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Abstract: Salmonellosis is a major cause of foodborne infections, caused by Salmonella, posing a major
health risk. It possesses the ability to infiltrate the food supply chain at any point throughout the
manufacturing, distribution, processing or quality control process. Salmonella infection has increased
severely and requires effective and efficient methods for early monitoring and detection. Traditional
methods, such as real-time polymerase chain reaction and culture plate, consume a lot of time and are
labor-intensive. Therefore, new quick detection methods for on-field applications are urgently needed.
Biosensors provide consumer-friendly approaches for quick on-field diagnoses. In the last few years,
there has been a surge in research into the creation of reliable and advanced electrochemical sensors for
the detection of Salmonella strains in food samples. Electrochemical sensors provide extensive accuracy
and reproducible results. Herein, we present a comprehensive overview of electrochemical sensors
for the detection of Salmonella by focusing on various mechanisms of electrochemical transducer.
Further, we explain new-generation biosensors (microfluidics, CRISPR- and IOT-based) for point-of
care applications. This review also highlights the limitations of developing biosensors in Salmonella
detection and future possibilities.
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1. Introduction

Salmonella is one of the most prevalent bacteria causing foodborne illnesses and
death [1]. Salmonella is a Gram-negative, rod-shaped bacterium which belongs to the Enter-
obacteriaceae family [2,3]. Common standard methods for the identification of Salmonella
bacteria are based on culture techniques, enzyme-linked immunosorbent assay (ELISA)
and nucleic acid-based approaches [4]. Nucleic acid approaches include polymeric chain
reaction (PCR), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-
based amplification (NASBA), micro arrays, recombinase polymerase amplification (RPA),
and whole-genome sequencing (WGS). Some of these techniques require highly skilled
individuals and sophisticated apparatus, and others consume a lot of time. As a result,
the development of specific, sensitive and reliable technologies for quick detection is al-
ways needed for Salmonella diagnosis. Biosensors provide a number of advantages over
laboratory-based assays, including increased sensitivity accuracy and specificity as well as
the low cost, rapid response, in situ applications and potential for portability [5–9]. As a
result, they have been identified as impressive alternatives for detecting Salmonella in food.
There has been a surge in research investigations in this sector in recent years, with several
publications. Numerous studies on this topic have also been published, with specific use of
nanomaterials, electrochemical signal interpretation, and aptamer identification [10–13].

Electrochemical sensors detect the analyte of interest based on potentiometry, con-
ductometry and impedimetric. Electrochemical sensing has been prevalent because of its
rapid, specific detection response, sensitivity, ability to be miniaturized and integrated
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into point-of-care testing [14]. Furthermore, the utilization of different nanomaterials
such as carbon nanotubes (CNTs), metallic nanoparticles, silica nanoparticles, metal oxide
nanoparticles and organic nanoparticles enhances the detection limit in comparison with
sensors with only molecular probes, antibodies or peptides [15]. Therefore, the selection
of a bio-recognition element in combination with a nanomaterial is highly essential for
electrochemical sensor development that would help with the sensitive and rapid detection
of analytes [16].

This review focuses on different electrochemical sensors where we have discussed
different bioreceptors and the use of nanomaterials for the detection of Salmonella. The
review also provides the details of recently developed biosensors for sensing of Salmonella
in food samples and the measures taken to miniaturize and integrate the sensors into point-
of-care applications, including IOT-based (Temiz et al., 2015) [17], microfluidics (Rahmani
et al., 2018) [18], CRISPR-based and potentiometric sensors (Figure 1).
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permission from Ref. [17]. Copyright 2018, Elsevier. (b) Microfluidics based; Adapted with permission
from Ref. [18]. Copyright 2015, Elsevier. (c) CRISPR/Cas-based; (d) Potentiometry-based biosensing.

2. Materials and Methods

PubMed and Web of Science databases were used to search the articles. Electro-
chemical biosensors, Salmonella, point-of care applications, new-generation biosensors,
transducers, probes used in sensing Salmonella, were the key words used to search while
writing the review. Each article was screened thoroughly based on their electrochemical
sensing methods in detecting the Salmonella pathogen and the probe used in detection.
The screening was also carried out to select various nanomaterials used to increase the
sensitivity of the biosensors. The cited references were selected on the basis of recent
publications in electrochemical sensors and new-generation biosensors to detect Salmonella.

3. Emergence of Probe Based Sensing Approaches for Salmonella

In the last few years, detection of Salmonella has gained popularity due to its increased
rate of infection. Specific probes are required for designing a biosensor to detect Salmonella
since they help in precise, sensitive, and effective detection [19]. Biomolecules or a combina-
tion of probes with capabilities to recognize targets can theoretically be utilized as receptors
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in a biosensor. Aptamers, antibodies, anti-microbial peptides (AMPs) and bacteriophages
are essential probes used to detect Salmonella [20].

3.1. Single-Stranded DNA/RNA-Based Probes for Sensing of Salmonella

Research on single-stranded RNA or DNA (aptamers) generated using in vitro se-
lection methodology called Systematic Evolution of Ligands by Exponential Enrichment
(SELEX) was first published in the early 1990s by Gold and Szostak [21]. The synthesis
of aptamers for a larger variety of analytes using SELEX is possible for a big range of
aptamer-based applications. Furthermore, aptamers are stable, affordable, easy to produce
with chemical modifications, and have a low immunogenicity.

The identification of aptamers, silver signal amplification, nanogold tagging, and a
quick, specific, and visible detection approach for Salmonella typhimurium was developed in
a detection range of 10–106 CFU/mL and LOD of 7 CFU/mL for Salmonella typhimurium
with high specificity and affinity (Figure 2) [22]. They have evolved into a potent target
recognition tool with unrivalled intrinsic benefits such as chemical and physical stability,
simplicity of synthetization and modification, non-toxicity, structural memory, and en-
hanced half-life [23]. When designing several biosensing apparatuses for the detection of
Salmonella, aptamers have been employed as an alternative to traditional antibodies. Cru-
cially, they have a hybridization ability, with their complementary DNA (cDNA), and they
undergo a considerable change in conformation due to the presence of targets, leading to
better confirmational changes in the construction of novel biosensors [24–27]. In a study by
Zhang et al., Salmonella typhimurium could be detected using a label-free fluorescent silver
nanocluster (AgNCs). Herein, a developed sensor system used triple-trigger sequences by
regenerating the amplified strand, self-protective hairpin-template-generated scaffolds of
AgNCs [28]. In another study by Zhang et al., Salmonella enteritidis (S. enteritidis) detection
was possible using a capture probecomplex. The capture probe complex used the S. enteri-
tidis-aptamer and a fluorescent hybridized signal to detect the target. In the presence of
the target S. enteritidis, single-stranded target sequences were liberated and initiated the
replication–cleavage reaction, producing numerous G-quadruplex structures with a linker
on the 3’-end confirmed the presence of target [29]. Aptasensors, or ssDNA-based sensors
for the diagnosis of Salmonella strains, are being used due to their remarkable properties
and enormous promise.
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3.2. Immunoglobulins Based Sensing of Salmonella

Immunoglobulins are generated by the immune system of the body and have en-
hanced specificity and affinity for its analyte [30]. IgG immunoglobulin comprises two
light chains and two heavy chains that are arranged in a Y-shaped configuration. It also
has two regions for the activation of immune response, antigen recognition, and fragment
antigen-binding region (Fab), and the fragment crystallizable (Fc) region [31]. Antibodies
are commonly utilized tool for the detection of Salmonella and are considered “gold stan-
dard” due to their strong affinity for targets. In research by Raquel et al., electrochemical
quantification of the food-borne pathogen Salmonella enterica serovar typhimurium using a
highly sensitive and label-free laser-induced graphene (LIG) electrode functionalized with
antibodies was performed where live Salmonella was detected in chicken soup using LIG
biosensors across a wide linear range (25 to 105 CFU/mL) and with a low detection limit of
13± 7 CFU/mL [32]. “Nanobody”, a tiny (15 kDa) protein, was designed to overcome these
limitations, and being researched for the recognition of Salmonella strains. It is made up of
a single heavy-chain variable domain and can be bulk-manufactured using common micro-
bial expression techniques [33]. In a study by Kui et al., specific nanobodies were selected
against Salmonella enteritidis to develop an improved nanobody–horseradish peroxidase
(HRP)-based sandwich ELISA to detect Salmonella enteritidis in the real sample [34]. This
method does not require a secondary antibody labelled with HRP, thus reducing the time
of experimentation and increasing the specificity. Further, the electrochemical detection of
Salmonella using an Fe3O4@graphene-modified electrode by deposition of gold nanoparti-
cles (AuNPs) was performed by Kaiwan et al. Salmonella typhimurium was detected in a
linear range of 2.4× 102 to 2.4× 107 CFU/mL, and the limit of detection of the immunosen-
sor was 2.4 × 102 cfu/mL in milk samples [35]. However, isolation and characterization of
antibodies from animals are costly, time-consuming, and labor-intensive [36].

3.3. Phage-Based Sensing of Salmonella

Phages or bacteriophages are viruses infecting bacteria and replicate using the “ma-
chinery” of the host bacterial cells. They have various advantages as novel bioreceptors,
resistance to harsh environmental conditions, including excellent selectivity for host bacte-
ria, and the ability to create vast numbers of offspring phages [37]. They have an ability to
reproduce inside a living host. Phage-based biosensors can discriminate between dead and
living bacteria, which sets them apart from other bioreceptor-based Salmonella detection
approaches [38,39]. Fernandes et al. used pathogenic phage (PVP-SE1), a broad-spectrum
phage as a bio-receptor to discriminate viable and viable-nonculturable (VBNC) Salmonella
bacterial cells from dead cells, using a broad-spectrum virulent phage (PVP-SE1) as a biore-
ceptor [40]. Biosensing Salmonella has also been described using a variety of bacteriophages,
including M13, PRD1, E2, and P22. The detection of Salmonella using bacteriophage-based
systems is also being commercialized. When the phages were immobilized on the mag-
netoelastic sensor surface, the response become altered upon exposing it to the target
pathogen and measured by a resonance frequency shift. The amount of target antigen
attached to the sensor was proportional to the variation in frequency. The sensors tested
in water samples with a limit of detection up to 5 × 103 CFU/mL and 159 Hz/decade
sensitivity [41,42]. Sample 6 DETECT System (Sample6 Technologies, Inc., Boston, MA,
USA) is one of such example, which works by using modified bacteriophages to interface
with target bacteria, such as Salmonella, and drive them to express luminous enzymes.
Anti-salmonella antibodies were attached to horseradish peroxidase (HRP) as an optical
reporter and preconcentrated bacteria was obtained by phage-modified magnetic parti-
cles. This method achieved exceptional selectivity and sensitivity in milk samples without
pre-enrichment, with a detection limit of 19 CFU/mL in 2.5 h [43]. This technology allows
for highly sensitive identification of foodborne pathogens, showing results equivalent to
immunoassays and polymerase chain reaction (PCR). When bacteriophages are dry, they
lose their ability to capture the target, which is a significant disadvantage for them as biore-
ceptors. Furthermore, host bacterial cells lysis during diagnosis results in a reduction in the
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recorded signal [44]. In a study by Widjojoatmodjo et al., a magneto immuno PCR assay
was developed for identification of Salmonella serovars using magnetic particles coated with
monoclonal antibody (mAbs) to extract Salmonella bacteria. Trapped bacteria were lysed,
and the supernatant, which contained bacterial DNA, was subjected to the polymerase
chain reaction (PCR) using primers from the Salmonella typhimurium to amplify the specific
region [45]. In another study by Widjojoatmodjo et al., magnetic immuno PCR assay (MIPA)
was developed combining immunomagnetic separation by using specific mAbs and PCR
for the direct detection of Salmonellae in feces from humans. Immunomagnetically extracted
stool samples needed to be diluted only 10-fold when 1 microgram of T4 gene 32 protein
was added to the PCR. The MIPA sensitivity obtained was 105 CFU/mL [46].

Nonetheless, biosensors based upon phage have the capability to find patterns in
different major obstacles, distinguishing live cells of Salmonella quickly and efficiently, for
example. In future, more novel and viable applications need to be developed for sensing
Salmonella and other pathogens.

3.4. DNA-Based Biosensors for Sensing Salmonella

Genosensors are DNA biosensors that detect the analyte using hybridization reactions
by detecting certain nucleic acids in bacterial cells [47]. They rely on the affinity and
specificity of ssDNA for their own strand. The probes of nucleic acid are essential for
recognizing the target in these biosensors. DNA recovered from the cells of Salmonella
are usually denatured before being subjected to DNA probes. The sensor surface then
undergoes hybridization, resulting in a quantifiable signal [48]. Das and his colleges (2014)
used probes modified with ssDNA on screen-printed electrode (SPEs) for targeting the Vi
genes of Salmonella typhi with LOD of 50 pM [49]. Various amplification techniques of DNA,
including rolling circle amplification (RCA), are routinely combined into genosensors in
order to achieve better sensitivity [50]. Nucleic acid probes are simple to design and modify,
as well as flexible and thermally stable. However, they are mainly limited to genosensors.
The key drawbacks of genosensors include their time-consuming genomic DNA extraction
and fragmentation, requirement of skilled workers and need for signal amplifications.

Research on the detection of pathogens, mainly Salmonella, has progressed quickly in
the last few years, emphasizing point-of-care applications. Antibodies and aptamers are
undoubtedly among the best bio-receptors for the detection of Salmonella in on-field appli-
cations, but there has been surge in other bioreceptors, including peptides and genosensors.

4. Evaluation of Nanomaterials for Electrochemical Sensing

Nanomaterials provide a high specific surface area, allowing for a greater number of
bioreceptors for immobilization. However, the immobilization of the conjugated antibodies
and nanomaterials has been one of the major problems. The functionalization of nanomate-
rials is usually performed by non-covalent interaction including π–π stacking, electrostatic
interaction or Van der Waals forces [51].

a. Quantum-dots-based electrochemical biosensors

Quantum dots have a broad absorption spectrum and a limited emission spectrum that
varies in size. This phenomenon is caused by the semiconductor material’s variable band
gaps for various nanocrystal sizes (the smaller the particle, the lower the band gap), which
results in varied emission wavelengths from the electron–hole exciton recombination [52].
The availability of a wide variety of emission wavelengths from the QDs of various sizes
allows for effective multiplexed analyses using traditional optical transduction [53]. Qi et al.
combined DNA quantum dots with gold nanoparticles (AuNPs) (DNA-QDs) to form a
fluorescent probe (DNA-QDs/AuNPs) that can be used with immunomagnetic separation
(IMS) of Salmonella typhimurium. The probe polyethyleneimine (PEI)-coated AuNPs simpli-
fied the time-consuming process of aptamer modification and enhanced the fluorescence
signal using electrostatic adsorption of DNA-QDs. Salmonella typhimurium was detected
in a wide range of concentrations from 10 CFU/mL to 1.0 × 107 CFU/mL, with a limit
detection (LOD) of 13.6 CFU/mL, as shown in Figure 3A [54]. Non-radiative relaxation
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can occur if structural imperfections in the crystal lattice capture the departed electrons
or holes [55]. To address this problem, core/shell composites containing a semiconductor
material with a larger band gap range (often ZnS) were developed to passivate surface
imperfections and photo-stability and improve quantum yields [56]. Core/shell QDs have
become a potential alternative to organic fluorophores due to their great photochemical
stability [57].

b. Magnetic nanoparticles (MNPs)-based electrochemical biosensors

Diagnostics, gene delivery, drug delivery, magnetic separation, in vivo imaging, and
hyperthermia treatment are all made possible using MNPs. Furthermore, their ability to
integrate into sensors makes them a perfect component of cutting-edge pharmacological
and biological applications. Because of their durability and high sensitivity, MNPs-based
electrochemical sensors have gained a lot of interest in biological, and pharmacological
applications [58]. Magnetic nanoparticles offer an alternate to fluorescent labelling. Due to
the reduced number of magnetic domains (regions of parallel oriented magnetic moments
created by interacting unpaired electrons of an atom), nanosized magnetic nanoparticles
exhibited distinct magnetic behavior compared to bulk material, resulting in superparamag-
netic behavior. As long as no external magnetic field is supplied, such superparamagnetic
behavior eliminates attraction or repulsive interaction between magnetic nanoparticles.
The ability to concentrate the analyte before the detection event is a significant benefit of
utilizing magnetic nanoparticles [59]. Magnetic nanoparticles customized with receptor
units may be easily combined with the analyte. The nanoparticles agglomerate and separate
after being exposed to an external magnetic field [60]. Devendra et al. investigated the
Flagellin and MNP interactions with the antibody-immobilized sensor surface. A sequential
two-step sandwich test and a preincubation one-step sandwich assay produced surface
plasmon resonance (SPR) signal that was 7.5 times and 14.0 times greater than the direct
assay, respectively. The assay’s detection limits in romaine lettuce samples and buffer were
5.2 log CFU/g and 4.7 log CFU/mL, respectively [61].

c. Carbon nanoparticles based electrochemical biosensors

Carbon nanotubes have an exceptional blend of nanowire shape, biocompatibility,
and electrical characteristics. As a result, carbon nanotube interfaces have much improved
capabilities, such as approaching the active areas of redox enzymes and wiring them to the
bulk electrode [62]. Furthermore, its simple and well-documented organic functionalization
provides nanostructured electrodes with novel features, such as particular biomolecule
docking sites or redox mediation of bio-electrochemical interactions [63]. Furthermore, due
to the spontaneous creation of extremely porous three-dimensional networks suited for the
anchoring of a large number of bioreceptor units, CNT films have high electroactive surface
areas, resulting in high sensitivities [64]. In a study by Subramanian et al., a disposable elec-
trochemical immunosensor was developed for the simultaneous measurement of common
foodborne pathogenic bacteria (Salmonella). The sensor was fabricated by attachment of
anti-Salmonella antibodies on the surface of a multiwalled carbon nanotube-polyallylamine-
modified screen-printed electrode. The suspension of bacteria bound to the immobilized
antibodies when the sensor was incubated in liquid samples [65].

d. Metallic nanoparticles-based electrochemical biosensors

Characteristics including biocompatibility, electrical, and optical characteristics, ease
of manufacture, and modification make gold nanoparticles the most often utilized noble
metal nanoparticles for biosensor applications [66]. The optical behavior of gold surfaces,
where irradiation with light of a given wavelength induces resonant surface plasmons, or
oscillations of the electrons in the conduction band, is particularly noteworthy [67]. The
oscillating electrons cannot travel down the surface when the particle size is substantially
smaller than the incoming wavelength, as they do in traditional surface plasmon resonance
(SPR) set-ups. Metallic nanoparticles are frequently used to anchor biorecognition com-
ponents such as enzymes, antibodies, single-stranded DNA (ssDNA), RNA (ssRNA), and
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affibodies in biosensors [68]. The physicochemical features of MNPs have a big role in the
efficacy and durability of these metabolic interactions [69]. Xiaoyuan et al. modified gold
nanoparticles (AuNPs) and graphene oxide (GO) on the glassy carbon electrode (GCE)
to enhance the electron transfer properties for the detection of Salmonella typhimurium.
Upon addition of Salmonella to the reaction system, the current between the electrolyte and
electrode reduced, leading to decrease in impedance and a detection limit of 3 CFU/mL
being obtained, as shown in Figure 3B [70].
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Figure 3. Nanomaterials (quantum dots and gold nanoparticles) for sensing. (A): (a) AuNPs and
DNA-QDs for a self-assembled core–shell fluorescent probe. (b) Salmonella typhimurium was captured
and enriched followed by isolation using magnetite microspheres. The attachment of surface-bound
antibodies to the target bacteria and its reaction with the probe trailed by fluorescence measurements.
Adapted with permission from Ref. [54]. Copyright 2020, Elsevier. (B): Detection of Salmonella using
glassy carbon electrode (GCE). Graphene oxide was immobilized on the surface of GCE followed by
electrodeposition of gold nanoparticles. Then, AuNPs were linked with ssDNA aptamers to capture
the target Salmonella antigen. Adapted with permission from Ref. [70]. Copyright 2014, Elsevier.

Integration of nanomaterials in biosensing platforms has boosted the limit of detection
(LOD) tremendously in comparison with sensors especially with molecular probes. Addi-
tionally, nanomaterials act as surface modifiers, enhancing the conductivity and surface
area, increasing the stability of the biosensor. The implementation of ultra-sensitive, stable
nanomaterials in future would help in point-of-care applications. It would also help in
detection of pathogens even before the symptoms appear, leading to an early mitigation of
the disease.
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5. Electrochemical Biosensors for Salmonella Detection

Sensors for the detection of Salmonella using the different bioreceptors, including
various signal transducers processes, have increased their usage in recent years. Most of
the sensors have been verified in food constituents, while others have the potential to be
used in food samples. Different biosensing apparatuses for the detection of Salmonella have
been addressed in this section, with a particular focus on electrochemical sensors. Their
high sensitivity, low cost, and miniaturization potential make electrochemical biosensors
the most commonly used sensing platform for the detection of Salmonella. Biosensors can
be classified as amperometric, potentiometric, or conductometric based on the transducers
used. A list of biosensors (electrochemical) for Salmonella detection strains are mentioned
below in Table 1.

Table 1. Electrochemical biosensors for the detection of Salmonella strains.

Sl No. Serotype Bio-Recognition
Element

Detection
Method Range of Detection LOD References

1. Salmonella
typhimurium Aptamer Potentiometry 67–6.7 × 105 CFU/mL 10 CFU/mL [71]

2. Salmonella
typhimurium Aptamer EIS 10–108 CFU/mL 6 CFU/mL [72]

3. Salmonella
typhimurium Antibody DPV 10–107 CFU/mL 3 CFU/mL [73]

4. S. pullorum &
S. gallinarum Antibody CV 101–109 CFU/mL 1.61 × 101 CFU/mL [74]

5. S. enteritidis Genosensor SWAS V 50 pg/mL–50 ng/mL 0.5 ng/mL [75]

6. S. pullorum Antibody EIS 102 to 106 CFU /mL 89 CFU /mL [76]

7. S. pullorum and
S. gallinarum Antibody CV 104–109 CFU/mL 3.0 × 103 CFU/ mL [77]

8. Salmonella
typhimurium Antibody EIS 10–106 CFU/mL 10 CFU/mL [78]

9. Salmonella
typhimurium Aptamer DPV 20–207 CFU/mL 16 CFU/mL [79]

10. Salmonella
enterica Aptamer DPV 10–106 CFU/mL 10 CFU/mL [80]

11. Salmonella
typhimurium Antibody DPV 10–105 CFU/ml 5 CFU/mL [81]

DPV: Differential Pulse Voltammetry, CV: Cyclic Voltammetry, EIS: Electrochemical Impedance Spectroscopy,
SWAS V: Square wave Voltammetry.

5.1. Amperometric Biosensors for Salmonella Detection

Amperometry monitors variations in current when a constant voltage is applied
for defined time. These sensors have acted as efficient models in the fast biosensing of
Salmonella strains in food samples for decades, as shown in Figure 4 [82].
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Figure 4. Principle of the sandwich assay. (A) Synthesis of sulfonated graphene (SG-PEDOT-
AuNPs) composites and Poly-(3,4- 444 ethylenedioxythiophene) (PEDOT) in a single step reaction;
(B) Schematic representation of electrochemical reaction where antibody was bound on the surface
of glassy carbon electrode and detection of target by change in current. Adapted with permission
from Ref. [82]. Copyright 2020, Elsevier.

Tyrosinase carbon paste electrode was used to measure phenol concentrations in a
chicken carcass using an indirect method for detecting Salmonella typhimurium in 2.5 h with
a LOD of 5 × 103 CFU/mL. The cells of Salmonella typhimurium were placed in between
immunomagnetic beads (IMBs), and antibodies tagged with alkaline phosphatase (ALP).
ALP was used as a catalyst for converting phenyl phosphate substrate to phenol, and
tyrosinase carbon paste electrode used for the measurement. Furthermore, tyrosinase and
horseradish peroxidase (HRP) electrode, which acted as a bio-enzyme, was used to enhance
the LOD to 4.2 × 102 CFU/mL 5 [83]. In a study by Susana et al., Salmonella typhimurium
could be detected in food samples using magneto immunoseparation with an LOD of
1 CFU/mL as shown in Figure 5 [84].

In contrast to such indirect detection principles, the following research on Salmonella de-
tection centered on a direct sandwich ELISA approach. To precisely capture S. typhimurium,
Tothill and Salam (2009) used the surface of a screen-printed gold (SPG) electrode to adhere
the antibodies. Following the addition of HRP-labeled antibodies, a sandwich structure was
created. Using the enzyme mediator/substrate system as 3,3′,5,5′-tetramethylbenzidine
(TMB)/H2O2, this method was able to diagnose S. typhimurium cells at a concentration of
around 21 CFU/mL [85].

Later, Melo and colleagues (2018) doptimized several steps, including gold electrode
pretreatment, antibody immobilization, enzyme–substrate, and concentrations of mediator
with detection limit of 10 CFU/mL [86]. The amperometric method has been sensitive
enough to detect Salmonella. Amperometric biosensors, on the other hand, rely on time-
consuming labelling to boost the electrochemical response on the surface of electrode,
limiting its use in the field.
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Figure 5. Electrochemical genosensing using immunomagnetic separation (IMS)/double-tagging
PCR/m-GEC technique. (A) Separation of Salmonella contamination using Immunochromatographic
separation in milk samples; (B) Bacterial lysis and separation of the nuclei acid; (C) Double-tagging
of the nucleic acids; (D) Electrochemical genosensing (GEC) of double-tagged amplicon or the nucleic
acid. Adapted with permission from Ref. [84]. Copyright 2009, American Chemical Society.

5.2. Potentiometric Biosensors for Salmonella Detection

Under zero or insignificant current flow conditions, a high impedance voltmeter
is used in potentiometric sensors for measurement of the change in electrical poten-
tial/electromotive force among the reference and working electrodes [87]. The cadmium
ions amount produced during nanoparticle dissolution was used to measure the concen-
tration of S. typhimurium with LOD of 20 CFU/mL in 75 min. The use of nanomaterials
to generate/amplify the signal lengthens the time of analysis, and increases the assay’s
complexity as shown in Figure 6 [88].

A label-free potentiometric detection was achieved in the presence of S. typhi with
0.2 CFU/mL in about 60 s. An important sensing technique of potentiometric sensors is
based upon the surface blocking principle that has recently been presented for Salmonella
detection, claiming to reach amplification capacities comparable to label-based techniques.
The ion-flux internal marker was blocked via the detecting cell membrane attachment of
Salmonella, resulting in a potentiometric response. Salmonella detection using these ap-
proaches helped in sensitive diagnosis with several CFU/mL of LODs within 1 h using
transducers made up of paper-based strip electrode with a polymer inclusion membrane
on an ion-selective electrode [89]. Exceptionally high sensitivity was obtained with the po-
tentiometric biosensor. However, they have received less attention for Salmonella detection
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owing to the time-consuming tuning of experimental conditions and stabilization of the
reference electrode.
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Figure 6. Fabrication of aptasensor on glassy carbon electrode (GCE). (a) Carbon nanotube deposition
of on the surface of GCE; (b) Deposition of single-walled carbon nanotubes (SWCNTs) on GCE
observed by (ESEM) environmental scanning electron microscope (representing a view from surface
and lateral side). The surface view explains about the layer completely covering whole surface and the
lateral view displays homogeneous height of the layer; (c) Potentiometric analysis; (d) Representation
of an aptasensor for potentiometric analysis with specific aptamers functionalized with carboxylated
SWCNTs and the correlation between the target bacteria and aptamer (Gustavo et al., 2013). Adapted
with permission from Ref. [88]. Copyright 2013, Elsevier.

5.3. Conductometric Biosensors for Salmonella Detection

Conductometry is a technique in which either no electrochemical reaction occurs
at all on the electrodes or secondary reactions can be ignored. As a result, the conduc-
tivity of the electrolytic solution in the boundary layer is the most essential attribute in
the conductometric approach, which varies according to a wide range of biological re-
sponses [90]. In comparison to other types of transducers, conductometric biosensors have
several advantages such as the absence of the need for a reference electrode; operation at
alternating voltage having a low amplitude, which helps prevent Faraday processes on
electrodes; insensitivity to light, easy miniaturization, and integration using a low-cost
thin-film standard technology [91]. First of all, they can be manufactured using low-cost
thin-film standard technology. This, combined with the use of an improved approach for
immobilizing biological material, leads to a significant reduction in both the primary cost
of devices and the total cost of analyses. It is simple to use a differential measurement
mode with inbuilt micro-biosensors, which compensates for external impacts and improves
measurement accuracy significantly. The findings show that conductometric biosensors
have a lot of promise [92]. Zarini et al. developed an electrochemical sandwich immunoas-
say and a reader was designed for signal measurement. The movement of bacteria was
performed through electrical conductivity of the sensor with a detection limit of approx-
imately 7.9 × 101 CFU/mL within a 10 min process [93]. As this is still a relatively new
trend in the field of biosensors, the development of commercial devices for point-of-care
applications has a bright future.
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6. New-Generation Sensing Platforms for Salmonella

Biosensors permitted sensitive and rapid detection of Salmonella in food; however,
its on-site detection still required improvisation. The high cost, need for consistency, and
the reproducibility of instrumentation are some of the major challenges. In the last few
years, there has been a surge in the designing of multipurpose devices. Nanomaterials
and advanced transdisciplinary research technologies have provided a new and significant
direction for industrial applications. There has been an increase in the creation of on-field-
suitable, customer friendly, software-based sensors for the sensitive and rapid detection
of Salmonella.

6.1. Microfluidics Based Biosensing Platforms

The integration of various laboratory tasks into a small system is extremely desirable
for on-site utilization of biosensing platforms. Microfluidics-based sensors that combine
micro-channels for fluid conveyance with essential immunoassay components are gain-
ing popularity [94–96]. These devices have an ability to regulate the flow of fluids in
micro-channels using pressure and electro-kinetics, as well as execute a full analysis in
a single chip, including sampling, separation, mixing, and detection [97]. It has several
unique properties that benefit from the advantages of microfluidics, such as automation
and downsizing capabilities, more efficient reagent usage, decreased time for processing,
high-throughput analysis, and great mobility [98]. Electrochemical and optical detection
are frequently combined with microfluidic devices for the creation of microfluidic-based
sensing apparatuses for the detection of Salmonella [99]. Jasim et al. (2019) showed a
microfluidic-based impedance biosensor that can detect multiple Salmonella serogroups
in poultry products quickly and simultaneously. Three microchannels depicted in the
gadget, each with a region to focus for sample concentrator, and a sensor space to detect
bacterial cells. The main antigen inlet was used to inject poultry samples into the biosensor.
The bacteria were then focused on the microchannel centerline and driven towards the
sensor zone using positive dielectrophoretic force. Finally, an impedance analyzer was
utilized for the detection of Salmonella in 40 min with a sensitivity of 7 CFU/mL, as shown
in Figure 7 [100].

6.2. Internet of Things (IOT)-Supported Sensing of Salmonella

An IoT system is made up of sensors, and devices that communicate with the cloud
via device-to-cloud communication model. Once the data reach the cloud, software an-
alyze them and send an alarm or automatically alter the devices/sensors without any
intervention from the user [101–103]. Food sensors incorporated in intelligent packaging
provide retailers and customers with a quality indication [104]. The use of labels, such as a
time-temperature indicator (TTI) that reflect a product’s accumulated time-temperature
history, is a rudimentary kind of smart packaging. Different chemical substances, glucose,
ethanol, or gas molecules, which commonly change the color to indicate the response, are
utilized to test food quality using more advanced indicator sensors. A commercial tag or
a chemical barcode, for example, may detect volatile amines in fish [105]. Sensors that
measure contamination, bacterial content, color or texture deterioration, bruising, and other
functions are available. Simple sensors, such as FoodScan, C2Sense, and the Salmonella
Sensing System, are currently being prepared.
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6.3. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Electrochemical
Sensors

CRISPR is a genome editing tool used for the treatment of various diseases. However,
with advancement in research, CRISPR has been utilized for the detection of pathogens. A
specific gene of interest is detected using a specific guide and fluorescent or bioluminescent
probe, as shown in Figure 8. Methods for the detection of Salmonella using CRISPR/Cas-
based approaches have been developed recently, but these techniques are in the very early
stage and require time for further advances. Cas9, Cas12 and Cas 13 proteins are mainly
used in the detection of pathogens. The CRISPR/Cas9 system is based on the nucleolytic
activity of the endonuclease protein, Cas9, which is guided to the desired site in the genome
by a specificity determinant RNA, known as the guide RNA (gRNA). In addition, another
sequence—known as the protospacer-adjacent motif (PAM), present adjacent to the target
site—is recognized by the CRISPR/Cas9 system and is crucial for the functionality of Cas9.
The Cas9 protein binds to the target location in the presence of gRNA with high precision
and performs a double strand break followed by the introduction of indel mutations
at the cleavage site by using the non-homologous end joining repair mechanism of the
cell [106]. Cas12 targets DNA and trans-cleaves single-stranded DNA probes [107]; Cas13
targets the RNA sequence guided by a crRNA. Additionally, Cas13 boasts unique collateral
cleavage activity; collateral cleavage of a fluorescent reporter detects the presence of the
target sequence in sample RNA [108]. For pathogen identification, several methods have
been used, the majority of which are PCR-based; nevertheless, these require expensive
chemicals and equipment, as well as high levels of working expertise. Clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems
have been employed in genome editing because of their capacity to accurately detect
and cleave particular genome sequences [109]. Furthermore, after recognizing the target,
CRISPR/Cas systems, including as Cas12a, Cas13, and Cas14 orthologues, display non-
specific enzymatic activities that can be used for the detection of nucleic acid, such as
degradation of a tagged nucleic acid to create a fluorescence signal. Multiplexing is feasible
with CRISPR/Cas systems, leading to a diagnostic test for the identification of more than
one target [110]. Developing devices that combine lateral flow systems with CRISPR/Cas
might lead to low-cost, accurate, and extremely sensitive diagnostics that can be deployed
in the field. From agriculture to human health, these sensors have a wide range of uses.
Electrochemical CRISPR (E-CRISPR)-integrated point-of-care sensors (POCs) are the need
of the hour due to their diverse benefits and ease of translation into smart devices, allowing
physicians to analyze the data in less time and provide better patient care. [111,112]. Song
et al. transcribed the target DNA into RNA T7 transcriptase and stimulated the RNase
activity of the Cas13a protein. The active Cas13a protein cleaved the self-folding quenched
fluorescence probe to generate the fluorescent signal [113]. The integration of CRISPR/Cas
technology in electrochemical sensors would help in the detection of pathogens at a genomic
level. It would facilitate the detection of pathogens at very low concentrations, leading
to early treatment. The technology for the detection of Salmonella using CRISPR is at a
very early stage of development, and requires a proper laboratory set up with the required
equipment for commercialization.
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7. Challenges in Development of Electrochemical Sensors against Salmonella

Biosensors have gained a lot of attention for Salmonella detection as they offer huge
potential in the field of food analysis. However, they are not yet ready to be utilized
as a regular analytical tool in food corporations because the technology is in its infancy.
The major obstacles faced in the development of electrochemical sensors are as follows:
(1) achieving a low limit of detection (LOD); (2) nullifying non-specific adsorption of inter-
fering species; (3) on-site detection of samples, or conversion of a sensor into a point-of-care
device; (4) preserving the sensor’s stability and repeatability in complicated actual matri-
ces [114]. Furthermore, when the analyte is a biological sample, i.e., bacteria, differentiation
between living and dead cells is a major challenge. Some of the obstacles that need to be
overcome in future are mentioned below.

The detection of Hg2+ was possible up-to picomolar level using silver nanoparticles
modified with a glassy carbon electrode [115]. Nonetheless, these altered surfaces provide
a challenge, since they are not always as repeatable as assumed. Because controlling the
synthesis and immobilization of nanoparticles with varied populations of size and shape
is challenging, conformation and the topology of these nanomaterials may change across
each sensor. Under different environmental circumstances, nanoparticles have a tendency
to change their behavior. The repeatability of the sensor that develops as a result of the
increasing complexity of the different surfaces are a trade-off. Because it is impossible to
evaluate every sensor generated in mass-production facilities, sensor-to-sensor repeatability
is critical during the manufacturing process. Instead, when the sensors are manufactured,
statistical sampling of a portion of the sensors is carried out, and the testing and calibration
findings should be relevant to the entire batch [114]. Hydrogels, rubber-like composites,
new polymers and organo-gels are often used to create tiny sensors with high stability.
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When these very stretchy materials are combined with nanomaterials that have exceptional
electrical conductivity, the sensors demonstrate great analytical performance [116,117].

Electrochemical sensors have shown considerable promise as diagnostic tools. The
issues stated above, however, are applicable not just to clinical applications, but also to
other industries such as food safety, environmental monitoring, forensic investigation,
defense, military applications, agriculture, and the electronics industry. Fortunately, the
breakthrough, made possible by the use of nanomaterials, is a huge step forward that
affects all of the sectors described above [114].

8. Conclusions

Although of the applications of biosensing techniques for the detection of Salmonella
in the food industry are in their early stages of development, especially when compared to
conventional techniques, they are promising forms of technology for the creation of biosens-
ing platforms for on-site use. Biosensing methods, in combination with nanomaterials and
innovative bioreceptors, will continue to be appealing in the future with many intriguing
possibilities. To manufacture biosensors with more integrated, practical, portable quali-
ties, and automated use, increased attention must be paid for the implementation of new
biosensing approaches with automated and portable instruments, including smartphones
and microfluidic devices. Furthermore, as information technology advances, sensors com-
bined with big data analytics and artificial intelligence (AI) are anticipated to revolutionize
the technology, aiding effective monitoring strategies and predicting contaminations in the
food sector.
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