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Abstract: Inflammatory diseases are some of the most common diseases in different parts of the
world. So far, most attention has been paid to the role of environmental factors in the inflammatory
process. The diagnosis of inflammatory changes is an important goal for the timely diagnosis and
treatment of various metastatic, autoimmune, and infectious diseases. Graphene quantum dots
(GQDs) can be used for the diagnosis of inflammation due to their excellent properties, such as
high biocompatibility, low toxicity, high stability, and specific surface area. Additionally, surface-
enhanced Raman spectroscopy (SERS) allows the very sensitive structural detection of analytes at low
concentrations by amplifying electromagnetic fields generated by the excitation of localized surface
plasmons. In recent years, the use of graphene quantum dots amplified by SERS has increased for the
diagnosis of inflammation. The known advantages of graphene quantum dots SERS include non-
destructive analysis methods, sensitivity and specificity, and the generation of narrow spectral bands
characteristic of the molecular components present, which have led to their increased application. In
this article, we review recent advances in the diagnosis of inflammation using graphene quantum
dots and their improved detection of SERS. In this review study, the graphene quantum dots synthesis
method, bioactivation method, inflammatory biomarkers, plasma synthesis of GQDs and SERS GQD
are investigated. Finally, the detection mechanisms of SERS and the detection of inflammation
are presented.

Keywords: inflammatory; graphene quantum dots; SERS; detection

1. Introduction

When tissue is damaged by bacteria, trauma, chemicals, heat, or other phenomena,
several substances are released from the damaged tissue that cause very serious secondary
changes in the tissue. This series of tissue changes is called inflammation. Inflammation
is basically a protective response that fights the cause of cellular damage (e.g., germs
or toxins) and the consequences of that damage, i.e., necrotic cells and tissues [1–4]. In-
flammation causes hypersensitivity reactions to insect bites, drugs, and toxins, as well
as some chronic diseases, such as rheumatoid arthritis, atherosclerosis, and pulmonary
fibrosis [5–8]. Inflammation is a complex process that begins with tissue damage caused
by endogenous factors, such as tissue necrosis and bone fractures, or exogenous factors,
such as mechanical, physical, biological damage (like infection with microorganisms or
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immunological responses, such as hypersensitivity reactions), and is accompanied by the
invasion of inflammatory cells into the inflamed area [9,10]. Graphene quantum dots are
a new generation of quantum dot structures. This new generation of carbon compounds
contains a large number of functional groups and is synthesised in very small dimensions
that exhibit a variety of other properties of carbon-based materials. Graphene quantum dots
generally have a sheet structure of less than 10 nm in size and have received much attention
in recent years due to their unique chemical and physical properties [11,12]. Compared
with semiconductor quantum dots, graphene quantum dots are characterised by high water
solubility, good photoluminescence properties, biocompatibility, optimal accessibility, easy
surface functionalization, high stability, and low toxicity [13,14]. Thus, GQDs effectively
reduce hyperinflammation by regulating immune cells, suggesting that they can be used as
promising diagnostic agents to diagnose inflammation [15,16]. Surface-enhanced Raman
spectroscopy (SERS) has also attracted great interest in various fields, such as medicine
and analytical chemistry, due to its unique properties—sensitivity to single molecules on
the surface, multiplexing potential, and fingerprinting capabilities [17–20]. One of the
most important substrates of SERS, which includes quantum dots, has a wide range of
applications in inflammation diagnosis, biological and chemical imaging, and labelling due
to the plasmonic resonance properties of the surface-dependent local area, the chemical
richness of the core-shell, and the compatible size [21–25]. In addition, graphene quantum
dots also serve as a building block for an atomically flat SERS substrate, in which a much
more uniform Raman signal can be obtained [26–28]. Graphene quantum dots (GQDs)
have more accessible edges and larger specific surface areas than conventional graphene
sheets, resulting in more efficient adsorption of target molecules [29–31].

This review study aims to explore recent advances in inflammation diagnostics using
graphene quantum dots to improve the detection of SERS and highlight future areas of
work in this field. In addition, the graphene quantum dots, bioactivation method, GQD
synthesis method, inflammation biomarkers, plasma synthesis of GQDs, and SERS GQD
were investigated. In addition, the detection methods of SERS and the detection of pro-
inflammatory substances were evaluated.

2. Graphene Quantum Dot

Graphene quantum dots have attracted the attention of many researchers due to the
crystalline structure of a single or a small amount of crushed graphene. These nanopar-
ticles are a small lattice structure of honeycombs of carbon atoms that are less than 10
nanometers in size. Graphene quantum dots (GQDs) are, by definition, a type of quantum
dot material with a graphene-derived property and carbon dots that can be placed in the
form of very small graphene pieces (Figure 1). The carbon dots exhibit strong optical
absorption in the UV region (260–320 nm) with an extended sequence in the visible and
infrared regions. In addition, GQDs are semiconductor quantum dots with excellent light
stability, biocompatibility and low toxicity, good electron mobility and good chemical sta-
bility, small size, electrochemical luminescence, photocatalyst capabilities, and are suitable
for the fabrication of multiple sensors and bioimaging [32–36]. GQDs are less toxic than
graphene oxides and have no obvious toxicity in the body, so GQDs have attracted much
attention in biological applications, especially in the field of biopharmaceuticals [37,38].
Numerous groups have explored recent advances in graphene quantum dots for the con-
struction of various sensors, including electron sensors, photoluminescence sensors (PL),
electrochemical sensors, electrochemical luminescence sensors, PL-based high-conversion
sensors, and surface-enhanced Raman spectroscopy (SERS) [39–42]. GQDs have become a
prominent substance for the design of SERS due to their outstanding properties and model
assumptions, such as high electron transfer rate, higher biomolecule loading, fast trans-
duction, larger surface areas, easy surface functionalization, and inimitable electrocatalytic
properties. These GQD enhanced SERS have been utilised for the detection of nucleic acids,
amino acids, bioflavonoids, vitamins, small molecules, biomarkers, and heavy metal ions
with remarkable properties [43].
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2.1. Method of Synthesis GQD

Graphene quantum dots are synthesized to optimize the size of quantum dots by two
methods: top-down and bottom-up (Figure 2). In the top-down method, bulky carbon,
graphite, and graphene materials are converted into graphene quantum dots, while in the
bottom-up method, organic molecules are used as the carbon source. The disadvantages of
the top-down method are the difficulties in controlling the size distribution and morphology
of the produced particles. In contrast, the properties of the produced nanoparticles can be
well controlled by the bottom-up method. In general, the optical properties of graphene
nanodots depend on the size and the effect of quantum confinement, which changes the
density and the nature of sp2 sites. Therefore, the energy of these nanoparticles changes
with the size of the gap [44–47]. Functionalizing the surface and doping the GQDs with
other elements are other possible strategies to change these energy gaps while increasing the
photoluminescence quantum yield (PLQY) of the GQDs by suppressing the emitting traps.
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In the top-down method, coal, which is considered the cheapest and easiest material to
cleave compared to the other available materials, is exfoliated to form GQDs. For example,
Ye et al. first sonicated coal in a mixture of concentrated sulfuric acid and nitrile acid
for 2 h before heat-treating the mixture in an oil bath at 100–120 ◦C for 24 h to produce
GQDs [48]. Yan et al. succeeded in controlling the band gap of the coal-derived GQDs using
a surface functionalization technique. In the typical procedure, the coal-derived GQDs were
mixed in a toluene solution with various organic compounds (e.g., o-phenylenediamine,
2,3-diaminonaphthalene, 1,8-diaminonaphthalene, 1,1′-bi(2-naphthylamine), p-anisidine, 4-
(trifluoromethoxy)-aniline, or 4-(trichloromethoxy)-aniline) and then solvothermally treated
at 180 ◦C for 12 h to systematically adjust the band gap of the GQDs [49]. Since there are
many concerns about the use of strong concentrated acids, Shin et al. prepared GQDs from
various natural carbon sources using an acid-free oxone oxidant-assisted solvothermal
technique [50]. Another acid-free strategy based on the ultrasonic irradiation of a mixture
of anthracite charcoal and N, N-dimethylformamide (DMF) was used by Zhang et al. to
prepare GQDs [51]. Since most of the feedstocks used are non-renewable sources and
sometimes special chemicals are required to obtain GQDs with tunable emissions, and since
high temperatures and long reaction times are also required, the feasibility of the top-down
method is significantly hindered, especially when addressing the current problem of global
energy limitations.

In contrast, the bottom-up method uses polycyclic aromatic compounds or other
molecules with an aromatic structure, such as fluorene [25,52–55]. Table 1 shows the charac-
teristics of the top-down and bottom-up methods in the synthesis of GQDs. However, the
toxicity of these aromatic precursors may have a negative impact on the environment and
is therefore considered unsuitable for large-scale production. For this reason, many efforts
have been made to utilize naturally available biomasses as the main starting materials
for the synthesis of GQDs. Citric acid, as one of the most commonly used biomasses, can
be pyrolyzed directly at 200 ◦C to obtain blue-emitting GQDs [56]. Nitrogen-containing
molecules can be used, together with citric acid, to prepare readily nitrogen-doped GQDs
(NGQDs). Wu et al. synthesized blue-emitting NGQDs with a PLQY of 36.5% from a
mixture of citric acid and dicyandiamide using a hydrothermal technique at 180 ◦C for
3 h [57]. Recently, biomass waste has attracted much attention due to its low cost, renewable
and environmentally friendly properties. Kumar et al. reported a one-step preparation of
NGQDs from chitosan using a chemical vapor deposition (CVD) system at 250–300 ◦C [58].
To avoid the use of high temperatures, Chiang’s group used microplasma technologies to
synthesize colloidal NGQDs with a PLQY of 30% from chitosan at ambient conditions [59].
Various strategies involving plasma flow, reaction time, and the type of acid used to dis-
solve chitosan were employed to control the functionalities and thus the energy gap of
the resulting NGQDs [59,60]. Another promising biomass waste as a GQD precursor is
lignin, which consists of phenyl skeletons and oxygenated branches [61]. Unlike simple
structures, such as citric acid and glucose, both chitosan and lignin are biopolymers with
complex structures, so the synthesis mechanism could involve a combination of top-down
and bottom-up processes. The underlying mechanism is thought to consist of two main
steps. These include the decomposition of long-chain structures into smaller units, the
subsequent refusion into a nanograph domain, and the growth of GQDs [61,62]. Overall,
the possibilities of the bottom-up method to utilize biomass derivatives as GQDs precursors
have gained much interest nowadays, in order to realize a more sustainable, green, and
eco-friendly approach to synthesize GQDs with unique properties and controlled structures
to be usable for many applications.
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Table 1. Characteristics of top-down and bottom-up methods in the synthesis of GQDs.

Subgroup Initial Material Size (nm) Quantum Efficiency Ref.

To
p-

do
w

n

Acid oxidation Carbon black 15 44.5 [63]
Hydrothermal Graphene oxide 5–13 5 [64]
Solvothermal Graphene oxide 3–5 1.6 [65]
Microwave Graphene oxide 2–7 8 [66]

Ultrasound waves Graphene 3–5 - [54]
Electrochemical Graphite 5–10 - [67]

Bo
tt

om
-u

p Pyrolysis of the precursor Glucose 1.65–21 - [68]
Catalytic opening of

the cage Fullerene 60 2.7–10 15–30 [46]

Pyrolysis Hexa benzo
chromen ~60 - [69]

2.2. Plasma Synthesis of GQDs

Plasma synthesis is considered one of the most popular gas-phase methods for the
preparation of various GQDs, especially those with covalent bonding [70–72]. For example,
QDs of germanium (Ge) and silicon (Si) have been synthesized using a conventional non-
thermal plasma. In non-thermal plasma, factors, such as shape, surface area, quantum dot
composition and size, can be controlled [73,74]. Plasma synthesis achieves doping, which
is a major challenge for QDs [75–77]. GQDs synthesized by plasma usually take the form
of powder, which can lead to surface modification. This can lead to excellent dispersion of
QDs in water [78] or organic solvents [79] (i.e., colloidal quantum dots).

2.3. Method of Bioactivation
2.3.1. Bioactive Carbon Sources

The development of bioactive materials for biomedical applications, such as inflamma-
tion therapy, is desirable if it is compatible with detectable properties and integrates efficient
differentiation into biocompatible procedures. It has been possible to fabricate bioactive
carbon dots (CD) with a size of about 4 nm, which have low toxicity, interesting safety
responses, and unique photophysical properties. Bioactive CDs were prepared by a novel
one-step hydrothermal method from aspirin and adenosine [80–83]. Multipurpose CDs
are designed and fabricated using a bottom-up synthesis strategy to further manipulate
chemical compounds and physical properties by introducing complex bioactive precursors,
including nucleic acids, proteins, and small molecules. These bioactive CDs have different
pharmacological activity from conventional citric acid-based CDs to expand their potential
applications against pathogens and cancer [84,85].

2.3.2. Biomass-Waste Derived GQD

Due to increasing customer demand, energy crisis and environmental degradation,
scientists are looking for cost-effective, environmentally friendly, and easy ways to produce
new advanced materials from renewable sources. Recently, graphene quantum dots (GQDs)
have attracted much attention compared to other investigated materials, such as carbon-
based nanomaterials, due to their attractive properties, such as low toxicity, long lifetime,
high conductivity, good biocompatibility, and large surface area. Therefore, the properties
of biomass waste-derived GQDs have been modified by adding surface inactivating agents
and various functional groups through surface processing [31,86]. Kalita et al. investigated
the modification of GQDs by amine functionalization to enhance the quantum efficiency of
rice grain-derived GQDs. The results showed that the quantum efficiency was improved by
125% after amine functionalization, which was attributed to the superior electron donating
ability of amine groups [31,86]. Table 2 shows the synthesis of GQD from different types of
biomass waste. Figure 3a,b show GQDs obtained from biowaste and different approaches
to convert biowaste into GQDs, with a description of their use as energy sources.
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Table 2. Synthesis of GQDs from different types of biomass-waste.

Precursor Product Preparation Approach Size (nm) Ref.

Rice grains GQDs Pyrolysis 2–6.5 [87]

Fenugreek leaf extract GQDs Pyrolysis and
hydrothermal treatment 3–10 [88]

Wood charcoal GQDs Electrochemical oxidation 3–6 [89]

Neem leaves GQDs,
Am-GQDs

Pyrolysis and
hydrothermal treatments 5–6 [90]

Coffee grounds GQDs,
PEIGQDs Hydrothermal treatment 1.88 (GQDs)

2.67 (PEIGQDs) [91]
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2.3.3. Biologically Active Agents

Bioactive agents are factors that affect a living organ, cell, or tissue. They may be
bioactive compounds, vitamins, drugs, phytochemicals, or enzymes. Bioactive agents
used in biomedical devices and drugs can be contained in polymers [92]. The loading of
bioactive agents in drug delivery systems is carried out by enzymatically reacting polymers
and the cleavage of these agents by the target enzymes. The release of the therapeutic cargo
occurs through the activation of the bioactive agents [93].

3. SERS GQD

The frequency of the Raman peak of a phonon can be related to the chemical composi-
tion, the internal stress or surface state, and the shape and size of the GQD. Applications
of Raman spectroscopy include the multiplexed detection of biomarkers from various
compounds, controlling the synthesis of GQDs, studying vibrational properties associated
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with relaxation mechanisms, and analysing GQDs. For example, Raman spectra are asso-
ciated with different concentrations of alloying constituents for alloyed GQDs, and this
spectrum is also used to indicate the formation of quantum dots [94,95]. Therefore, the use
of surface-enhanced Raman spectroscopy (SERS) is possible when the Raman intensity is
undetectable and very low, such as the deposition of nanoparticles on a metal film, such as
Ag, Al, or Au; these films have surface plasmon states with very limited electromagnetic
fields that support emission and light absorption at the interface between air and metal.
SERS also has applications from vibrational spectroscopy or photochemical studies [96] to
the single emitter level [97,98], such as the detection of bacteria or impurities, and chemical
analysis. Since different fabrication methods and many substrates have been proposed,
it can be said that in the search for efficient and cheap metal substrates, SERS is a very
active field. Examples are the gold nanoparticles recently obtained by the femtosecond
exposure of a gold film [99], the strips of vertical or horizontal gold nanorods [100], the
dual pyramidal gold nanoparticles [101], or the growth of silver nanoparticles on Si by
the alternative method [100]. Hot spots occur when the key element is the presence of
sharp points or dents on the surface of the metal substrate, where plasmonic states can be
strongly confined. Hot spots are also crucial for future plasmonic applications in photo-
chemistry or photovoltaics [96]. Some works have applied SERS to GQDs made of different
materials: SnO2 [102], Si [103], CdS [104], PbS [105], or CdSe [106–108]. Thus, SERS is
used as a promising technique for GQD detection; biomarker detection; in situ tracking
of nanoparticle surface chemical properties, such as oxidation; and nanoparticle impact
detection [26,103,105]. SERS in GQDs can be very useful because the material is not only
environmentally friendly and compatible with the SERS mechanism but also has a large
specific surface area, biocompatibility, and high chemical stability [109], which supports
the improvement process of the mechanism for the improved detection of GQDs SERS.
Although previous work SERS has reported GQDs in solid form, compared to GQDs in
solution-based formats, it may require a complex process to use GQDs in solid form for
other SERS applications. In addition, solution-based GQDs can be synthesized by a top-
down approach, such as an electrochemical method that provides the ability to obtain
SERS of GQDs in solution. This method uses the electric field as a mechanism to support
the enhanced SERS detection of GQDs in the chemical mechanism (CM) to initiate the
contact process of molecules and chemical reactions [110]. A schematic representation of
the mechanism of SERS GQDs for analyte detection can be found in Figure 4. Graphene and
other 2D materials have been developed for use as Raman enhancement substrates. This is
due to their unique single sheet of carbon atoms in a 2D honeycomb crystal structure of
electrons and phonons with one 2pz orbital of each sp2 hybridized carbon atom constituting
a large, delocalized bond, forming an ideal flat surface and strong chemical interaction with
many organic molecules [111]. As a SERS platform, graphene thus enables the independent
investigation of the chemical enhancement mechanism (CM). Graphene may boost the
Raman signals of molecules that have been adsorbed, and these substrates have shown
to be promising for the detection of micro- and trace species. This impact was identified
for the first time in 2010 by Ling et al. [112]. When graphene is treated with organic sol-
vents, several “emerging bands” form on mechanically exfoliated graphene [113]. These
“emerging bands” are scattered among the unidentified organic compounds included in
the transparent tape used for graphene exfoliation. Graphene has a Raman amplification
effect on trace residues. GQDs SERS is useful for both the fundamental investigations
of SERS phenomena and several practical applications because of the graphene matrix’s
significant benefits, such as homogeneity, repeatability, cleanliness, and low detection limit
for aromatherapy dyes. Graphene makes SERS applications of Raman-enhanced substrates
more quantitatively controlled.
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and Raman experiments. Reprinted with permission from [112], Copyright © 2010, American
Chemical Society.

4. Detection Mechanisms of SERS

Since the discovery of SERS, several mechanisms have been proposed, but only two
are widely accepted today: the electromagnetic theory (EM) and the chemical amplification
theory (CE). The EM theory is more dominant because it can amplify the Raman signal up
to ten thousand times. While CE amplifies the Raman signal up to 100 times. In the EM
model, the laser interacts with the metal surface. As a result of this interaction, dissolved
surface plasmons are stimulated, which amplify the field near the surface. In the CE
theory, the electron states of the adsorbent change due to chemical adsorption. In the SERS
phenomenon, both factors occur simultaneously, which is why the Raman signal can be
amplified to such an extent. In general, surface-enhanced Raman spectroscopy is very
similar to Raman resonance spectroscopy. The difference being that the resonances present
are not exclusively of the intramolecular type. Surface-enhanced Raman spectroscopy or
SERS is also a method of Raman spectroscopy that has very high sensitivity in deciphering
materials [115–117]. This method has numerous applications in medical science. Since
it does not damage natural tissues, it does not require sample preparation and is very
rapid. Therefore, this method is used to detect proteins in body fluids. It is also used for
diagnosis and treatment of tumours and cancer, the treatment of neurological diseases,
the detection of COVID-19, and the detection of coronavirus RNA. This technology for
detecting urea and label-free plasma in human serum can be useful in cancer screening.
SERS can be used for drugs, forensics, the detection of drugs and explosives, the study of
redox processes at the single molecule level, the quantitative analysis of small molecules
in human biological fluids, the quantitative detection of biomolecular interactions and
more. In a tumour testing, the tumour is grown in vitro. In reality, the test is performed on
living tissue (these tests are called in vivo tests). SERS can be used to detect low molecular
weight biomolecules (Figure 5) [118–121]. Moreover, the mechanism of SERS detection
in the efficiency of GQDs due to surface factorization and heteroatomic doping has been
discussed in few studies. Therefore, in the near future, in-depth studies on these topics,
which open a new window to developing highly effective improved GQDs SERS, will help
scientists and researchers to understand the inflammatory diagnosis of GQDs. Finally,
low-cost industrial production is urgently needed to develop and expand these approaches
in the near future. To diagnose the inflammation and interior of GQDs and control the
macroscopic properties of GQDs, one must be able to produce GQDs by controlling their
size as much as possible [122].
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5. Inflammatory Biomarkers

The term biomarker was first used by the National Institutes of Health in the United
States in 1980 [123]. Biomarkers are a new method in medicine in which these markers mea-
sure specific indicators and examine routine biological processes, pathological processes, or
pharmacological responses through therapeutic or health mediators. Specific RNA/DNA
gene sequences, antibody determinations, and organic metabolite measurements are also
identified [124–126]. For example, blood pressure is a biomarker for stroke risk and glu-
cose levels are a biomarker for patients with diabetes; cholesterol levels are also used to
determine cardiovascular disease risk [127]. For the nervous system, muscle, blood, nerve,
cerebrospinal fluid, skin, and urine have been used to extract information from the brain
in healthy and unhealthy states. These tools and technologies directly measure biological
factors (such as blood or CSF) or they work together with brain imaging to measure changes
in the composition, function, and structure of the nervous system. Biomarkers are classified
according to the sequence of events from “exposure” to “disease”. Biomarker “exposure”
is used to predict hazards and to establish a link between external exposures and internal
dosimetry. Disease biomarkers are used for the screening, identification, and monitoring of
disease progression [128–130]. In addition, these biomarkers can be used to refine drugs
to improve therapeutic outcome and health [127]. A good biomarker must be more than
80% specific and have an equally high sensitivity (above 80). The role of biomarkers is not
only identification, but they also have the potential to be predictive or play a role in the
development of new therapies [131]. Plasma biomarkers are divided into pro-inflammatory
biomarkers that include the following subgroups [132]:

5.1. C-Reactive Protein and Cytokines

C-reactive protein (CPR) is a protein involved in host safety and is mainly released by
adipose tissue and liver in response to inflammatory stress. On the other hand, its reaction
with the crystallisable receptor fragment leads to the production of pre-inflammatory
cytokines. According to studies, CRP levels increase in patients with migraines and in
women who suffer migraines with aura [132–134]. Cytokines are small proteins that are
released by the stimulating neuropeptides involved in migraines. Therefore, their serum
levels increase during migraine attacks, for example [132]: Tumour necrosis factor alpha
(TNF-α), as a proinflammatory cytokine, plays a key role in the regulation of immune cells;
it is also involved in clot formation, cell proliferation, apoptosis, lipid metabolism, and
increases in plasma after migraine attacks. Transforming growth factor beta 1 (TGF-β1), a
proinflammatory cytokine, also has several functions. This type of cytokine not only plays
an important role in immune system function and blood vessel formation, but also causes
motility, apoptosis, cell growth control, and differentiation [132,134,135]. TGF-β1 levels
are increased in migraine patients compared to controls [133], but there is no difference
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between levels in aura and without aura. Fatigue and lack of energy during migraines are
due to increased TGF-β1 levels [136]. Figure 6 shows a schematic of C-reactive proteins and
cytokines, the functional pathways of CRP. As a result of cytokines, such as IL6 and IL1*,
hepatic CRP expression increases significantly. CRP circulates, opsonizing bacteria and
apoptotic cells so they can be cleared through the complement system. Immunomodulatory
cytokines, such as IL10, may be released by phagocytic cells in response to CRP ligation.
Studies have found that plasma CRP deposited onto inflamed tissue breaks down into
biologically active monomeric subunits, which can be credited with proinflammatory effects.
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5.2. Adiponectin and Lipids

Adiponectin is released from adipose tissue and is an anti-inflammatory cytokine, like
IL-10, that inhibits the expression of pre-inflammatory cytokines. It plays an important
role in regulating glucose homeostasis and other metabolic processes and is associated
with obesity and BMI [132,133]. Research shows that lipids are associated with high
cholesterol and migraine. In addition to total cholesterol, there is evidence that people
with migraine have further increases in lipid subtypes, such as low-density lipoprotein
cholesterol, oxidised LDL-c, triglycerides, and also a decrease in the anti-inflammatory
high-density lipoprotein cholesterol [132,137]. Figure 7 shows the main processes by which
adiponectin maintains metabolic homeostasis.
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5.3. Raman Spectrum of the Inflammatory Biomarkers

Recently, biomarker detection based on Raman spectrum technology has been widely
and comprehensively developed. Raman spectrum technology has attracted more attention
with the rapid development of nanotechnology. Raman spectrum technology plays an
important diagnostic role from organelle functionality, inflammation detection, and virus
detection to cell activity detection. However, there are still many challenges in the develop-
ment of Raman spectrum technology [138,139]. Monitoring different types of inflammation
in the early stages by in vitro diagnosis is vital. For early detection and prognosis of inflam-
mation, biomarkers, such as proteins, miRNAs, DNAs, and other biomolecules, must be
evaluated [140,141]. The specificity and sensitivity of the Raman spectrum make it possible
to accurately detect related physiological analytes in complex biological fluids. To detect
inflammatory biomarkers, the Raman spectrum is linked to relevant detection molecules
(such as antibodies and aptamers) to allow specific targets to be measured with Raman
signals [142,143].

6. Detection of Inflammatory

The immune system is involved in the development of a variety of diseases [144–146]. The
regulation of immune responses by direct tissue imaging in diseases, such as atherosclero-
sis [147], rheumatoid arthritis [148], malaria [149], and stroke [150], is due to the increasing
interest in understanding the molecular and cellular interactions of the pathway. A num-
ber of intravital microscopy techniques have been used to study these interactions. For
example, the two-photon fluorescence microscope (TPM) has become the method of choice
for stimulating fluorophores deep within tissues due to its unique ability to produce light
in the near-infrared range. However, successful imaging is limited to depths of a few
hundred micrometres [151]. In addition, fluorescence imaging produces a broad emission
spectrum [152] that often leads to photobleaching [153], as this imaging generally suffers
from poor discrimination between specific fluorophores and background autofluorescence
beyond a small optical window [154]. One way to enhance the Raman signal is to use
the SERS method. This method involves vibrational spectroscopy in which molecules
are adsorbed onto a metal surface with a nano-sized surface area. SERS-activated GQDs
were encoded with a unique Raman signal that was monitored under a wide range of
excitations and conditions. GQDs containing active Raman molecules were conjugated
with specific monoclonal antibodies against intercellular adhesion molecule 1 (ICAM-1) to
detect early-stage inflammation. The non-invasive measurement of ICAM-1 expression by
SERS is possible in vivo with double the sensitivity of double photon fluorescence [155].
Therefore, a new approach for the diagnosis of inflammation in vivo using GQDs SERS
was considered. Using a metal surface to enhance Raman scattering from molecules located
near or attached to the surface results in vibrational spectroscopy called SERS. A wide range
of different surfaces and metals can be used to achieve this goal. GQDs, however, offer
a great format. By binding molecules with a unique and strong Raman spectrum, called
Raman reporters, to GQDs and encapsulating them in a silicon-containing shell, GQDs with
improved SERS are produced. The Raman reporter molecules are protected by a silica shell
that acts as a coating and gives the GQD a unique and strong SERS signal [156,157]. In vivo
imaging of SERS-enriched GQDs has also been used to monitor inflammation and reuse.
Although this is not a disease process, it is still important as any changes may indicate
infection and non-hidden disease states Figure 8 [155].
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7. Perspectives

The multiple applications of Raman and the significant improvement of GQDs SERS
for the diagnosis of inflammatory diseases are direct consequences of the numerous ad-
vantages they offer. Unlike their fluorescent counterparts, they produce specific, sharp
molecular spectra that give these techniques immediate and easy access to multiple ways of
diagnosing disease. In addition, there is the possibility of combined Raman and SERS imag-
ing of tissues and cells, so that biochemical information and features of the inflammatory
process can be obtained simultaneously as active SERS nanotags are formed. To improve
GQDs SERS and remain at the forefront of inflammatory disease diagnosis, further studies
in physiological representative media, clinical samples, and in vivo are required. Once
these programmes have fully demonstrated their reproducibility, sensitivity, robustness,
repeatability and selectivity in vivo, the laboratory will be transferred to a clinical setting.
Once these applications have fully demonstrated their techniques, sensitivity, and reliability
they will be strong contenders that will revolutionise our ability to diagnose inflamma-
tory diseases. Ultimately, the hope is that the use of GQDs, which SERS enhance for the
in vivo diagnosis of inflammation, will be part of a growing toolkit for next-generation
non-invasive imaging and in vivo diagnosis.

8. Conclusions

This review summarises recent advances in the diagnosis of inflammation using
graphene quantum dot SERS. Three subtopics are described, including the method of GQD
synthesis, the method of bioactivation, inflammatory biomarkers, the plasma synthesis
of GQDs and SERS GQD, and the detection mechanisms of SERS and the detection of
inflammation. There are key points in the development of SERS GQD and its biomedical
applications, as the rapid evolution of SERS GQD from biological to biomedical applica-
tions has been remarkable over the past decades. Significant progress has been made in
improving diagnostic sensitivity and multiplexity. Recent advances have led to SERS GQD
being used to diagnose inflammation in necrotic tissue and damaged cells, which will be of
great importance for use in medical facilities. In short, SERS GQD has the advantageous
properties of unprecedented multiplexing capability, perfect signal specificity and high
sensitivity. Therefore, there are driving forces to exploit these properties for important
applications. However, there are still some steps to be taken when using SERS GQD for
clinical applications.
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