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Abstract: Synthetic dyes are widely used in textile, paper, food, cosmetic, and pharmaceutical
industries. During industrial processes, some of these dyes are released into the wastewater and
their successive release into rivers and lakes produces serious environmental problems. TiO2 is one
of the most widely studied and used photocatalysts for environmental remediation. However, it is
mainly active under UV-light irradiation due to its band gap of 3.2 eV, while it shows low efficiency
under the visible light spectrum. Regarding the exploration of TiO2 activation in the visible light
region of the total solar spectrum, the incorporation of carbon nanomaterials, such as graphene,
in order to form carbon-TiO2 composites is a promising area. Graphene, in fact, has a large surface
area which makes it a good adsorbent for organic pollutants removal through the combination
of electrostatic attraction and π-π interaction. Furthermore, it has a high electron mobility and
therefore it reduces the electron-hole pair recombination, improving the photocatalytic activity of the
semiconductor. In recent years, there was an increasing interest in the preparation of graphene-based
TiO2 photocatalysts. The present short review describes the recent advances in TiO2 photocatalyst
coupling with graphene materials with the aim of extending the light absorption of TiO2 from UV
wavelengths into the visible region, focusing on recent progress in the design and applications in the
photocatalytic degradation of synthetic dyes.
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1. Introduction

One of the biggest problems that the world is facing today is environmental pollution,
which increases every year and causes serious and irreparable damage to the Earth [1].
Therefore, environmental protection and a new approach in environmental remediation are important
factors for a real improvement in quality of life and for sustainable development.

In recent years, a large number of research activities have been dedicated to environmental
protection and remediation as a consequence of special attention from social, political, and legislative
authorities, which has led to the delivery of very stringent regulations for the environment [2].

Due to industrialization and the lack of effective treatments of the effluents at the source, a severe
deterioration of freshwater resources caused by the release of a wide range of hazardous substances into
water bodies has occurred. Of these substances, synthetic dyes represent a large group and therefore
deserve particular attention, due to the high quantity—more than 800,000 tons—that is produced
annually worldwide [3]. About one third of these is released into receiving waters every year through
industrial wastewater discharges [4], which may have a severe influence on both the environment
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and human health, affecting photosynthetic activity as well as dissolved oxygen concentration, and
therefore causing serious ecologic problems [5].

Dyes present high toxicity, are carcinogenic and mutagenic in nature, and can also result in
bioaccumulation in the food chain [6]. Because their origin is synthetic, these compounds are very
stable in the presence of light and biodegradation [7]. Furthermore, very low concentrations of these
are easily visible in contaminated waters; therefore, the total effect of the presence of dyes in the water
ecosystem is both environmentally and aesthetically unacceptable.

Taking account of these considerations, there is an urgent need to develop new methods for the
treatment of industrial wastewater containing synthetic dyes.

In recent years, photocatalysis studies have focused on the use of semiconductor materials
as photocatalysts for environmental remediation. Semiconductor photocatalysis is a versatile,
low-cost, and environmentally friendly treatment technology for many pollutants [8,9], and the
use of heterogeneous photocatalysis is an emerging application in water decontamination.

Within a great number of oxide semiconductors, TiO2 is the most widely used as
promising photocatalyst, demonstrating a very important role in environmental remediation [10,11],
solar energy [12], and other fields [13,14] due to its nontoxicity, low cost, corrosion resistance, abundant
resources, and high photocatalytic efficiency [15–17].

A high number of studies concerning TiO2 regard wastewater treatments [18–21] and, in many
cases, total mineralization of pollutants without any waste disposal problem have been published [22].
On the other hand, the practical applications of this technique are limited to a narrow excitation
wavelength because of a large band gap energy (3.2 eV), high recombination rate of the photo-produced
electron–hole pair, and poor adsorption capacity [23–25]. In recent decades, various attempts have
been applied to improve the catalytic efficiency of TiO2 [18,26,27].

Due to its wide band-gap, TiO2 is active only under UV-light irradiation; considering that the
percentage of UV-light is less than 5% of the total incident solar spectrum on the Earth, in recent years
research has focused on extending the light absorption of TiO2 under visible light. The research goal
of TiO2 photocatalysis, as for other semiconductors, is represented by the combination of TiO2 with
other nanomaterials to achieve both visible light activation and adsorption capacity improvement,
with the simultaneous limitation of the electron-hole recombination rate. For this reason, to improve
the photocatalytic performances in the use of TiO2, different approaches have been investigated,
such as the use of co-catalysts, and loading with noble metal particles, dye, metallic or non-metallic
doping [28–36]. Recently, enhancements of the photocatalytic activity of TiO2 by visible light have
been also demonstrated by the modification of TiO2 with carbonaceous substances such as fullerenes,
carbon nanotubes, and graphene to form carbon-TiO2 composites [37–40].

In particular, graphene nanomaterials in combination with TiO2 highlight new prospectives in
the field of photocatalysis for their large specific surface area, flexible structure, extraordinary mobility
of charge carriers at room temperature, high thermal and electrical conductivities, and high chemical
stability [41–48], emerging as one of the most promising materials for enhancing the photocatalytic
performance in the new generation of photocatalysts [49–56].

In this short review, the recent research advances in graphene-TiO2 employed in photocatalysis
are presented with the aim of extending the light absorption of TiO2 from UV wavelengths into the
visible region, as well as increasing the photocatalytic activity of the compound, focusing on the
applications of synthetic dye degradation.

2. Graphene Materials: Concepts and Properties

Graphene (G) is the term used to indicate carbon atoms tightly packed in a plane monolayer
into a two-dimensional (2D) “honeycomb lattice” that represents the building block for all graphitic
materials such as fullerenes, nanotubes, and graphite [48,57].

The isolation of graphene from graphite in 2003, by Prof. Andre Geim and Prof. Kostya Novoselov,
which was the first paper published in Science in 2004 [42] and was awarded the Nobel Prize in Physics



Catalysts 2017, 7, 305 3 of 34

in 2010, has fascinated and revolutionized the scientific community [42,58,59]. This is due to graphene’s
notable properties and to the high range of applications that these properties offer to technologies such
as energy storage and photocatalysis [60–67].

The IUPAC commission proposed the term “graphene” to substitute the older term
“graphite layers”, which was inappropriate in the research of two-dimensional (2D) monolayers
of carbon atoms because the three-dimensional (3D) stacking structure is identified as “graphite” [59].

After the first report on graphene, which was obtained manually by mechanical cleavage with a
Scotch tape sample of graphite, various techniques developed to produce thin graphitic films have
been reported [55,68,69]. These can be divided into two main groups: bottom-up and top-down
methods [55,69], as schematized in Figure 1.
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Figure 1. Schematic graphene synthesis: top-down and bottom-up methods.

In the bottom-up growth of graphene sheets (Table 1), the synthesis of graphene [70] can be
obtained via epitaxial growth [71–73], chemical vapor deposition (CVD) [74–82], electrochemical
reduction of CO and CO2 [83,84], arc discharge [85,86], unzipping carbon nanotubes [70,87], organic
synthesis [88], and pyrolysis [89–91].

The top-down approach (Table 2) offers considerable economic advantages over bottom-up
methods [92,93], producing high quality graphene. In this case, the graphene is derived from the
exfoliation of graphite, from mechanical [42,94–97], electrochemical expansion [98–100], thermal [101],
electrostatic deposition [102], and chemical synthesis [103–105]. Some other techniques are unzipping
nanotube [106–108] and microwave synthesis [109,110], or by chemical and/or thermal graphene oxide
(GO) reduction [111]. This last method allows the production of low-cost and large-scale graphene,
though with oxygen-containing groups and defects [112,113]. Much interest is directed at the study
of proceedings to obtain graphene in the form of highly reduced graphene oxide (rGO) [114,115] or
chemically modified graphene [116,117] from the oxidation and exfoliation of graphite and successive
chemical reduction.
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Table 1. Graphene synthesis with the bottom-up approach.

Results Highlight Refs.

Epitaxial growth

- General Experimental and theoretical aspect [71]

- Flower defects and effects of
G grown on SiC substrate

Enhancements in the electronic properties of
G-based devices

[72]

- G nanoribbons (GNR) on
surface facets of SiC(0001)

Influence of the substrate step height on the
energy barrier

[73]

Chemical vapor
deposition (CVD)

- Large-size, single-crystal,
twisted bilayer G

Raman spectra measured as a function of the
rotation angle

[74]

- G Review: challenges and future perspective [75]

- G on Ni and Cu substrates Representative applications [76]

- 200 mm G on
Ge(001)/Si(001) wafers

Absence of metallic contaminations [77]

- Multilayer G films
Educational experiments: economical, safe, and simple
technique in 30–45 min

[78]

- Large-scale G films on thin
Ni layers

Two methods to shape and transfer films to
specific substrates

[79]

- Monolayer G films on
SiC(0001)

Ex-situ graphitization in argon atmosphere [80]

- Centimeter-scale single- to
few-layer G on Ni foils

Efficient roll-to-roll process [81]

- N-doped graphene
N-type behavior useful to modulate
G electrical properties

[82]

Electrochemical
reduction of CO

and CO2

- Several types of
nanocarbons of
controlled shape

Direct reaction of CO2 with Mg metal [83]

- G flakes
Room-temperature synthesis method on copper foil
from different carbon sources using external charges

[84]

Arc discharge
- Few-layered G

The reactivity of buffer gases (helium, oxygen-helium,
and hydrogen-helium) is the key factor

[85]

- Few-layered G
Different mechanisms in the presence and absence of
TiO2 and ZnO catalysts

[86]

Unzipping
carbon-nanotubes

(CNT)

- Chemical-free G
Radial and shear loading unzipping modes with
cryomill method at 150 K

[70]

- G nanoribbons
Linear longitudinal opening of the Multi Wall
CNT (MWCNT)

[87]

Organic synthesis
- Two-dimensional

G nanoribbons
Highly ordered monolayers (2D crystal) of larger
G ribbons

[88]

Pyrolysis

- General description Pyrolysis of organic matter [89]

- Metal-free catalyst of
G sheets

Spray pyrolysis of iron carbonyl and pyridine [90]

- G nanoporous with high
specific surface area

Spray pyrolysis at different temperatures, graphene
oxide-based precursor, nitrogen carrier gas

[91]
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Table 2. Graphene synthesis with the top-down approach.

Results Highlight Refs.

Mechanical

- Monocrystalline
graphitic films

Exfoliation of small mesas of highly oriented
pyrolytic graphite

[42]

- G Review: general description [94]

- G sheets
Dispersion and exfoliation of graphite in
N-methyl-pyrrolidone

[95]

- Stably single-layer G sheets
in organic solvents

Exfoliation–reintercalation–expansion of graphite [96]

- G nanoplatelet Thin films on a low-density polyethylene substrate [97]

Electrochemical
expansion

- Functional G sheets
Hyperexpanded graphite by electrolysis in a Li+
containing electrolyte and in situ electrochemical
diazonium functionalization

[98]

- G flakes
Cathodic graphite expansion in dimethylformamide
(DMF) and functionalization by reducing aryl
diazonium salts in organic solution

[99]

- G
Exfoliation temperature increase from 25 to 95 ◦C
reuslt in decrease of defects and increase of thermal
stability (with H2O2 addition)

[100]

Chemical synthesis

- G Review: general description [103]

- Carbon nanoscrolls
Low-temperature, catalyst-free graphite intercalation
with alkali metals

[104]

- G and chemically
modified G

From colloidal suspensions [105]

Unzipping nanotube

- Few-layer nanoribbons
Mechanical sonication and gas-phase oxidation in
organic solvent of multiwalled carbon nanotubes

[106]

- G nanoribbons
Lengthwise cutting of MWCNTs by a solution-based
oxidative process

[107]

- G nanoribbons
Plasma etching of CNT partly embedded in a
polymer film

[108]

Microwave synthesis
- Flower-like G on hexagonal

boron nitride crystals (h-BN)
Microwave G growth on polymethyl methacrylate
(PMMA)-coated h-BN flakes

[109]
[110]

Chemical and/or
thermal graphene oxide

(GO) reduction

- Polylactic acid
(PLA)/rGO nanocomposites

Glucose and polhyvinilpyrrolidone (PVP) reduction
of GO mixed with PLA

[111]

Reduction
- rGO
- rGO

Two different reducing mixed reagents: HI/NH and
NH/HI. Review: 50 types of reducing agents

[114]
[115]

Other
- G
- G networks

Review: different sizes and chemical compositions.
Controlled segregation of G chemically modified on
liquid interfaces

[116]
[117]

The strong oxidation of graphite produces bulk solid graphite oxide that can be exfoliated in water
or other suitable organic solvents to form GO [118–120]; several recent reviews report the synthesis
of graphite oxide [121–123]. Graphite oxide can be prepared with Brodie [124], Staudenmaier [125],
and Hummer’s [126] methods. The synthetic technique and the extent of the reaction influence the
degree of graphite oxidation; the most oxidized graphite oxide is produced with the Staudenmaier
method, but this reaction may take several days. However, because both Staudenmaier and Brodie
methods generate highly toxic ClO2 gas that can decompose in air violently; thus, the most widely
used method to prepare graphite oxide is Hummer’s method.

With Hummer’s method, the GO is prepared by exfoliating graphite oxide obtained from
the oxidation of graphite powder with strong chemical oxidants, such as HNO3, KMnO4,
and H2SO4 [112,113,126]. GO can be successively reduced to graphene by the partial restoration
of the sp2- hybridization by thermal [127], chemical [128], electrochemical [129], photothermal [130],
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photocatalytic [69,131], sonochemical [132,133], and microwave reduction methods [134]. The high
number of oxygen-containing groups of the obtained GO product permits the interaction with the
cations, providing important reactive molecules for the nucleation and growth of nanoparticles and
therefore the formation of various graphene-based composites.

3. The Photocatalytic Process: Fundamentals of Graphene-TiO2 Photocatalysts

Photocatalysis is based on the activation of a semiconductor (SC) by the sun or artificial light.
When an SC material is irradiated with photons whose energy is higher or equal to its band gap energy,
a promotion of an electron from the valence band (VB) to the conduction band (CB) occurs with the
concomitant generation of a hole in the valence band VB [135].

In a water system, oxygen adsorbed on the surface of the semiconductor acts as an electron
acceptor, while the adsorbed water molecules and hydroxyl anions act as electron donors, leading to
the formation of a very powerful oxidizing •OH radical. The electrons react with oxygen molecules to
form the superoxide anion, O2

•–. In the presence of a contaminant organic molecule (M), adsorbed on
the catalyst surface, the •OH radical is the primary oxidant that reacts to produce adducts, followed
by the fragmentation of the molecular structure into several intermediates species until the total
mineralization of contaminant is completed with the formation of CO2 and H2O [136–138].

The successful of photocatalytic process is therefore strictly dependent on the competition between
the reaction of the electron with water on the SC surface and the electron-hole recombination process
that releases heat or radiation.

The overall process can be described by the following reactions:

• electron − hole pair generation :

SC + hv → SC
(

e−CB + h+VB

)

• hydroxil radicals f ormation :

SC
(

h+VB

)

+ H2Oads → SC + •OHads + H+
ads

• superoxyde f ormation f rom electrons in CB and oxygen :

SC(e−CB) + O2 ads → SC + O−

2ads

• adsorption o f M on catalyst :

SC
(

h+VB

)

+ Mads → SC + M+
ads

• the hydroxyl radical is the primary oxidant :

OHads + Mads → intermediate products → CO2 + H2O

As an example, Khan et al. [23] defined the different intermediate degradation products of Methyl
Orange by using TiO2 photocatalysts that are resumed in Figure 2. The reported compounds are
derived from the reaction of •OH radicals with the final mineralization in CO2 and water.

It is important to consider that, because the photocatalytic process is strictly dependent on the
kinetics of charge carriers and redox reactions, the knowledge of the electronic processes that occur
at the level of the SC surface are of great importance. In the SC, the oxidation fromphotogenerated
holes and the reduction fromphotogenerated electrons may occur simultaneously and, to keep the
photocatalyst electrically neutral, should occur at the same rate.

The photocatalytic activity is greatly limited by electron–hole recombination, and therefore several
methods are used to increase the efficiency of charge carrier separation and therefore to improve the
photocatalytic performance of the SC photocatalyst [139–141]. In this context, the combination of
graphene with the SC photocatalyst represents an innovative strategy [55,69,142].
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Figure 2. Proposed photodegradation mechanism of Methyl Orange [23].

Titanium dioxide (TiO2) is generally considered the best SC material that can be used as a
photocatalyst [18,139,143], showing almost all of the required properties for an efficient photocatalytic
process, except for activity under visible light irradiation.

From these considerations, TiO2/graphene nanocomposites (GTiO2Ns) are widely used for
photocatalytic applications, exploiting their potential in environmental applications.

The effective role of G in a photocatalytic event on GTiO2Ns has not been completely investigated,
or is not completely understood. In order to explain the possible mechanism, the light source (UV or
VIS light) and the presence/absence of dye molecules, or rather the presence of a compound able to
absorb visible light, are fundamental.

When the target molecule does not adsorb light and is efficiently adsorbed on the
photocatalyst surface:

(1) UV light excitation of GTiO2Ns photogenerates the electron–hole pairs and the electrons are then
injected into graphene due to its more positive Fermi level [144]. This process is favored by the
position of the work function of graphene that is −4.42 eV, with respect the conduction band
of TiO2 that is located at −4.20 eV [145]; from this consideration, the electron in the CB of TiO2

is injected to G. Graphene scavengesphotogenerated electrons by dissolved oxygen; facilitates
the hole-electron separation, reducing the recombination of e-(CB) and the holes (VB); and, due
to its high carrier mobility, accelerates the electron transport, thus enhancing the photocatalytic
performance [142,146].

(2) When the operational mechanism takes place via visible light, the electron transfer of
thephotogenerated electron is promoted from the G photoexcited state and then delocalized
to the TiO2 surface. M.T Silva et al. indicated, by rGO photoluminescence study, that the
photogenerated electrons under Vis or NIR laser can be transferred to the surface of TiO2 with a
consequent quenching of photoluminescence; also in this case, charge recombination is inhibited
with a consequent increasing of photocatalytic activity under visible light [147]. It is important to
know that the presence of G in GTiO2Ns photocatalyst produces a red shift in the absorption,
reducing its band gap and thus extending the photoresponse to a longer wavelength [148]. The
explanation of visible light activation in the GTiO2Ns composites is not clear, but it is possible to
attribute this phenomena to the sensitization of TiO2 due to the presence of graphene [147,149,150].
In this case, in the visible light excitation of GTiO2Ns, graphene absorbs the light, and the
photoexcited electrons in high energy G states are delocalized into the CB of the TiO2 surface with
the dissipation of excess energy due to electron vibrational interaction [151]; successively electrons
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react with oxygen, resulting in the formation of superoxide radicals. In Figure 3, the activation
mechanisms of GTiO2Ns under UV and visible light are reported.
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Figure 3. Mechanisms of UV and visible light activation of TiO2 with G.

When a dye (D) as a target molecule is efficiently adsorbed onto the photocatalyst surface, the
UV mechanism is the same as that reported before (1) while, under visible light, different activation
pathways can be found. In this case, the dye acts both as a sensitizer for visible-activation and as
a pollutant during the photocatalytic process, promoting the electron transfer from the excited dye
molecules state to the TiO2 CB while G acts as an electron scavenger, as in the UV mechanism [147].

The other possible pathway under visible light involves G which acts as visible light sensitizer
promoting the electron transfer to the TiO2 CB (as in 2) [152–154] (Figure 4). This process is less
probable due to the competition between G and D as light sensitizers, but in any case is possible.
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Figure 4. Mechanisms of UV and visible light activation of TiO2 with G in the presence of dye (D).

4. Preparation Methods of GTiO2Ns

According to the facts that graphene doping of TiO2 generally contributes to the bathochromic
shift of the absorption band, hinders the recombination of h+/e− by transferring the photoexcited
electron to the graphene surface, which also enhances the surface area of TiO2 for better adsorptive
properties [155], the investigation of GTiO2Ns photoactivity under visible light seems to be crucial.
The improvement of performance due to the presence of G in GTiO2Ns photocatalyst is primarily
attributed to the extension of the light absorption range, the increase of absorptivity, and the efficient
charge separation and transportation. With GTiO2Ns photocatalyst, the rate of h+/e− recombination
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after light excitation decreases [156], while the charge transfer rate of electrons increases in addition to
the surface-adsorption of chemical species thanks to π-π interactions [157].

However, the properties GTiO2Ns and different operational parameters, such as the characteristics
of substrates, UV-vis or Vis light irradiation, etc., can affect the photocatalytic efficiency [157].

GTiO2Ns can be generally categorized into three kinds: TiO2-mounted activated graphene [92],
graphene-doped TiO2, and graphene-coated TiO2 [158]. Each of these types exhibits good
photocatalytic activity. In order to improve the efficiency, the surface properties of graphene could be
adjusted via chemical modification, which facilitates its use in composite materials [156,159,160].

GTiO2Ns can be generally realized in two different ways by “ex situ hybridization” or “in situ
crystallization”. In Figure 5, a schematic representation of ex situ hybridization and in situ
crystallization in the synthesis of GTiO2NPs is reported.
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Figure 5. Schematic representation of ex situ hybridization and in situ crystallization in the synthesis
of GTiO2Ns.

Ex situ hybridization (Table 3) involves the mixing of graphene dispersions with pre-synthesized
TiO2 nanoparticles (TiO2NPs) [147]. To enhance their solubility and improve the quality of GTiO2Ns
composites, before mixing, TiO2NPs and/or graphene sheets can be functionalized by covalent C–C
coupling [59,161] or non-covalent π-π stacking reactions [162]. For example, Morawski et al. [163]
prepared a visible light-active TiO2-reduced GO photocatalyst by mechanically mixing TiO2

with an appropriate mass ratio of reduced GO in 1-butyl alcohol and successive ultrasonication.
Yong Liu et al. [164] prepared a graphene aqueous dispersion by sonicating a mixture of graphene raw
materials with polyvinylpyrrolidone (PVP) as surfactant and a suspension of TiO2 by dispersing TiO2

powder in deionized water with ultrasonication. In this preparation, graphene-TiO2 composite material
was obtained by simple mechanical mixing and sonication using anhydrous ethanol to improve the
wettability of the dispersion, while spray-coating was carried out both on polycarbonate and on
rubber substrates to facilitate the testing of photocatalytic performance. Ramesh Raliya et al. [165] also
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prepared nanomaterial/composite solutions by mixing GO at different concentration ratios to TiO2

and tested their effects on photocatalytic performance.
However, with ex situ hybridization, in some cases it is possible to obtain a low-density and

non-uniform coverage of nanostructures by G sheets [113,166–169].
The most common strategy to synthetize GTiO2Ns nanocomposites is represented by in situ

crystallization (Table 3). In this case, GO or rGO are usually used as starting materials for the
presence of oxygen-containing functional groups on their surface. In fact, they act as a nucleation
point for grooving and anchoring semiconductor nanocrystals. The successive reduction of GO
generates GTiO2Ns with homogeneous distribution on 2D nanosheets, thereby promoting the
direct interaction between semiconductor nanocrystals and G. For this reason, various methods,
such as mixing, hydrothermal/solvothermal methods, sol-gel, electrochemical deposition, combustion,
microwave, photo-assisted reduction, and self-assemble approaches, can be applied for the synthesis
of GTiO2Ns [66,170,171].

In the mixing method (M), GO and semiconductors are mixed with stirring and ultrasonication in
order to obtain the exfoliation of GO and, successively, GO/TiO2 product with uniform distribution;
in a second step the reduction of GO is performed [51,172–175].

A strong mixing and the best chemical interaction between GO and TiO2 can be obtained by
applying the sol-gel method (SG). As an example, Zhang et al. [176] used a sol-gel method to prepare
a series of TiO2 and graphene sheet composites by using tetrabutyl titanate and graphite oxide
and the obtained precursors were calcinated at 450 ◦C for 2 h under air or nitrogen atmospheres.
Zabihi et al. [177] prepared photocatalytic composite thin films of GTiO2Ns with a low-temperature
synthetic process by using G dispersion and titanium isopropoxide bis (acetylacetonate) solution by
using a sol-gel chemical method. Spin- and spray-coating was successively used for films deposition;
the use of ultrasonic vibration demonstrated a positive effect from both sol-gel and deposition processes
that produced rutile and anatase nanoparticles inclused in a matrix of few-layered graphene thin film.

Gopalakrishnan et al. [178] prepared TiO2-reduced GO nanocomposites in situ from the
incorporation of TiO2 sol into GO sheets and the successive solvothermal method without the addiction
of any chemicals. Shao et al. [179] reported a novel so-called gel-sol process for the synthesis of TiO2

nanorods combining rGO composites by utilizing the triethanolamine as a shape controller and under
specific conditions. The as-fabricated hybrid composites presented distinct advantages over the
traditional methods in terms of the well-confined TiO2 morphology and the formation of Ti-C bonds
between TiO2 nanoroads and rGO simultaneously. Long et al. [180] used the hydrothermal method to
prepare efficient visible light active GTiO2Ns by using a GO suspension and TiO2 sol with undergrown
TiO2 nanoparticles at 413 K. The study of obtained materials demonstrated high chemical interaction
at the interface of GO sheets and the polymeric Ti-O-Ti structure that facilitated the retaining of more
alkoxyl groups; the induced crystal disorders and oxygen vacancies contributed positively to the
performance of the obtained photocatalyst.

In the hydrothermal/solvothermal methods (HD/SD), semiconductor nanoparticles or their precursors
are loaded on GO sheets that are successively reduced to rGO involving reactions under controlled
temperature and or pressure. For example, Hao Zhang et al. [181] obtained a GTiO2Ns (P25)
nanocomposite photocatalyst with a high adsorptivity of dyes and a greater light absorption range by
using a one-step hydrothermal reaction obtaining both GO reduction and P25 cover. Hu et al. [182]
successfully synthesized different structures of TiO2-graphene composites through the hydrothermal
reaction by using GO and different titanium sources in hydrothermal conditions. The results showed
the larger interfacial contact between TiO2 and G, in addition to the greater surface area of the
poriferous composite. Hamandi et al. [183] studied the influence of the photocatalytic performance
of TiO2 nanotubes (NT) resulting from the addition of GO. TiO2 nanotubes were prepared using
alkaline hydrothermal treatment of TiO2 P25 followed by calcination at 400 ◦C under air, while GO-NT
composites were obtained by the wet impregnation of the as-prepared TiO2 nanotubes onto graphene
oxide before reduction under H2 at 200 ◦C. Sijia et al. [184] synthesized a novel composite photocatalyst,
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reduced graphene oxide (rGO)-modified superlong TiO2 nanotubes with a length of about 500 nm,
by an improved hydrothermal process and a heating reflux method.

A hybrid nanocomposite containing nanocrystalline TiO2 and graphene-related materials (GO and
rGO) was prepared from Kusiak et al. [185] by using the hydrothermal method under elevated
pressure. In this preparation, the presence of graphitic carbon depends on temperature, the
type of modification method, and the preparation conditions, obtaining multilayer GO flakes in
comparison to rGO flakes. This multilayer character produced the most intensive time resolved
microwave conductivity signals under both UV and visible illumination for materials modified with
GO, indicating that more electrons are induced in the conduction band of hybrid nanocomposites.
Li et al. [186] synthesized reduced graphene oxide-TiO2 (rGO-TiO2) composites with a sandwich-like
structure by using a simple solvothermal method. Hemraj et al. [187] synthesized nanocrystalline
anatase TiO2-GO nanocomposites by two steps with the initial preparation of anatase TiO2NPs
by a simple sol-gel method and the successive decoration of GO on its surface by using a facile
solvothermal method. Ju Hu et al. [188] synthesized TiO2/reduced graphene oxide nanocomposites
by using a one-step surfactant-assisted hydrothermal method. Compared with the control TiO2/rGO
nanocomposite, TiO2/rGO-X (X = sodium dodecyl benzene sulfonate, Triton X-100, and acetyl
trimethyl ammonium bromide) presented excellent photocatalytic activity. The study indicated
that the surfactant-assisted hydrothermal method is an effective approach to improve the structure,
morphology, and photocatalytic performance of TiO2/rGO composites.

Semiconductor nanostructures can be electrolytically deposited on the surface of graphene-based
substrates, at low temperature condition, from an aqueous solution containing the semiconductor.
For example, Ming-Zheng Ge et al. [189] adopted both electrodeposition and carbonation methods to
deposit rGO films on TiO2 nanotubes obtained with two-step electrochemical anodization. Recently,
Guimaraes de Oliveira et al. [190] used the electrochemical method to deposite GTiO2Ns composite
film on a Ti substrate by using GO and Ti(IV) aqueous solution, demonstrating a photocatalytic activity
almost twice as high as that observed for the TiO2 only film.

The microwave-assisted strategy, in this context, addresses the synthesis of semiconductor
nanomaterials of a controlled size and shape. For example, Shanmugama et al. [191] synthesized
GTiO2Ns nanocomposites by a novel surfactant-free, environmentally friendly one-pot in situ
microwave method. This method leads to the uniform distribution of TiO2 nanoparticles on G
sheets with the binding nature of TiO2. Wang et al. [192] reduced GO with both direct and
microwave-assisted reduction in the presence of Ti powders, showing that the microwave effect
decreased the reduction time. In this case, Ti ions derived from the reaction of Ti powder with GO
were hydrolytically transferred to TiO2 with the formation of rGO-TiO2, which was proven to be an
active material in the removal of methylene blue. Yang et al. [193] prepared nanocomposites of TiO2

and rGO, with a fast and simple microwave irradiation method by the reaction of graphene-oxide
and commercial TiO2 nanoparticles in water/ethanol solvent, examining different microwave powers
with different time intervals. The effect of time and power on absorption wavelength and the creation
of defects in the graphene layer was examined, obtaining an optimum irradiation time in which
the nanocomposite presented the highest absorption wavelength (the smallest band gap), and the
optimum value for microwave power in which the nanocomposite had the lowest number of defects.
First, GO was prepared using a modified Hummer’s method, and then TiO2 and the mixture of
water/ethanol and graphene-oxide (GO) was used for the hydrolysis of TiO2, followed by its mounting
on graphene-oxide. In this way, microwave irradiation reduced GO to graphene with the formation of
TiO2/rGO nanocomposites.

Other methods have been investigated, such as that proposed by Pu et al. [194] regarding the
synthesis of TiO2-rGO nanocomposites, conducted simultaneously with the photoreduction (PR) of
GO nanosheets in a simple GO and TiO2 ethanol system, demonstrating a facile and environmentally
friendly strategy for the in situ preparation of the TiO2-rGO hybrid “dyade”. In Table 3, the principal
synthesis methods of GTiO2Ns are summarized.
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Table 3. The synthesis methods of Graphene Based TiO2 nanocomposites.

Ex-Situ Hybridization

Photocatalyst Synthetic Route Starting Graphite Starting Semiconductor Refs.

rGO/TiO2
Mechanical mixing and
ultrasonication

rGO
TiO2NPs in
1-butyl alcohol

[163]

G/TiO2
Mechanical mixing and
ultrasonication

G in PVP/water
TiO2NPs anatase
in water

[164]

GO/TiO2 Mechanical mixing GO Titanium isopropoxide [165]

In-Situ Crystallization

rGO/TiO2
M with GO and PR
reduction

GO TiO2NPs [174]

M and GO and ST reduction GO TiO2NPs [175]

G/TiO2 ST GO Tetrabutyl titanate [145]

G/TiO2 SG rGO Titanium isopropoxide [146]

G/TiO2 HD GO P25 [147]

rGO/TiO2 SG GO Tetrabutyl titanate [176]

G/TiO2 SG G dispersion Titanium isopropoxide [177]

rGO/TiO2 Solvothermal SG GO sheets TiO2 sol [178]

rGO/TiO2 SG GO Titanium isopropoxide [179]

G/TiO2 HD GO suspension TiO2 sol [180]

G/TiO2 one-step HD GO water/ethanol TiO2 [181]

G/TiO2 HD GO Different Ti sources [182]

G/TiO2
Wet impregnation and
thermal reduction (H2)

GO
TiO2 nanotubes from HD
of TiO2 P25

[183]

rGO superlong TiO2 HD and heating reflux GO Super long TiO2 [184]

GO and rGO/TiO2
(nanocristals)

Elevated pressure HD GO and rGO TiO2 [185]

rGO/TiO2
sandwich-like
structure

HD/ST rGO Butyl titanate [186]

nanocrystalline
anatase TiO2-GO

SG and GO decoration by ST GO Anatase TiO2NPs by SG [187]

TiO2/rGO-X
nanocomposites

One-step surfactant
(X)-assisted HD

GO TiO2 (P25) [188]

rGO films on TiO2
nanotubes

Two-step ED and
carbonation techniques

rGO
Two-step anodized TiO2
nanotubes from Ti foils

[189]

Ti plate deposited TiO2
and GO film

ED
GO from
nanographite

Ti plate and K2TiF6
aqueous solution

[190]

G/TiO2 MW GO TiCl4 [191]

rGO/TiO2 MW GO Ti powder [192]

rGO/TiO2 MW GO TiO2NPs [193]

rGO/TiO2 PR GO TiO2NPs [194]

rGO/TiO2 PR GO Colloidal TiO2 [156]

5. Photocatalytic Degradation of Dyes with GTiO2Ns

Dye molecules, which are solubilized during several application processes, present different
colors derived from the selective absorption of light. Coloring properties of dyes depend on their
chemical structure consisting of two fundamental components: the chromophore and the auxochrome.
The chromophore is a covalently unsaturated group, which is responsible for the color production
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for the absorption in the UV or visible region; the auxochrome is supplementary to the chromophore,
and influences the solubility in water and the affinity towards a particular support [195]. Concerning
their uses, dyes can be anionic, cationic, and non-ionic; anionic dyes are divided into direct, acid,
and reactive dyes, while cationic dyes are basic [196]. Water treatments by using GTiO2Ns in the
photocatalytic degradations of dyes became very important due to the danger of dyes as environmental
pollutants [142].

Methylene blue (MB) was first prepared by Caro in 1876 as an aniline-derived dye for textiles, and
is largely used as a water-soluble cationic dye in the dyeing of paper, wood, plastic, silk, and cotton,
as well as in scientific research and pharmaceutical industries [197,198]. Kyeong Min Cho et al. [8],
to obtain MB photodegradation, used hydrothermal methods in the self-assembly of TiO2 precursors,
GO, and a surfactant to prepare rGO mesoporous TiO2; this material showed high photocatalytic
performances in the MB degradation test, good ability in the charge separation, and a large surface
area compared to typical GTiO2Ns.

Hanan H. Mohamed [199] recently described the simultaneous photoassisted oxidation of MB by
using new synthesized hierarchical structures of anatase/rutile TiO2 microsphere-rGO nanocomposites.
Interestingly, rutile/anatase phase transformation was observed upon changing the GO content.
The synthesized nanocomposites showed enhanced photocatalytic activity for the dye degradation
compared to pristine TiO2 nanoparticles that was attributed to the synergetic effect between anatase
and rutile in the synthesized TiO2 microsphere composites. Also, Zhang et al. [200] synthesized
graphene-supported mesoporous titania nanosheets (GTiO2Ns) by using liquid-phase exfoliated G
as a template and sandwich-like G-silica as intermediates. GTiO2Ns showed a mesoporous structure
formed by crystalline TiO2 nanoparticles anchored on G nanosheets that showed high surface areas.
These characteristics significantly enhanced the photocatalytic activity of TiO2 in the MB degradation.

Najafi et al. [201] fabricated TiO2-GO nanocomposites with different nanowire and nanoparticle
morphologies of TiO2 by using a one-step hydrothermal method. The different morphologies of TiO2

were grown on the surface of the GO sheets, previously synthesized by the modified Hummer’s
method. The obtained TiO2-GO nanocomposites showed a tetragonal structure and covalent bonds
between TiO2 nanostructures and GO sheets. The best photodegradation rate of MB was found by
using TiO2 nanowire-GO nanocomposites. Divya et al. [202] used microwave irradiation of different
GO weights and tetrabutyl titanate in isopropyl alcohol to obtain TiO2 hybridation with the formation
of GTiO2Ns nanocomposites. In this method, the irradiation with microwaves increase the temperature
in a short time, favoring the GO reduction to G and the growth of TiO2 nanoparticles on the G surface.
The obtained GTiO2Ns nanocomposites presented efficient electron conductivity in G, therefore
showing a reduced electron-hole recombination rate.

Another example is that of Sohail et al. [203], who prepared GO nanosheets by using a modified
Hummer’s technique with the successive conversion into particles by a spray-drying method. TiO2

nanoparticles were grown on the surface of GO particles to obtain rGO-TiO2 nanocomposites
that showed better photocatalytic activities upon the degradation of MB compared to pure TiO2,
also showing in this case that rGO played an important role in the charge recombination to enhance
the electron-hole separation.

Tseng et al. [204] studied a facile process to fabricate two-dimensional titania nanosheets (t-NS)
by using GO as a support with in situ growth of anatase TiO2 on GO suspended in butanol by
combining the sol-gel and solvothermal processes without further calcination. Significant amounts of
MB molecules can easily be adsorbed on the intrinsic graphitic structure. An optimum rate of hole
titration by ethylenediaminetetraacetic acid was essential to efficiently reduce the recombination of
charge carriers and consequently produce more active radicals to decompose MB. The strong interaction
between graphitic and titania structures, rather than the crystallite size of anatase, dominated the
photoreduction capability of t-NS.

Similarly, Minella et al. [205] obtained rGO-TiO2 and rGO-SiO2 hybrid materials by reducing
different quantities of GO with hydrazine in the presence of TiO2 and SiO2 nanoparticles;
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the photocatalytic activity of these nanomaterials was evaluated in the degradation of MB under
both UV-vis and only visible light irradiation. The results showed that MB was strongly adsorbed on
these new materials with an increase of degradation rates with respect to pristine semiconductors.
The visible light degradation of MB was attributed to the dye-sensitization mechanism, while the
UV-vis degradation was considered to be the typical semiconductor photocatalytic mechanism.

“Biphasic TiO2 nanoparticles” and their G nanocomposites were synthesized by Raja et al. [206]
by the hydrothermal method. Introducing high surface area, G suppressed the electron-hole pair
recombination rate in the nanocomposites. Further, the nanocomposites showed a red-shift of the
absorption edge with a contraction of the band gap from 2.98 eV to 2.85 eV. The characterization of
photocatalytic activities under natural sunlight and UV-filtered sunlight irradiation revealed that the
GTiO2Ns composite exhibited about a 15- and 3.5-fold increase in the degradability of Congo red and
MB dyes, respectively, in comparison to pristine TiO2. The authors therefore developed a visible light
active G composite catalyst that can degrade both cationic and anionic dyes, making it potentially
useful in environmental remediation and water splitting applications under direct sunlight.

The ex situ hydrothermal method was proposed from Verma et al. [207] to synthesize rGO mixed
TiO2 nano-composites. The study demonstrated that the cooperation between the optimal phase ratio
of TiO2 (anatase/rutile) and rGO produced a positive system in the photocatalytic degradation test
with MB other than antibacterial activity. Atchudan et al. [208] used a solvothermal method to prepare
GO grafting TiO2 nanocomposites and studied it as a photoactive material under UV-light irradiation
in the degradation of MB and methyl orange. The obtained degradation efficiency, compared with
only TiO2, demonstrated the important function that GO played in the increase of performance due to
the increase of light absorption and reducing charge recombination.

Darvishi et al. [209] instead used titanium butoxide (TBO) as a TiO2 precursor, commercial
TiO2, and GO in a water/ethanol mixture to produce hydrolytically, and under microwave
irradiation, rGO-TiO2 nanocomposites; these showed high conductive and light absorption properties,
demonstrating an enhancement of photocatalytic MB degradation. In these nanocomposites,
the content of G improved the photocatalytic performances of the photocatalysts.

An example of an eco-friendly method was studied by Rezaei et al. [210], who synthesized
TiO2-graphene nanocomposites by the addition of the “blackberry juice” to GO as a reducing agent
to produce rGO nano-sheets. The obtained TiO2 (anatase)-rGO materials exhibited an excellent
photocatalytic activity toward MB degradation due to the enlarged surface area and the collaborative
effect of rGO. Shanmugam et al. [191] synthesized GTiO2Ns nanocomposites by a surfactant-free,
environmentally friendly one-pot in situ microwave method. TiO2 nanoparticles of 5–10 nm were
distributed on the G sheets. The photocatalytic activity of pure TiO2 and GTiO2Ns nanocomposites
was studied under UV and visible light irradiation sources with MB. The studies revealed the highest
degradation efficiency of 97% with UV light and 96% with visible light irradiation by using the GTiO2Ns
photocatalyst, opening the possibility of using this material for industrial wastewater treatment.

The sol-gel technique was used by Rezaei [211], who prepared GO-TiO2 nanocomposites by
evaluating the photocatalytic activities of MB aqueous solution under sunlight irradiation. The results
showed that the nanocomposite containing 9.0 wt % of GO had the highest photocatalytic performance
in the MB degradation to either “single-phase anatase” or other composites containing different GO
quantities. The improvement of the photocatalytic activity was attributed to the favorable effect of the
distribution of TiO2 nanoparticles of less than 20 nm on GO sheets.

UV-assisted photocatalytic reduction of GO by TiO2 nanoparticles in ethanol was used by
Charoensuk et al. [212] in the preparation of rGO-TiO2 nanocomposites. The photocatalytic activity of
prepared rGO/TiO2 and GO/TiO2 nanocomposites was evaluated by the kinetics of the photocatalytic
degradation of MB under UV irradiation. Significant roles in the MB photodegradation were played
by important factors such as the bandgap, electron-hole recombination, characteristics of surface
(area and functional groups), and adsorption capacity of nanocomposites. The results revealed that



Catalysts 2017, 7, 305 15 of 34

rGO/TiO2 and GO/TiO2 nanocomposites exhibited efficient charge separation, showing about 500%
improvement of photocatalytic activity in MB photodegradation compared to pristine TiO2.

The solvothermal technique was used by Wang et al. [213], who prepared an efficient photocatalyst
of nano TiO2-functionalized GO nanocomposites. This nanomaterial showed an quadruple increase
in MB photodegradation activity with respect to that obtained by using the P25-graphene composite
photocatalyst. Liu et al. [214] instead used an interesting impregnation-hydrothermal method to
prepare highly distributed TiO2 nanoparticles with in situ growth on functional G (FG), which was
before obtained by modifying GO by using triethanolamine. The obtained FGTiO2Ns photocatalyst
showed better photocatalytic activity under UV light irradiation with respect to pure TiO2 and GO-TiO2

prepared by other similar methods, also revealing considerable photocatalytic skill under visible
light irradiation.

A fruitful method to produce expanded exfoliated GO (EGO) was used by Baldissarelli et al. [215].
The use of ozone exposure and thermal treatment transformated the graphite surface to a G-like surface
containing oxygen and sp3 carbon. The EGO, obtained through thermal treatment, produced, with the
addition of TiO2 nanoparticles, photocatalytic TiO2-EGO nanocomposites that demonstrated higher
activity with respect to that produced by the common Hummer’s method. In particular, TiO2-EGO
showed enhanced MB photodegradation under UV light compared to TiO2 P25.

A new nanomaterial composed of ultrasmall TiO2 nanoparticles and rGO nanosheets was
prepared by Gu et al. [216], who used glucosamine in alkaline conditions under hydrothermal
treatment. In this synthesis, glucosamine regulated the growth and homogeneity of TiO2 nanoparticles
dispersed on the G structure, permitting the formation of the expected GTiO2Ns products,
demonstrating that TiO2 nanoparticles about 13 nm in diameter were strongly anchored on G. Different
GTiO2Ns samples were calcined at several temperatures; in particular, the GTiO2Ns sample treated at
700 ◦C showed good photocatalytic activity in MB photodegradation compared to those produced at
other calcination temperatures.

Moreover, Fan et al. [217] used the hydrothermal method to synthesize TiO2 nanospindles, which
are featured by large exposed {0 0 1} facets, and then fabricated TiO2 nanospindles/reduced GO
nanocomposites (rGO-TiO2). The photocatalytic activity in the photodegradation of MB showed
an impressive photocatalytic enhancement of rGO-TiO2 with respect to pure TiO2 nanospindles.
In addition, Sun et al. [218] used a one-step in situ hydrothermal method to prepare chemically
bonded GTiO2 nanorods hybrid composites with high dispersity by using GO and TiO2 (P25)
as the starting materials without using reducing agents. Ultraviolet-visible diffuse reflectance
measurements of the composites showed an enhanced light absorption and a red shift of absorption
edge. When GTiO2Ns nanorods hybrid composites were used as photocatalysts, they showed an
enhancement of photocatalytic performance in the photodegradation of MB under visible light
irradiation compared to that of pristine TiO2 nanorods.

Rong et al. [219] prepared different GTiO2Ns photocatalysts with a simple hydrothermal method.
First, GO (obtained from graphite oxidation) was dispersed in a water/ethanol solution with ultrasonic
treatment, after which TiO2 was added and a thermal treatment at 120◦ for 12 h was used. A series of
GTiO2Ns photocatalysts obtained with different oxidation times (in the GO production from graphite)
and GO contents were obtained. When these materials were applied to the photodegradation of MB
under visible light irradiation, they exhibited excellent photocatalytic activities.

Gupta et al. [220] proposed a strategy to fabricate G quantum dots (GQDs) infilled TiO2 nanotube
arrays hybrid structure (GQDs-TiO2NTAs) for the application of MB degradation under UV light
irradiation. In particular, anodic oxidation of a Ti sheet by using an impregnation method produced the
fill of GQDs into TiO2 NTAs. The application of this material in the adsorption and photodegradation of
MB in an aqueous solution under UV light irradiation showed high photocatalytic efficiency, which was
attributed to the favorable visible light absorption and to efficiency in the transfer of photogenerated
electrons from the TiO2NTAs to GQDs that produced large photoinduced charge separation. No less
important was the strong adsorption capacity of the GQDs to MB molecules.
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GP-wrapped TiO2 (GwTiO2) hybrid material was fabricated by Ni et al. [221] with the
simultaneous reduction and wrapping of GO on the surface of high-reactive anatase TiO2, based on the
surface negatively charged property of GO. GwTiO2 gave a strong red-shifted light absorption edge and
a contracted bandgap compared to that of GP randomly supported TiO2; this behavior was attributed
to the positive chemical interaction between TiO2 and G. The photocatalytic MB degradation under a
xenon lamp and visible light irradiation confirmed the best quality of this nanomaterial. Furthermore,
Yang et al. [222] prepared TiO2/G porous composites with rGO by using a template of G microsphere
colloidal crystals that showed high light absorbing properties, and good MB adsorption properties,
other than a fast ability in the charge transportation and separation. These porous composites showed
high degradation activities in MB degradation under visible light irradiation with a constant rate
almost 6.5 times higher than that of P25 under the same conditions.

Also, Suave et al. [223] prepared photocatalytic TiO2 nanocomposites with different loads of
ozonated graphene (OGn) and evaluated the performances in photocatalytic MB degradation and
other dyes using UVC irradiation. Although the photocatalytic activity decreased with each cycle, it is
possible to reuse the nanocomposite that facilitates its practical application for water treatment.

In Table 4, the different preparation methods of GTiO2Ns applied to MB photodegradation
are listed.

Table 4. Photocatalytic applications of Graphene Based TiO2 nanocomposites in the degradation of
Methylene Blue.

Photoactive Nanomaterials
Dye Conc.

(mg/L)
Catalyst

Quantity (g/L)
Light

Source
Irradiation
Time (min)

Degradation
(%)

Refs.

G/TiO2 9.60 0.33 Visible 180 90 [8]
P25-G 8.64 0.6 UV 60 85 [199]
P25-G 8.64 0.6 Visible 60 65 [199]

G/TiO2 10 0.6 UV 120 100 [200]
G/TiO2 10 0.2 UV 40 85 [202]

TiO2@rGO – 0.1 UV 120 92 [203]
GO/TiO2 15 0.2 UV 350 92 [204]

TiO2-G 0.13 0.5 UV-Vis 450 100 [205]
rGO/TiO2 320 0.5 Visible 90 95 [207]
TiO2/GO – 0.2 UV 25 100 [208]
TiO2/G 0.13 0.4 UV 60 96 [209]
TiO2/G 3 0.48 Visible 90 100 [210]
G/TiO2 3.2 0.2 UV 180 97 [191]
G/TiO2 3.2 0.2 Visible 240 96 [191]

TiO2/GO 3 0.48 Visible 60 94 [211]
TiO2/GO 5 0.1 UV 40 93 [213]
TiO2/GO 5 0.1 Visible 40 70 [213]

TiO2-Graphite Oxide 10 0.5 UV 60 100 [215]
TiO2/G 10 0.2 UV 20 97 [216]

TiO2/rGO 10 0.17 UV 60 100 [217]
G/TiO2 5 0.5 Visible 100 70 [218]
TiO2/G 10 0.8 Visible 100 98.8 [219]

Graphene quantum dots/TiO2 6.4 – UV 180 100 [220]
TiO2/GO 10 0.1 UV 180 100 [221]
TiO2/G 10 0.01 Visible 150 100 [222]
TiO2/G 10 0.5 UV 90 100 [223]

Graphene quantum dots/TiO2 6.4 – UV 180 100 [220]

Methyl orange (MO) is a well-known anionic azo dye largely used in the textile, printing, paper,
food, pharmaceutical, and research fields [224]. As an example, MO photodegradation was studied by
Lavanya et al. [225], who combined novel reduced graphene oxide (rGO) with anatase/rutile mixed
phase TiO2 nanofibers (MPTNFs), by using electrospinning and easy chemical methods, to enhance
the photocatalytic performance. The photocatalytic activity in the photodegradation of MO showed
a significant increase in the reaction rate for the synergistic effect of anatase/rutile mixed phase in
one-dimensional nanostructures, and the electronic interaction between TiO2 and rGO that provided
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the improvement of electron transfer reduced the charge recombination for the enhancement of
catalytic efficiency.

Xu et al. [63] used a two-step method to prepare G-pasted TiO2 spheres. In the first step, the total
cover of the surface of TiO2 spheres with small GO sheets was obtained, while in the second step, GO
was photocatalytically reducted in situ. G-pasted TiO2 spheres presented more interfaces between G
and TiO2 with favorable interaction under the light irradiation compared to that of typical GTiO2Ns
composites. As a result, these materials demonstrated higher photocatalytic activity in MO degradation.
Hou et al. [226] instead used hydrothermal synthesis to obtain rGO-TiO2 composites, and part of these
were successively calcined at 450 ◦C (CS-rGO-TiO2). Photocatalytic activities in the decomposition of
MO under UV, visible, and solar light by using both RGO-TiO2 and calcinated composites were tested.
The amount of G apparently influenced the photocatalytic activities of both rGO-TiO2 composites
and CS-rGO-TiO2, which showed better photocatalytic activity compared to that of rGO-TiO2. These
results were due to the calcination that favored the oxidation of residual organics in the rGO-TiO2 and
a better crystallization of TiO2 nanoparticles with smaller diameters.

Zhao et al. [227] synthetized three-dimensional nanocomposites with TiO2 nanotubes (TNTs)
and rGO nanosheets by using the hydrothermal method. The obtained rGO/TNTs nanocomposites
presented sufficient active sites and gave the path of good electron-transport. These nanomaterials
showed better photocatalytic activity in MO degradation under UV-light irradiation with respect to
traditional TiO2 nanotubes. Also, Lu et al. [228] combined TiO2 and GO and used UV irradiation
to synthesize rGO-TiO2 composites. The influence of TiO2 quantity and UV irradiation time on the
rGO formation during the composite synthesis was investigated. The results demonstrated that a
longer UV irradiation time corresponded to a higher reduction degree of GO, and therefore to a
higher photodegradation efficiency of the composites in MO photodegradation. However, the results
also showed that excessive UV irradiation times gave a negative effect on the photodegradation
efficiency and therefore proposed a mechanism that correlated the reduction degree of GO with the
photodegradation efficiency of composites.

Chemisorption and successive heating at different temperatures was applied by Xia et al. [229]
to combine TiO2 in different anatase and rutile phases with G sheets. The photoactivities of these
nanomaterials were tested by using MO under UV and visible light irradiation, demonstrating an
enhanced respect to only TiO2. Notably, the different crystallite phases of TiO2 reacted with different
behaviors under UV and visible light irradiation due to the different charge transfer mechanisms.

Another example was described by Ge et al. [230], who combined electrodeposition and
carbonation techniques to obtain the deposition of rGO films on TiO2 nanotube arrays (TiO2 NTAs);
these materials, prepared in ethylene glycol by using two-step electrochemical anodization, showed
an enhanced MO photocatalytic degradation with respect to both pristine TiO2 NTAs and annealed
TiO2 NTAs under the same conditions. The increase of efficiency in photocatalytic degradation was
due to the increase of separation efficiency of photoinduced electrons and holes, to red-shift in the UV
absorption and to the profitable adsorbent skill of rGO towards the MO dye.

GTiO2Ns nanocomposites were instead synthetized by Han et al. [231] by using the hydrothermal
method and a successive annealing process. In this preparation, the loading of flocculent-like TiO2

nanostructures onto G sheets was obtained. The evaluation of photoelectrochemical activities and the
photocatalytic degradation of MO under UV light irradiation showed that the flocculent-like GTiO2Ns
composites presented the greatest photocatalytic activity compared to that of commercial anatase TiO2,
due to the increase of light absorption and fruitful charge separation of the nanocomposite structure.

In order to synthesize rGO wrapped with anatase mesoporous TiO2 nanofibers,
Lavanya et al. [232] used electrospinning and easy chemical methods. The interface between
rGO and TiO2 nanofibers in these composites favored an efficient photogenerated charge carrier
separation with an enhanced efficiency of photocatalytic MO degradation of 96% instead of only
43% of TiO2 nanofibers. Wang et al. [233] applied a low-temperature solvothermal method using
graphite oxide and TiCl3 as precursors to prepare GTiO2Ns nanocomposites. During this solvothermal
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transformation, the synthesis of TiO2 nanoparticles and G formation occurred. Compared to only TiO2

nanoparticles, also in this case, the results revealed a greatly enhanced visible light photocatalytic
MO degradation.

Athanasekou et al. [234] prepared rGO-TiO2 composite membranes for incorporation into a water
purification device for the application in the hybrid photocatalytic/ultrafiltration process. For this,
GO sheets were decorated with TiO2 nanoparticles and deposited into the pores of ultrafiltration
mono-channel monoliths using the dip-coating technique and water filtration conducted in the
dark, as well as UV and visible light irradiation. The obtained results, compared with that of
standard nanofiltration, showed that the synergetic effects of GO on MO adsorption and photocatalytic
degradation demonstrated that this material can be positively applied in nanofiltration technology.

Liu [235] prepared rGO-TiO2 with the hydrothermal method by using GO and Ti(OH)4 in
ethanol/water. The results showed that rGO-TiO2 presented a stratified structure composed of
dispersed anatase TiO2 on the surface of rGO; the larger surface area of the composite was favorable
for the MO absorption; in addition, the extension of the visible light region absorption range was
observed. All these factors positively favored the photocatalytic performances of the composites in the
photodegradation of MO under visible light irradiation with respect to that of pure TiO2.

In Table 5, the different preparation methods of GTiO2Ns applied in MO photodegradation
are summarized.

Table 5. Photocatalytic applications of Graphene Based TiO2 nanocomposites in the degradation of
Methyl Orange.

Photoactive Nanomaterials
Dye Conc.

(mg/L)
Catalyst

Quantity (g/L)
Light

Source
Irradiation
Time (min)

Degradation
(%)

Refs.

rGO/TiO2 (mix anatase/
rutile nanofibers)

10 0.4 UV 120 97 [225]

G-pasted TiO2 spheres 12 0.5 UV 75 95 [63]

GO/TiO2
13

1 UV 60 88

[226]
1 Vis 60 80

rGO/TiO2
1 UV 60 70
1 Vis 60 99

rGO/TiO2 anotube 20 0.25 UV 210 100 [227]

rGO/TiO2 10 0.5 UV 75 70 [228]

rGO/TiO2 mix anatasio/rutilio 6.55 0.6
UV 100 100

[229]
Vis 100 50

G/TiO2/Magnetite 9.6 0.16 UV 90 99 [230]

Flocculent likeTiO2/G 20 0.8 UV 60 70 [231]

rGO/TiO2 nanofibers 15 0.4 UV 120 100 [232]

G/TiO2 10 0.6 UV 60 80 [233]

TiO2/rGO 10 0.5 Vis 240 90 [235]

In addition, other authors explored photocatalytic materials in the photodegradation of
Rhodamine-B (RB), which is a brilliant soluble basic dye, most used in the dyeing of various products
of the textile industry such as cotton, silk, paper, leather, and others. Notably, RB imparts an intense
color to polluted wastewaters derived from different industries and from scientific laboratories [236].
In particular, for RhB photodegradation, Chen Q. et al. [237] used electrospinning and the hydrothermal
reaction in mixed ethanol/water solution to prepare nanocomposites composed from rGO and TiO2

nanotubes. In these nanocomposites, TiO2 nanotubes combined with rGO sheets between Ti-C and
Ti-O-C bonds and the absorption edge shifted to higher wavelengths, improving the visible light
absorption with respect to pure TiO2 nanotubes. The measurements of photocatalytic activities
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regarding RhB photodegradation under xenon lamp irradiation showed that the highest photocatalytic
activities were obtained when the rGO ratio increased to 10%.

Furthermore, Chen Y. et al. [238] used a hydrothermal method to prepare rGO and TiO2

hybrid of 10–20 nm, by using TiO2 P25 nanoparticles and “liquid-exfoliated” GO. Also in this case,
rGO-TiO2, compared to only TiO2, showed an increased photocatalytic RhB degradation under Xe lamp
irradiation. The rGO-TiO2 characterization confirmed the enhancement of photocatalytic and could be
attributed to two reasons. The first was that rGO extended the path and lifetime of photogenerated
electrons of TiO2, minimizing the recombination of electron–hole pairs. while the second was that rG
expanded the light absorption spectrum versus the visible light range. These effects were explained by
the change of the energy gap and the likelihood of the up-conversion photoluminescence mechanism.

Another example was reported by Wang et al. [239] about the immobilization of anatase TiO2

nanosheets on the magnetically actuated artificial cilia film by using rGO as the contact medium.
The artificial cilia film was optimal in the immobilization of more powder of photocatalysts and,
when used under s rotating magnetic field, exhibited an improvement of RhB degradation efficiency
due to high mass transfer and to the efficiencies of photoproducts desorption. Biris et al. [240]
synthesized core-shell nanostructural materials with multi-component architectures from TiO2 and
layers of graphitic materials by application CVD for 5, 10, 30, and 45 min with methane as the carbon
source. The reaction time linearly regulated the quantity of G shells covering the TiO2 surfaces,
obtaining nanostructured materials with excellent stability and photocatalytic activity in the UV
RhB degradation.

Moreover, Kim et al. [241] used synthesized composites of flower-like TiO2 spheres and rGO
(FTS-G). First TiO2 spheres, with high specific surface area and good pore structure, and rGO without
the use of strong reducing agents, were separately prepared; next, FTS-G were synthesized by
using a solvothermal method. The photocatalytic performance of FTS-G was evaluated for RhB
photodegradation under solar light irradiation, establishing that the rGO quantity was very important
for the effects on photocatalytic activity. This preparation method could also be used to prepare
other photocatalysts composed of flower-like TiO2 spheres with carbon materials. Liu et al. [242]
prepared a photocatalyst based on TiO2 nanotubes and rGO with the hydrothermal method that was
successively tested in the photocatalytic degradation of RhB under UV-light irradiation. Also with this
photocatalyst, thanks to the introduction of rGO on TiO2 nanotubes, the adsorption capacity as well as
the photocatalytic activity in RhB photodegradation increased compared to the same without rGO.

Sedghi et al. [243], by using Titanium(IV) chloride as a photocatalyst precursor, prepared
different nanocomposites of porous and magnetic porous GO in the mix with TiO2 (anatase) and
TiO2 (mix phase), respectively. Between these nanocomposites, the mix of TiO2 with magnetic porous
GO showed enhanced efficiency in the RhB degradation under visible light irradiation compared
with that of the other photocatalysts, obtaining 100% degradation in less than 20 min. Similarly,
Zhang et al. [244] used the one-pot hydrothermal process, by using tetrabutyl titanate and GO, to
prepare a series of self-assembled composites of anatase TiO2 nanocrystals and three-dimensional
graphene aerogel. The obtained composites showed higher adsorption capacities and good visible light
efficiency in the RhB photodegradation. The results of this study clarified that the chemical-physical
properties of these composites could be attributed to their 3D nanoporous structure with high surface
areas and to the contemporary action of G nanosheets and TiO2 nanoparticles.

An ultrasonication-assisted reduction process was used from He et al. [245] to produce rGO-TiO2

nanocomposites. In this process, simultaneous GO reduction and TiO2 crystals formation were
obtained; photocatalytic studies demonstrated that the quantities rGO in these nanocomposites
influenced the RhB degradation efficiency under visible light irradiation. The obtained increase in the
photocatalytic activity was attributed in this case to the harvesting under visible-light irradiation and
to the efficiency in the separation of the photogenerated charge carriers, also obtaining an improvement
in the photoelectric conversion efficiency.
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Fang et al. [246] exfoliated GO sheets from graphite and wrapped on the surfaces of polymer
microspheres of about 2.5 µm in diameter. Successively, the solvothermal method permitted the
nucleation and growth of anatase TiO2 nanoparticles on the GO surfaces and the contemporary
GO reduction to rGO. The as-prepared GO-skined GO/polymer hybrid microspheres composites
tested in the photocatalytic activity with RhB solutions gave 96% degradation in 30 min under
visible light irradiation, demonstrating an improvement with respect to commercial TiO2. The results
were attributed to the favorable interactions between rGO of singular electrical conductivity and
TiO2 nanoparticles.

Liang et al. [247] used a one-step hydrothermal approach to synthesize chemically bonded
TiO2/rGO nanocomposites by using Ti(SO4)2 and GO as precursors and ethanol/water solvent as a
reducing agent, obtaining well-dispersed TiO2 nanocrystals on the surface of rGO sheets with optimal
interfacial contact. The obtained nanocomposites demonstrated higher photocatalytic activity with
respect to only TiO2 nanoparticles and to a simple mixing of TiO2 and rGO samples in the RhB
degradation which was attributed, also in this case, to the interaction between TiO2 and rGO, with
excellent electron trapping and transportation properties.

Li et al. [248] obtained different carbon materials-TiO2 hybrid nanostructures incorporated
into TiO2, activated carbon, G, carbon nanotubes, and fullerene by using a solvothermal method
and thermal annealing. The relationships between the interactions of carbon materials with TiO2

nanoparticles, morphologies, structures, and increasing photodegradation performances in RhB
degradation were clarified. The results of these photocatalysts were due to higher adsorption
properties, the favorable formation of chemical bonds of Ti-O-C, reduced band gap, lower particle size,
and charge-carrier qualities. In Table 6, the different preparation methods of GTiO2Ns applied in RhB
photodegradation are listed.

Table 6. Photocatalytic applications of Graphene Based TiO2 nanocomposites in the degradation of
Rhodamin B.

Photoactive Nanomaterials
Dye Conc.

(mg/L)
Catalyst

Quantity (g/L)
Light Source

Irradiation
Time (min)

Degradation
(%)

Refs.

TiO2/rGO 30 0.2 Vis 40 100 [238]

rGO/TiO2 nanosheets
onmagnetically cilia film

rGO/TiO2-Au
20 0.2 UV 180

83
100

[239]

Core-shell TiO2/G 4.79 0.6 UV 270 100 [240]

Flower-like TiO2 sphere /rGO 15 0.4 Simulated solar 120 100 [241]

TiO2 nanotubes/rGO 10 0.5 UV 20 100 [242]

TiO2/magnetic porous GO 10 0. 1 Vis 20 100 [243]

3D TiO2/G aerogel 20 0.2 Visible light 180 99 [244]

TiO2/rGO 4.79 0.4 Visible light 180 100 [245]

TiO2/rGO/polymer 8 0.2 Visible light 30 96 [246]

TiO2/rGO 20 0.5 UV 30 100 [247]

GTiO2 5 0.5 Visible light 60 80 [248]

Rhodamine 6G (Rh6G) is dark reddish-purple dye, mostly used in the textile industries,
in biochemistry research laboratories, and in other applications. Rh6G is a non-volatile compound
that presents high solubility in water causing skin, eye, and respiratory system irritations, and is also
carcinogenic and poisonous to living organisms [249].

In order to obtain the photocatalytic degradation of Rh6G, Pu et al. [194] demonstrated a facile
and environmentally friendly strategy for the simultaneous in situ preparation of the rGO-TiO2

“dyade hybrid” obtained by the photoreduction of GO nanosheets in ethanolic solutions of GO and
TiO2 (P25) mix. Successively, the photodegradation efficiency of the resultant composite by utilizing
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Rh6G as the target pollutant was systematically investigated. The obtained rGO-TiO2 presented a
significant enhancement in photo energy adsorption, leading to the effective photocatalytic degradation
reactions which exhibited more than triple the higher photodegradation rate compared to commercial
TiO2 (P25) nanoparticles.

Reactive Black 5 (RB5), which has two azo groups, belongs to the class of azo reactive dyes, which
are abundantly used in textile industries for dyeing.

The photocatalytic degradation of RB5 was studied by Day et al. [250], who prepared different
types of GTiO2Ns nanocomposites with G and P25 or Titanium (IV) n-butoxide as precursors by
using the hydrothermal method. To investigate the differences of the photocatalytic properties of
composites with various TiO2 shapes, nanotubes, nanosheets, and nanoparticles of TiO2 were prepared
and combined with G. The photocatalytic activities of these composites were tested in the degradation
of RB5 under UV lamp irradiation, indicating that the differences in the TiO2 morphology and the
characteristics of heterojunction between G and TiO2 played an important role in the photocatalytic
abilities. The results demonstrated that these composites exhibited excellent adsorption capacity and
higher photocatalytic activity with respect to P25, and that the photocatalytic activity of GTiO2Ns
nanosheets was higher than those of the other tested photocatalysts. Another example was proposed by
Liang et al. [251], who obtained an increase of photocatalysis efficiency for RB5 by using TiO2 nanotubes
and G nanocomposites prepared with the hydrothermal method. In particular, Zhang et al. [252]
deciphered the mechanism of RB5 photodegradation, which was used as a model for other azo dyes
by using G-loaded TiO2 as a photocatalyst. They demonstrated that electronic transfer groups affect
the degradability of azo dyes, that •OH radicals are the major oxidized species, and that substituents
with high electron-density in the dye structure were more favorably attacked by •OH radicals.

The photodegradation of the non-biodegradable azo dye acid orange 7 (AO7) in aqueous solution
was studied by Posa et al. [253] who, by using GTiO2Ns nanocomposites, obtained an improvement of
photocatalytic performance compared with that of pure TiO2, examining also the reusability of the
photocatalyst. They suggested a reaction mechanism on the basis of the obtained results. Furthermore,
Gao et al. [254] synthesized different TiO2 nanostructures: one-dimensional TiO2 nanotubes and
nanowires, three-dimensional spheres assembled by nanoparticles and by nanosheets. The results of
photodegradation activity in the AO7 degradation indicated that the photodegradation efficiency of
TiO2 spheres assembled by nanosheets was the highest with respect to the other TiO2 nanostructures,
while its specific surface area was lower than that of TiO2 nanotubes. The results were attributed
to the highest light harvesting capacity under solar light derived from the multiple reflections
of light, and from the hierarchical mesoporous structure. The last example regards the study of
Muthirulan et al. [255], who fabricated GTiO2Ns by using a simple one-step chemical process, mixing
TiO2 nanoparticles suspended in ethanol with G followed by ultrasonication and successive treatment
in a rotary evaporator under vacuum. The dried GTiO2Ns showed improvement in the photocatalytic
ability in the degradation of AO7 under both UV and solar light irradiations. The obtained results of
photodegradation indicated that GTiO2Ns nanocomposites exhibited higher photocatalytic activity
than that of TiO2, which was attributed to the role of G in the suppression of charge recombination and
in the promotion of the charge transfer, permitting also a possible reaction pathway for the degradation
of AO7.

6. Conclusions

In this short review, we have described the characteristics of both TiO2 semiconductors
and graphene materials and reported several examples focusing on the recent progress in the
design, synthesis, and applications of these GTiO2Ns nanocomposites used as photocatalysts in
the photocatalytic degradation of synthetic dyes.

We have described the important effects of G in GTiO2Ns nanocomposites, as shown in Figure 6.
In fact, in conjunction with TiO2 nanomaterials, G can act as a co-adsorbent thanks to the increase of
adsorption surface and to π-π interactions with dye and as a sensitizer due to the electron transfer from
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the G photoexcited state, with delocalization and energy excess dissipation, to the TiO2 surface with the
extension of the light absorption towards the visible region. Notably, both the functions of conductive
materials and co-catalysts favor the stabilization of excited electrons, thus limiting the electron-hole
recombination in the photocatalytic process. In addition to these properties, TiO2 band-gap narrowing
due to the interaction between TiO2 and G was demonstrated.
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Figure 6. Schematic representation of the main features of graphene in the photocatalysis with TiO2.

Thanks to these features, in order to obtain the best benefit of graphene in the enhancment of the
photoactivity of TiO2 nanomaterials, all of these factors that dominate the photocatalytic process must
to be taken into consideration and optimized with the purpose of obtaining the best dye absorption
and its complete mineralization.

Much research has been conducted regarding the photocatalytic degradation of synthetic dyes,
and the high-quality results of these studies demonstrate that these materials could be promising for
large-scale applications in wastewater depuration.
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