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Abstract

Since the last IAEA-FEC in 2016, the EAST physics experiments have been developed further 

in support of high-performance steady-state operation for ITER and CFETR. First 

demonstration of >100 seconds time scale long-pulse steady-state scenario with a good plasma 

performance (H98(y2) ~ 1.1) and a good control of impurity and heat exhaust with the upper 

tungsten divertor has been achieved on EAST using the pure radio frequency (RF) power 

heating and current drive. The EAST operational domain has been significantly extended 

towards more ITER and CFETR related high beta steady-state regime (βP ~ 2.5 & βN ~ 1.9 of 

using RF & NB and βP ~ 1.9 & βN ~ 1.5 of using pure RF). A large bootstrap current fraction 

up to 47% has been achieved with with q95~6.0-7.0. The interaction effect between the electron 

cyclotron resonant heating (ECRH) and two lower hybrid wave (LHW) systems has been 

investigated systematically, and applied for the improvement of current drive efficiency and 

plasma confinement quality in the steady-state scenario development on EAST. Full ELM 

suppression using the n= 2 RMPs has been achieved in ITER-like standard type-I ELMy H-

mode plasmas with a range of the edge safety factor of q95 ≈ 3.2-3.7 on EAST. Reduction of 

the peak heat flux on the divertor was demonstrated using the active radiation feedback control. 

An increase in the total heating power and improvement of the plasma confinement are 
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2

expected using a 0-D model prediction for higher bootstrap fraction. Towards long-pulse, high

bootstrap current fraction operation, a new lower ITER-like tungsten divertor with active 

water-cooling will be installed, together with further increase and improvement of heating and 

current drive capability.
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1. Introduction

As a long-term research programme of superconducting tokamaks[1][2][3][4], EAST(major 

radius R 1.9m, minor radius a 0.45m, plasma current Ip 1MA, toroidal BT 3.5T) aims to 

provide a suitable platform to address physics and technology issues relevant to steady-state 

advanced high-performance H-mode plasmas with ITER-like configuration, plasma control 

and heating schemes [5]. To reach this goal, EAST has equipped the continuous wave of lower 

hybrid current drive systems: 2.45GHz (4MW)/4.6GHz (6MW) klystron power, electron 

cyclotron heating system:140GHz (2MW) gyrotron power, ion cyclotron resonant frequency 

system: 27MHz-80MHz(12MW) generator power and the balanced neutral beam injection 

(NBI) systems: the 2 co-current & 2 counter-current NBI sources (80keV/4 MW). In the past 

few years, EAST has been upgraded with an ITER-like active water-cooling tungsten divertor, 

and it is capable to handle a power load up to 10 MW/m2 for a long-pulse steady-state operation

with high power injection. Therefore, the experience and understanding in high-performance 

long-pulse operation on EAST will be extremely valuable for the next generation fusion 

reactors, i.e. ITER and CFETR. 

In this paper, recent EAST experimental results since the 26th IAEA Fusion Energy Conference

(FEC) in 2016 are presented with the emphasis on the high normalized poloidal beta (βP)

scenario development and key physics related to the advanced high-performance steady-state 

H-mode plasmas. The recent achievements of long pulse-operation and extension of the EAST 

operational regime are discussed in section 2. The physics progress in support of ITER and 

CFETR steady-state high performance operation is presented in section 3. A discussion of the 

future prospect of high bootstrap current fraction on EAST is shown in section 4. A future plan 

of the EAST program is descried in section 5. 
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2. Extension of steady-state operational regime with dominant RF H&CD

Demonstration of high performance steady-state H-mode operation with a reactor-like metal 

wall, a low momentum input, and electron dominated heating scheme is a critical step on the 

path towards the success of economical fusion energy. In the EAST superconducting tokamak,

several key technical challenges related to the development of high performance steady-state 

H-mode operation including RF power coupling, RF heating accessibility, non-inductive

current drive in high-density H-mode plasmas with deuterium as the working gas, have been 

investigated. A series of important breakthrough in frontier physical topics including access 

and sustainment of H-mode plasmas and mitigation of transient heat load associated with Edge-

Localized-Modes (ELMs) are addressed [6–9].

A repeatable and stable hundred-second time scale long-pulse steady-state scenario with a good 

plasma performance (H98(y2) ~ 1.1) and a good control of impurity and heat exhaust with the 

tungsten divertor has been successfully achieved on EAST using the RF power heating and 

current drive (H&CD) with a total of ~0.5 MW LHW at 2.45 GHz, ~1.7 MW LHW at 4.6 GHz, 

~0.4 MW ECH and ~0.5 MW ICRF [10]. This steady-state scenario as shown in fig.1 was 

characterized with fully non-inductive current drive and high-frequency small-amplitude edge 

localized modes (ELMs), and it verified the stable control capability of heat and particle 

exhausts using the ITER-like tungsten divertor in hundred-second level. Plasma parameters are 

as follows: plasma current Ip = 0.4MA, normalized poloidal beta (βP) ~ 1.2 toroidal magnetic 

field BT=2.5 T, upper single null with the elongation k=1.6, the safety factor at the 95% 

normalized poloidal flux surface q95~6.6. This long-pulse discharge reaches wall thermal and 

particle equilibration[11], with the steady-state peak heat flux on the divertor plates being 

maintained at ~ 3.3MWm-2 and the particle exhaust rate being maintained at ~ 6.6×1020 D/s. It 

should be noted that a gradual increase of loop voltage after 90s causes by the ECRH protection 

of the cut-off, which suggests that ECH has the effect on the avoidance of impurity 

Page 4 of 50AUTHOR SUBMITTED MANUSCRIPT - NF-102791.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60 A
cc

ep
te

d 
M

an
us

cr
ip

tke m

al step on theon the 

ducting tokamak,g tokamak

formance steadyce steady-statestate

cessibility, nonity, no -inductivnd

s the working gasorking ga , have

physical topics includincal topics inc

nsient heat load associateheat load asso

ale longg-pulse steadyulse stead -sta

good control of impurityood control of im

y achieved on EAST useved on EA

of f ~0.5 MW LHW at 2.4~0.5 MW LHW 

ICRFI [10]. This steadThis 

n-inductive current drivuctive curre

Ms), and it verified the nd it verified

ITERER-like tungsten divelike tungste

asma current current IIppIII = 0.4MA= 0

.5 T, upper single nullupper singl

lized poloidal flux surfaoloidal flux surfa

rticle equilibrationequilibration[11]

maintained at ~ 3.3MWntained at ~ 3

should be noted uld be no tha

ofof thethe cutc -off



5

accumulation. The maximum tungsten surface temperature monitored by the IR camera shows 

that the temperature raises quickly in several seconds and reaches a stable value, ~500oC, which 

suggests the EAST tungsten divertor with a good power handling capability. 

To achieve a high RF input power with good plasma-wave coupling efficiency, optimization 

of the plasma shape and the local gas puffing in front of the lower hybrid wave (LHW) antenna 

has been performed on EAST. It is found that the LHW-induced hot spots on the protection 

limiter of the LHW antenna, which limits very often the maximal LHW injection power and 

the duration of a long-pulse operation, can be avoided or mitigated by adjusting the plasma 

outer gap. Both the LHW accessibility and the current drive efficiency are sensitive to the 

global operational parameters, such as the toroidal magnetic field BT and the line-averaged 

electron density <ne>. An optimized operational window for higher current drive efficiency of 

LHW has been identified in support of the high performance steady-state scenario development 

on EAST. The on-axis ECRH was applied for electron heating and the avoidance of high-Z

impurity accumulation. A peaked electron temperature profile has been observed during the 

application of the on-axis ECRH, and the electron thermal diffusivity calculated by the power 

balance analysis indicates the improved confinement at the plasma core as shown in figure 2.  

More recently, experimental explorations of high βP scenario for the demonstration of high 

bootstrap current fraction long-pulse H-mode operation capability on EAST are performed with 

the installation of the new LHW guide limiter to avoid hot spot issue and the use of the second 

ECRH system. A summary plot of βP versus line-averaged density (<ne>) is shown in figure 3

for both pure RF and the combined RF and neutral beam injection (NBI) discharges. Significant 

extension of the operational domain of βP and electron density towards the high performance 

regime is achieved with a range of q95 from 6.0 to 7.0. Two typical plasma waveforms of the

EAST high βP scenario are shown in figure 4. The H-mode plasma with plasma current Ip =
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0.4MA, toroidal field BT = 2.5T, edge safety factor q95 ~ 6.8, is successfully sustained with a 

high beta (βP ~ 1.9, normalized beta βN ~ 1.5) at the high density regime (<ne>/nGW ~ 0.80) for 

24s (~ 40 times current relaxation time) (figure 4 left), where nGW is the Greenwald density 

limit. A total of ~ 4MW RF power was applied for H&CD. A very low loop voltage of ~0.005V 

was obtained. No sawtooth actives were observed during the whole discharge which is 

consistent with the measured q profile (qmin>1.0), where the minimum q, qmin, is above 1. Here, 

the q profile was measured by using the external magnetic measurements and the POlarimeter-

INTerferometer (POINT) constraints [12]. Transport analysis shows that a high bootstrap 

current fraction fbs of ~45% has been achieved, and it can be stably maintained in the EAST 

high p scenario.

On EAST, a higher plasma beta (βP ~ 2.5 and βN ~ 1.9) for a period of 8s has been also achieved 

when both co- and ctr-Ip NBI were applied. The experiments have been carried out with the 

conventional 10s setting since the EAST NBI cannot sustain long-pulse operation at a high 

beam voltage (Vbeam>60kV). It should be stressed here that high density (<ne> = 4.0-5.0

1019/m3) was routinely used for those discharges using NBI to avoid strong shine-through 

loss [13].

In addition to the exploration of the high βP scenarios, extensive experiments of high βN

scenario development have been carried out on EAST. Figure 5 shows an example of the high 

βN plasma discharge (Ip = 400- 500 kA, BT = 1.5-1.6 T, q95 =3.4 - 4.4) with the ITER-like 

tungsten divertor. In this high βN experiment, the plasma density increases up to 5.5 1019 m-3

(Greenwald factor up to 0.75), and a high βN of 2.1 has been obtained with a good plasma 

confinement (H98(y2) = 1.1). The operation domain of this scenario is shown in figure 6. The

value of βN reaches above 3 li, where li is the internal inductance calculated from the 

equilibrium analysis. By comparing the EAST results with the advanced inductive scenario 
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database [14] from DIII-D, JT-60U, JET and ASDEX-U, the EAST high βN scenario is still in 

the heating power limited regime, rather than the MHD limited regime as indicated by the 4 li

line. This is supported by the fact that no clear NTM has been observed in this scenario.

In these high βN scenario H-mode plasmas, the internal transport barrier (ITB) has been often 

observed after step-up of the NBI power as shown in figure 7. It is rather important to note that

the ITB can be obtained on EAST with various different types of plasma current profiles,

including monotonic, central flat (q(0)~1) and reversed shear current profiles [15]. The MHD 

instabilities associated with these different types of current profiles have been studied. It is 

found that the fishbone mode (m/n = 1/1) can be beneficial to sustain the central flat (q(0)~1) 

q profile, thus a stable ITB can be obtained. The reverse-sheared Alfvén eigenmodes (RSAEs) 

have been observed in the reverse sheared plasma with a transient ITB formation. Recently, all 

these three ITB operational regimes have been further extended in the EAST 2018 campaign. 

The role of the plasma current profile on the formation of the ITB will be further investigated.

In particular, the non-inductive current fraction in the central flat (q(0)~1) q profile plasma is 

larger than 40%. Further investigation of this operation regime might be important for the 

development of the hybrid scenario for ITER and CFETR.
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3. Progress on physics studies in support of steady-state operation for ITER and CFETR 

operation

Physics studies on EAST are continued to figure out the critical issues in supporting of the

high performance long-pulse steady-state operation with RF heating and current drive. In this 

section, several new approaches on the ITER and CFETR relevant key physics issues are 

highlighted.   

3.1 Heating and current drive

3.1.1 Effects of parametric instability 

Being an effective non-inductive method with high current drive (CD) efficiency, the lower 

hybrid current drive (LHCD) can be also exploited as a tool for active control of plasma current 

profile. Parametric instability (PI) is a non-linear interaction between radio-frequency RF 

waves and plasma [16], which have been observed in many LH experiments such as Alcator 

C-Mod [17], Tore Supra[18], FTU [19] and also EAST[20]. PI is known to excite the LH waves

that has a relatively high parallel refractive index (N//) [21], which can be Landau damped at 

low temperatures with low CD efficiency in the outer plasma region. In EAST, new

experiments with 2.45 GHz and 4.6 GHz LH waves are performed by scanning plasma density 

to demonstrate the effect of PI on plasma current profile in the edge region. The spectrum 

measurements show that the PI behaviour observed in the 2.45 GHz case is stronger than that 

in the 4.6 GHz case, especially at higher density (shown in figure 8). Although the spectral 

broadening increases with increasing density in both cases, the increment of spectral 

broadening in the 2.45 GHz case is larger than that in the 4.6 GHz case at high density, 

documenting the stronger occurrence of the non-linear decay of the pump wave, which may be 

responsible for the loss of CD efficiency. Simultaneously, the plasma current density in the 

edge region (r/a > 0.8) obtained from equilibrium reconstruction using an EFIT code 

constrained by the measurements with the external magnetic coils and POINT diagnostic was 
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increased with a reduction in the source frequency or with the increase in plasma density as

shown in figure 8. So, it can be concluded that the plasma current profile modification by 

LHCD in the edge region shows well correlation with PI activities. It is worth mentioning that 

the PONIT measurements mainly focus on the core plasma and the uncertainty in the edge 

region is difficult to estimate at present since no direct measurement is available for the 

reference. However, the obtained relative trend in the edge current profile constrained by 

magnetic measurements is reliable. Figure 9 shows a link between the degradation of CD 

efficiency and the PI induced spectral broadening. It indicates that the spectral broadening has 

a negative and significant effect on CD efficiency for both of two LHWs on EAST. PI modeling 

results show that the ion-sound quasi-mode-driven PI effect cannot fully account for the loss 

of CD efficiency. These novel results are significant in that they give insight for the first time 

into how nonlinear wave-plasma interactions such as PI may directly impact the edge current 

profile, the control of which is critical in order to achieve optimized modes of operation in a 

steady-state fusion reactor.

3.1.2 Interaction effect between ECRH and LHW 

In EAST, the interaction between ECRH and LHW has been investigated. A significant 

performance degradation in an electron heating dominant H-mode plasma was observed after 

ECRH termination[22] (shown in figure 10). This performance degradation is accompanied by 

a slow decrease of . The energy confinement enhancement factor decreases from 

1.15 to 0.78 in 2.6 s after ECRH termination, and the internal inductance drops following the 

stored energy with some delay. Line averaged electron density is kept as constant during this 

period. The stable surface loop voltage suggests that the total non-inductive current is not 

changed very much.
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The analysis using GENRAY and CQL3D code shows that both the LHW electron heating and 

current drive move from plasma core to large radius after turning off ECRH (see in figure 11). 

It should be noted that the total LHW electron heating power and driven current are almost 

unchanged. In other words, with the early on-axis heating of ECRH before the plasma current 

plateau, LHW deposited more power near the plasma centre. Thus, the driven current also 

peaked in the core. So, from this point of view, heating of ECRH provides a way to control the 

LHW power deposition and also the total plasma current profile, which is crucial for the ITB 

formation in plasma.

3.2 Pedestal stability

3.2.1 Small ELMy regime

A highly reproducible stationary grassy ELM regime has been achieved in the EAST 

superconducting tokamak with water-cooled tungsten upper divertor and molybdenum first 

wall, exhibiting good energy confinement (H98y2 up to 1.4), strong tungsten impurity exhaust 

capability, and compatibility with low rotation, high density (up to ~1.1nGW), radiative divertor 

and fully non-inductive operations. Figure 12 shows statistics of ELM frequency of H-mode 

discharges on EAST in 2016-2018 with the plasma stored energy Wp>120kJ. The ELM size 

generally decreases with increasing ELM frequency, fELM. The grassy ELM regime has been 

obtained with both Bt directions. The statistics indicate that the most sensitive parameters for 

the grassy ELM regime access is q95 and p. The lower boundaries of the regime access for 

fELM>0.5kHz is q95≥5.3, p≥1.1 and nel/nGW≥0.46. N is up to 2, limited by the total heating 

power currently available. This parameter space overlaps with that of the projected baseline 

scenario of CFETR. Higher q95, p and upper triangularity u appear to facilitate the access to 

higher ELM frequency, which is consistent with the JT-60U grassy-ELM prescription[23].

Although the access parameter space is similar to that of JT-60U in terms of q95, p and , it 
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appears to be in different density range. The grassy ELM regime in JT-60U is accessible at low 

density nel/nGW<0.5 [24], while at high density in EAST. It may be due to different wall 

material: metal in EAST vs. carbon in JT-60U.

In addition, access to this regime appears to be independent of the LHCD power. The LHCD 

can thus be excluded as a generation mechanism of the grassy ELMs. Nonlinear pedestal 

simulations with BOUT++ code uncovers the generation mechanism of the grassy ELMs, 

indicating that the characteristic radial profiles in the pedestal is the key to suppressing large 

ELMs. The radial profiles feature a relatively high ne,sep/ne,ped (up to 0.6), wide pedestal, mild 

pedestal density gradient and low pedestal bootstrap current density. Because of the low 

bootstrap current density in the pedestal, the kink/peeling-dominated low-n PBMs, which 

usually leads to large ELMs, are stabilized when the pressure gradient just slightly decreases,

thus the pedestal collapse stops, leading to small ELM.

3.2.2 Type-I ELM control

ELM suppression using resonant magnetic perturbations (RMPs) has been extended recently 

to low q95 (≈ 3.2-3.7) and high beta (βN ≈ 1.5 − 2) standard type-I ELMy H-mode operational 

window in the summer campaign in 2018 in EAST. Here the auxiliary heating power in this 

experiment in EAST includes 2.5MW NBI and 1MW LHCD. Limited by the available 

operational window in previous experiments in EAST, ELM suppression or strong mitigation 

was only achieved previously in EAST with n = 1 and 2 RMPs in a relatively high q95 (≥ 5) 

and low beta (βN ≤ 1) [25][26].  Plasma stored energy often decreases due to strong density 

pump out after ELM suppressed with low n RMP in previous experiments. Recently, full ELM 

suppression is achieved by all n = 2 − 4 RMPs in this new standard type-I ELMy H-mode

operational window. ELM suppression with n = 3 and 4 shows a relative minor change of stored 
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energy, although strong density pumps out also occurs during this process. Ion temperature 

increases a lot after ELM suppression compensated the drop of energy due to density pump 

out. This is similar to the observations of recovery of plasma confinement after ELM 

suppression in DIII-D[27]. Like the observations in DIII-D[28], the ELM suppression window 

for n = 3 is quite narrow. However, a large q95 window for ELM suppression has been achieved 

by using the n = 2 RMP in a similar target plasma mentioned above. Figure 13 shows that full 

ELM suppression was sustained during the ramp down of q95 (via ramp up of plasma current) 

started from different levels. This covers a q95 window from 3.2 to 4.2. It demonstrated an 

effective ELM suppression with n = 2 RMP in standard H mode operational window in EAST.

The maximal resonance in plasma response field modelled by linear MHD code MARS-F

agrees with the optimal phasing for ELM control during the scan the phasing (the phase 

difference between the upper and lower coil current) [26]. Recently, a multi-modal plasma 

response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. The 

signature of the multi-modal response is the magnetic polarization (ratio of radial and poloidal 

components) of the plasma response field measured on the low field side device mid-plane, 

which is reproduced by GPEC modelling.

Controlling the steady-state particle and heat flux impinging on the plasma facing components 

is still necessary when the transient power loads induced by ELMs have been eliminated by 

RMPs. This is especially true for long-pulse operation. One promising solution is to use the 

rotating perturbed field, which has been tested in EAST [29]. The particle flux patterns on the 

divertor targets change synchronously with both rotating and phasing RMP fields as predicted 

by the modelled magnetic footprint patterns. Experiments using mixed toroidal harmonic 

RMPs with a static n = 3 and a rotating n = 2 harmonics have validated predictions that divertor 
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heat and particle flux can be dynamically controlled while maintaining ELM suppression in 

both DIII-D and EAST[30].

3.2.3 Impact of the flow shear on ballooning-driven ELM

The theoretical works predict that  shear can affect the magnitude and evolution of the 

cross phase of the velocity and pressure fluctuations in the peeling-ballooning-mode-driven 

heat flux [31]. By using the specific co-NBI and ctr-NBI systems on EAST, an alternating 

 flow shear discharge has been performed to study the impact of the  flow shear 

on ballooning-driven ELM at a fixed high collisionallity ( ) [32]. The collisionallity 

was kept the same by the density feedback with the super molecular beam injection (SMBI) 

and well matching of the injecting power of co-NBI and ctr-NBI.

The H-mode plasmas are achieved in a low-recycling regime due to extensive lithium wall 

coating, with the combined LHW and ICRF hydrogen minority heating, at a power of 

 ,  . Deposition of ICRF is at the center of 

deuterium plasmas. After the L-H mode transition, the H-mode plasma are modulated by 

periodically alternating the direction of NBI, either co-NBI or ctr-NBI with   

and , respectively, as shown in figure 14 (c). With the alternating of the co-

NBI and ctr-NBI, the velocity of the toroidal rotation in plasma centre is changed periodically 

from   (co-NBI) to   (ctr-NBI), as illustrated as the red-dash line in 

Figure14 (d). 

Figure 15 illustrates the profiles of Doppler frequency  measured from the Doppler 

Backscatter System (DBS) on EAST, here the radial electric field   is proportional to 

 for  with a fixed launch angle of DBS. It 

can be found that the Doppler frequency   wells in the pedestal region show big 

differences upon periodically altering the direction of NBI. The well becomes more negative 
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at the ctr-NBI case. The maximum value of   at the bottom of   well. As 

shown in Figure 1 (d), the toroidal rotation changed from  to  after 

the counter neutral beam injection, which contributed the negative radial electric field in the 

ion force balance equation  . Here, the   is the velocity of 

toroidal rotation. The ELMs are suppressed by  at the ctr-NBI case with the maximal 

 increased by a factor of . 

The results reveal that the increased  flow shear can significantly mitigate the ELM, or 

even totally suppress the ELM when the shear is large enough. Our simulations with BOUT++ 

support the observations on EAST, and further indicates that the increased  can both 

reduce the linear growth rate of ballooning mode and shorten its growth time (phase coherence 

time, PCT). The enhanced nonlinear interactions shorten the PCT of ballooning mode, which 

is validated by the bispectrum study on EAST. All those studies suggest a new way to control 

the ELM.  

3.3 Power and particle exhaust

3.3.1 High Z impurity control

It has been widely accepted that tungsten (W) will be used in ITER divertor, and it is the top 

candidate plasma facing material for DEMO and CFETR. On EAST, it is often observed that 

the long-pulse steady-state H-mode is restricted by largely increased radiated power in plasma 

core due to the tungsten accumulation [33]. Tungsten control is therefore a crucial issue for the 

EAST long-pulse H-mode operation. A dedicated experiment of high Z impurity accumulation 

avoidance (discharge #73886) has been performed on EAST by applying the on-axis ECRH 

during the H-mode phase as shown in Fig. 16. In this experiment, the power of ECRH is 

deposited at ρ<0.1. After the ECRH is turned off at t = 36.5s, the high-Z impurity of W build 
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up quickly, thus a steady-state H-mode could not be sustained. A comparison of density profiles

of W45+ measured with and without ECRH is shown in Figure 16. The result indicates the W45+

ion is dramatically pumped out from plasma core with ECRH. The maximal density of the W45+

ion, nW
45+, decrease from 3.5 to 1.9×108 cm-3, and its peak deposition moves outward from 

ρ=0.13 to 0.2. In recent EAST long-pulse H-mode operation, the on-axis ECRH has been 

routinely superimposed on the LHW and ICRH sustained H-mode phase to avoid the high-Z

impurity accumulation and control high-Z impurity content.  

3.3.2 Radiation feedback control

Impurity seeding has been recognized as an attractive method for the steady-state heat flux 

control in a long-pulse high power H-mode operation, especially for superconducting tokamaks 

like EAST, ITER and CFETR. The seeding impurities can dissipate a large fraction of the 

thermal energy into radiat , and thus reduce the peak heat flux and total power incident on 

the divertor target plates. The active feedback control of radiation power and thus heat load 

towards long-pulse operation has been developed and successfully achieved in EAST using 

neon (Ne) impurity seeding [34]. By seeding a sequence of short neon impurity pulses with the 

SMBI from the outer mid-plane, the plasma radiation power can be well controlled. Reliable 

control of the total radiated power of the bulk plasma has been successfully achieved in long-

pulse upper single null (USN) discharges with a tungsten divertor. The achieved control range 

of frad is 20%–30% in L-mode regimes and 18%–36% in H-mode regimes, where frad is the 

radiation fraction with respect to the total injected power. The temperature of the divertor target 

plates was maintained at a low level due to increased power during the radiative control phase. 

The peak particle flux on the divertor target was decreased by feedforward Ne injection in the 

L-mode discharges, while the Ne pulses from the SMBI had no influence on the peak particle 

flux because of the very small amount of injected Ne particles. Figure 17 shows the control 

results for a serial of sequent long-pulse H-mode discharges. During the entire duration of the 
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feedback control phase, the temperature of the divertor target plates is maintained constant,

however, it starts to increases immediately after the feedback control was turned off. At the 

strike point of the outer target plates, the temperature descends around 250 - 300 K during the 

feedback control phase, which suggests that the heat flux incident on the divertor target is well 

reduced. In addition, the simulations on the edge impurity transport and radiation using SOLPS 

code have been carried out with different seeding impurity species, and the results have been

applied for optimization of the radiation feedback control in EAST [35]. In the 2018 campaign, 

the radiation feedback control with neon seeding from divertor region was successfully 

extended in the small ELMy regime [36]. The neon seeding from divertor region also exhibits

a great success for detachment feedback control [11].

3.3.3 Recycling and particle exhaust

Fuel recycling strongly affects plasma density and confinement performance, especially in the

high power long pulse plasma operation[33,37]. In EAST, the first wall baking and alternate 

D2/He glow discharge cleaning of up to ~ 1 month is employed to reduce impurity and 

hydrogen content in the vacuum vessel and first wall surface, and an ultimate vacuum of ~ 

3.6×10-6 Pa is achieved after long time wall conditioning, which provides a good wall condition 

for the plasma operation. Fuel recycling is usually very high in the initial plasma operation, 

and it’s decreased gradually along with discharges. Moreover, low-Z material of silicon and 

lithium coating on the first wall is effective to control fuel recycling, and lithium is proven to 

be more effective than silicon, and lithium coating assisted with ICRF discharge cleaning is a 

routine wall conditioning method to control fuel recycling in EAST[38].

In EAST 2018 campaign, helical wave plasmas (HWP) are successfully excited by the RF wave 

power via a helical antenna, with the following parameters: Prf =10 – 30 kW@27MHz, helium 

~0.27 Pa, BT=0.5 – 1 T. The HWP plasmas are almost toroidally uniform, and mainly localized 
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inside helical antenna in poloidal direction, as shown in figure 18(a). This is for the first time 

applying the HWP for conditioning the first wall under a strong magnetic field (~ 1 T) in 

tokamaks, the retained deuterium particles are obviously desorbed during the HWP discharge 

cleaning, with a removal rate of ~ 1019 D-atoms/s, mainly in the form of HD via isotope 

exchange. Moreover, Direct-Current Glow Discharge Cleaning (DC-GDC) under strong 

magnetic field of 2 T is also successfully operated in EAST tokamak in 0.5 – 4.5 Pa helium 

atmosphere by using 1 – 4 GDC anodes with 1 – 4 A GDC current per anode, leading to a total 

GDC current of 1 – 24 A. The DC-GDC plasmas flow along magnetic field as shown in figure 

18(b). It was considered that the GDC could not work under strong magnetic field because 

glow discharge current is hard to flow cross magnetic field line. However, in toroidal direction 

along with magnetic field line, glow discharge current could be kept between the GDC anodes 

and the vessel walls, this may be the main reason why the DC-GDC works stably in strong 

magnetic field. Both the HWP and the DC-GDC works well under strong magnetic field, 

providing more choices of wall conditioning in the future fusion devices with strong magnetic 

field.

4. Extrapolation from EAST long pulse operation to >50% bootstrap current fraction

After achieving >100 s long pulse H-mode, EAST is now proposing a new milestone, to 

achieve 50% bootstrap current fraction at q95 comparable to those of ITER and CFETR steady-

state scenarios, for its next development. Unlike the more compact conventional tokamak, 

EAST, the superconducting tokamak, which shares its inner space with the shielding, cryo-

subsystem, has relatively high aspect ratio (R/a=1.85/0.45=4.11). This feature makes it more 

difficult in pursing high bootstrap current fraction in plasma operation due to the proportional 

relation between the bootstrap current fraction and the inversed aspect ratio. For example, the 

joint EAST/DIII-D research team developed a high confinement, high p scenario on DIII-D

as one of the candidate scenarios for EAST future long-pulse high performance plasma [19]. 
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This scenario achieves H98(y2)>1.5 and realizes fbs~80% at p≥3.0. Considering the relation, 

fbs~ 0.5× p, EAST will have nearly 20% lower bootstrap current in the same confinement and 

beta. The same 0-D extrapolation suggests that EAST may need p≥2.5 in order to achieve 

fbs~50% which depends on collisionality as well. The fact is that in the EAST long-pulse

discharges, plasma poloidal beta is only around 1.2 and the bootstrap current fraction is usually 

about 30% or below. There is still a large gap toward the goal of fbs~50% in the plasma 

operational space. Nevertheless, the EAST team will focus on this research and break through 

the scope of the operational space. 

A path to the goal of fbs~50% can be illustrated in fig. 19. Based on the 0-D modelling of EAST 

parameters, this figure shows the possible operational space expressed by the bootstrap current 

fraction, H98(y2) and the line-average density for the plasma, which has 400 kA of the plasma 

current, i.e. q95~6.5. In fig. 16, the long-pulse regime achieved in EAST 2017 campaign is 

highlighted in large red ellipse. To achieve the fbs target, the 0-D simulation suggests three 

working directions. Firstly, enhance the effective auxiliary heating capability. In 2017 

campaign, the total injected power (not absorbed power) is usually about 3-5 MW in long-pulse

discharges. Additional 3-5 MW of the steady-state auxiliary heating power is expected. 

Otherwise, we will need to trade confinement for heating power. The regime in green ellipse 

can also be our goal, if the plasma can achieve very high confinement, H98(y2)>1.35. Here comes 

the second working direction - higher confinement (better than standard H-mode). In this way, 

high confinement ensures the ‘economic’ high performance plasma operation with relatively 

low input power. EAST might need 6-7 MW to achieve the bootstrap fraction target. However, 

the high confinement itself is very challenging. It requires substantial increase of confinement 

based on the standard H-mode. An ITB is usually essential in these plasmas. The third working 

direction is fully non-inductive plasma operation with high density. Historically, EAST relies 

on the lower hybrid wave heating and current drive very much, while low density is the 
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favourable condition in this regime. Figure 19 suggests plasma density like 5.0×1019 m-3 or

higher should be tested in the experiment in order to pursue the bootstrap fraction target. How 

to improve the current drive efficiency of the lower hybrid wave becomes a very important 

issue in the high-density scenario. In the EAST campaign 2018, more endeavours have been 

made to pursue the bootstrap current target. The representative discharges are shown in stars 

in figure 19, where ~45% fbs was obtained with the pure RF H&CD. It is foreseen that the 50% 

fbs target is achievable with 2 extra gyrotrons (2 MW) for H&CD in the campaign 2019.

5. Summary and future plan

In all, several great progresses have been made in the development and understanding of 

relevant physics and issues with respect to the long-pulse steady-state operation since the last 

IAEA FEC in 2016. The demonstration of a long-pulse steady-state H-mode of 101.2s with

small ELMs and a good global performance (H98(y2) ~1.1) was achieved through the integrated 

operation. The long-pulse discharge reaches wall thermal and particle balance with the ITER-

like tungsten divertor. To demonstrate high , high fbs for ITER and CFETR, the extension 

of the EAST operational domain towards the higher beta regime were obtained by using 

different heating schemes, in which βP ~ 2.5 & βN ~ 1.9 of using RF&NB and βP ~ 1.9 &βN ~

1.5 of using RF only. Meanwhile, the sustainment of high βP ~ 1.9 of using RF only with ne/nGW

~ 80%, fbs ~ 45% at q95 ~ 6.8 for 24s was achieved, which is particularly suited for high βP long-

pulse operation. The good confinement with ITB was achieved in these plasmas. The use of 

on-axis ECRH was demonstrated to be effective methods to avoid the high-Z impurity 

accumulation for the EAST long-pulse operation. It was also shown that the interaction effect 

between the ECRH and two LHW systems (2.45GHz and 4.6GHz), which allows LHW to 

deposit more power in plasma core regime with enhanced current drive capability. A highly 

reproducible stationary grassy ELM regime was achieved in EAST with exhibition of good 

energy confinement (H98y2 up to 1.4), strong tungsten impurity exhaust capability. Full ELM 
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suppression with the application of n = 2 RMPs was achieved in the standard type-I ELMy H-

mode plasmas with a window of q95 ≈ 3.2-3.7 and a relative high beta (βN ≈ 1.5 − 2). Reduction 

of the peak heat flux on the divertor using the active radiation feedback control shows a

promising method for EAST heat flux control in the long-pulse steady-state operation. Up-

coming EAST experiments, the integration of techniques and physics understanding will

accelerate the exploration of the EAST high performance, high bootstrap current fraction (fbs 

50%) steady-state scenario.

With the features such as electron heating dominant, low torque and ITER-like tungsten 

divertor, EAST made unique contributions to some critical issues of ITER and CFETR. EAST 

has demonstrated steady-state operations with similar q95 and good confinement of CFETR. As 

shown in section 2, discharge 81163 has q95=6.8, good confinement and relatively high density

<ne>/nGW~0.80. However, the βN are still lower than the CFETR reference scenario[39]. More 

experiments need to perform to push the βN up to 2.8, which is the target βN of the steady-state 

operation of ITER and CFETR. EAST also achieved a small ELM regime compatible with the 

CFETR steady-state scenario, as described in section 3.2.1. This gives a possible solution to 

the handle the ELM heat flux on the CFETR divertor target plate. For the power and particle 

exhaust, as shown in section 3.3, EAST clearly shows the tungsten impurity accumulation 

could be controlled by ECRH, and divertor radiation feedback control has been realized by 

impurity seeding, this gives more confidence to control the impurity and the heat flux on the 

target plates.

Towards very long-pulse, high fbs plasma operation, a further extension of the ECH system 

with 2 more gyrotrons is underway and will give total 4.0MW power for heating, current drive 

and profile control. In order to support the physical research on EAST, two optimization 

methods have been applied for NBI system in this summer experiment. Firstly, adjusting the 
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voltage gradient on the accelerator is employed to raise the electric field in the first gap. By 

this method, the injected beam power is boosted about 25%. Secondly, the technology of beam 

re-turn on is also developed and applied. This enables the neutral beam injection system to 

have the long-pulse operation ability even if there is a spark down. Meanwhile, a new ITER-

like monoblock structure with ~10MW/m2 power handling capability (shown in fig.20) will be 

used in the target plates and flat-W-tile structure with ~5MW/m2 power handling capability 

will be used in the dome and baffle. The surface of end boxes (water pipe connector) are 

oriented to avoid direct exposure to high heat flux. The capability of water-cooling system will

be enhanced with water flow velocity increasing from 4 to 8 m/s. The installation of new W 

lower diveror was scheduled in 2019.
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List of figure captions 

Fig. 1 Time histories of plasma current, loop voltage, electron density, RF heating power of 
LHW, ECH and ICRF, divertor temperature by IR camera, radiation power,
confinement factor H98y2, and D (from top to bottom).

Fig. 2 Electron temperature, density profiles by TS, transport coefficient and electron heating 
power profiles for discharge 73999

Fig. 3 Normalized poloidal beta versus line-averaged density of low loop voltage plasma
Fig. 4 Time history of several parameters for high βP discharges. Left from top to bottom, 

normalized poloidal beta & normalized beta, loop voltage & line averaged density over 
Greenwald density limit, LHW&ECH power; Right from top to bottom, normalized 
poloidal beta & normalized beta & loop voltage, LHW&ECH power, NB power

Fig. 5 High βN scenario development for EAST#78723 with βN >1.9 sustained for 2s. Signals 
from top to bottom are plasma current (Ip) and loop voltage, LHW power (PLHW) and 
NBI power (PNBI), the core line averaged density, plasma normalized beta and 
inductance. 

Fig.6 Operational regime of the high βN scenario, where the βN value has reached 3 times of li.
Fig.7 An example of Ti profiles before and after ITB formation
Fig.8 Current profile measured by POINT and frequency spectra measured by RF probe with 

different LH frequencies (left) and densities (right).
Fig.9 Normalized experimental current drive efficiency versus pump spectral width. Here, the 

pump width fP is defined as the full width 20 db below the maximum.
Fig. 10. Time evolution of ECRH heating power, energy confinement H98y2 and internal 

inductance of EAST shot #66743. ECRH is turned off at 3.91s.
Fig.11 LHW driven current profiles before and after ECRH termination calculated by 

GENRAY and CQL3D codes.
Fig. 12 Statistics of ELM frequency as a function of q95, p, ne/nGW, upper triangularity u and 

LHCD power PLHCD for EAST H-mode discharges with the plasma stored energy Wp

>120kJ, indicating the access parameter space of the high-frequency small-ELM regime 
(fELM >0.5kHz) is q95≥5.3, p≥1.1 and ne/nGW≥0.46. High upper triangularity u appears 
to be beneficial for access to this regime. In addition, access to this regime appears to be 
independent of the LHCD power. The magenta curves indicate the lower boundaries of 
the regime access for these parameters.

Fig. 13 ELM suppression achieved in a large q95 window ranging from 3.2 to 4.2 in EAST. 
Here the n=2 RMP with a coil current 2.9kA has been applied from 3.5s to 6.5s.

Fig. 14 Time histories of various plasma quantities for a H-mode plasma discharge #55251 
on EAST during the application of periodically alternating neutral beam injection. (a) 
LHW power (2.45GHz and 4.6GHz) and ICRF power , (b) line averaged 
density and stored energy , (d) co- and countercurrent NBI power , (e) 
(f) the density of particle flux at the divertor target (black solid line) and the 
velocity of toroidal rotation of the central plasma (red dash line).

Fig. 15 Radial profiles of Doppler shift  (here, ) with co- and 

counter-current NBI in H-mode discharge, respectively. The blue line is profiles in L-
mode discharge. 

Fig.16 Time evolution of (a) injected power of 4.6GHz LHW, ICRH and ECRH (b) divertor 
Dα, (c) ne normalized intensity of emission line of Mo XXXII at 127.87 Å and W-UTA 
in the range of 45-70 Å (composed of W27+-W45+), (d) Impurity concentration of Mo 
and W Right: Density profile of W45+ ion with (red square) and without (blue circle) 
on-axis ECRH
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Fig. 17 The time traces of three sequential H-mode discharges for radiative feedback control 
with different target radiated power (Prad,target): (a) 0.6 MW without a feedforward Ne 
injection, (b) 0.8 MW, (c) 1.0 MW with the IR-camera measured temperature for the 
upper outer divertor plate, (d) the contour of the temperature measured by the IR 
camera for the upper outer divertor target plate in the same shot with figure (c), with
the vertical axis being the distance along the target plate poloidally.

Fig.18 (a) HWP plasmas under 1T, (b) DC-GDC plasmas under 2 T with 4 anodes working 
and 5 A/anode.

Fig.19 The path to the goal of fbs~50%, based on the 0D simulation for Ip=400 kA plasma 
operation. Color bar shows the line-averaged density in each case. The stars are two 
typical discharges in EAST campaign 2018. The red ellipse shows the collection of 
the long-pulse regime in 2017, which is also the start point of this extrapolation.

Fig.20 EAST new W lower divertor. Installation scheduled in 2019.
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Fig.1 
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Fig.2
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Fig.3
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Fig. 4 
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Fig.5 
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Fig.6
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Fig.7
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Fig.8
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Fig.9
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Fig.10
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Fig.11
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Fig.12
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Fig.13
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Fig.14
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Fig.15
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Fig.16
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Fig.17
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Fig. 18
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Fig.19

EAST 2017EAS

Goal Goal

SN# 80337

SN# 811477N# 8114
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Fig. 20
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