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Abstract

Since the inception of competitive power markets two decades ago, electricity price forecas-
ting (EPF) has gradually become a fundamental process for energy companies’ decision making
mechanisms. Over the years, the bulk of research has concerned point predictions. However,
the recent introduction of smart grids and renewable integration requirements has had the effect
of increasing the uncertainty of future supply, demand and prices. Academics and practitioners
alike have come to understand that probabilistic electricity price (and load) forecasting is now
more important for energy systems planning and operations than ever before. With this paper we
offer a tutorial review of probabilistic EPF and present much needed guidelines for the rigorous
use of methods, measures and tests, in line with the paradigm of ‘maximizing sharpness subject to
reliability’. The paper can be treated as an update and a further extension of the otherwise compre-
hensive EPF review of Weron [1] or as a standalone treatment of a fascinating and underdeveloped
topic, that has a much broader reach than EPF itself.
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1. Introduction

In their analysis of research in time series forecasting, covering the period 1982-2005 and
summarizing over 940 papers, De Gooijer and Hyndman [2] conclude that the use of prediction
intervals and densities, or probabilistic forecasting, has become much more common over the
years, as ‘practitioners have come to understand the limitations of point forecasts’. Nevertheless,
back in 2013, when Weron started writing his review [1], this did not seem to be the case for
electricity price forecasting (EPF).1 The article speculated, however, that probabilistic forecasting
was one of five directions that should and would develop over the next decade or so. Somewhat
surprisingly, this ‘prophecy’ has already come true. After a decade of limited interest, probabilistic
EPF gained momentum with the Global Energy Forecasting Competition (GEFCom2014), which
commenced in August 2014 and focused solely on probabilistic energy (load, price, wind and
solar) forecasting [3]. The price track attracted 287 contestants worldwide and the best ranking
teams were later invited to submit a paper to the 2016 special issue of the International Journal
of Forecasting, see Section 2. Altogether, seven price forecasting articles appeared in the issue,
marking the beginning of the era of probabilistic EPF.

Naturally, the GEFCom2014 competition was not the reason, rather the effect of increased in-
terest in probabilistic energy forecasting. The energy industry has been going through a significant
modernization process. In the last decade, the increased market competition, aging infrastructure,
introduction of smart grids and renewable integration requirements have had the effect of proba-
bilistic load and price forecasting becoming more and more important to energy systems planning
and operations [4–7]. And probabilistic forecasting has a lot to offer, in particular, improved asses-
sment of future uncertainty, ability to plan different strategies for the range of possible outcomes,
increased effectiveness of submitted bids and possibility of more thorough forecast comparisons
[1, 8, 9].

However, probabilistic EPF is an underdeveloped topic, with both academics and practitioners
not using the correct evaluation or testing procedures (as discussed below). With this paper we
offer a much needed tutorial review that explains the complexity of the available solutions, in-
cluding notable techniques, statistically sound and less formal evaluation methods and common
misunderstandings. The paper can be treated as an update and a further extension of the otherwise
comprehensive EPF review of Weron [1] or as a standalone treatment of a fascinating and under-
developed topic, that has a much broader reach than EPF itself. In particular, as Raza and Khosravi
[10] argue, the electricity price is one of the influential explanatory variables in load forecasting
and PEPFs could be considered as input in probabilistic load forecasting models for smart grids
and buildings.

We start with a top-down literature review in Section 2. We first conduct an extensive biblio-
metric study of the Web of Science and Scopus databases. Then, acknowledging the importance
of the GEFCom2014 competition, in particular its competitiveness and unified forecast evaluation,
we summarize the methods used by the top four winning teams in the price track (note that we

1To avoid ambiguous and verbose presentation – unless stated otherwise – we use the term price forecasting to
refer to electricity price forecasting. We also use EPF as the abbreviation for both electricity price forecasting and
electricity price forecast, while PEPF for probabilistic EPF. The plural form, i.e., forecasts, is abbreviated EPFs and
PEPFs, respectively.
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will utilize two of these approaches in the empirical study in Section 5). Finally, in Section 2.3 we
review other important PEPF publications.

In Section 3 we first formulate the probabilistic forecasting problem, then discuss four ap-
proaches to constructing probabilistic forecasts: (i) historical simulation (or empirical/sample pre-
diction intervals2, PIs), (ii) distribution-based probabilistic forecasts, (iii) bootstrapped PIs and (iv)
Quantile Regression Averaging (QRA). Next, in Section 4, following the paradigm of ‘maximizing
sharpness subject to reliability’ [15–17], we first present the numerical tools and statistical tests
to assess reliability (i.e., the statistical consistency between the distributional forecasts and the
observations; also called calibration or unbiasedness), then discuss the techniques for measuring
and analyzing the sharpness (i.e., the concentration of the predictive distributions).

In the empirical study of Section 5 we employ most of the methods detailed in the preceding
two Sections. To provide transparency and replicability, we use a dataset that comes from the price
track of the GEFCom2014 competition, which is available as supplementary material accompa-
nying Ref. [3]. In the closing paragraphs, in Section 5.4, we put forward recommendations for the
evaluation of probabilistic forecasts. Finally, in Section 6 we conclude.

2. Literature review

Compared to probabilistic wind power forecasting [18–21], the literature on probabilistic EPF
is relatively scarce, even taking into account the 2016 special issue on the GEFCom2014 com-
petition [3]. This ‘maturity’ of wind power forecasting is likely due to its close relationship to
meteorological forecasting, where probabilistic predictions are well-established and commonly
accepted. On the other hand, EPF has not picked up before the deregulation of the 1990s and the
establishment of power markets for trading electricity [22]. As Hong et al. [3] argue, electricity
prices, and especially price spikes, are influenced heavily by a wide range of factors other than
the electricity demand, such as transmission congestion, generation outages, market participant
behaviors, etc. These factors, and the uncertainties associated with them, are hard to incorporate
into EPF models. So the first wave of models focused on point forecasting, which is generally less
demanding and easier to comprehend and implement than PEPF [1, 7]. To put probabilistic EPF
in perspective we start with a bibliometric study of EPF itself.

2.1. Bibliometric survey
In this section, we report on the bibliometric analysis we performed on 15 March 2017, nearly

three years after a similar study of Weron [1]. We use two well-established, constantly expanding
and generally acknowledged databases: Web of Science (WoS) and Scopus. We will first present
general results for both databases, then more specialized queries for Scopus only (its search engine
is more user-friendly and allows for more refined queries). Since the collections of publications
indexed by WoS and Scopus are not the same, the results do differ quantitatively but the overall
picture is similar.

2Some authors have erroneously used the term confidence interval (CI) instead of prediction interval (PI) [11–13].
However, in most EPF applications we are interested in PIs associated with electricity prices yet to be observed, i.e.,
intervals which contain the true values of future prices with specified probability, not in CIs quantifying the uncertainty
of a parameter estimate. See Hyndman [14] for a discussion.
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Figure 1: The number of WoS- (left panel) and Scopus-indexed (right panel) electricity price forecasting (EPF) pu-
blications in the years 1992-2016. All publications prior to year 2000 (8 for WoS, 6 for Scopus) have been aggregated
into one category ‘<2000’.

In Figure 1 we plot the number of WoS- and Scopus-indexed EPF publications in the years
1992-2016.3 The overall number of publications is 559 for WoS and 664 for Scopus. Respectively
285 (51%) and 328 (49%) of these are journal articles. Both databases are constantly being ex-
panded to cover more journals and proceedings volumes, but still the indexed publications are not
representative of the true number of conference papers. Since the latter are typically also of lower
quality than journal articles, like Weron [1], we mostly concentrate on articles. Note, however,
that because we have modified the queries to better filter out relevant EPF publications, the results
are not fully comparable between the two bibliometric studies.

Except for a handful of papers, EPF publications have not appeared in the literature before
year 2000. The next major breakthrough were the years 2005 and 2006 when the number of
publications first doubled, then tripled with respect to 2002-2004 figures, mainly due to conference

3To search publication titles, abstracts and keywords for EPF-related phrases we have used the follo-
wing Scopus query: (TITLE((((("electric*" OR "energy market" OR "power price" OR "power

market" OR "power system" OR pool OR "market clearing" OR "energy clearing") AND (price

OR prices OR pricing)) OR lmp OR "locational marginal price") AND (forecast OR forecasts

OR forecasting OR prediction OR predicting OR predictability OR "predictive densit*")) OR

("price forecasting" AND "smart grid*")) OR TITLE-ABS("electricity price forecasting" OR

"forecasting electricity price" OR "day-ahead price forecasting" OR "day-ahead mar* price

forecasting" OR (gefcom2014 AND price) OR (("electricity market" OR "electric energy

market") AND "price forecasting") OR ("electricity price" AND ("prediction interval" OR

"interval forecast" OR "density forecast" OR "probabilistic forecast"))) AND NOT TITLE

("unit commitment")) AND (EXCLUDE(AU-ID,"[No Author ID found]" undefined)) and the equivalent
WoS query. All look-ups have been further refined to exclude non-English language texts or include only specific
document types.
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Figure 2: Left panel: The number of Scopus-indexed EPF journal articles and citations to those articles in the years
1994-2016. Four articles prior to year 2000 have been aggregated into one category ‘<2000’. Right panel: The
number of Scopus-indexed EPF journal articles in each of four ‘method’ classes (see text for details). Additionally,
the number of probabilistic EPF papers in each year is indicated by a narrow white bar.

papers; journal articles followed with a delay. The publication rate rapidly increased until 2009,
then dropped to pre-2009 levels, to pick up again in 2012. As of 2016 the topic seems to have
regained interest, with the figures for 2015-2016 being significantly higher than the numbers for
2009. This is also visible in the constantly increasing numbers of citations, see the left panel in
Fig. 2.

As far as probabilistic forecasting4 is concerned, the topic was not present in the EPF literature
until Zhang et al. published two conference papers in 2002 (not visible in Fig. 2) and the first pro-
babilistic EPF article in 2003 in IEEE Transactions on Power Systems [23], see the narrow white
bars in the right panel of Fig. 2. Between 2005 and 2009 further eight articles were published,
including two papers in a special issue of the International Journal of Forecasting on ‘Energy
Forecasting’ [24, 25]. The topic picked up again in 2011 and averaged four articles per year in
the period 2012-2015. A big change came in 2016 with the special issue on the GEFCom2014
competition [3], which included 7 papers on probabilistic EPF. As of 15 March 2017, 38 articles
(and 9 conference papers) have been indexed by Scopus for the period 2002-2016, with another 4
articles published in 2017.

Regarding the methods used, there is no clear temporal pattern, see the right panel in Fig. 2.
Overall, the share of ‘neural network’-type (including support vector machines and fuzzy logic)

4To search for probabilistic EPF papers the Scopus query given in footnote 3 was appended in front by:
(TITLE(("probabilistic" AND "forecasting") OR interval OR density) OR TITLE-ABS-KEY(

"probabilistic forecast*" OR "interval forecast*" OR "density forecast*" OR "prediction

interval*")) AND.
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methods exceeds that of ‘statistical time series’ models. It should be noted, however, that the
classification was automatic and possibly includes some errors. In particular, the look-up for ‘sta-
tistical time series’ methods is more complicated as there are many commonly used keywords and
phrases.5 Out of the 328 articles indexed by Scopus, the search yielded 184 ‘neural network’-type
papers and 137 ‘statistical time series’ papers. However, in some articles both types of methods
are used, in other none of the tools automatically classified as coming from one of the two groups.
If we consider four disjoint sets: (i) ‘neural network’ papers, (ii) papers where both ‘neural net-
work’ and ‘statistical time series’ models are used, (iii) ‘statistical time series’ papers and (iv)
papers where neither ‘neural network’ nor ‘statistical time series’ methods are used, then the over-
all count is 115, 69, 68 and 76, respectively. Apparently ‘neural network’-type methods are nearly
twice as popular as ‘statistical time series’ techniques.

Let us now see which are the most popular outlets for EPF articles, see the top panel in Fig. 3.
Clearly the number one journal is IEEE Transactions on Power Systems with 35 publications (out
of 328 indexed by Scopus). Like for other engineering journals, the share of ‘neural network’-type
methods exceeds that of ‘statistical time series’ models. On the other hand, the latter methods
are mainly published in non-engineering journals: Energy Economics and International Journal
of Forecasting. In particular, not a single article published in Energy Economics involved neural
networks, support vector machines or fuzzy logic. As argued by Weron [1], a likely reason for the
latter situation is the difference in educational training of electrical engineers (focused on com-
putational intelligence) and econometricians/statisticians (focused on regression and time series
models), who constitute the two main groups of authors submitting papers to those two journal
classes. Unfortunately, these differences in educational training have their consequences in the
quality of research. Typically ‘electrical engineering’ papers consider sophisticated computati-
onal intelligence tools and relatively simple (or not properly applied) statistical models, while
‘econometric’ or ‘statistical’ papers usually show that (advanced) statistical models outperform
(simple) computational intelligence techniques. There is definitely room for improvement and
closer cooperation between the two communities.

In the bottom panel of Figure 3 we summarize the research output of the 14 most prolific
authors. The list is headed by Nima Amjady (Semnan University, Iran), who has (co-)authored
16 EPF articles, including the influential Day-ahead price forecasting of electricity markets by a
new fuzzy neural network [26] (175 citations in Scopus since 2006; w/o self citations). The second
on the list is Rafał Weron (Wrocław University of Technology, Poland) with 11 Scopus-indexed
articles, including the most comprehensive EPF review to date – Electricity price forecasting: A
review of the state-of-the-art with a look into the future [1] (103 citations since 2014); Weron
has also authored the first monograph devoted to EPF [22] (344 citations in Scopus since 2006;
included in Fig. 1, but not in Figs. 2-3). The third on the list is João P.S. Catalão (University of
Beira Interior, Portugal), who has published nine EPF articles, including the highly cited Short-
term electricity prices forecasting in a competitive market: A neural network approach [27] (154

5To search for ‘neural network’-type papers the Scopus query given in footnote 3 was appended in front
by: TITLE-ABS-KEY("neural network" OR "support vector machine" OR fuzzy) AND, while for ‘statis-
tical time series’ methods by: (TITLE-ABS-KEY ("AR" OR "ARMA" OR "ARIMA" OR "GARCH" OR "VaR" OR

"regression" OR "autoregressive" OR "autoregression") OR ABS("time series model")) AND.
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Figure 3: Top panel: The number of Scopus-indexed EPF articles published in the years 1994-2016 in the 11 most
popular outlets. Bottom panel: The number of Scopus-indexed EPF articles published in the years 1994-2016 by the
14 most prolific authors (S.K. Aggarwal, A. Kumar and L.M. Saini have jointly written all six of their EPF papers,
hence are listed as ‘one’ author). In both panels the papers are subdivided into four ‘method’ classes and additional
narrow white bars indicate the number of probabilistic EPF papers in each journal (top panel) and by each author
(bottom panel).

citations since 2007). Generally, the top publishing authors are not very diversified in their use of
forecasting tools – most specialize in ‘neural network’-type techniques (Amjady, Catalão, Keynia,
Mandal, Dong, Senjyu), some in ‘statistical time series’ models (Weron, Nowotarski) and a few in
data-mining and dimension reduction procedures (Garcia-Martos, Zareipour). However, three of
the listed authors have published only ‘multi-method’/review-type papers (Aggarwal, Kumar and
Saini have jointly written all six of their EPF papers, hence are listed as ‘one’ author in Fig. 3).

Regarding probabilistic forecasting, only two journals can boast a sizable amount of probabi-
listic EPF studies – IEEE Transactions on Power Systems (6 articles) and International Journal of
Forecasting (10 articles; largely a result of the 2016 special issue on the GEFCom2014 competi-
tion), see the top panel in Fig. 3. Only three of the 14 most prolific EPF authors – Rafał Weron
(Wrocław University of Technology, Poland) [1, 12, 24, 28, 29], Z.Y. (Joe) Dong (University of
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Sydney, Australia) [30–32] and Jakub Nowotarski (Wrocław University of Technology, Poland)
[28, 29, 33] – have (co-)authored at least three probabilistic EPF articles, see the bottom panel in
Fig. 3.

2.2. Winners of the GEFCom2014 price track
The dataset available to participants of the price track consisted of three time series at an

hourly resolution: locational marginal prices and day-ahead predictions of zonal and system loads,
see Section 5.1 for details. During the competition the information set was being extended on a
weekly basis. For the first of the 12 competition Tasks (or weeks; there were also three ‘trial’
pre-competition Tasks) almost 2.5 years of historical data was available. The objective was to
forecast 99 quantiles6 (as an approximation of the predictive distribution) of the next day’s 24
hourly prices, i.e., arrays of 99 × 24 values.

Given the high participation rate (the price track attracted 287 contestants worldwide) and the
unified forecast evaluation scheme (entries of all participants were ranked using the pinball loss
function, see Section 4.2.2), the GEFCom2014 competition provided a unique, large scale test
ground for PEPF, something that was missing in EPF studies thus far [1]. A total of 14 teams beat
the benchmark and submitted final reports [3]. The top four teams submitted papers to the special
issue; their methodology is discussed in this Section. Interestingly, three of them used quantile
regression [34] as the main tool for obtaining quantiles of the predictive distribution. However,
what is particularly worth emphasizing, the best performing models beat dozens of competitors in
a fair ‘battle’ and, as such, are recommended for benchmarks in future probabilistic EPF research.

Team TOLOLO were the winners of both the load and price tracks. Gaillard, Goude and Ne-
dellec [35] used three methods for the more challenging price track. The best on average approach,
dubbed quantGAM, utilizes general additive models (GAM) introduced by Hastie and Tibshirani
[36] and quantile regression. The former can be viewed as an extension of linear regression – the
dependent variable is explained by a sum of smooth functions of the different covariates. The se-
cond best approach, dubbed quantMixt, is an extension of Quantile Regression Averaging (QRA)
introduced by Nowotarski and Weron [28], see Section 3.5 for details, with up to 13 individual
point forecasting models (including variants of autoregression, regression, GAM, random forests
and gradient boosting) combined using a version of the ML-Poly forecaster. Finally, the third ap-
proach, dubbed quantGLM, is a kernel-based quantile regression with a lasso penalty [37]. Team
TOLOLO started out by using several versions of quantMixt for Tasks 2-8, then different versions
of quantGAM for Tasks 9-12 with particularly spiky prices and, finally, for Tasks 13-15 they used
quantGLM, which is designed specifically for Winter. Like that of other teams, their methodology
evolved over the course of the competition.

TEAM POLAND, ranked 2nd in the price track, proposed a hybrid approach which consists
of four major blocks: point forecasting, pre-filtering, quantile regression modeling and post-

6The qth quantile of random variable X is the value below which a fraction q of observations of this random
variable fall, i.e., xq satisfies FX(xq) = q, where FX is the cummulative distribution function of X. A sample quantile
refers to a value that splits the sample into subsamples of q and (1− q) observations. For example, the q = 0.1 or 10%
quantile is the value below which 10% of the observations may be found. Quantiles q = 0.01, 0.02, ..., 0.99 are also
called percentiles.
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processing. Maciejowska and Nowotarski [33] argue that their approach maintains a proper ba-
lance between flexibility and accuracy, and allows the blocks to be developed independently. Two
autoregressive models with the same structure (but different calibration samples) are used to com-
pute point EPFs. They are later used, together with other explanatory variables (hourly, mean
daily and ratios of load forecasts, average daily price forecasts and their squares), in a quantile
regression setting [34]. As such, that TEAM POLAND’s approach can be viewed as yet another
extension of QRA [28]. In the post-processing step, the 99 quantiles are sorted and the quantile
curves smoothed. This last step is important, since the neighboring quantiles may be overlapping
due to numerical inefficiency, a problem that is also known as quantile crossing [34, 38].

Team GMD, ranked 3rd, used a relatively simple neural network for computing EPFs. Dudek’s
[39] model is based on a multilayer perceptron (MLP) with five sigmoid neurons in the hidden
layer and one linear neuron in the output layer. To facilitate and accelerate the MLP learning, the
input and output variables are preprocessed by mapping them to the interval [−0.9, 0.9]. In the
first step, the MLP with system and zonal loads (original and squared) as the only input variables is
used to obtain point EPFs. The parameters are estimated once for all 24 hours of the next day using
312 hourly loads (i.e., data from 13 previous days). In the second step, the residuals are computed.
Since they are assumed to be N(0, σ2), the computation of quantile forecasts is straightforward,
see Section 3.2.

The C3 GREEN TEAM, ranked 4th, used machine learning techniques.7 Juban et al. [40]
explain that the core part of their model used quantile regression with a regularization term and
included a variable selection procedure based on leave-one-out cross validation for linear regres-
sion (i.e., for point forecasting). The latter considers predicted loads, historical prices, maximum
variation and standard deviation of the previous day’s prices and calendar effects as potential expla-
natory variables. In the next step, the input variables are transformed using a radial basis function
to incorporate non-linear dependencies. Finally, the quantile regression minimization problem is
solved with the help of alternating direction method of multipliers (ADMM) [41].

2.3. Other notable probabilistic EPF papers
2.3.1. The first years

In the first journal article on probabilistic EPF, Zhang et al. [23] propose an algorithm for obtai-
ning the PIs (which they erroneously call ‘confidence intervals’; see footnote 2) from a cascaded
neural network model. In a follow-up paper, Zhang and Luh [11] develop a modified U-D factori-
zation method within the decoupled extended Kalman filter framework. The computational speed
and numerical stability of this method are improved significantly relative to the earlier method.
The new method also provides smaller PIs, though their quality is not formally assessed.

Another popular computational intelligence tool, the Support Vector Machine (SVM), has been
used for the first time in probabilistic EFP by Zhao et al. [30]. They propose a data mining-based
approach in order to achieve two major objectives: to forecast electricity spot prices (using the
SVM) and to compute the PIs (by introducing a heteroskedastic variance equation to the SVM).
Zhao et al. conclude that their method is highly effective relative to existing techniques such as
GARCH models.

7Originally ranked 5th, but the team ranked 4th did not submit a valid report.
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In the ‘statistical time series’ stream of EPF literature, Misiorek et al. [12] and Weron [22]
were the first to consider probabilistic forecasts. For three expert8 autoregressive models studied,
Misiorek et al. compute the PIs (erroneously called ‘confidence intervals’) by taking the quantiles
of a standard normal random variable rescaled by the standard deviation of the residuals in the
calibration period (see Section 3.2 for details on the distribution-based PIs). For the Markov
Regime-Switching (MRS; see [1, 44]) model they use Monte Carlo simulations to obtain potential
future values and, consequently, the empirical PIs. Misiorek et al. evaluate the quality of the
PIs only by comparing the nominal coverage of the models to the true coverage, see Section
4.1.1. In the first monograph devoted to EPF, Weron [22] does not perform empirical analyses of
probabilistic forecasts. However, he does discuss the construction of interval forecasts (historical
simulation and distribution-based), which are implemented in the Matlab toolbox accompanying
the book. In an article published in the same year, Zhou et al. [45] compute the PIs for SARIMA
models fitted to California power market prices, but they use them only as a trigger to stop an
iterative SARIMA estimation scheme and do not evaluate nor analyze the PIs.

In a study that complements Ref. [12], Weron and Misiorek [24] compare the accuracies of 12
expert time series models, and evaluate their performances in terms of one-step-ahead point and
interval forecasts. Two types of PIs are computed: distribution-based and empirical (see Section
3.2). The former are computed as quantiles of the error term density: Gaussian for AR-type mo-
dels and kernel estimator-implied for the semiparametric models. The reliability of the PIs is
assessed with the Christoffersen test [46] for unconditional and conditional coverage, see Sections
4.1.1-4.1.2, which is an innovation in the EPF literature. Weron and Misiorek find that the semi-
parametric models, and SNARX in particular, generally lead to better PIs than their competitors,
and also, more importantly, have the potential to perform well under diverse market conditions.

2.3.2. Density forecasts
In the first EPF paper that considers density forecasts, Panagiotelis and Smith [25] develop

a first order vector autoregressive (VAR) model with exogenous effects and skew t distributed
innovations within a Bayesian framework. They estimate the model using Markov Chain Monte
Carlo and judge the effectiveness of their model by computing the Continuous Ranked Probability
Score (CRPS; see Section 4.2.4) obtained from a 30 day forecasting trial. This is probably the first
PEPF paper where the reliability and sharpness of the predictive densities was jointly evaluated by
computing the CRPS, one of the measures recommended in Section 4.2.

Serinaldi [13] introduces the class of Generalized Additive Models for Location, Scale and
Shape (GAMLSS) and computes the PIs (called ‘confidence intervals’) as the time-varying quanti-
les of the density forecasts. The accuracy of the PIs is checked by comparing the nominal coverage
with the actual one. Surprisingly, the density forecasts themselves are not analyzed.

Huurman et al. [47] consider GARCH-type time-varying volatility models and compute den-
sity forecasts. To assess their reliability they use the probability integral transform (PIT) and the
Berkowitz [48] test, see Section 4.1.4. Huurman et al. also measure the relative predictive accuracy
by applying the Kullback-Leibler Information Criterion (KLIC) [49].

8We adopt the terminology of Uniejewski et al. [42] and Ziel [43] who refer to such parsimonious structures as
expert models, since they are usually built on some prior knowledge of experts.
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In a more recent paper, Jonsson et al. [50] develop a semi-parametric methodology for gene-
rating prediction densities by combining a time-adaptive quantile regression [34] model for the
5%-95% quantiles with an exponential distribution for the tails. They jointly evaluate the reliabi-
lity and sharpness of the predictive densities by computing the average CRPS (see Section 4.2.4)
and the related Continuous Ranked Probability Skill Score (CRPSS).

2.3.3. Bootstrapped PIs
The method of constructing PIs via the bootstrap (see Section 3.4 for details) is very popular

in the ‘neural network’ PEPF literature (though, it has also been used in ‘statistical time series’
papers [51]). For instance, Chen et al. [31] combine the extreme learning machine (ELM) with
a wild (or external) bootstrap approach, and use them to compute point and interval forecasts of
half-hourly spot prices in the Australian electricity market. The uncertainty of data noise is not
considered in the construction of the PIs, and the accuracy of the PIs is only checked by comparing
the nominal coverage with the actual one. In a follow-up paper, Wan et al. [32] first use the ELM
to obtain point forecasts of half-hourly Australian spot prices, then use a bootstrap-based ‘neural
network’ procedure (involving N + 1 additional neural networks) to compute the PIs. They use the
Winkler score (see Section 4.2.3) to evaluate the PIs.

Khosravi et al. [52] use a neural network for point forecasts and estimate it with k-fold cross-
validation (to determine the number of neurons in each of two hidden layers). In the second step,
they apply the ‘delta method’ or the bootstrap to construct 90% PIs. The interval forecasts are
evaluated with coverage, interval width and the flawed Coverage Width-based Criterion (CWC; see
[53, 54] and the discussion in Section 4.3). In a related article, Khosravi et al. [55] propose a hybrid
method for the construction of PIs, which uses moving block bootstrapped neural networks and
GARCH models for forecasting electricity prices. Rather than employing the traditional maximum
likelihood estimation, the parameters of the GARCH model are adjusted via the minimization of
a PI-based cost function. The authors claim that the proposed method generates narrow PIs with a
large coverage probability, however, they again use the CWC to evaluate the intervals.

More recently, Rafiei et al. [56] consider a two-layer neural network with the clonal selection
algorithm and extreme learning machine. Wavelets are used for pre-processing, to split the original
time series into one approximation and three details series. The neural network is fitted to each of
them and their model uncertainty is computed with the bootstrap. The data uncertainty is computed
afterwards on the aggregated series, again via the bootstrap. The forecasts are evaluated only with
descriptive statistics, coverage and mean width.

2.3.4. Factor models and medium-term forecasts
In a multivariate context, Garcia-Martos et al. [57] construct PIs based on one-day-ahead

forecasts of the common volatility factors in the proposed GARCH-SeaDFA (Seasonal Dynamic
Factor Analysis) model, but do not evaluate them. In a related study by the same research team,
Alonso et al. [51] construct the PIs via the bootstrap (see Section 3.4), however, the evaluation is
limited to just one week and assessed only with the coverage rate. Yet, the authors claim that the
SeaDFA model allows to capture seasonality and forecast prices up to one year ahead.

Wu et al. [58] propose a recursive dynamic factor analysis (RDFA) algorithm, where the prin-
cipal components (PC) are tracked recursively using a subspace tracking algorithm, while the PC

12



scores are tracked further and predicted recursively via the Kalman filter. The PIs are obtained
from the latter and their reliability is checked by comparing the nominal coverage with the ac-
tual one (called ‘calibration bias’) and their sharpness by computing the ‘interval score’ (i.e., the
Winkler score, see Section 4.2.3).

In a recent paper, Bello et al. [59] use scenario generation and a market-equilibrium framework
to compute the forecasts. A large number of scenarios is analyzed and transformed into 250 by
spatial interpolation techniques. PEPFs are computed directly from them and evaluated with the
pinball loss function (see Section 4.2.2) and coverage rate.

2.3.5. Spike occurrence and threshold forecasting
Price spikes are a characteristic feature of electricity markets. They may also play a special role

in EPF. They can be treated as any other price (as in most of the reviewed above papers), treated
as outliers [60] and the input prices pre-filtered to minimize or eliminate spikes [22, 24, 61–63] or
they can be treated as the main object of study, as in spike occurrence and threshold forecasting.

Spike occurrence forecasting is similar to predicting individual quantiles that separate two
regimes – normal and spiky prices. For instance, Christensen et al. [64] treat the time series of
spikes as a discrete-time point process and represent it as a nonlinear variant of the autoregressive
conditional hazard (ACH) model. They conclude that the ACH model performs better than the
benchmark logit model in terms of MAE, RMSE and the log-probability score error (LPSE). Bello
et al. [65] compare a number of methods: logistic regression, decision trees, multilayer perceptons
as well as a hybrid approach that merges logistic regression with a fundamental market equilibrium
model, and evaluate the forecasts with the Brier score [16, 66].

Threshold forecasting is a generalization of spike occurrence forecasting, where the number
of regimes is more than two. It could be also considered as a special case of interval forecasting
where, instead of constructing a PI around a point forecast, a future price is allocated to one of
a few prespecified price intervals spanning the entire range of attainable prices [1, 7]. A nice
example of threshold forecasting is the paper by Zareipour et al. [67], who use two SVM-based
models to classify future electricity prices in the Ontario and Alberta markets into three price
groups with respect to prespecified price thresholds. They evaluate the forecasts using the mean
percentage classification error (MPCE), i.e., a percentage of misclassifications.

3. Constructing probabilistic forecasts

3.1. Problem statement
To define the probabilistic forecasting problem let us start with a point forecast of the electricity

spot price (i.e., the ‘best guess’ or expected value of the spot price9). Note that the actual price at
time t, i.e. Pt, can be expressed as:

Pt = P̂t + εt, (1)

9Note that although commonly used, the term point forecast is not precisely defined. While most often it refers to
the mean of a future value, it may as well refer to the median.
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where P̂t is the point forecast of the spot price at time t made at an earlier point in time and εt is
the corresponding error. In a vast majority of EPF papers the analysis ends at this point, since the
authors focus only on point predictions, see [1] and [7] for reviews.

The most common extension from point to probabilistic forecasts is to construct prediction
intervals (PIs). A number of methods can be used for this purpose, the most popular take into
account both the point forecast and the corresponding error [24, 29]: the center of the PI at the
(1 − α) confidence level is set equal to P̂t and its bounds are defined by the α

2 th and (1 − α
2 )th

quantiles of the cumulative distribution function (CDF) of εt. For instance, for the commonly used
90% PIs, the 5% and 95% quantiles of the error term are required. We later denote such a PI of
the spot price at time t by [L̂t, Ût], where L̂t and Ût are the lower and upper bounds, respectively.
We skip the nominal rate (1 − α) for simplicity.

A forecaster may extend their study further and construct multiple PIs. The final outcome may
be a set of quantiles on many levels, e.g., all 99 percentiles as in the GEFCom2014 competition.
Such a set of 99 quantiles (q = 1%, 2%, ..., 99%) is also a reasonable discretization of the price
distribution. In general, a density forecast corresponding to Eqn. (1) can be defined as a set of PIs
for all α ∈ (0, 1). In other words, computing a probabilistic forecast requires estimation of P̂t and
the distribution of εt. Equivalently, the problem can be formulated in terms of the inverse of the
CDF of Pt and of εt:

F−1
Pt

(q) = P̂t + F−1
εt

(q). (2)

Note that splitting the probabilistic forecast into a point forecast and the distribution of the
error term is not the only possible approach. The problem may be stated in a more general way. In
particular, Gneiting and Katzfuss [17] define the probabilistic forecast as ‘a forecast in the form of
a probability distribution over future quantities or events’ and associate it with a random variable.
In our case this means finding the distribution of the electricity spot price itself, i.e., F̂Pt . The latter
approach is utilized in Quantile Regression Averaging (QRA; see [28] and Section 3.5 below).

Finally, two important aspects of the problem have to be mentioned at this point. First, in the
above discussion we do not mention the probability density function (PDF) of εt. While there
are papers in which probabilistic price forecasts are expressed in those terms, see Section 2, other
authors argue that such a statement should be avoided. For instance, Ziel and Steinert [68] analyze
aggregated supply and demand curves in the EPEX market and find that the price distribution is
not continuous as it has additional point masses at certain prices. This implies the same conditions
for the predicted distribution. Indeed, the authors predicted point probability masses up to around
20% (especially at 0 EUR/MWh).

The second point relates to the statistical nature of predicting day-ahead prices. Since 24
hourly predictive distributions have to be constructed at once, their cross-dependencies should
be taken into account. However, most studies simplify the framework and predict 24 marginal
distributions, and do not discuss their joint distribution. Such a ‘simplistic’ approach is also taken
in Section 5. It should be noted, though, that in other areas of energy probabilistic forecasting this
problem has already been addressed, see eg. [69]. Two main solutions are available. The first one
is to model and predict the correlation between the marginal distributions. This, however, has a
major drawback – it allows to capture only linear relationships between the hours and a question of
proper evaluation arises. The second solution requires simulating 24-hour paths of the day-ahead
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prices, which then can be treated as vectors from the joint 24-dimensional distribution.

3.2. Historical simulation
The method of calculating empirical (or sample) PIs is extremely simple and in the Value-at-

Risk literature is known as historical simulation [70]. It is a model-independent approach which
consists of computing sample quantiles of the empirical distribution of εt [1]. Later in the text we
use the suffix -H to denote probabilistic forecasts obtained via historical simulation. EPF studies
where PIs are obtained using this approach include [12, 22, 24, 28] among others.

3.3. Distribution-based probabilistic forecasts
For time series models driven by Gaussian noise (AR, ARIMA, etc.), the density forecasts

can be set equal to the Gaussian distribution approximating the error density and the PIs can be
computed analytically as quantiles of this distribution [12]. Later in the text we use the suffix -G
to denote such probabilistic forecasts. This approach differs from historical simulation in that first
the standard deviation of the error density, σ̂, is computed and then the lower and upper bounds of
the PI are set equal to selected quantiles of the N(0, σ̂2) distribution. The same approach can be
used as long as the distribution of the noise term is parametric, for instance, student-t as in [25].
For time series models driven by non-parametric noise, like the IHMAR and SNAR models in
[24, 28, 71], the distribution-based lower and upper bounds of the PI can be computed as quantiles
of the kernel estimator of the PDF of εt. EPF studies where distribution-based PIs are computed
include [12, 24, 25, 29, 30, 39, 72] among others.

3.4. Bootstrapped PIs
The third approach, commonly used in neural network EPF studies, is the bootstrap. For one

step-ahead forecasts, the method consists of the following steps [73, 74]:

1. Estimate the set of model parameters, Θ̂, obtain a fit and the corresponding residuals, ε̂t.
2. Generate pseudo-data recursively using Θ̂ and sampled normalized residuals ε∗t .

• For a model with no autoregression on Pt (like the neural network model of Dudek
[39]; see also Section 5.2.5) simply set P∗t = f̂ (Xt) + ε∗t , where ε∗t is the sampled
residual and f̂ (Xt) is an estimated function of exogenous variables Xt.

• For an AR(1) model first set P∗1 = P1 and then recursively put P∗t = β̂P∗t−1 + ε∗t for all
t ∈ {2, 3, . . . ,T }, where T is the time index of the last observation in the calibration
window.

• For a more general case of an autoregressive model of order r with exogenous variables
first set P∗1 = P1, ..., P∗r = Pr and then recursively put P∗t = β̂1P∗t−1+...+β̂rP∗t−r+ f̂ (Xt)+ε∗t
for all t ∈ {r + 1, ...,T }.

3. Estimate the model again and compute the bootstrap-implied one step-ahead (point) forecast
for time t = T + 1.

4. Repeat steps 2 and 3 B times and obtain the bootstrap sample of the forecasted price,
{P̂i

T+1}
B
i=1.

5. Compute desired quantiles of {P̂i
T+1}

B
i=1 to obtain PIs.
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The advantage of the bootstrap over historical simulation or distribution-based PIs is that it takes
into account not only historical forecast errors but also parameter uncertainty. The disadvantage is
the significantly increased computational burden. Later in the text we use the suffix -B to denote
probabilistic forecasts obtained via the bootstrap. EPF studies where this approach is used to
compute PIs include [31, 32, 51, 52, 56, 65] among others.

3.5. Quantile Regression Averaging
The fourth method we discuss is Quantile Regression Averaging (QRA), proposed by Nowo-

tarski and Weron [28]. Its very good forecasting performance has been verified by a number of
authors [29, 72, 75], not only in the area of EPF [6, 76]. However, its most spectacular success
came during the GEFCom2014 competition – the top two winning teams in the price track used
variants of QRA [33, 35], see Section 2.2.

The method involves applying quantile regression, see [34], to a pool of point forecasts of
individual (i.e., not combined) forecasting models. As such, it directly works with the distribution
of the electricity spot price, F̂Pt , without the need to split the probabilistic forecast into a point
forecast and the distribution of the error term (see Section 3.1 for a discussion). The quantile
regression problem can be written as follows:

QPt(q|Xt) = Xtβq, (3)

where QPt(q|·) is the conditional q-th quantile of the electricity price distribution, Xt are the expla-
natory variables (or regressors) and βq is a vector of parameters for quantile q. The parameters are
estimated by minimizing the loss function for a particular q-th quantile:

min
βq

 ∑
{t:Pt≥Xtβq}

q|Pt − Xtβq| +
∑

{t:Pt<Xtβq}

(1 − q)|Pt − Xtβq|

 = min
βq

∑
t

(q − IPt<Xtβq)(Pt − Xtβq)

 . (4)

In the first papers on QRA [28, 75], the regressors were the point forecasts of m individual mo-
dels: Xt = [1, P̂1,t, ..., P̂m,t]. The choice of the number of individual models can be made arbitrarily
(the best three models, all models, etc.; see the empirical study in Section 5) or, in case of do-
zens of competing models, using dimension reduction techniques [29]. During the GEFCom2014
competition the vector of explanatory variables was further expanded to include important exoge-
nous variables (hourly, mean daily and ratios of load forecasts, average daily price forecasts and
their squares) [33]. There are no limits as to the components of Xt, as long as it includes fore-
casts of individual models the method can still be regarded as QRA. The Matlab function qra.m

that allows to run QRA on a pool of point forecasts is available from the HSC RePEc repository
(https://ideas.repec.org/s/wuu/hscode.html).

4. Evaluation metrics

When evaluating a probabilistic forecast, the main challenge is that we never observe the true
distribution of the underlying process. In other words, we cannot compare the predictive distri-
bution, F̂Pt , or the prediction interval, [L̂t, Ût], with the actual distribution of the electricity spot
price, FPt , only with observed past prices, Pτ, τ < t.
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Table 1: A comparison of evaluation metrics for probabilistic forecasting. Statistics and tests in italics are discussed
in the text, but not illustrated in the empirical study in Section 5.

Interval forecasts Density forecasts
Statistics Tests Statistics Tests

Reliability / calibration / unbiasedness

Unconditional
coverage [46, 77]

Kupiec [77] Probability Integral
Transform (PIT) [15, 78]

Visual ‘tests’ [15, 17]
Tests for uniformity [79, 80]

Conditional coverage [46]
(CC = UC + Independence)

Christoffersen [46] (Lagged [81])
Ljung-Box Christoffersen [82]
Duration-based tests [83, 84]
Dynamic Quantile (DQ) [85]
VQR [86]

Berkowitz CC statistic [48] Berkowitz [48]

Sharpness (and reliability)

Pinball loss [87, 88]
Winkler (interval) score [89]

Diebold-Mariano [90, 91]
Model confidence set [92]
Forecast encompassing [93]

Continuous Ranked Probabi-
lity Score (CRPS) [16, 94]
Logarithmic score [95]

Diebold-Mariano [90, 91]
Model confidence set [92]
Forecast encompassing [93]

Over the years, a number of ways have been developed to evaluate probabilistic forecasts. The
approach depends on the forecasting target – a quantile forecast requires a different evaluation
than a predictive distribution, but sometimes it may also depend on the preference of a forecaster.
Some methods admit formal statistical tests, while other result in a single number which has a
clear interpretation and is easy to compare. We summarize the more popular evaluation metrics
in Table 1. Note, however, that the Table does not include measures that can be found in the EPF
literature but are not recommended, we discuss some of them in Section 4.3.

In a series of papers on probabilistic forecasting, Gneiting et al. [15–17] argue that ‘probabilis-
tic forecasting aims to maximize the sharpness of the predictive distributions, subject to reliability’.
Reliability (also called calibration or unbiasedness) refers to the statistical consistency between
the distributional forecasts and the observations. For instance, if a 90% PI covers 90% of the ob-
served prices, then this PI is said to be reliable10 [18, 96], well calibrated11 [15–17] or unbiased
[97]. Sharpness, on the other hand, refers to how tightly the predicted distribution covers the ac-
tual one, i.e., to the concentration of the predictive distributions. This definition derives from the
idea that reliable predictive distributions of null width would correspond to perfect point predicti-
ons [16, 18]. Unlike reliability, which is a joint property of the predictions and the observations,
sharpness is a property of the forecasts only. In Section 4.1 we discuss methods for the evaluation
of reliability for different types of probabilistic forecasts, then do the same for sharpness in Section

10Note that in the electric power industry the term ‘reliability’ is often used to describe the ability of power systems
to perform the required functions under stated conditions. For this reason, in their review on probabilistic load forecas-
ting, Hong and Fan [5] use the term ‘unconditional coverage’ as a substitute for ‘reliability’. However, our perspective
is that ‘reliability’ is a broader concept than ‘unconditional coverage’ and covers ‘independence’ and ‘conditional co-
verage’ as well. Since we are not concerned here with power system performance, using the term ‘reliability’ does
not lead to ambiguity.

11To avoid ambiguity, in this paper we use the term ‘calibration’ only as a substitute for ‘estimation’, when we refer
to the process of estimating the parameters of a model.
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4.2.
Note that there is one more commonly used attribute for probabilistic forecast evaluation, es-

pecially in the meteorological or wind power forecasting literature [18, 19]. Resolution refers to
how much the predicted density varies over time, stated differently, to the ability of providing pro-
babilistic forecasts (e.g., wind power) conditional to the forecast conditions (e.g., wind direction).
As Pinson et al. [18] note, sharpness and resolution are equivalent when probabilistic forecasts
have perfect reliability. In view of the ‘maximizing sharpness subject to reliability’ paradigm we
advocate, the evaluation of resolution is not critical. Hence, we do not discuss it any further.

4.1. Reliability
4.1.1. Unconditional coverage and the Kupiec test

Let us start with prediction intervals. The simplest and the most common approach for as-
sessing the quality PIs is the unconditional coverage (UC). By definition, the empirical coverage
should match the nominal rate: P(Pt ∈ [L̂t, Ût]) = (1 − α). For instance, the 90% PI (i.e., with
α = 10%) should yield the nominal coverage of 90%. To obtain the empirical coverage we typi-
cally focus on the indicator It series of ‘hits and misses’:

It =

1 if Pt ∈ [L̂t, Ût]→ ‘hit’,
0 if Pt < [L̂t, Ût]→ ‘miss’ (or ‘violation’).

(5)

Note that It may be also considered for individual quantiles, as is common in the risk management
(Value-at-Risk) literature [70, 82]. In such a case, the forecaster predicts only the lower or the
upper quantile, i.e., in Eqn. (5) either Ût is replaced by ∞ or L̂t by −∞. Some authors simply
report the empirical coverage itself (sometimes called the PI coverage probability, PICP), while
others subtract it from the nominal level (sometimes called the PI nominal coverage, PINC) to
obtain the average coverage error (ACE = PICP − PINC), see e.g. [32, 56]. Either way, the
conclusions from the comparison will be the same.

Generally, the closer is the empirical coverage to the nominal rate the better. However, if we
want to know if ‘close is close enough’ we have to run a formal statistical test. The Kupiec [77]
test checks whether P(It = 1) = (1 − α) under the assumption that the violations are independent,
which is equivalent to testing that the sequence It is identically and independently distributed
(i.i.d.) Bernoulli with mean (1 − α). The test rejects the null hypothesis of an accurate PI if the
actual fraction of PI violations is statistically different than α. The Kupiec test is carried out in the
likelihood ratio (LR) framework. The LR statistics for unconditional coverage:

LRUC = −2 log
{

(1 − c)n0cn1

(1 − π)n0πn1

}
(6)

is distributed asymptotically as χ2(1) [46, 77]. Here c = (1 − α) is the nominal coverage rate,
π = n1/(n0 + n1) is the percentage of ‘hits’ and n0 and n1 are respectively the number of zeros and
ones in the indicator It series.
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4.1.2. Independence, conditional coverage and the Christoffersen test
As noted by Christoffersen [46], the Kupiec [77] test evaluates the coverage of the PI but it does

not have any power against the alternative that the ones and zeros come clustered together in the
indicator It series. In other words, in the Kupiec test the order of the PI violations does not matter,
only the total number of violations plays a role. To make up for this deficiency, Christoffersen
introduced the independence and conditional coverage (CC) tests; the latter is simply a joint test
for independence and UC. Note that some authors use the term ‘Christoffersen test’ to refer to all
three tests (UC, independence, CC), see [1, 7].

Both tests are carried out in the LR framework. Independence is tested against an explicit
first-order Markov alternative. Hence, the LR statistics for independence is given by [46]:

LRInd = −2 log
{

(1 − π2)n00+n10πn01+n11
2

(1 − π01)n00πn01
01 (1 − π11)n10πn11

11

}
, (7)

where π2 = (n01 + n11)/(n00 + n10 + n01 + n11), ni j is the number of observations with value i
followed by j and πi j = P(It = j|It−1 = i). Like LRUC, also LRInd is distributed asymptotically as
χ2(1). Furthermore, if we condition on the first observation, then the conditional coverage LR test
statistics is the sum of the other two, i.e., LRCC = LRUC + LRInd, and is distributed asymptotically
as χ2(2).

The Matlab function christof.m that allows to run all three tests (i.e., UC, independence
and CC) is available from the HSC RePEc repository (https://ideas.repec.org/s/wuu/hscode.html).
Note, however, that since the day-ahead electricity price forecasts typically use the same informa-
tion set for predicting the next day’s prices and hence are correlated by construction, the tests are
usually conducted separately for each of the 24 hours [1, 7, 24, 28, 29, 72].

4.1.3. Extensions and alternatives to the Christoffersen test
As Clements and Taylor [81] note, we can conduct the independence test (and consequently

the CC test) for any time lag h, in order to capture more than just the first-order dependency. The
idea of the independence test is based on the Markov chain framework, and relies on investigating
transition probabilities πh

i j = P(It = j|It−h = i) for h = 1. However, the latter restriction is not
crucial. We can relax it and test independence of PI violations for any time lag h. Maciejowska
et al. [29] argue that testing independence makes particular sense for h = 1, 2 and 7 days, as
these lags are typically the most significant when modeling and forecasting electricity spot prices.
Note that the mentioned in Section 4.1.2 Matlab function christof.m allows to run the lagged
Christoffersen test as well.

Berkowitz et al. [82] go a step further and suggest to use the Ljung-Box statistics for a joint
test of independence for the first h lags. Finally, Wallis [79] recasts Christoffersen’s tests in the fra-
mework of χ2 statistics, and considers their extension to density forecasts. The use of contingency
tables allows for the incorporation of a more informative decomposition of the χ2 goodness-of-fit
statistic and the calculation of exact small-sample distributions.

The popular in the risk management literature Dynamic Quantile (DQ) test of Engle and Man-
ganelli [85] goes in a different direction. It is based on a linear regression model of the violations
variable on a set of explanatory variables including a constant, the lagged values of the violations
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variable and any function of the past information set suspected of being informative (for instance,
the lower L̂t and upper Ût quantiles themselves). The DQ test rejects the PIs if the intercept is sig-
nificantly different from (1 − α) or the remaining coefficients are significantly different from zero.
There are also duration-based tests, which check if the duration (i.e., the time interval) between
violations of the PI is unpredictable [83]. However, as shown in [82], the DQ test has more power
against misspecified PIs than the duration-based tests and is the preferred option. Gaglianone et al.
[86] argue that using only binary variables, such as whether or not there was a violation, sacrifices
too much information. They propose the VQR (‘Value-at-Risk model based on quantile regressi-
ons’) test, which uses more information to reject a misspecified model and, hence, has more power
in finite samples than the Christoffersen or the DQ tests.

4.1.4. Probability Integral Transform (PIT) and the Berkowitz test
Testing for the goodness-of-fit of a predictive distribution is, in general, more challenging than

evaluating the reliability of a PI. Dawid’s [78] so-called prequential principle states that the pre-
dictive distributions need to be assessed on the basis of the forecast-observation pairs (F̂Pt , Pt)
only, regardless of their origins. Indeed, the true distributions, FPt , are unknown, hence stan-
dard goodness-of-fit tests cannot be utilized. In this context, Dawid [78] proposed the use of the
Probability Integral Transform:

PITt = F̂Pt(Pt), (8)

which can be traced back at least to the works of Karl Pearson in the 1930s, see [15]. If the
distributional forecast, F̂Pt , is perfect (i.e., is the same as the true distribution of the spot price
process, FPt), then PITt is independent and uniformly distributed [98]. Although this problem
formulation enables us to utilize statistical tests, see e.g. [79, 80], the common approach is to
assess the uniformity and independence graphically [17]. The tools to examine it are the histogram
(if the forecast is constructed properly, the histogram of PITt shows a uniform distribution) and the
plot of the autocorrelation function, respectively. Non-uniformity may lead to quick conclusions
how to improve the model. For instance, a histogram with too much probability mass in the center
(inverse U-shape) indicates that the predictive distribution has too fat tails. Conversely, a U-shape
suggests that the tails of the predictive distribution are not heavy enough.

In the risk management literature the following transformation of PIT has been popularized by
Berkowitz [48]:

νt = Φ−1(PITt) = Φ−1
(
F̂Pt(Pt)

)
, (9)

where Φ−1(·) is the inverse of the standard normal distribution function. The argument behind it
is that in finite-samples tests based on the Gaussian likelihood are more convenient and flexible
than tests of uniformity. Given the transformed sequence νt, we can test the null hypothesis of
independence and normality against a first-order autoregressive alternative with mean and variance
possibly different from 0 and 1, respectively. Writing down the first-order autoregression:

νt − µ = ρ(νt−1 − µ) + εt, (10)

the null hypothesis becomes equivalent to µ = 0, σ2 = Var(εt) = 1 and ρ = 0.
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Like the Kupiec [77] and Christoffersen [46] tests, the Berkowitz test is carried out in the
likelihood ratio (LR) framework. The LR statistics for independence:

LRBer
Ind = −2

{
L(µ̂, σ̂2, 0) − L(µ̂, σ̂2, ρ̂)

}
, (11)

where L(·, ·, ·) is the standard normal log-likelihood function and the hats denote estimated values,
is distributed as χ2(1). Moreover, the LR statistics for a joint test of independence and normality
(or conditional coverage):

LRBer
CC = −2

{
L(0, 1, 0) − L(µ̂, σ̂2, ρ̂)

}
(12)

is distributed as χ2(3) [48]. The implementation of the test is straightforward. The Matlab function
berkowitz.m that allows to run the joint test is available as part of the MFE Toolbox from Kevin
Sheppard’s webpage (http://www.kevinsheppard.com/MFE Toolbox).

4.2. Sharpness
4.2.1. Proper scoring rules

Sharpness, a measure of concentration of the predictive distribution, is closely related to the
concept of the so-called proper scoring rules. Recall, that scoring rules provide summary measures
for the evaluation of probabilistic forecasts, by assigning a numerical score, S (F̂Pt , Pt), based on
the predictive distribution, F̂Pt , and on the actually observed price, Pt [16, 94]. In fact, scoring
rules assess reliability and sharpness simultaneously [17]. A proper scoring rule is designed in
such a way that quoting the true distribution as the forecast distribution is an optimal strategy in
expectation, i.e., it minimizes the score. More formally, denote by S (F̂Pt , FPt) the expected value
of S (F̂Pt , Pt) under the true price distribution of Pt. A scoring rule S is proper if S (FPt , FPt) ≤
S (F̂Pt , FPt) for any probabilistic forecast F̂Pt and any true distribution FPt . The term proper was
coined by Winkler and Murphy [99], but the idea dates back at least to Brier [66].

In Sections 4.2.2-4.2.4, we present three proper scoring rules that have seen limited use in
probabilistic energy forecasting [3, 5, 6, 19, 29, 32, 50, 58, 72, 100, 101] and definitely deserve to
be recommended. As Gneiting and Raftery [16] emphasize, score propriety is essential in forecast
evaluation. They also discuss potential issues that result from the use of intuitively appealing but
improper scoring rules. Unfortunately, as the case of the relatively popular, but improper CWC
score [52, 102] shows, score propriety has not received enough attention in the probabilistic energy
forecasting literature, see Section 4.3.

4.2.2. Pinball loss
The pinball loss gained popularity during the GEFCom2014 competition, where it was used

as the scoring function of the contestants’ entries [3]. It was chosen over the more popular in
probabilistic forecasting, but conceptually more complex Continuous Ranked Probability Score
(CRPS; see Section 4.2.4). The pinball loss is a special case of an asymmetric piecewise linear
loss function [87, 88, 103]:

Pinball
(
Q̂Pt(q), Pt, q

)
=

(1 − q)
(
Q̂Pt(q) − Pt

)
, for Pt < Q̂Pt(q),

q
(
Pt − Q̂Pt(q)

)
, for Pt ≥ Q̂Pt(q),

(13)
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where Q̂Pt(q) is the price forecast at the q-th quantile and Pt is the actually observed price. This
proper scoring rule is also known in the literature as the linlin, bilinear or newsboy loss [103, 104];
the latter name refers to a newsboy who must order papers when he is uncertain about the demand
and unsold papers are worthless to him [94]. Note that pinball loss is the function to be minimized
in quantile regression [6, 34] and is similar to Eqn. (4), the loss function minimized in Quantile
Regression Averaging [28]. Secondly, the loss function in Eqn. (13) is also the loss function for
a regression problem with asymmetric Laplace density assumption for the residuals (instead of
Gaussian as in the standard OLS). The target quantile is the asymmetry parameter of the density
[105].

The pinball loss, as defined by Eqn. (13), is a measure of fit for one quantile only. It can be
averaged across different quantiles to provide an aggregate score. Note that in the GEFCom2014
competition it was averaged not only across 99 quantiles (q = 1%, 2%, ..., 99%; i.e., percentiles),
but also across the 24 hours of the target day [3]. A lower score indicates a better probabilistic
forecast.

4.2.3. Winkler score
When faced by multiple PIs with similarly accurate levels of coverage, our preference is to

choose the narrowest intervals. Interestingly, reliability and interval width can be assessed jointly
using the score function that was proposed by Winkler [89] and is now known as the Winkler or
interval score [16]. For a central (1 − α) × 100% prediction interval it is defined as:

Winklert =


δt, for Pt ∈ [L̂t, Ût],
δt + 2

α
(L̂t − Pt), for Pt < L̂t,

δt + 2
α
(Pt − Ût), for Pt > Ût,

(14)

where L̂t and Ût are respectively the lower and upper bounds of the PI, δt = Ût − L̂t is the interval
width and Pt is the actual price. The Winkler score gives a penalty if an observation (the actual
price) lies outside the constructed interval and rewards a forecaster for a narrow PI; naturally the
lower the score the better the PI. Note that the Winkler score, like the pinball score, is a proper
scoring rule, which makes it an appealing measure for PI evaluation.

4.2.4. Continuous Ranked Probability Score (CRPS)
The logarithmic score [95], also known as predictive deviance or the ignorance score, is a

popular proper scoring rule that has many desirable properties, but lacks robustness [16]. It is
calculated as the negative of the logarithm of the predictive density evaluated at the observed
electricity price, Pt. This restriction to density forecasts can be impractical, however, and the
Continuous Ranked Probability Score (CRPS) is defined directly in terms of the predictive CDF,
F̂Pt :

CRPS (F̂Pt , Pt) =

∫ ∞

−∞

(
F̂Pt(x) − 1{Pt≤x}

)2
dx, (15)

where 1 is the indicator function. The idea behind the CRPS can be traced back to the article
of Matheson and Winkler [94], but the name itself was probably used for the first time by Unger
[106]. The CRPS has several appealing properties [107]: (i) its definition does not require the
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introduction of a number of predefined classes (e.g., quantiles in the pinball score) on which results
may depend, (ii) for a deterministic forecast, it is equal to the well known Mean Absolute Error,
and (iii) it can be interpreted as an integral over all possible Brier scores [66]. However, from a
practical perspective, the integral in Eqn. (15) poses numerical difficulty [16, 106].

Interestingly, the CRPS can be defined equivalently as follows:

CRPS (F̂Pt , Pt) =

∫ 1

0

{
Pinball(Q̂Pt(q), Pt, q)

}
dq = (16)

= EF̂Pt
|Yt − Pt| −

1
2
EF̂Pt
|Yt − Y ′t |, (17)

where Q̂Pt(q) is a q-quantile forecast of the electricity price, and random variables Yt and Y ′t are two
independent copies distributed as F̂Pt . Formula (16) creates a direct link to the pinball loss function
(13). Its discretization, e.g., replacing the integral by a sum over quantiles q = 0.01, ..., 0.99,
enables us to avoid the complications with the direct use of Eqn. (15); we use this approach in
the empirical study in Section 5. Formula (17), on the other hand, is a decomposition of the
CRPS into absolute differences (first component; which reduces to the absolute error if F̂Pt is a
point forecast) and spread (second component; which measures the lack of sharpness); it has been
utilized recently by Taieb et al. [108] in the context of forecasting uncertainty in smart meter data.

4.2.5. Equal predictive performance and the Diebold-Mariano test
Quite often we are faced with a situation when we have two (or more) competing forecasting

methods and we wish to find the best one. We may rank them by their average score over a test
set:

Ŝ =
1
T

T∑
t=1

S (F̂Pt , Pt), (18)

where S (·, ·) is a score function and T is the length of the out-of-sample test period. However,
we may wish to test if one method significantly outperforms the other, more formally, to test the
hypothesis that these two methods have equal predictive performance.

The extremely simple Diebold-Mariano (DM) [90] test can be used for exactly this purpose;
see Diebold [91] for a recent discussion of its uses and abuses. Although the DM test is much
more popular in the point forecasting literature, in particular on EPF [71, 109–114], it is readily
applicable to probabilistic forecasts. Indeed, Tastu et al. [115] and Baran and Lerch [116], among
others, conduct DM tests for probabilistic wind forecasts. However, to the best of our knowledge,
our paper is the first where the DM test is used for evaluating probabilistic EPFs.

The DM test is simply an asymptotic z-test of the hypothesis that the mean of the loss differen-
tial series:

dt = S 1(F̂Pt , Pt) − S 2(F̂Pt , Pt) (19)

is zero [1, 91], where S i(·, ·) is the score (or loss) of model i. Note that in the point forecasting
context this may simply be the squared loss, S 2

i (P̂t, Pt) = ε2
t = (P̂t − Pt)2, or the absolute loss,

S 1
i (P̂t, Pt) = |εt| = |P̂t − Pt|. In the probabilistic forecasting context the score may be any proper
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scoring rule, in particular the discussed above Pinball loss, Winkler score or CRPS. Given the loss
differential series, we compute the statistic:

DM =
√

T
µ̂dt

σ̂dt

, (20)

where µ̂dt and σ̂dt are the sample mean and standard deviation of dt, respectively, and T is the
length of the out-of-sample test period. The key hypothesis of equal predictive accuracy (i.e.,
equal expected loss) corresponds to E(dt) = 0, in which case, under the assumption of covari-
ance stationarity of dt, the DM statistic is asymptotically standard normal, and one- or two-sided
asymptotic tail probabilities are readily calculated. Many statistical computing environments, like
Matlab or R, nowadays include the DM test in the standard releases or as add-ins.

In practice, typically two one-sided DM tests at the 5% significance level are conducted: (i) a
standard test with the null hypothesis H0 : E(dt) ≤ 0, i.e. the outperformance of the forecasts of
model 2 by those of model 1, and (ii) the complementary test with the reverse null HR

0 : E(dt) ≥ 0,
i.e., the outperformance of the forecasts of model 1 by those of model 2. To avoid a common
mistake, we should remember that the DM test compares forecasts of two models, not the models
themselves [91].

In day-ahead electricity markets the predictions for all 24 hours of the next day are usually
made at the same time using the same information set and hence forecast errors for a particular
day will typically exhibit high serial correlation. Therefore, it is advisable to conduct the DM
tests for each load period (e.g., each hour of the day) separately [42, 71, 112, 117]. Even then,
we should formally check that the forecasts for consecutive days, hence loss differentials, are not
serially correlated. As reported by Uniejewski et al. [42], this is a generally valid assumption for
well performing EPF models.

4.2.6. Alternatives to the Diebold-Mariano test
Alternative forecast comparison test procedures to the Diebold-Mariano [90] test include the

model confidence set (MCS) approach of Hansen et al. [92] and a test of forecast encompassing
(FE) [93]. For two models, the MCS approach is similar to the DM test but estimates the distribu-
tion of the test statistic by a bootstrap procedure. In the test of forecast encompassing, on the other
hand, the null hypothesis is that model 2 encompasses model 1, i.e., that predictions of model 1 do
not contain additional information with respect to those of model 2. In one of the few applications
in EPF, Bordignon et al. [112] perform both tests to evaluate combined point forecasts.

4.3. Other measures
A number of other evaluation metrics can be found in the probabilistic forecasting literature.

One example is the PI width, sometimes normalized by the range of prices. If a PI is constructed
properly, with correct coverage rate, it is a good way to assess the concentration of the predictive
distribution. However, these two are combined in the Winkler score (see Section 4.2.3) and hence
the latter is preferred.

Another evaluation metric that has seen widespread use in energy forecasting is the so-called
Coverage Width-based Criterion [52, 102]:

CWC = δ̄t

{
1 + 1(∆b > 0)eη∆b

}
, (21)
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where 1 is the indicator function, ∆b is the difference between nominal and empirical coverage
rates, δ̄t is the average width of the PIs and η > 0 is a free parameter that can be set to any positive
value. The metric was justly criticized by Pinson and Tastu [53] and Wan et al. [54]. In particular,
Pinson and Tastu show that CWC is not a proper scoring rule (see Section 4.2.1) and argue that
when using it ‘one can never conclude on the respective quality of the interval forecasts being
evaluated’. This critique was rebutted by Khosravi and Nahavandi [102], who proposed a slightly
modified version of the measure:

CWCmod = δ̄t + 1(∆b > 0)eη∆b (22)

Surprisingly enough, the example given by Pinson and Tastu [53] shows – contrary to what Khos-
ravi and Nahavandi [102] write – that CWCmod is not a proper scoring rule as well. As such,
both the original and the modified CWC measures should be avoided in evaluation of probabilistic
forecasts.

5. Empirical study

5.1. The data
The dataset used in this empirical study comes from the price track of the Global Energy

Forecasting Competition 2014 (GEFCom2014), the largest energy forecasting competition to date
[3]. It comprises three time series at an hourly resolution – locational marginal prices (LMP, i.e.
zonal prices) and day-ahead predictions of zonal and system loads, see Figure 4. The dataset is
now available as supplementary material accompanying Ref. [3], however, during the competition
the information set was being extended on a weekly basis to prevent ‘peeking’ into the future. The
origin of the data has never been revealed by the organizers.

To illustrate the probabilistic EPF and evaluation techniques discussed in this paper, we consi-
der a 2.5-year period from 19 June 2011 to 17 December 2013. The first 365 days, 19 June 2011
to 18 June 2012, constitute the first window for calibrating the individual autoregressive models
(ARX and mARX defined in Sections 5.2.3-5.2.4). The neural network model (NN defined in
Section 5.2.5) uses a much shorter calibration window of only 312 hourly observations (i.e. 13
past days). When the day-ahead forecasts are made for the 24 hours of 19 June 2012, the 365- and
13-day windows are rolled forward by one day. This procedure is repeated until the predictions of
the individual models for the last day in the sample – 17 December 2013 – are made.

The second period, initially from 19 June to 17 December 2012 (i.e. 182 days), is utilized
for computing the probabilistic forecasts of the naı̈ve, autoregressive and QRA models for 18
December 2012; like in [39], the neural network models use only a 13-day window, initially 5
to 17 December 2012. Then the 182- and 13-days windows are rolled forward by one day, the
models are recalibrated and the probabilistic forecasts are computed for 19 December 2012. This
procedure is repeated until probabilistic predictions for all 365 days in the out-of-sample test
period (18 December 2012 – 17 December 2013) are obtained.

5.2. Individual (point) forecasting models
On one hand, our choice of the individual (point) forecasting models is guided by the existing

literature on short-term EPF and the results of the GEFCom2014 competition, on the other, by the
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Figure 4: GEFCom2014 hourly locational marginal prices (LMP; top) and hourly day-ahead predictions of the zonal
and system loads (bottom) for the period 19 June 2011 to 17 December 2013. The first 365 days, 19 June 2011
to 18 June 2012, constitute the first window for calibrating the individual (point) forecasting models (see Section
5.2). The vertical dotted lines mark the beginning of the first 182-day long window for estimating the probabilistic
EPF models (see Section 5.3.1) and the beginning of the 365-day long out-of-sample forecast evaluation period (see
Sections 5.3.2-5.3.3).

desire to illustrate the probabilistic EPF and evaluation techniques without the need to resort to
extremely sophisticated and fine-tuned models. Overall, we consider a simple naı̈ve benchmark
and three parsimonious expert (see footnote 8) models: one commonly used in EPF since the study
of Misiorek et al. [12] and two that formed the backbone of probabilistic EPF approaches ranked
2nd [33] and 3rd [39] in the price track of GEFCom2014.

In the first two autoregressive structures (ARX and mARX) the modeling is implemented
separately across the hours, leading to 24 sets of parameters for each day, an approach commonly
taken in EPF studies [29, 35, 42, 43, 72, 117, 118]. The third expert model is a neural network
(NN) which takes into account all observations in the calibration window and leads to one set of
parameters for all hours; the forecast for hour 1 is then used as model input to compute the forecast
for hour 2, etc. As Ziel [43] interestingly notes, when we compare the forecasting performance
of relatively simple models implemented separately across the hours and jointly for all hours,
the latter generally perform better for the first half of the day, whereas the former are better in
the second half of the day. This is probably the reason why the neural network models perform
relatively well for the late night and early morning hours and rather poorly for the remainder of
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the day.

5.2.1. Data preprocessing
Like many studies in the EPF literature [1, 7, 98], we use transformations to make the data

more symmetric and stabilize the variance. Following Uniejewski et al. [42], the autoregressive
models (ARX and mARX) work on centered log-prices, pd,h = log(Pd,h) − 1

365

∑365
t=1 log(Pt,h), with

the centering performed independently for each hour h = 1, ..., 24. Note that from this point
onwards we use the more natural for day-ahead markets notation and denote by Pd,h the electricity
price for day d and hour h. Clearly, the previously used single time index can be obtained through
the relation t = 24d + h.

We can apply the logarithmic transformation since the GEFCom2014 price series is positive-
valued. If datasets with zero or negative values were considered, we could work with non-
transformed prices or apply a different transformation (like the area hyperbolic sine, see [119], or
the probability integral transform, see [120] and Section 4.1). In the neural network model (NN)
we follow Dudek [39] and map the prices (Pd,h → p̃d,h) and loads (Zzonal

d,h → z̃d,h, Z system
d,h → ζ̃d,h) to

the interval [−0.9, 0.9] to facilitate and accelerate the learning process, see also Section 5.2.5.

5.2.2. The naı̈ve benchmark
The benchmark, most likely introduced by Nogales et al. [121] and dubbed the naı̈ve method,

belongs to the class of similar-day techniques (for a taxonomy of EPF approaches see e.g. [1]).
It proceeds as follows: the electricity price forecast for hour h on Tuesday, Wednesday, Thursday
or Friday is set equal to the price for the same hour on the previous day, i.e., P̂d,h = Pd−1,h; the
forecast for hour h on Saturday, Sunday or Monday is set equal to the price for the same hour a
week ago, i.e., P̂d,h = Pd−7,h. We denote this benchmark by Naı̈ve.

5.2.3. The ARX model
The first expert model that we consider was originally proposed by Misiorek et al. [12] in one

of the first probabilistic EPF studies and later used in multiple papers [13, 22, 24, 29, 35, 42, 43,
71, 72, 117, 122, 123]. Within this model the centered log-price on day d and hour h is given by
the following formula:

pd,h = βh,1 pd−1,h + βh,2 pd−2,h + βh,3 pd−7,h + βh,4 pmin
d−1 + βh,5zd,h

+ βh,6DS at + βh,7DS un + βh,8DMon + εd,h,
(23)

where the lagged log-prices pd−1,h, pd−2,h and pd−7,h account for the autoregressive effects of the
previous days (the same hour yesterday, two days ago and one week ago), pmin

d−1 ≡ minh=1,...,24{pd−1,h}

is the minimum of the previous day’s 24 hourly log-prices, zd,h is the logarithm of the zonal load
forecast for day d and hour h, DS at, DS un and DMon are dummy variables that account for the
weekly seasonality and the εd,h’s are assumed to be independent and identically distributed (i.i.d.)
normal variables. We denote this autoregressive benchmark by ARX to reflect the fact that the
(zonal) load forecast is used as the exogenous variable in Eqn. (23).
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5.2.4. The mARX model
The second expert model is an extension of ARX, which evolved from it during the successful

participation of TEAM POLAND in the GEFCom2014 competition [33]. The rationale for the
modifications stems from the observation that it may be beneficial to use different model structures
for different days of the week, not only different parameter sets [117]. The so-called multi-day
ARX model or mARX is given by the following formula:

pd,h =

∑
i∈I

βh,1,iDi

 pd−1,h + βh,2 pd−2,h + βh,3 pd−7,h + βh,4 pmin
d−1 + βh,5zd,h

+ βh,6DS at + βh,7DS un + βh,8DMon + βh,11DMon pd−3,h + εd,h,

(24)

where I ≡ {0, S at, S un,Mon}, D0 ≡ 1 and the term DMon pd−3,h accounts for the autoregressive
effect of Friday’s prices on the prices for the same hour on Monday. Note that, to some extent, this
structure resembles periodic autoregressive models (i.e. PAR, PARMA), which have seen limited
use in EPF [42]. Both autoregressive models (ARX and mARX) are estimated with Least Squares
(LS), using Matlab’s regress.m function.

5.2.5. The NN model
The third expert model (denoted by NN) is a relatively parsimonious neural network that was

used by Dudek [39] in the GEFCom2014 competition. Not only does it use a different methodo-
logy, more popular among electrical engineers [7, 124], but also does not contain any autoregres-
sive terms. The rescaled price (to lie within the interval [−0.9, 0.9]; see Section 5.2.1) is modeled
as:

p̃d,h = f (z̃d,h, ζ̃d,h, z̃2
d,h, ζ̃

2
d,h) + εd,h, (25)

where z̃d,h and ζ̃d,h are the rescaled zonal and system load forecasts, respectively, and f (x) repre-
sents a multilayer perceptron with five sigmoid neurons in the hidden layer and one linear neuron
in the output layer. Unlike ARX and mARX, the NN model uses only the past 312 (= 24 hours
×13 days) observations for parameter estimation. Like in [39], the NN model is calibrated using
Matlab’s Neural Network Toolbox: first, the network is set up using the feedforwardnet.m

function, then trained with the train.m function for a maximum of 100 epochs using Bayesian
regularization backpropagation (trainFcn=‘trainbr’) and the sum squared error performance
function (performFcn=‘sse’).

5.3. Empirical results
We are now in a position to illustrate some of the techniques discussed in Sections 3 and

4. We put to work four approaches of calculating probabilistic forecasts: historical simulation,
Gaussian PIs, bootstrapping and Quantile Regression Averaging (QRA). Overall we consider nine
probabilistic forecasting models built on the point forecasts, P̂t, of the four individual models
defined in Sections 5.2.2-5.2.5 above. Naturally, unless stated otherwise, all evaluation measures
and statistics presented in Sections 5.3.2-5.3.3 are averages over all days in the 365-day test period,
see Fig. 4 and Section 5.1.
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5.3.1. Constructing probabilistic forecasts from point predictions
Recall from Section 3.2 that historical simulation is a model-independent approach which

consists of computing sample quantiles of the empirical distribution of the residuals: εt = Pt − P̂t.
We apply this technique to the naı̈ve benchmark and both autoregressive models; as a result we
obtain three PEPF models: Naı̈ve-H, ARX-H and mARX-H. All three use a 182-day rolling
window of residuals for constructing the probabilistic forecasts, independently for each hour of
the day.

We illustrate distribution-based PIs using the neural network model. As Dudek [39], we use a
312-hour (i.e., 13-day) rolling window to compute the standard deviation of the error density, σ̂,
then use it to retrieve quantiles of the Gaussian distribution approximating the error density, see
Section 3.3 for details. The resulting probabilistic EPF model is denoted by NN-G.

The bootstrap is a more complex and computationally intensive approach, which is based
on generating pseudo-data using bootstrapped (i.e., resampled) residuals, see Section 3.4. We
apply this technique to the point forecasts of all three expert models and obtain three probabilistic
models: ARX-B, mARX-B and NN-B. The former two use a 182-day rolling window of residuals
for constructing the probabilistic forecasts (independently for each hour of the day, like ARX-H
and mARX-H), the latter uses a 312-hour (i.e., 13-day) rolling window of residuals (like NN-G).

Finally, we apply QRA either to point forecasts of the two expert autoregressive models, re-
sulting in model QRA(2), or to all three expert models, resulting in model QRA(3). Recall from
Section 3.5 that a rolling window of the previous 182 days is used to calibrate QRA and obtain the
PIs for the next day. Note that the Naı̈ve benchmark is not used for computing bootstrapped PIs
or in QRA.

5.3.2. Evaluating reliability
The unconditional coverage (UC) and the related average coverage error (ACE; see Section

4.1.1) of the 50% and 90% PIs for the nine models are shown in Table 2. The results are averages
over all 24 hourly load periods. Nearly all models yield a smaller coverage than nominal, i.e., all
but one ACE errors are negative. We can observe the worst performance for the two neural network
based forecasts. On the other hand, models with the best unconditional coverage (i.e., the closest
to nominal) are ARX-B and mARX-B, with the remaining two autoregressive structures, both
QRA models and the naı̈ve benchmark trailing closely behind. Surprisingly, the naı̈ve benchmark
yields a much better unconditional coverage than the neural networks.

Such aggregate measures as the UC and ACE in Table 2, often reported in the probabilistic
EPF literature, do not disclose the relevant details. Namely, the coverage is not uniform across the
hours. In particular, for the 50% PIs, the neural network models tend to provide a little too wide
(or misplaced; see the discussion on sharpness in Section 5.3.3) PIs for late night/early morning
hours, with as high as 62% and 54% coverage for hour 3 for NN-G and NN-B, respectively. On
the other hand, for the afternoon and evening hours they largely underestimate the variability and
yield much too narrow (or significantly misplaced) PIs, with as low as 27-28% coverage for hours
19-20. The remaining models provide a more stable performance across the hours.

To formally assess coverage we run the Kupiec [77] and Christoffersen [46] tests for the 50%
and 90% PIs. We conduct the tests separately for each of the 24 hours since the probabilistic
forecasts for consecutive hours are correlated by construction. The naı̈ve, autoregressive and QRA
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Table 2: Unconditional coverage (UC) and average coverage error (ACE, i.e., UC minus nominal coverage; see also
Section 4.1.1) of the 50% and 90% two-sided day-ahead PIs by the actual spot price for all nine models. The best
results in each row are emphasized in bold, the worst are underlined. Note that the results are averages over all 24
hourly load periods.

Naı̈ve-H ARX-H ARX-B mARX-H mARX-B NN-G NN-B QRA(3) QRA(2)

50% prediction intervals

UC 46.94% 48.32% 49.38% 47.55% 50.08% 45.50% 40.68% 47.23% 47.66%

ACE −3.06% −1.68% −0.62% −2.45% 0.08% −4.50% −9.32% −2.77% −2.34%

90% prediction intervals

UC 85.84% 86.59% 87.26% 85.96% 87.44% 80.29% 79.86% 85.14% 85.51%

ACE −4.16% −3.41% −2.74% −4.04% −2.56% −9.71% −10.14% −4.86% −4.49%

models are estimated 24 times, separately for each hour of the day, using the same information set
(prices and load forecasts up to midnight on the day the prediction is made). The neural networks
model all hours jointly, but use the same parameter estimates to compute the probabilistic forecasts
for all 24 hours of the next day (i.e., using the same information set); it is the load forecasts that
make the difference and diversify the price forecasts for each hour.

The results are presented in Fig. 5. For the 50% PIs, the four autoregressive models and
QRA(2) yield the best and nearly identical unconditional coverage, see the red circles in the top
nine panels. At the 5% level of significance between 22 and 24 hours pass the test, at the 1% level
all hours pass the test. The QRA(3) model and, as already visible for the aggregate UC results in
Table 2, the naı̈ve model follow closely by. The neural network models are definitely the worst,
with acceptable coverage only for 6 to 10 hours; the problems generally arise for the daytime hours
(8am-11pm). However, the situation changes when we look at the 90% PIs, see the blue triangles
in the top nine panels of Fig. 5. Models ARX-B and mARX-B are now clearly better than the
competitors, with as many as 16 hours passing the Kupiec test at the 5% level and 20-23 hours at
the 1% level. Next in line is the ARX-H model, then mARX-H and QRA(2). For the 90% PIs, the
QRA(3) model is the worst, with only three hours passing the Kupiec test at the 5% significance
level and five hours at the 1% level.

Now let us look at the results of the Christoffersen test for CC. Recall from Section 4.1.1 that
LRCC = LRUC + LRInd, if we condition on the first observation. Thus the differences between the
UC and CC tests can be explained in terms of dependence or clustering of PI violations. Note that
in Fig. 5 we are only looking at first-order dependence, however, at almost no cost we can check
dependence for any lag, see Clements and Taylor [81] for a general discussion and Maciejowska et
al. [29] for an application in EPF. The results for the CC test are definitely less optimistic than those
for the UC test. For the 50% PIs, the bootstrapped mARX-B model performs slightly better than
QRA(2) with 4 vs. 2 hours passing the test at 5% significance and 9 vs. 7 at 1% significance. The
remaining models perform much worse, with at most two hours passing the test at 1% significance.

Finally, let us investigate the reliability of the whole predictive density, not just two selected
PIs. Since the methods we consider in this empirical study do not yield predictive densities,
only quantile forecasts of any level, we use a set of 99 percentiles, i.e. q = 1%, 2%, ..., 99%, to
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Figure 5: The unconditional (LRUC; top three rows) and conditional coverage (LRCC; bottom three rows) likelihood
ratio statistics for the 50% (◦) and 90% (4) PIs obtained from the nine probabilistic forecasting models considered.
Recall from Section 4.1.1 that LRCC = LRUC + LRInd, if we condition on the first observation. The solid (dashed)
horizontal lines represent the 5% (1%) significance level of the appropriate χ2 distribution. All test values exceeding
20 are set to 20.
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Figure 6: Probability integral transform (PIT) histograms and sample autocorrelation functions (ACFs) of the PIT
values for hours 4 (left) and 19 (right) and four probabilistic models (top to bottom): Naı̈ve-H, ARX-B, NN-G and
QRA(2). Note that for the NN-G model and hour 19 the scale on the Y-axis is compressed due to very high bins at
both ends of the PIT histogram.

approximate the PDFs. In Figure 6 we plot the histograms of the probability integral transform
(PIT) histograms and sample autocorrelation functions (ACFs) of the PIT values for two selected
hours: 4 (late night trough) and 19 (evening peak). We present results for four selected models
representing four methods of constructing probabilistic forecasts: Naı̈ve-H, ARX-B, NN-G and
QRA(2). Recall from Section 4.1.4, that a histogram with too much probability mass in the center
(inverse U-shape; like for NN-G and hour 4) indicates that the predictive distribution has too
fat tails, while a U-shape (like for NN-G and hour 19) suggests that the tails of the predictive
distribution are not heavy enough. Some histograms (Naı̈ve-H for hour 19, ARX-B and QRA(2)
for hour 4) exhibit skewness, with more mass below the mean than above, and a little too much
probability mass at the right end, suggesting that the right tail of the predictive distribution should
be heavier. Only QRA(2) for hour 19 and to some extent ARX-B for the same hour yield what
seems to be a uniform distribution. The ACF plots generally confirm what can be seen in the PIT
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Figure 7: The conditional coverage likelihood ratio statistics (LRBer
CC ) for the Berkowitz [48] test of independence and

normality of the predictive distributions obtained from all nine probabilistic forecasting models. The solid (dashed)
horizontal lines represent the 5% (1%) significance level of the χ2(3) distribution. Note the logarithmic scale on the
Y-axis.

histograms: QRA(2) and ARX-B perform better than Naı̈ve-H, which in turn is better than NN-G.
To formally evaluate the predictive distributions we now conduct the Berkowitz [48] test of

independence and normality (i.e., of conditional coverage). The results for all nine probabilistic
models and all 24 hourly load periods are presented in Fig. 7. Clearly, none of the models is
perfect. All nine have problems with passing the test for the afternoon hours, particularly hours
13 through 17. Yet, if ranked, then both bootstrapped autoregressive models lead the pack with
14-15 hours passing the test at the 5% level and 17-18 hours at the 1% level, and QRA(2) follows
closely by, respectively with 12 and 15 hours. At the other end are both neural networks and the
naı̈ve model, which do not provide an acceptable conditional coverage for a single hour.

Comparing the results of the Christoffersen [46] and Berkowitz [48] tests we note that while
both generally rank the models in the same order, the latter provides a more holistic picture and
points to problems that may not be visible when we test the CC of arbitrarily chosen PIs. As such,
the Berkowitz test is the preferred option for an ‘all-in-one’ evaluation procedure. On the other
hand, running the Christoffersen test for all PIs (from 1% to 99% nominal coverage) may indicate
which quantiles are problematic and require attention or a revision of the model. For instance, the
CC of the 50% PI for the mARX-B model is acceptable for hours 13 through 17, even at the more
restrictive 5% level (see the middle panel in the second row from the bottom in Fig. 5), so it is
likely that PIs with higher nominal coverage are responsible for a poor fit of the whole predictive
density. Moreover, the Christoffersen test can be easily modified to evaluate more than first order
dependence, see Section 4.1.3 and Refs. [29, 81], while the Berkowitz test cannot.
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Table 3: Top: The pinball loss, as defined by Eqn. (13), averaged over all 24 hourly load periods and across 99
percentiles; for an analysis of selected quantiles, see Fig. 8. Middle and bottom: The Winkler (or ‘interval’) score, as
defined by Eqn. (14), for the 50% and 90% two-sided day-ahead PIs averaged over all 24 hourly load periods; for an
analysis of selected load periods see Fig. 9. The Winkler score is decomposed into PI width, i.e., δt, and a penalty
for PI violations, i.e., 2

α
(L̂t − Pt) or 2

α
(Pt − Ût). The best results in each row are emphasized in bold, the worst are

underlined.

Naı̈ve-H ARX-H ARX-B mARX-H mARX-B NN-G NN-B QRA(3) QRA(2)

Average score over 99 percentiles

Pinball loss 3.927 2.943 2.774 2.971 2.788 3.364 3.305 2.634 2.791

50% prediction intervals

Winkler score 34.141 25.505 24.434 25.741 24.556 29.385 29.208 23.108 24.726
PI width 7.636 6.592 8.159 6.556 8.519 10.989 9.638 9.751 10.310
Penalty 26.505 18.914 16.275 19.185 16.037 18.396 19.570 13.357 14.416

90% prediction intervals

Winkler score 98.599 74.642 55.575 75.317 55.549 68.975 64.008 50.657 51.017
PI width 39.662 30.723 25.760 30.562 26.287 26.799 27.722 26.076 28.570
Penalty 58.937 43.918 29.815 44.755 29.262 42.177 36.286 24.581 22.447

5.3.3. Evaluating sharpness
Following the paradigm of ‘maximizing sharpness subject to reliability’ [15–17] and given that

some of the considered models yield reliable forecasts12, we are now in a position to evaluate their
sharpness. In Section 4 we have presented in detail three measures: the pinball loss, the Winkler
score and the continuous ranked probability score (CRPS). Note, however, that for discretized
predictive densities – like the ones considered in this empirical study – the CRPS boils down to
the pinball loss, see formula (16). Hence, in what follows, we do not discuss the CRPS itself.

Let us first look at the results for the pinball loss, the measure used in the GEFCom2014
competition. The aggregate pinball loss presented in Table 3, i.e., Eqn. (13) averaged over all 24
hourly load periods and across 99 percentiles, indicates that the predictions of the QRA(3) model
are the sharpest, with two bootstrapped autoregressive models and QRA(2) following closely by.
Again the neural networks and the naı̈ve model perform the worst. There are, however, noticeable
changes compared to the reliability rankings in Section 5.3.2. Namely, in terms of sharpness
measured by the pinball loss, QRA(3) outperforms the autoregressive models, while its predictions
have been found to be generally less reliable than those of the autoregressive models, especially
ARX-B and mARX-B. On the other hand, while the forecasts of the Naı̈ve benchmark can be
regarded as more reliable than those of the neural networks, the latter provide sharper predictions
(though still much worse than those of the QRA or autoregressive models).

If we decompose the pinball loss and present the contribution of each quantile to the aggregate
measure, as in Fig. 8, we can draw two important conclusions. Firstly, the central percentiles
contribute more to the aggregate pinball loss than the very low and very high percentiles. In other

12At least for some of the hourly load periods. Note that we have built the empirical study around a simple naı̈ve
benchmark and three parsimonious expert models, as the focus of the paper is not on developing a very well performing
model, rather on illustrating the construction and evaluation techniques for probabilistic forecasts.
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Figure 8: The pinball loss for 99 percentiles, as defined by Eqn. (13), averaged over all 24 hourly load periods. Note
that the central percentiles contribute more to the aggregate pinball loss presented in Table 3 than the very low and
very high percentiles.

words, for sharp probabilistic forecasts it is absolutely crucial to get the point forecasts right, as
they are an estimate of the mean or median of the predictive distribution. Errors made in the
tails of the distribution play a lesser role, though should not be ignored completely. Secondly,
the contribution is not symmetric across the percentiles. Pinball loss plots in Fig. 8 are more
symmetric for some models (e.g., QRA(3) and Naı̈ve) than for others (particularly ARX-H and
mARX-H), but all penalize more for the upper quantiles. Most likely, this is due to the spikiness of
electricity spot prices and the inability of the predictive distributions obtained from simple expert
models to adequately describe it.

Now, let us analyze the Winkler scores for all nine probabilistic models. Recall from Section
4.2.3, that the Winkler score can be decomposed into PI width, i.e., δt, and a penalty for PI violati-
ons, i.e., 2

α
(L̂t−Pt) or 2

α
(Pt− Ût). The latter component is similar to the pinball loss, but the former

provides additional information on the sharpness of the predictive distributions. In Table 3 we pre-
sent the Winkler scores for the 50% and 90% two-sided day-ahead PIs averaged over all 24 hourly
load periods. Generally, both the pinball loss and the Winkler score lead to similar conclusions.
According to both measures, the QRA(3) model yields the sharpest probabilistic forecasts, while
the Naı̈ve benchmark the least sharp. The QRA(2) model is sharper than the two bootstrapped
autoregressive models for the 90% PIs, but a little less sharp for the 50% PIs. Interestingly, the
sharpness of the probabilistic forecasts of QRA(3) and QRA(2) is not due to narrow PIs. Quite the
opposite, the QRA models yield relatively wide intervals, especially for the nominal coverage of
50%. They excel, however, in terms of the penalty for PI violations. This is somewhat unexpected
since the penalty is partly related to reliability, which is not a strong point of QRA(3).

It is also interesting to see the Winkler scores for individual hours, as plotted in Fig. 9. We
have selected three load periods for the comparison: hours 4 (late night trough), 12 (midday) and
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Figure 9: The Winkler (or ‘interval’) score, as defined by Eqn. (14), for the 50% and 90% two-sided day-ahead PIs
and three selected load periods: hours 4, 12 and 19. Like in Table 3, the Winkler score is decomposed into PI width,
i.e., δt, and a penalty for PI violations, i.e., 2

α
(L̂t − Pt) or 2

α
(Pt − Ût).

19 (evening peak). While the general picture is similar to the one from Table 3, in Fig. 9 we can
see that for some models the PI widths vary a lot across the hours (particularly for QRA models;
i.e., they have a higher resolution across the hourly load periods, see the discussion in the first
paragraphs of Section 4), while for other they do not (e.g., for neural networks). The latter may be
explained to some extent by the differences in calibration windows – the neural networks use the
same 312-hour (i.e., 13-day) rolling window to compute the probabilistic forecasts for all hours
(the differences are a result of different load forecasts for the individual hours), while the remaining
models use a 182-day rolling window of residuals (independently for each hour of the day).

After a descriptive analysis of sharpness, let us now formally evaluate the differences in pre-
dictive performance with the Diebold-Mariano (DM) test [90, 91]. Since predictions for all 24
hours of the next day are made at the same time using the same information set, forecast errors for
a particular day will typically exhibit high serial correlation. Therefore, like in [42, 71, 112, 117],
we conduct the DM tests for each of the 24 load periods separately.

In Figure 10 we summarize the DM results for all three score functions: average Pinball loss
over all 99 percentiles, Winkler score for the 50% PIs and Winkler score for the 90% PIs. Like
Uniejewski et al. [42], we sum the number of significant differences in forecasting performance
across the 24 hours and use a heatmap to indicate the number of hours for which the forecasts of
a model on the X-axis are significantly better than those of a model on the Y-axis. Two extreme
cases – (i) the forecasts of a model on the X-axis are significantly better for all 24 hours of the
day and (ii) the forecasts of a model on the X-axis are not significantly better for any hour – are
indicated by white and black squares, respectively. Naturally, the diagonal (white crosses on black
squares) should be ignored as it concerns the same model on both axes. Columns with many non-
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Figure 10: Results for conducted one-sided Diebold-Mariano [90] tests at the 5% level for all nine probabilistic
forecasting models and three score functions (from left to right): average Pinball score over all 99 percentiles, Winkler
score for the 50% PIs and Winkler score for the 90% PIs. We sum the number of significant differences in forecasting
performance across the 24 hours and use a heat map to indicate the number of hours for which the forecasts of a model
on the X-axis are significantly better than those of a model on the Y-axis. A white square indicates that forecasts of a
model on the X-axis are better for all 24 hours, while a black square that they are not better for a single hour.

black squares (the more green or white the better; this is the case for the QRA(3) model) indicate
that the forecasts of a model on the X-axis are significantly better than the forecasts of many of its
competitors. Conversely, rows with many non-black squares mean that the forecasts of a model
on the Y-axis are significantly worse than the forecasts of many of its competitors (this is the case
for the naı̈ve benchmark and the neural networks to a lesser extent).

Generally, the results of the DM tests support earlier formulated conclusions. Firstly, the
predictions of the Naı̈ve benchmark are significantly outperformed by those of all other models,
for (nearly) all hours. The forecasts of the neural networks are outperformed by the predictions of
QRA and autoregressive models for a vast majority of hours. This is especially true for the pinball
loss and the Winkler score for the 50% PIs. For the 90% PIs the neural networks are relatively
better, yet still perform worse than other methods. On the other hand, the best method overall is
QRA(3). The forecasts of this model are never significantly worse than the predictions of any
other model and for some hours they outperform the predictions of the other models, regardless
of the evaluation metric used. QRA(2) and bootstrapped autoregressive models perform slightly
worse, yet still yield significantly better predictions than the remaining models.

5.4. Final thoughts and recommendations
This extensive empirical study reflects the complexity of the construction and evaluation of

probabilistic forecasts, which goes well beyond that of point predictions. In line with the ‘max-
imizing sharpness subject to reliability’ paradigm [15–17] we advocate, the first crucial step is a
thorough evaluation and formal testing of reliability, i.e., the statistical consistency between the
distributional forecasts and the observations. A number of techniques have been put to work in
Section 5.3.2, several more are available in the literature. Although we strongly suggest to check
both the unconditional and conditional coverage, we refrain from recommending one particular
procedure. The Kupiec [77] and Christoffersen [46] tests can be replaced by the Berkowitz [48]
test if the constructed PIs span the whole range of quantiles and constitute a dense grid well ap-
proximating the predictive density. However, if more than first-order dependence needs to be
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checked – and this may be the case for electricity price forecasts as argued by Maciejowska et al.
[29] – the Christoffersen test lends itself readily to an extension which checks independence of PI
violations at an arbitrary time lag [81] or all lags at once [82]. The autocorrelation plots of the
PITs may be also useful in this context.

Once we are done with reliability, and can conclude that the obtained probabilistic forecasts
are reliable enough, we should look at sharpness, i.e. the concentration of the predictive distributi-
ons. The latter notion is closely related to the so-called proper scoring rules, which simultaneously
assess reliability and sharpness, and are minimized when the true distribution is quoted as the fo-
recast distribution. We advocate the use of the pinball loss, the Winkler (or ‘interval’) score and/or
the continuous ranked probability score (CRPS) to rank the forecasts. Yet, like for evaluating re-
liability, several more options are available in the literature. Although similar in spirit, the three
scoring rules offer a slightly different view on forecast sharpness. The pinball loss lends itself
readily to averaging over all considered quantiles, while the Winkler score additionally penalizes
for too wide PIs. Moreover, for discretized predictive densities – like the ones considered in this
empirical study – the CRPS boils down to the pinball loss, but for continuous predictive densities
it is the preferred option. After ranking forecasts using one or more of the mentioned scoring rules,
we suggest to formally test for statistically significant differences in the forecasting performance,
e.g., using the Diebold-Mariano [90, 91] test. As Weron [1] remarks, this issue has apparently
been downplayed in the EPF literature, although it is a standard procedure in econometrics. Sadly,
three years later not much has improved.

Before we conclude this Section let us briefly comment on the strikingly poor performance of
the neural network models. According to most evaluation measures and tests they yield either the
worst predictions or only better than those of the naı̈ve benchmark. How is this possible given that
one of them (NN-G) was ranked third in the GEFCom2014 competition? The surprising answer
is that they perform very well for the 12 competition days (see Table 7 in [3]), but not in general.
Namely, the aggregate pinball loss over those 12 days for the NN-G and NN-B models is 3.302 and
3.200, respectively, while for the autoregressive expert models and the naı̈ve benchmark it is in the
range 4.454–5.100. The QRA models fare better, with aggregate pinball loss of 4.209 for QRA(2)
and only 3.089 for QRA(3). Apparently, the latter model benefits from including point forecasts
of the neutral network. On the other hand, this inclusion leads to a generally worse reliability
over the whole 365-day out-of-sample test period, when compared to QRA(2), see Section 5.3.2.
This qualitatively different performance of some models on an arbitrarily, though ex-ante, selected
12-day sample (GEFCom2014) and on a large, 365-day sample (this study) emphasizes the need
for long out-of-sample test periods, an issue raised by Weron [1] in his review of EPF and more
recently by Hong and Fan [5] in the context of probabilistic load forecasting.

6. Conclusions

We have presented guidelines for the rigorous use of methods, measures and tests in proba-
bilistic electricity price forecasting. However, the article has a much broader reach. None of the
methods for constructing probabilistic forecasts discussed in Section 3 or the evaluation metrics
reviewed in Section 4 is restricted to electricity prices. They all are general enough to be used
for probabilistic energy forecasting, is it very short-term load forecasting for smart grid applicati-
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ons or wind and solar power forecasting. With the increasing role of probabilistic predictions in
general, we truly hope that this review paper will encourage energy forecasters to develop more
efficient, but at the same time statistically sound approaches. We also hope that it will propel those
working in other areas of forecasting to move into the exciting and still largely unexplored world
of wholesale electricity markets.
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[49] Y. Bao, T.-H. Lee, and B. Saltoğlu, “Comparing density forecast models,” Journal of Forecasting, vol. 26,
no. 3, pp. 203–225, 2007.

[50] T. Jonsson, P. Pinson, H. Madsen, and H. Nielsen, “Predictive densities for day-ahead electricity prices using
time-adaptive quantile regression,” Energies, vol. 7, no. 9, pp. 5523–5547, 2014.

[51] A. Alonso, C. Garcia-Martos, J. Rodriguez, and M. Sanchez, “Seasonal dynamic factor analysis and bootstrap
inference: Application to electricity market forecasting,” Technometrics, vol. 53, pp. 137–151, 2011.

[52] A. Khosravi, S. Nahavandi, and D. Creighton, “Quantifying uncertainties of neural network-based electricity
price forecasts,” Applied Energy, vol. 112, pp. 120–129, 2013.

[53] P. Pinson and J. Tastu, “Discussion of ‘Prediction intervals for short-term wind farm generation forecasts’ and
‘Combined nonparametric prediction intervals for wind power generation’,” IEEE Transactions on Sustainable
Energy, vol. 5, no. 3, pp. 1019–1020, 2014.

[54] C. Wan, Z. Xu, J. Østergaard, Z. Y. Dong, and K. P. Wong, “Discussion of ‘Combined nonparametric prediction
intervals for wind power generation’,” IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 1021–1021,
2014.

[55] A. Khosravi, S. Nahavandi, and D. Creighton, “A neural network-garch-based method for construction of
prediction intervals,” Electric Power Systems Research, vol. 96, pp. 185–193, 2013.

[56] M. Rafiei, T. Niknam, and M. Khooban, “Probabilistic electricity price forecasting by improved clonal selection
algorithm and wavelet preprocessing,” Neural Computing and Applications, 2016. DOI: 10.1007/s00521-016-
2279-7.

[57] C. Garcia-Martos, J. Rodriguez, and M. Sanchez, “Forecasting electricity prices and their volatilities using
Unobserved Components,” Energy Economics, vol. 33, no. 6, pp. 1227–1239, 2011.

[58] H. C. Wu, S. C. Chan, K. M. Tsui, and Y. Hou, “A new recursive dynamic factor analysis for point and interval
forecast of electricity price,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2352–2365, 2013.
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