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Abstract

Advances in brain imaging technology in the past five years have contributed greatly to the

understanding of Alzheimer’s disease (AD). Here, we review recent research related to amyloid

imaging, new methods for magnetic resonance imaging analyses, and statistical methods. We also

review research that evaluates AD risk factors and brain imaging, in the context of AD prediction

and progression. We selected a variety of illustrative studies, describing how they advanced the

field and are leading AD research in promising new directions.
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Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder worldwide. It is

the sixth most common cause of death in the US. All of us are at risk, and there is no known

cure. About 13.2 million Americans will be diagnosed with AD by the year 2050 [1]. Late

onset AD, the more common form of the disease, is 58–74% heritable [2–4]. Apolipoprotein

E ε4 allele (APOE4) is a long-standing known AD risk gene [5], that thus far increases late-

onset AD risk by the greatest factor [6]. However, in the last three years, large multiple-

cohort genome-wide association studies (GWAS) have found several new single nucleotide

polymorphisms (SNPs) that each affect the lifetime odds ratios for developing AD by

approximately ±0.10–0.20 [7–10]. However, much of the genetic risk for AD is still

unexplained, probably because a large number of genetic variants, each with a small effect,

combine with environmental factors to contribute to AD onset. As we will show later,

neuroimaging can help reveal the function of these new AD risk variants and how they

influence brain integrity over the lifespan.

By the time AD can be detected using standard clinical assessments, the brain typically has

undergone widespread irreversible neuronal and synaptic loss [12]. This neurodegeneration

may be promoted by long-standing toxic processes such as amyloid aggregation and

neurofibrillary tangle formation (the hallmarks of AD) and inflammation. To avert the
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looming AD crisis, we must identify better ways to track and treat AD in its earliest stages,

even in people who are presymptomatic. Neuroimaging is an ideal tool for this; in the past

five years alone, it has helped to show how controllable lifestyle factors, including exercise,

education, and dietary factors such as folate and iron levels, affect brain integrity and

disease risk later in life [13–18]. Neuroimaging advances, such as in vivo mapping of

amyloid plaques and tau neurofibrillary tangles, and increasingly sensitive techniques for

detecting atrophy on magnetic resonance images (MRI) have also made it easier to track AD

progression. Large-scale genetic and epidemiological analyses of brain images may also

discover factors that promote and deter atrophy. Only in the last few years have we routinely

seen analyses of hundreds to thousands of brain scans. The largest neuroimaging genetics

study to date [19] offered ~99.92% power to detect genetic variants that affect as little as 1%

of the variance in hippocampal volume. Given this new level of power to distinguish risk

gene effects on the brain [20], whole new lines of discovery are possible. We now know

how multiple AD risk-conferring genes affect brain function and structure [21], and we are

beginning to discover networks of genetic risk factors that affect the brain simultaneously.

Finally, a major line goal of AD imaging is to identify at-risk older adults who are most

likely to decline cognitively. If a drug trial uses neuroimaging as an outcome measure, the

time and cost of the trial will be greatly reduced if imminent decliners can be selected in

advance. In this paper we note ways in which imaging help identify decliners, boosting

power for AD-related clinical trials.

AMYLOID IMAGING

A major advance in AD research over the past 5 years has been the ability to assess levels of

amyloid plaques and tau neurofibrillary tangles in the living brain. Before amyloid imaging

was possible, AD could only be definitively diagnosed at autopsy based on characteristic

microscopic features [22]. Some early pioneering studies linked postmortem pathology to in

vivo patterns of glucose metabolism measured using fluorodeoxyglucose (FDG) positron

emission tomography (PET) [23]. However, typically, the unpredictable interval between the

patients’ last clinical assessments and their deaths make it difficult to compare clinical

symptoms to AD pathology. By contrast, amyloid PET scans of the living brain make it

possible to evaluate longitudinal changes in AD pathology, and to relate them to clinical

changes assessed at the same time as the scans. A key goal has been to establish these PET

measures as reliable biomarkers of clinical severity or disease risk. If a correlation is

established with cognitive scores, or with future decline in those scores, the PET measures

become more promising metrics to evaluate treatment and prevention efforts. Proof of

concept for plaque and tangle PET imaging in living humans was established in 2002 [24]

using 2-(1-(6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl)ethylidene)malononitrile

(also known as [18F]FDDNP). In 2004, the PET probe, N-methyl-[11C]2-(4-

methylaminophenyl)-6-hydroxy benzothiazole (also known as Pittsburgh Compound B or

[11C]PIB) was also introduced [25]. Like [18F]FDDNP, [11C]PIB allows PET imaging of

amyloid plaques in the living brain. However, unlike [18F]FDDNP, [11C]PIB has a higher

signal to noise ratio and is specific to senile amyloid plaques, while [18F]FDDNP signal

reflects senile and diffuse amyloid plaques as well as neurofibrillary tangle load [26].

[11C]PIB has a shorter half-life, so scans must be performed very nearby, soon after probe
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creation. Depending on study goals, each probe may offer advantages. [18F]FDDNP is

particularly useful for examining medial temporal lobe pathology, where neurofibrillary

tangles are likely to predominate in preclinical AD [27], while [11C]PIB is useful for studies

that focus specifically on amyloid deposition. Higher levels of both [11C]PIB and

[18F]FDDNP are correlated with lower cerebrospinal fluid (CSF) levels of amyloid-β 42

(Aβ42) [28, 29], the main building block for amyloid plaques, and higher levels of CSF tau

[29], the building block for neurofibrillary tangles. This provides converging evidence for

the validity of these tools.

PET imaging of AD pathology has helped chart the trajectory of pathology as it spreads in

the living brain. [18F]FDDNP has shown regional plaque and tangle load differences

between cognitively intact older adults and those with mild cognitive impairment (MCI)

[30]. Cognitive performance was linked to the plaque and tangle load, and the associations

were displayed across the brain in 3D [31]. PET measures were correlated with subtle

cognitive differences even in the normal elderly, and thus show promise for gauging

presymptomatic disease progression. In a cross-sectional study, we found that those with

lower cognitive ability had higher [18F]FDDNP signal in regions that approximated the

classic Braak and Braak trajectory; as performance declined, pathology increased in lateral

temporal, parietal, and frontal cortices [31] (Fig. 1). Cognitive performance was also related

to [11C]PIB signal in normal elderly and MCI subjects. In one study, the relationship

between amyloid load and episodic memory was mediated by hippocampal volume [32].

Higher levels of [11C]PIB signal in the brain are heritable [33], associated with family

history of AD [34], and similar in monozygotic twins discordant for AD [35]. APOE

genotype, the strongest genetic risk factor for late onset AD, is related to both [11C]PIB and

[18F]FDDNP signal in cognitively intact older adults [36, 37]. However, it does not fully

explain the heritability of [11C]PIB signal [33], suggesting that amyloid imaging on a large

scale may eventually uncover new genetic risk factors for late onset AD. Longitudinal

[11C]PIB and structural MRI have also offered insight into disease progression, showing that

amyloid deposition occurs at a constant slow rate while neurodegeneration accelerates;

clinical symptoms were related more strongly to neurodegeneration than to amyloid

deposition, which typically occurs before cognitive decline is evident [38]. However,

[11C]PIB signal levels can still predict conversion from normal cognition and amnestic MCI

to AD [39–41]. Additionally, [11C]PIB data were complementary to MRI data and together,

both allowed for a more accurate AD diagnosis [42]. [11C]PIB has even been used to

evaluate how an AD drug treatment (bapineuzumab) affects amyloid plaque load in vivo

[43]. Other [11C]PIB studies explored the cognitive reserve hypothesis, which suggests that

people with brains that better compensate for physiological deficits may accumulate more

pathology before clinical symptoms are evident [44]. Education modulates the relationship

between [11C]PIB signal and cognition, with greater plaque deposition relating to cognition

less strongly in more highly educated adults [45, 46]. Amyloid imaging has also been useful

for evaluating disruptions to the default mode network (DMN), a co-activated network of

cortical brain regions that show more functional MRI activity at rest than during a directed

task. The DMN shows deficits in AD patients [47], and DMN activity strength correlates

with working memory performance [48]. Both [18F]FDDNP and [11C]PIB have shown that
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higher AD pathology is associated with lower DMN activity, even in cognitively intact older

adults [49–53].

New PET amyloid probes such as [(18)F]3′-F-PiB (Flutemetamol) [54], (18)F-AV-45

(Florbetapir) [55], and (18)F-AV-1 (Florbetaben) [56] are now being investigated. These

combine the specificity of [11C]PIB with the longer half-life of [18F]FDDNP, so the

amyloid-specific probe can be created at a separate location and shipped. A promising lead,

[18F]-THK523, also exists for in vivo imaging of neurofibrillary tangles, but has not yet been

human-tested [57].

NEW METHODS FOR MRI ANALYSIS

Both greater ventricular volume [58–61] and lower medial temporal lobe structure volumes,

especially of the hippocampus [60–65], predict cognitive decline and are associated with AD

and genetic risk for AD. However, manual segmentation of these structures is time-

consuming and is a limiting factor when a large study sample size is needed to obtain

reliable results. Methods for fully automatic segmentation of subcortical structures have

greatly improved in recent years. Large numbers of subjects can now be processed

accurately and quickly, with high reproducibility. This allows researchers to detect subtle

relationships more efficiently, while controlling for multiple confounds simultaneously. For

example, the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) project

recently analyzed hippocampal volume using automated methods in 21,000 subjects scanned

at over 20 sites worldwide [19]. This was the first study in history to identify new genetic

variants that influence hippocampal volumes; clearly, traditional manual tracing would not

have been feasible in such a sample size.

One new hippocampal segmentation method is a machine learning method based on

“adaptive boosting”, in which an automated method learns from expert manual tracings; it

can also learn from its mistakes. AdaBoost [66] is a meta-algorithm that combines weak

classifiers (those that do not perform perfectly on their own but perform better than chance)

such that regions with hippocampal segmentation errors receive more attention in

subsequent iterations. This method has been extended to segment hippocampi of large

numbers of AD and MCI patients automatically. The level of agreement between automated

segmentations and manual ones was similar to agreement between two expert trained raters

working independently. However, automated segmentation can be used to analyze hundreds

of scans in a few hours [67]. The segmentation of MRI data from large samples, such as the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, has led to detailed calculations

of sample sizes required to detect correlations between hippocampal structure, clinical

assessments, and CSF biomarkers [68]. Work is still underway to determine which

segmentation methods agree best with manual tracings. The ENIGMA consortium, which

performed the largest-ever hippocampal volume analysis, concluded that the most accurate

software depends on the dataset, but the methods correlate well with each other, as long as

some manual quality control is performed [19]. Shape-based morphometry studies have

attempted to evaluate measures of hippocampal structure more complex than volume, as

subregional measures may better distinguish diagnostic groups or predict imminent decline.

One study combined radial distance (the distance from the medial core of structure to each
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surface point) and multivariate tensor-based morphometry (mTBM; which uses spatial

derivatives of the deformation maps used to register each brain image to a template image)

[69] to study hippocampal structure in AD and MCI patients and normal controls [70]. This

combines complementary information from radial distance, which measures hippocampal

size in terms of the surface normal direction, and mTBM, which measures deformation

within surfaces, to identify differences in hippocampal and lateral ventricle structure that

relate to diagnosis (Fig. 2). Except for group differences between AD and MCI in the

hippocampus (where mTBM performed the best), these combined methods detected

diagnostic group differences at least as well as mTBM, TBM, or radial distance alone,

allowing statistically significant differences to be detected in smaller samples [70]. This may

be partly because TBM resolves more diffuse atrophy (such as in the temporal lobe as a

whole) more sensitively than smaller-scale changes (such as in the hippocampus) [71].

Other methods target the ventricular system. Ventricular enlargement is the most prominent

radiological marker of atrophy on brain MRI, albeit a relatively nonspecific one. Our

laboratory recently created and validated an automated three-dimensional surface-meshing

tool to automatically extract the lateral ventricles of the brain [72]. Previously, the

narrowness of the inferior and posterior horns made it difficult for a computer program to

label all regions of the ventricles consistently, but this new tool used surface models from

several manually traced images, and aligned them to a new scan using a warping algorithm.

By averaging several estimates of the segmentation, we obtained highly accurate and robust

results. Such an approach, termed multi-atlas segmentation, decreased segmentation error

and increased the statistical power to differentiate AD patients from controls [72]. When

used to map ventricular changes in the ADNI cohort, baseline ventricular morphology was

correlated with a cognitive decline over the following year, and was related to CSF Aβ42

levels [73]. This confirms earlier study findings that ventricular morphology is both AD-

relevant and predictive of clinical symptoms. Such information is invaluable in AD

prevention trials where an enriched sample is necessary to evaluate treatments using a

reasonable sample size.

STATISTICAL METHODS

Recent publications have provided useful guidelines for the most efficient use of resources

in future studies. By assessing changes in groups of subjects scanned longitudinally, several

studies have empirically determined the best methods for boosting statistical power, often by

calculating sample sizes needed to evaluate certain effects. For instance, in a large (n=

1,030) longitudinal TBM study, the ability to detect structural atrophy over time was

enhanced by summarizing changes in statistically defined regions of interest derived from a

training sample of 22 AD patients. Sample sizes needed to detect brain changes using the

best MRI analysis methods were far lower than those needed to detect cognitive change

using typical clinical tests [74]. In general, longer follow-up periods (such as 24 months)

increased the power to detect change. Even so, many subjects drop out of longitudinal

studies, so the added power of a long trial must be traded-off against the risk of losing too

many subjects. The attrition rate for ADNI is only around 7% per year, but, in simulations,

when more than 15–16% of subjects dropped out annually, a shorter time period (such as 12

months) provided more statistical power [75].

Braskie et al. Page 5

J Alzheimers Dis. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Cerebral glucose metabolism rate changes over one year are also easier to detect using

statistically-defined regions of interest derived from a training subsample of the data [76].

Even so, for a statistically-designed region of interest to be approved by the FDA as a

reasonable outcome measure in a clinical trial, some criteria would have to be determined to

identify it from a subset of the data. Given the power of statistical brain maps and the range

of methods to analyze them, detailed head-to-head comparisons with more standard

volumetric measures are needed [77]. In related work, our lab used a Support Vector

Machine algorithm to combine numerous types of biomarkers, including brain imaging, to

classify subjects as AD, MCI, or healthy elderly controls [78]. MRI measures best identified

AD subjects, but PET-FDG and CSF biomarkers (particularly Aβ42) better identified

subjects as having MCI. This work also showed that if those most likely to decline can be

identified, fewer subjects are required to detect a specific slowing of the atrophy rate over

time in response to a given treatment [78]. Finally, many studies combine multiple

biomarkers for predicting decline, but some of the biomarker data are often unavailable for

some of the subjects. For instance, in ADNI, only half the subjects had FDG-PET and still

fewer had amyloid imaging or lumbar puncture to assess CSF analytes. Sparse coding

methods, an innovation from mathematics, are being used to address the problem of missing

data in predictive models [79].

RISK FACTORS

Both genetic and environmental factors influence AD risk, and in recent years, many of

these factors have also been shown to influence brain structure and function in regions

relevant to AD. Numerous studies have demonstrated that possession of APOE4 is related to

brain differences in healthy and cognitively impaired older adults [80]. In recent years,

several GWAS have identified and confirmed new genetic risk factors for late onset AD [7–

9, 81, 82]. Some top AD polymorphisms have since been associated with differences in

brain structure [83] and function [84,85]. For instance, diffusion tensor imaging has shown

that the allele C in the clusterin (CLU) gene at rs11136000 is associated with lower white

matter integrity in healthy young adults in many regions affected in AD [11] (Fig. 3). At

least one copy of this adverse allele is carried by approximately 84% of non-demented

Caucasians [6], and the C allele increases the lifetime odds of AD by 1.14 in Caucasians [6].

This suggests a developmental vulnerability to AD in these young people. The CLU risk

allele has also been associated with differences in brain function, assessed using functional

MRI [84, 85]. Variants in other top AD-related genes such as PICALM, CR1, and BIN1 have

been associated with AD-relevant measures such as hippocampal volume or gray matter

density, entorhinal cortex thickness [86, 87]. Several new studies have also found that

maternal versus paternal (or no) family history of AD may affect brain structure in ways that

are important to AD risk [88–92]. Maternal family history may be useful to include in future

genetic studies of AD, and AD family history in general may be useful for selecting people

for clinical trials, especially when study efficiency relies on identifying those likely to

decline cognitively.

Most of the newly discovered AD risk genes increase a person’s aggregate risk only mildly

[6], so some tools aim to evaluate the effects of multiple genetic variants simultaneously. A

few studies have used polygenic scores to assess the cumulative effect of certain AD risk
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variants on brain structure. In these studies, each subject is assigned a score based on the

number of allele copies for certain previously identified risk variants, in some cases using

odd ratios to weight the importance of different genes. This allows researchers to assess

cumulative effects of several genetic risk factors on brain measures related to AD [86, 93].

In addition, several new tools are available that offer more flexibility for exploring genetic

risk than a single weighted value can provide. For instance, our lab created a tool that

allowed a genome-wide search for gene variants that are associated with brain structure [94].

This tool identified one gene variant, in the GRIN2B gene, that was associated with temporal

lobe volume in AD and MCI patients and healthy older controls (Fig. 3). The protein

encoded by GRIN2B is the N-methyl-D-aspartate (NMDA) glutamate receptor NR2B

subunit, which is important in learning and memory and is already a target for AD research

[94]. Another new tool allows for a voxelwise gene-wide association, which searches the

whole brain, point-by-point, for evidence of gene effects [95]. Each gene may contain

multiple SNPs, many of which may be highly correlated, so this method tests all SNPs in a

gene at once, reducing the number of tests performed, and thus increasing statistical power

to detect effects (as there is a less heavy correction for multiple comparisons).

Yet another tool tested genome-wide association at each voxel in the brain, studying only

the most associated variant at each voxel to reduce the number of multiple comparisons [96].

An additional new tool to emerge accepts input from the user as to which SNPs will be

evaluated, and controls for the effect of each SNP when evaluating each other SNP in the

input list [97]. One recent study used penalized linear discriminant analysis to first identify a

characteristic pattern of AD-related brain differences. We then used that imaging signature

as a biomarker in a genome-wide association, performed using sparse reduced-rank

regression, to identify genetic variants of interest [98]. Tools such as these help researchers

to evaluate how multiple genetic variants together increase AD risk. They can also identify

new genetic risk variants, bringing us closer to determining key mechanisms in the disease

process.

Several studies have revealed how environmental risk factors for AD, such as cardiovascular

risk, homocysteine levels, and insulin resistance affect brain structure and function in AD-

relevant ways. For instance, obesity and a commonly-carried risk gene for obesity (FTO)

(Fig. 3) have been linked to more atrophied brains and smaller hippocampi in older adults

[15, 17, 99–101]. Along with increased body mass, higher blood pressure has also been

associated with differences in functional brain patterns in AD-relevant regions during a

memory task [102], and blood cholesterol levels have been linked to hippocampal and other

brain gray matter volume [103, 104]. Higher systolic blood pressure has even been

associated with more amyloid deposition in AD-relevant brain regions in healthy older

adults [105]. High levels of homocysteine (a derivative of the amino acid methionine)

elevate risk for cardiovascular disease [106] and AD [107]. They have been linked to greater

white matter atrophy in a large sample of older adults, and in the patients with MCI alone

[18]. This effect may relate in part to a commonly-carried variant in the folate pathway gene,

MTHFR [108]. Using B vitamins to lower homocysteine levels may slow the rate of brain

atrophy in MCI patients [109]. Higher peripheral insulin is also associated with less AD-

related brain atrophy and dementia severity in early AD [110]; in cognitively intact older
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adults, insulin resistance was associated with hippocampal volume [111]. Finally, iron

homeostasis is important for healthy brain functioning, and its disruption may lead to

cognitive impairment [112]. Our laboratory found that levels of serum transferrin, a protein

that transports iron in the body, and a variant in the hemochromatotic HFE gene were both

associated with white matter integrity in young adults [13] (Fig. 3). Gaining a better

understanding of how environmental risk factors affect brain structure aids AD research in at

least three ways: 1) it provides focal points for treatment efforts, and a way to evaluate them

even before clinical decline is evident; 2) it helps identify those most likely to decline

cognitively, boosting statistical power for clinical trials; and 3) it uncovers possible factors

that should be controlled for when examining other genetic and environmental effects.

PREDICTING COGNITIVE DECLINE OR CONVERSION TO AD

The ability to predict who will decline cognitively or develop AD over time is crucial to AD

research. It provides a focus for treatment efforts, boosts power for clinical trials, and allows

for further investigation of genetic and environmental factors that contribute to AD before

clinical symptoms are evident and possibly before massive destruction of brain tissue has

taken place. Predictors of cognitive decline in cognitively normal older adults include MRI

measures of temporal and parietal structures [113] (particularly the CA1 of the hippocampus

and the subiculum [114]) and the lateral ventricles [115]. Information from both MRI and

CSF biomarkers was better for predicting cognitive decline than either measure alone [116].

Similarly, several other studies have found that multiple measures together best predict MCI

patient conversion to AD. These measures typically included baseline cognitive tests [117–

120], medial temporal lobe or hippocampal structure [117, 118, 120, 121], CSF biomarker

levels [118], and cerebral glucose metabolism rates as measured by PET [119, 121]. Of

studies that focused on individual biomarkers rather than combinations of them, two found

that certain baseline MRI measures (medial temporal cortex or a structural abnormality

score that reflect the degree of AD-like features) predict MCI conversion to AD somewhat

better than CSF biomarker levels do [122, 123]. In fact, atrophy in a number of AD-related

regions (such as the temporal and frontal lobes, temporoparietal cortex, anterior and

posterior cingulate, and the precuneus) has been found to be greater in MCI patients who

convert to AD within 3 years versus those who do not [124]. Other studies found that a

smaller CA1 of the hippocampus or subiculum [125] and lower baseline right caudate

volumes [126] were associated with increased conversion from MCI to AD. One study

found that for those with moderate MCI, although hippocampal and ventricular volume

predicted conversion to AD, baseline cognitive testing predicted it better [61]. Because brain

structure typically changes before cognitive ability [12], the same study performed earlier

before cognitive changes were evident may have shown different results.

DISEASE PROGRESSION

Understanding the progression of AD beginning in its presymptomatic phases is an essential

goal for AD research for at least three reasons. First, determining in what order measurable

biomarkers change helps clarify which factors help cause the disease and which may be

incidental. Second, identifying the earliest biomarkers of change can be used to focus

treatment efforts on those who do not yet have massive loss of brain tissue. Third, gaining a
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better understanding of the disease progression provides insight into the effects of treatment

efforts or lifestyle factors at each disease stage. Several recent papers have used multiple

types of biomarkers to assess the sequence of changes in early MCI and AD. In one study of

amnestic MCI patients, hippocampal atrophy led to atrophy of the cingulum bundle and

uncinate fasciculus, which was followed by glucose hypometabolism of the cingulate and

subgenual cortices [127]. Another study assessed longitudinal amyloid deposition (using

PIB PET scans) and ventricular expansion (using MRI) over 1 year. Ventricular expansion

rates increased with worsening diagnosis and correlated with cognitive test scores, but

amyloid deposition rates were similar among diagnostic groups. This suggests that amyloid

deposition occurs at a constant slow rate, and that clinical symptoms relate to

neurodegeneration rather than to amyloid deposition [38]. Other researchers found that low

levels of CSF Aβ42 was correlated with brain and hippocampal atrophy rates and with the

rate of ventricular expansion in cognitively normal older adults [128], demonstrating that the

change in CSF Aβ42 precedes and can predict brain atrophy, even before AD symptoms are

evident. Cross-sectionally, CSF Aβ42 correlated with whole brain volumes in nondemented

subjects, but in AD, CSF tau and phosphorylated tau were higher in those with smaller

brains; this suggests that Aβ toxicity may precede both clinical symptoms and changes in tau

[129]. Other longitudinal studies focused on one imaging modality. Research showed that

three years before an AD diagnosis, amnestic MCI patients showed brain loss largely in the

medial temporal lobe (particularly anterior hippocampus, entorhinal cortex, and amygdala)

compared with controls. By one year prior to diagnosis, this atrophy had spread to include

the middle temporal gyrus and more posterior medial temporal lobe, as well as parts of the

parietal lobe. By the time the patients progressed to AD, the temporal and parietal atrophy

was more severe, and substantial frontal lobe atrophy had occurred as well [130]. This

spread of atrophy roughly mirrors the pattern of neurofibrillary tangle progression noted by

others [131], and is evidenced in cross-sectional research in which the temporal and parietal

cortices, which are affected earlier [132], are also more severely atrophied compared with

other cortical regions in AD versus MCI [133]. In MCI and AD patients, increased

hippocampal volume loss rates over a one-year period were associated with lower CSF Aβ42

[134], and the atrophy rates increased with worsening diagnosis and cognitive decline [135].

Similarly, temporal lobe atrophy rates in MCI were associated with greater cognitive decline

[136], and AD patients with higher CSF phosphorylated tau/Aβ42 ratios also had faster

atrophy rates [136]. Others have found that hippocampal volumes are smaller in those with

amnestic versus multi-domain MCI [137], and are good predictors of clinical diagnosis

[138]. Together, these findings suggest that temporal lobe and hippocampal atrophy are

excellent biomarkers for clinical and pathological aspects of AD, and that such atrophy may

be an early sign of AD processes in asymptomatic older adults. In AD and MCI, it may

serve as the most sensitive outcome measure for clinical trials [139].

Familial early onset AD (FAD), caused by rare autosomal dominant genetic mutations, also

has offered insights into disease progression in recent years. The benefit of such studiesis

that it is possible to determine, even in asymptomatic adults, who will develop AD, and

approximately when. This precludes the need for lengthy prospective or retrospective

studies to examine presymptomatic AD brain changes. Additionally, smaller initial sample

sizes can be used because all of the mutation carriers will eventually develop AD as opposed
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to a much smaller fraction of older adults who are simply “at-risk” for AD based on

environmental or genetic risk factors. Approximately 5.5 years prior to AD diagnosis,

presymptomatic FAD mutation carriers had greater hippocampal atrophy rates than non-

carriers, and smaller baseline hippocampi 3 years before diagnosis [140]. Additionally, FAD

mutation carriers had lower white matter integrity in the columns of the fornix, even

presymptomatically [141]. It is unclear to what extent FAD brain changes serve as a good

model for late-onset AD, presymptomatically or otherwise. Expansion of such research to

directly compare the two will be useful, because it may facilitate better treatments for those

who are presymptomatic. It may also offer insights into general AD triggers and features of

disease progression regardless of the specific genetic risk.

CONCLUSION

Improvements in brain scans and the toolstoanalyze them offer a wealth of opportunity in

the field of AD research, allowing high-throughput analyses and new insights into disease

processes. These developments have led to rapid discoveries regarding disease risk factors,

how to predict AD onset, and how to monitor its progression. Such insights are essential for

planning future studies as they identify sensitive biomarkers that most reliably reflect

disease processes, allowing for more focused treatment and prevention efforts with the

greatest statistical power to detect their effects.
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Fig. 1.
Spread of AD pathology mapped with PET. By regressing cortical measures of [18F]FDDNP

signal (DVR) against cognitive scores in cross sectional data, we computed the pattern of

pathology for subjects who were certain numbers of standard deviations above and below

the norm for cognitive performance. Red indicates where greater predicted [18F]FDDNP

signal was associated with poorer cognition based on a nonlinear spatially-varying model.

Adapted from Braskie et al. [31] with permission from the authors and publishers.

Braskie et al. Page 21

J Alzheimers Dis. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Mapping hippocampal correlates of tau proteins in the CSF. Here 3D maps show where

alterations of hippocampal shape relate to levels of tau protein, measured in the CSF using

lumbar puncture. To create these maps, we use a method called ‘multivariate tensor-based

morphometry’ (mTBM; top row), as well as other methods to assess surface morphometry:

radial distance maps (middle row) and standard TBM (bottom row). Non-blue colors show

vertices with statistical differences, at the 0.05 level, uncorrected. Relationships were

detected most sensitively with mTBM. Clearly, advanced mathematical methods can boost

power to pick up associations between brain and CSF biomarkers, offering more detail than

traditional measures of hippocampal volume. Adapted from Wang et al. [70] with

permission of the authors and publishers.
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Fig. 3.
Commonly carried genes associated with brain atrophy on MRI and brain integrity on

diffusion tensor imaging. Highlighted voxels in each panel represent p-values indicating the

relationship between a genetic variant and a brain feature. A) The AD risk allele C at

rs11136000 in the CLU gene was associated with lower diffusion tensor imaging fractional

anisotropy (FA), a measure of white matter integrity, in healthy young adults [11]. B)

rs10845840 in the GRIN2B glutamate receptor gene—important in learning and memory—is

associated with medial temporal lobe structure in MCI patients [94]. C) The H63D

polymorphism in the HFE gene was associated with white matter FA in healthy young

adults [13]. D) Regional brain tissue volumes in healthy older adults was lower in those who

carried the obesity-associated allele of rs3751812 in the FTO gene [99], in line with prior

work showing higher brain atrophy in more obese people. Figures are adapted from the

referenced publications with the permission of the authors and publishers.
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