al. [108]
developed DeepAraPPI, an integrative deep learning framework for predicting PPIs in
Arabidopsis thaliana, demonstrating excellent performance and promising cross-species
predictive ability.

10. Transfer Learning for Protein–Protein Interactions

Transfer learning [181–183], a crucial paradigm in machine learning, has drawn in-
creasing attention in the field of PPIs prediction due to its effectiveness in dealing with
limited labeled data scenarios. The primary objective of transfer learning is to leverage
the knowledge gained from one or more source tasks to improve the learning perfor-
mance on a target task. The principle behind this approach is the recognition that the
learned knowledge in one task can be reused in another related task, therefore facilitating
efficient learning.

In the context of a typical transfer learning framework, the initial training phase occurs
on a source task or tasks, from which a model learns generic representations. Once the
model is trained on the source task, the learned knowledge, typically in the form of model
parameters or learned representations, is then transferred to the target task. This transfer
step can be realized in different ways. One common approach is to use the trained model
on the source task as a pre-trained model for the target task, either by fine-tuning the
entire model or by freezing some layers (typically the lower layers) and training only the
remaining ones (typically the higher layers).

There are several key reasons why transfer learning can be advantageous for PPI pre-
diction. One fundamental reason is that it enables the use of large amounts of labeled data
available for some tasks (source tasks) to assist the learning process in other tasks (target
tasks) that have limited labeled data. This is particularly useful in the field of bioinformatics
where obtaining labeled data can be expensive and time-consuming. Additionally, transfer
learning can help to mitigate the risk of overfitting on small datasets by introducing prior
knowledge into the model.

Transfer learning models can be categorized into different types based on the nature
of the source and target tasks and the relationship between them. Examples of categories
include inductive transfer learning, transductive transfer learning, and unsupervised
transfer learning. In the field of PPIs, the use of transfer learning is typically seen in tasks
where there is a need to leverage knowledge from well-studied organisms or proteins to
less-studied ones, or from one type of protein interaction to another.
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A host of studies [109–113] have demonstrated the potential of these methodologies
to enhance our understanding of PPI mechanisms and to develop predictive models with
superior accuracy. A summary of recent research can be seen in Table 9.

Table 9. Summary of Contributions in Studies on Transfer Learning for Protein–Protein Interactions.
Note that each study employed varied datasets, cross-validation methods, and simulation settings
for evaluation, making direct comparisons potentially inconclusive. The highest reported accuracy is
presented when models were assessed using multiple datasets.

Author Metrics and Results Contributions

Chen et al. [109] ACC: 0.9745 Developed TNNM, a model for predicting essential proteins with
superior performance on two public databases.

Derry and Altman [110] AUC: 0.881 Proposed COLLAPSE, a framework for identifying protein structural sites,
demonstrating excellent performance in various tasks including PPIs.

Si and Yan [111] AvgPR: 0.576 Presented DRN-1D2D_Inter, a deep learning method for inter-protein
contact prediction with enriched input features.

Yang et al. [112]
ACC: 0.9865
F1: 0.9236
AUPRC: 0.974

Utilized a Siamese CNN and a multi-layer perceptron for human-virus
PPI prediction, applying transfer learning for human-SARS-CoV-2 PPIs.

Zhang et al. [113] AvgPR: 0.6596
Introduced HDIContact, a deep learning framework for inter-protein
residue contact prediction, showcasing promising results for
understanding PPI mechanisms.

Among these, Chen et al. [109] put forward TNNM, a transfer neural-network-
based model specifically designed for the prediction of essential proteins. The researchers
achieved this by extracting raw features from multiple biological data sources and demon-
strating enhanced prediction performance compared to existing models. This approach
represents a significant contribution to the field, particularly considering the critical role
that essential proteins play in sustaining cellular life. Similarly, Si and Yan [111] made
strides in the prediction of inter-protein contacts, introducing a deep learning method
known as DRN-1D2D_Inter. The model leveraged pretrained protein language models,
generating enriched input features and achieving superior performance compared to ex-
isting state-of-the-art methods. Remarkably, the model maintained its high performance
even when predictions were made purely from sequences. Further, the researchers demon-
strated the practicality of their model by applying predicted contacts as constraints for
protein–protein docking, significantly improving protein complex structure prediction.

Along the same lines, Zhang et al. [113] developed a deep learning framework named
HDIContact. The model, designed to predict inter-protein residue contacts using sequence
information, utilized transfer learning to generate a two-dimensional Multiple Sequence
Alignment (MSA) embedding. The researchers tested HDIContact on an Escherichia coli
dataset, where it outperformed other state-of-the-art methods. This advancement shows
promising implications for understanding PPI mechanisms.

Turning attention towards the identification and characterization of protein struc-
tural sites, Derry and Altman [110] proposed COLLAPSE, a deep learning framework that
operates on 3D positions of atoms in protein sites. The framework uses evolutionary rela-
tionships as self-supervision signals, enabling it to capture structure-function relationships.
COLLAPSE demonstrated exceptional performance across various tasks, including PPIs
and mutation stability prediction, outperforming standard benchmarks.

In terms of interaction prediction between human and virus proteins, Yang et al. [112]
presented an innovative approach combining a Siamese CNN architecture with a multi-
layer perceptron. The researchers introduced two transfer learning methods, termed
’frozen’ and ’fine-tuning’. These were used to predict interactions in a target human-
virus domain, drawing from training in a source human-virus domain. Particularly, the
’frozen’ type transfer learning approach was applied to predict human-SARS-CoV-2 PPIs,
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uncovering interactions that are topologically and functionally similar to experimentally
known interactions.

11. Other Emerging Topics for Protein–Protein Interactions

As the field of PPIs continues to grow, a variety of innovative and promising research
topics are coming to the fore. These topics often revolve around novel applications of
machine learning techniques or aim to address more specific and complex aspects of
PPI prediction. This section provides an overview of some of these emerging topics in
the field of PPIs, highlighting the broad scope and diversity of research that is currently
being undertaken.

One of the key emerging areas involves the prediction of specific aspects of PPIs
beyond merely identifying whether an interaction occurs. This includes predicting the
binding sites of PPIs, understanding residue-residue interactions across protein interfaces,
and determining protein–protein association rates. Each of these topics poses unique
challenges and has the potential to contribute valuable insights into the mechanisms
of PPIs.

Another noteworthy direction is the development of models that combine different
types of features or use multiple learning techniques in a hybrid approach. These models
often aim to take advantage of the strengths of different methods or to compensate for
their individual weaknesses. For instance, some models may combine handcrafted and
learned features, utilize both deep learning and gradient boosting methods, or integrate
deep learning and reinforcement learning.

An additional trend in the field pertains to the application of deep learning methods
to specific subsets of PPIs. Examples include the prediction of PPIs for specific organisms,
such as plants, the study of interactions between humans and viruses, or the analysis of
PPIs in specific subcellular locations, such as mitochondria. In each case, the uniqueness of
the application necessitates the development of specialized models and approaches.

Furthermore, the rise of powerful deep learning methods, such as AlphaFold [26,29],
is paving the way for novel applications and breakthroughs in the field of PPIs. The ability
of these methods to predict protein structures with remarkable accuracy has implications
for predicting PPIs, as well as for other related tasks, such as protein docking and protein
complex modeling. It is anticipated that the use of these advanced models will become an
increasingly prevalent topic in PPI research.

There is growing interest in utilizing deep learning techniques for the analysis of
protein sequences and the extraction of valuable insights from these sequences. This encom-
passes a wide range of tasks, from predicting interaction sites in specific types of proteins,
such as transmembrane proteins, to identifying coevolution patterns in protein families.

Recent studies have showcased diverse and innovative approaches for predicting
PPIs using deep learning. These methods encompass various aspects, such as PPI binding
site prediction, application of PPI analysis using existing tools, multi-label PPI prediction,
protein docking decoys evaluation, protein interaction interface region prediction, protein
complex modeling, and biomedical relation extraction. By leveraging protein sequence
information, predicted structures, coevolution signals, joint multiple sequence alignments,
and structural properties of proteins, these approaches have demonstrated remarkable per-
formance improvements in PPI prediction accuracy and robustness. These advancements
highlight the versatility and effectiveness of deep learning techniques in unraveling the
complexities of PPIs and their implications in diverse biomedical research areas. Table 10
offers a summary of recent studies conducted.



Molecules 2023, 28, 5169 25 of 35

Table 10. Summary of Contributions in Other Emerging Topics for Protein–Protein Interactions.

Author Contributions

Abdollahi et al. [114] Developed WinBinVec, a window-based deep learning model to identify cancer PPIs.

Burke et al. [115] Demonstrated a potential of AlphaFold2 in predicting structures for protein interactions.

Dai and Bailey-Kellogg [116] Presented PInet, a Geometric Deep Neural Network that predicts PPI from point clouds encoding
the structures of two partner proteins.

Dholaniya and Rizvi [117] Examined the efficacy of various sequence-based descriptors in predicting PPIs.

Dhusia and Wu [118] Proposed a neural network model to estimate protein–protein association rates.

Han et al. [119] Applied PointNet for protein docking decoys evaluation.

Humphreys et al. [120] Used proteome-wide amino acid coevolution analysis and deep-learning-based structure
modeling for core eukaryotic protein complexes.

Jovine [121] Used AlphaFold2 and ColabFold to investigate the activation of uromodulin.

Kang et al. [122] Introduced HN-PPISP, a hybrid neural network for PPI site prediction.

Li et al. [123] Proposed HDOCKsite, an approach incorporating interface residue restraints into protein–protein
docking.

Lin et al. [124] Proposed DeepHomo2.0, a model that predicts PPIs of homodimeric complexes.

Ma et al. [125] Proposed MSF-DTA, a deep-learning-based method using PPI information for predicting
drug-target affinity.

Madani et al. [126] Proposed CGAN-Cmap, a novel hybrid model for protein contact map prediction.

Mahapatra et al. [127] Developed DNN-XGB, a hybrid classifier for PPI prediction combining DNN and XGBoost.

Nikam et al. [128] Developed DeepBSRPred for predicting PPI binding sites using protein sequence.

Pan et al. [129] Presented a framework combining discrete Hilbert transform (DHT) with DNN for plant PPI
prediction.

Pei et al. [130] Utilized deep learning methods for analyzing coevolution of human proteins in mitochondria and
modeling protein complexes.

Pei et al. [131] Employed AlphaFold to predict PPIs and interfaces for coevolution signals.

Singh et al. [132] Introduced Topsy-Turvy, a sequence-based multi-scale model for PPI prediction.

Song et al. [133] Proposed TAGPPI, an end-to-end framework to predict PPIs using protein sequences and graph
learning method.

Sreenivasan et al. [134] Developed MolPMoFiT for predicting protein clusters based on chemical structure.

Stringer et al. [135] Developed PIPENN, an ensemble of neural networks for protein interface prediction from protein
sequences.

Sun and Frishman [136] Developed DeepTMInter, a novel approach for sequence-based prediction of interaction sites in
alpha-helical transmembrane proteins.

Tran et al. [137] Introduced DeepCF-PPI, combining handcrafted and learned features for PPI prediction.

Wang et al. [138] Developed DeepViral, a deep learning method that predicts PPIs between humans and viruses
using protein sequences and infectious disease phenotypes.

Wee and Xia [139] Proposed PerSpect-EL, an ensemble learning model for protein–protein binding prediction.

Xie and Xu [140] Developed GLINTER, a deep learning method for inter-protein contact prediction, using protein
tertiary structures and a pretrained language model.

Xu et al. [141] Developed GRNN-PPI, a PPI prediction algorithm for multiple datasets.

Yan and Huang [142] Proposed DeepHomo, a deep learning model for predicting inter-protein residue-residue contacts
across homo-oligomeric protein interfaces.

Yang et al. [143] Examined interface and surface areas in protein–protein binding prediction.

Yin et al. [144] Benchmarked the use of AlphaFold for protein complex modeling.

Zhang et al. [145] Predicted functions and a PPI network for proteins in the minimal genome JCVI-syn3A.
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Table 10. Cont.

Author Contributions

Zhong et al. [146] Presented a multi-hop neural network model for predicting multi-label PPIs.

Zhu et al. [147] Proposed PACNN+RL, a hybrid deep learning and reinforcement learning method, for biomedical
relation extraction.

Zhu et al. [148] Introduced PPICT, a deep neural network designed to predict PTM inter-protein cross-talk.

Several studies have demonstrated the efficacy of various deep learning methods. For
instance, Nikam et al. [128], developed DeepBSRPred, a deep-learning-based approach
that predicts PPI binding sites using protein sequence information and predicted structures.
Similarly, Tran et al. [137], introduced DeepCF-PPI, which combined handcrafted and
learned features for PPI prediction, while Zhong et al. [146] proposed a multi-hop neural
network model to predict multi-label PPIs.

In a similar vein, some researchers have focused on developing deep learning methods
that leverage structural properties of proteins to improve PPI predictions. For instance,
Han et al. [119] applied PointNet for protein docking decoys evaluation, enhancing ranking
of near-native models. Furthermore, Dai and Bailey-Kellogg [116] presented PInet, a
Geometric Deep Neural Network that predicts protein interaction interface regions from
point clouds encoding the structures of two partner proteins.

Deep learning methods have also been applied to protein complex modelling and
protein function prediction. Yin et al. [144] benchmarked the use of AlphaFold for protein
complex modeling. Humphreys et al. [120] employed a similar strategy, using proteome-
wide amino acid coevolution analysis and deep-learning-based structure modeling for
systematic identification and building accurate models of core eukaryotic protein complexes.
Additionally, Burke et al. [115] demonstrated the potential of AlphaFold2 in predicting
structures for human protein interactions.

A few studies have concentrated on predicting PPIs based on coevolution signals from
joint multiple sequence alignments. For instance, Pei et al. [131] employed AlphaFold to
predict PPIs and their interfaces for proteins based on these signals. Similarly, Pei et al. [130]
utilized deep learning methods RoseTTAFold and AlphaFold for analyzing coevolution of
human proteins in mitochondria and modeling protein complexes.

Several novel approaches have also been proposed for predicting protein–protein
interactions. These include GRNN-PPI by Xu et al. [141], TAGPPI by Song et al. [133], and
DeepHomo2.0 by Lin et al. [124].

Lastly, several studies have been dedicated to the application of deep learning in
biomedical relation extraction. Notably, Zhu et al. [147] proposed PACNN + RL, a
hybrid deep learning and reinforcement learning method for this task. On the other
hand, Jovine [121] used AlphaFold2 and ColabFold to investigate the activation and poly-
merization of uromodulin, thus showcasing the practical applicability of these methods
in biomedicine.

12. Challenges and Future Directions in Recent Studies

Despite the remarkable advancements in employing deep learning models, particularly
GNNs, GCNs, CNNs, autoencoders, and representation learning for PPI prediction, several
challenges persist that need to be addressed. The ability of these models to predict PPIs
often hinges on the availability and quality of training data, the integration of diverse data
sources, model complexity, and interpretability. These challenges must be addressed to
facilitate further improvements in PPI prediction and to understand biological systems at a
more granular level.

One key challenge pertains to the availability and quality of PPI datasets. In several
studies such as the work by Baranwal et al. [32] and Williams et al. [48], the high predictive
performance of the models is reliant on robust, balanced datasets. Unfortunately, in the



Molecules 2023, 28, 5169 27 of 35

biological sciences, many datasets often contain imbalanced class distributions and noise,
leading to biased model predictions and overfitting. Future research must therefore focus
on developing strategies to cope with these issues, such as advanced data augmentation
techniques, robust regularization methods, and ensemble modeling.

Moreover, while the integration of multimodal data sources and diverse biologi-
cal features has shown promise in enhancing prediction performance, as evidenced by
Albu et al. [30] and Kim et al. [37], it also poses challenges. Managing and harmonizing
heterogeneous data types to prevent information loss, while ensuring efficient computation,
remains a non-trivial task. Future studies need to explore better methods for feature ex-
traction, selection, and fusion from various data sources to ensure an efficient and effective
learning process.

The trade-off between model complexity and interpretability is another substantial
challenge. As seen in studies like Soleymani et al. [77] and Chen et al. [53], deep learning
models can be highly complex with numerous layers and nodes, leading to improved
predictive performance. However, this complexity can often compromise interpretability,
making it challenging to extract biological insights from the models. To address this, the
development of techniques that enhance model transparency and interpretability is crucial.
This may involve, for example, the use of attention mechanisms, saliency maps, and other
explainable AI techniques.

One area requiring further exploration is the applicability of these models to emerging
and interdisciplinary domains. Studies such as those conducted by Asim et al. [66] and
Ray et al. [75] show the potential of these methods for viral–host PPI prediction and
disease research, respectively. However, many other potential applications are yet to be
explored in depth, such as the application of deep learning models for drug discovery,
personalized medicine, and environmental genomics. Encouragingly, the progress made
thus far provides a solid foundation for future research directions in these exciting areas.

Another recent and arguably crucial breakthrough in PPI prediction pertains to the
prediction of structural information. One of the most significant and possibly the most chal-
lenging tasks in this regard is the prediction of the structure of protein–protein complexes.
The application of deep learning has also extended to this challenge, with tools such as
AlphaFold2 and its variants leading the charge [184].

AlphaFold and AlphaFold2 has shown remarkable levels of accuracy in modelling sin-
gle chain protein structures [29,184]. This system can predict three-dimensional structures
of proteins from amino acid sequences with atomic-level accuracy. In 2020, AlphaFold2
won the CASP14, and later it released structures of more than 200 million proteins, covering
almost all known proteins on the planet [184].

Despite these achievements, accurately predicting the structures of protein–protein
complexes remains a significant challenge. AlphaFold2 and its subsequent variants, despite
being state-of-the-art predictors, still show room for improvement in this area. For instance,
in a recent application of AlphaFold2 for the prediction of heterodimeric protein complexes,
the tool generated models with acceptable quality for only 63% of the dimers [26]. While this
is a promising result, it indicates that the problem of accurately predicting protein–protein
complex structures is far from solved.

Given the ongoing challenges and limitations of current deep learning tools in pre-
dicting the structures of protein–protein complexes, several promising avenues for further
research and development have emerged. One of these is the concept of “hot-spots”, regions
of amino acid residues on the PPI interface that contribute significantly to binding-free
energy. By focusing on these hot-spots, researchers may be able to design more effective PPI
drugs, as small molecule drugs only need to target these regions to intervene in PPIs [25].

Another promising approach is the application of GNNs to predict PPIs. For instance,
a study employed GCN and GAT to predict PPIs, utilizing protein structural information
and sequence features. The protein’s amino acid network, also known as the residue contact
network, was represented as a graph, where each node is a residue. This graph-based
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approach demonstrated superior performance over previous leading methods, suggesting
that GNNs can be a powerful tool for PPI prediction [36].

The Fold-and-Dock approach has also shown potential for improving the prediction
of PPIs. In this approach, two proteins are folded and docked simultaneously, which can
provide more accurate results for predicting the structure of protein pairs. For instance,
PconsDock, a fold-and-dock algorithm, has been developed to predict the structure of
protein pairs where alternative methods fail [185]. However, this protocol still has limi-
tations, as there remains a large set of protein–protein pairs where it fails. Future work
is proposed to continue developing PconsDock by investigating improved methods to
identify interaction protein sequences and developing improved deep learning methods to
identify the contacts accurately.

These developments underline the importance of integrating various strategies and
techniques to advance our ability to predict PPIs. The discovery of hot-spots, the application
of GNNs, and the development of protocols represent promising directions for further
advancements in the field of PPI prediction, which could significantly impact areas such as
drug discovery and protein design.

While the use of deep learning models for PPI prediction has witnessed considerable
progress, challenges remain that need to be addressed. By tackling these issues, the future
of PPI prediction looks promising, with potential impacts not only on our understanding
of biological systems but also on various practical applications such as drug discovery
and disease diagnosis. With ongoing research and methodological enhancements, we can
anticipate further advancements in this field.

13. Conclusions

In conclusion, the rapidly evolving landscape of deep learning presents a transfor-
mative platform for predicting PPIs. This synthesis of recent studies from 2021 to 2023
provides a pivotal compass in navigating the wealth of advancements that have unfolded
within this highly dynamic field. As encapsulated within this review, the diversity and
sophistication of deep learning techniques being applied to PPI prediction underscore this
domain’s robust and innovative trajectory.

The myriad of deep learning methodologies, including GNNs, CNNs, Autoencoders,
RNNs, Attention Mechanisms and Transformers, Multi-task and Multi-modal Learning,
and Transfer Learning, each exhibits unique merits and characteristics in the context of
PPI prediction. These powerful computational tools, endowed with the capability to
distill intricate patterns within vast and complex datasets, continue to revolutionize our
understanding of protein interactions and, by extension, biological systems at large.

This review serves as a testament to the potential of deep learning in not only facilitat-
ing the prediction of PPIs but also in unraveling the complexity inherent in their nature.
It embodies a comprehensive resource for established researchers and newcomers in the
field, equipping them with the necessary insights and references to propel their scientific
endeavors. The fact that this domain continues to flourish at an unprecedented pace makes
the timely amalgamation of these advancements within this review even more crucial.

In the rapidly advancing frontiers of computational biology, it is crucial to remain
cognizant of emerging methodologies and their potential applications. This review, there-
fore, not only provides an up-to-date perspective on the current state-of-the-art but also
underscores the importance of continuous learning and adaptation in this field. As we
proceed forward, these deep learning methodologies are anticipated to continue to evolve,
potentially reshaping our understanding and prediction of PPIs and ushering in novel
strategies for biological inquiry and therapeutic development.

In the face of these evolving methodologies, it is the responsibility of the scientific
community to scrutinize, validate, and contextualize these tools. Therefore, we hope this
review will stimulate further discourse, innovation, and collaboration in applying deep
learning techniques for PPI prediction and ultimately contribute to the acceleration of
discoveries in this pivotal domain.
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