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1.1 Abstract
Nowadays, social influence is ubiquitous in everyday life, online social networks
have become a focal point for research in science. Formal mathematical models for
the analysis of spread of social influence have emerged as a major topic of interest
in diverse areas such as sociology, economics and computer science. Empirical s-
tudies of diffusion on social networks date back to the 1940s. Later on, theoretical
propagation models were introduced in late 1970s. Then, motivated by the design
of marketing strategy, along with the problem of influence maximization has been
formally defied, the field of studying social influence has received lots of research
interests. In particular, the rapid growth of online social networks such as Facebook,
Twitter and Google+ has intensified interests in this field, and the past decade has
seen a burgeoning network literature from computer community.

In this chapter, our goal is to provide readers with a comprehensive review of this
burgeoning literature. We begin with an overview of widely used theoretical diffu-
sion models, in which three families of diffusion models: threshold models, cascad-
ing models and epidemic models are introduced. Our subsequent discussion mainly
focuses on the recent algorithmic study and analytical results of the influence maxi-
mization problem. We end with a discussion of some open problems and challenges.

1.2 Introduction
Nowadays, the development of Internet have revolutionized the way we communicate
with each other. Communication helps us better share knowledge, ideas and belief-
s, thus influencing people behaviors. The study of information diffusion and social
influence have been attracted scientists from sociology and economy can be tracked
back to the early 60’s. In the recent decades, the rapid growth of Online Social Net-
works (OSNs) such as Facebook, Twitter and Google+ provide a nice platform for
information diffusion and fast information exchange among their users. In addition,
the massive data obtained from millions of users and more than a billion social ties
in those giant networks has greatly facilitated analytical works about user behavior,
and even a large scale algorithmic study scientists from computer science have being
engaged in this popular field.

Diffusion, according to Roger’s definition [49], is the process by which an inno-
vation is communicated through certain channels over time among the members of
a social system. Three important elements: individual member, mutual interactions
and communication channels are introduced from this definition, which are set as the
basis for future analytical framework.

Later on, various diffusion models have been proposed to study the contagion
properties in a vast area such as widespread adoption in viral marketing [16, 47, 37],
information propagation on blogs [33, 35] and infectious diseases transmissions in
epidemiology [15, 3].

One of the goals in studying social influence is the problem of Influence Maxi-
mization, which arises from the context of widespread adoption in viral marketing.
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This problem is firstly proposed by Kempe et al [27], then rapidly becoming a hot
topic in social network field. The influence maximization problem is formally de-
scribed as follows: given a social network represented by a(n) directed/undirected
graph with nodes as users, edges are corresponding to social ties, edge weights are
capturing influence probabilities, and a budget k, which is a integer; the goal is to
find a seed set of k users such that by targeting these, the expected influence spread
(defined as the expected number of influenced users) is maximized. Here, the expect-
ed influence spread of a seed set depends on the influence diffusion process which is
captured by diffusion models.

Therefore, in this book chapter, we start with providing an overview of diffusion
models that have been extensively used in studying social influence. In general, all
existing diffusion models can be categorized into three classes: threshold models
[26, 27, 28, 43, 48, 6], cascading models [21, 22, 9, 8] and epidemic models [29, 36].
Figure 1.1 provides an overview of those models. For each model, we give detailed
description diffusion process, activation condition as well as its own properties and
applications. With the framework in place, we move on to the algorithmic results of
the influence maximization problem.

We are now interested in choosing an influential set to target in the context of
above models. Kempe et al. [27] prove the influence maximization problem is NP-
hard under both of the Linear Threshold model and Independent Cascading model,
and give a simple greedy algorithm with approximation ratio of 1−1/e. However, the
nature greedy algorithm suffers from the severe scalability problem. Therefore, con-
siderable work has been done to improve it. In the second half of this book chapter,
we demonstrate recent algorithmic study such as CELF [34], CELF++ [24], Sim-
path [25] and LDAG [11] algorithms, which can obtain high scalability for influence
maximization problem.

Outline In this chapter, we survey the recent advances in theoretical propagation
models of online social networks, as well as the algorithms for the Influence Maxi-
mization problem. In section 1.4, we give an overview of existing diffusion models,
which can be categorized into three main classes: threshold models, cascade models
and epidemic models. Upon each kind of diffusion model, we also provide some in-
teresting extensions. And with this framework, we move forward to the next section
1.5, in which we survey various approaches for the influence maximization problem
with high scalability. In the last section. we conclude the chapter with some applica-
tions of social influence and information diffusion.

1.3 Social Influence And Influence Maximization
Social influence, as defined by Rashotte [46], is the change in an individual’s thought-
s, feelings, attitudes, and behaviors that results from interaction from other people or
group. Social influence takes many forms and can been seen everywhere in OSNs. In
the field of data mining and big data analysis, many applications such as viral mar-
keting, recommendation systems and information diffusion are involved with social
influence.
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Influence maximization (IM) is one of the fundamental problems in studying so-
cial influence. For the reason that people are likely to be affected by decisions of their
friends and colleagues, some researchers and marketers have investigated into social
influence and the word-of-mouth effect in promoting new products and making prof-
itable marketing strategies. Suppose that with the knowledge individual’s preference
and their influence on each other, and we would like to promote a new product that
will be adopted by a large amount of users in this network. The strategy of viral mar-
keting is to select a small number of influential members within this network at the
beginning, and then by convincing them to adopt the new product and utilizing the
social influence effect – users advertise and recommend the product to their friends,
we can trigger a widespread of adoptions. Henceforth, the influence maximization
problem has arisen: which key individuals should we target as the promising seeds
in order to maximize the spread of influence?

In [17, 47], the influence maximization problem was studied in a probabilistic
model of interaction, selection of the most influential seeds were based on individ-
ual’s overall effect on the network. In other works [27, 28, 34, 10, 54], many re-
searchers take this seeding selection as a problem in discrete optimization. Formally,
the influence maximization problem is defined as follows:

Definition 1.1 (Influence Maximization) Given a budget k and a social network,
which is represented as a directed graph G = (V,E), where users are represented
as nodes and edges indicate their relationships, the goal is to select a seed set of k
users such that by initially targeting them, the expected influence spread (in terms of
expected number of adopted users) can be maximized.

The expected influence spread is related to the propagation process of the in-
fluence, which is captured by the diffusion models. In section 1.4, an overview of
theoretical diffusion models is provided, and for most of the models we introduced,
the optimal solution for the influence maximization problem is shown to be NP-hard.
A well-known greedy (1-1/e) approximation algorithm is extensively used for ap-
proximating the optimal solution of the original problem and its extensions under
different models. However, the approximation algorithm requires that the influence
function hold two basic properties:

Definition 1.2 (Monotonicity) A set function f is monotone if f (S)≤ f (T ) such
that S⊂ T ⊂U ;

Definition 1.3 (Submodularity) A set function f is submodular if it satisfies

f (S∪{v})− f (S)≥ f (T ∪{v})− f (T ) (1.1)

for all elements v ∈ S and S⊂ T .
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1.4 Information Diffusion Models
Influence diffusion is the process that information propagates through certain inter-
mediaries over time among the individuals of a social network. Empirical studies of
diffusion in social networks began in the middle of the 20th century and Granovet-
ter [26] was the first to introduce a formal mathematical model. Currently, there
are a variety of diffusion models arising from the economics and sociology com-
munities. The most popular models are Linear Threshold model and Independent
Cascading model, which are widely used in studying the social influence problem-
s. Besides those two well-known models, there are many variations and extensions
models to reflect more complicated real-world situations. For example, in addition
to the expected number of adopted users, [56] considered the expected total opinions
of adopted users, which is more meaningful. [9] proposed a new model, named IC-N
model, which took into account the negativity bias during the propagation process.
In this section, we survey the recent literature on theoretical models of influence
diffusion.

Social network is a kind of social structure, which is consist of social actors such
as individual users or organizations and a complex set of relationship between each
two of them. Formally, a social network is represented as a graph G = (V,E), which
can be either a directed or undirected graph according to its real application and
network property. In graph G, each vertex v ∈ V represents an individual user. In a
directed graph, an edge (u,v) ∈ E represents u has an influence on v; in an undirect-
ed graph, an edge (u,v) represents mutual influence between u and v. Particularly, an
undirected graph can be viewed as a directed graph by treating each edge as a bidi-
rectional edge with the same influence on both direction. In addition, let N(v) denote
v’s neighbors in an undirected graph, let Nin(v) and Nout denote the sets of incoming
neighbors (or in-neighbors) and outgoing neighbors (or out-neighbors), respectively.

1.4.1 Threshold Models
In this subsection, we give an overview of the concept of threshold models and show
how these models characterize collective behaviors. In mathematical or statistical
modeling, a threshold model is any model where a threshold value, or set of threshold
values, is used to distinguish ranges of values where the behavior predicted by the
model varies in some important way.

In threshold models, someone first breaks the silence of the network because that
activity provides the individual utility. It is the distribution of individual thresholds,
defined as the number of other people who must be doing the activity before a given
individual joins in, that determines whether or not others would follow this activi-
ty. The threshold models were firstly proposed by Mark Granovetter [26] to model
collective behavior, which aimed at treating binary decisions problems, such as d-
iffusion of innovations, spreading rumors and diseases, voting and so on. He used
the threshold model to explain the riot, residential segregation, and the spiral of si-
lence. In the spirit of Granovetters threshold model, the ”threshold” is ”the number
or proportion of others who must make one decision before a given actor does so”. It
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Figure 1.1: An overview of information diffusion models
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is necessary to emphasize the determinants of threshold. A threshold is different for
individuals, and it may be influenced by many factors: social economic status, edu-
cation, age, personality, etc. Further, Granovetter relates ”threshold” with utility that
one gets from participating collective behavior or not. By using the utility function,
each individual will calculate his cost and benefit from undertaking an action. And
situation may change the cost and benefit of the behavior, so threshold is situation-
specific. The distribution of the thresholds determines the outcome of the aggregate
behavior (for example, public opinion). In other words, this threshold represents the
number of other agents in the population or local neighborhood following that par-
ticular activity. Each agent has a threshold that, when exceeded, leads the agent to
adopt an activity.

In his model, each edge (which represents a connection) (v,u) is associated with
a weight wv,u, and each node v has a threshold θv such that if the fraction of v’s
neighbors which are active exceeds v’s threshold, then v will become an active. Gra-
novetter claims that minor perturbations in the standard deviation of a distribution
produce massive discontinuous changes in the number of people acting, from 6% to
nearly 100% of the whole group. The reason is that in threshold models, the intrinsic
utility of the behavior to an individual may be more important in determining that in-
dividual’s behavior than social influence. However, even a limited amount of social
influence may have a strong effect on the collective outcome [26].

Threshold models are especially useful in a structural analysis of collective ac-
tion, an approach that most rational theorists have avoided. Sudden changes in the
level of production of a particular public good does not necessarily reflect similar
changes in the overall preferences of the actors. What really matters is the distri-
bution of thresholds and the social connections through which members could have
chances to learn about the others.

1.4.1.1 Linear Threshold Model

Linear Threshold (LT) model is the one that has been extensively used in studying
diffusion models among the generalizations of threshold models. In this model, each
node v has a threshold θv, and for every u∈N(v), (u,v) has a nonnegative weight wu,v
such that

∑
u∈N(v) wu,v ≤ 1. Given the thresholds and an initial set of active nodes,

the process unfolds deterministically in discrete steps. At time t, an inactive node v
becomes active if

∑
u∈Na(v)

wu,v ≥ θv

where Na(v) denotes the set of active neighbors of v. Every activated node re-
mains active, and the process terminates if no more activations are possible. The
threshold in this model is related to a linear constraint of edge weight, and hence get
the name for the model. It is important to note that given the thresholds in advance,
the diffusion process is deterministic, but we can still inject the randomness by ran-
domizing the individual threshold. For example, the thresholds selected by Kempe
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et al. [27, 28] are uniformly at random from the interval [0,1], which also intend to
model the lack of knowledge of their values.

Given the influence function σ(·), Kempe et al. [27] prove that:

Theorem 1.1
For an arbitrary instance of the Linear Threshold Model, the objective influence
function σ(·) is submodular.

Theorem 1.2
The influence maximization problem is NP-hard under the Linear Threshold model.

Granovetter and Schelling’s approach is based on the use of node-specific thresh-
olds [26, 51], there is another class of approaches hard-wires all thresholds at a
known and fixed value. This kind of model is often used in treating binary decision
problems such as voting, virus propagation network and so on. In this model, let d(v)
denote the degree of a node v ∈V , and threshold value θv ∈N , where θv ∈ [1,d(v)].
This definition is adopted by the following three models.

1.4.1.2 The Majority Threshold Model

The Majority Threshold (MT) model is one of the most important and well studied
model, in which each vertex v ∈ V becomes active if the majority of its neighbours
are active, that is the threshold θv =

1
2 d(v). This model has many applications in

voting systems, distributing computing and so on [44, 45]. Chen [43] shows that
with the majority thresholds setting, the influence maximization problem shares the
same hardness of approximation ratio as the general one. Chen [43] also provides the
following inapproximability result of the majority thresholds model.

Theorem 1.3
Assume the Influence Maximization problem with arbitrary thresholds can not be ap-
proximated within the ratio of σ(n), for some polynomial time computable function
σ(n). Then the problem with majority thresholds can not be approximated within the
ratio of O(σ(n)).

1.4.1.3 The Small Threshold Model

The other interesting case is the Small Threshold (ST) model, in which all thresh-
olds are small constant [48]. Intuitively, when the threshold θv = 1, the influence
maximization problem can be easily solved by selecting an arbitrary node in each
connected component. However, Chen [43] shows that the hardness of approxima-
tion result continues to hold when each vertex’s threshold θv = 2. In addition, Dreyer
[18] proves that if the threshold of any vertex is θv for any θv ≥ 3, the problem is
NP-hard as well.
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Theorem 1.4
Assume the Influence Maximization problem with arbitrary thresholds can not be ap-
proximated within the ratio of σ(n), for some polynomial time computable function
σ(n). Then the problem can not be approximated within the ratio of O(σ(n)) when
all thresholds are at most 2.

1.4.1.4 The Unanimous Threshold Model

In the Unanimous Threshold (UT) model, the threshold for each vertex is θv = d(v),
which is equal to its degree. With this setting, the UT model is the most influence-
resistant model among all the threshold models. This model is usually used in s-
tudying complex network security and vulnerability. For example, in an ideal virus-
resistant network, when the computer virus is spreading, a vertex can be affected if
all of its neighbours have been infected. For this special case, the influence maxi-
mization problem is equivalent to the Vertex Cover problem. Thus, it admits a ap-
proximation algorithm with ratio 2 and is NP-hard as well [43].

Theorem 1.5
If all thresholds in a graph are unanimous, the Influence Maximization problem is
NP-hard.

Other Extensions

The threshold models can be further generalized in a very natural way by replacing
the activation function with an arbitrary function in relation with the set of a vertex’s
activated neighbours. For example, Bhagat et al. [4] propose a Linear Threshold with
Color (LT-C) model that factors in user’s experience with a product, in which they
adapt the LT model by adding three more status of users activities and defining an ob-
jective function that explicitly captures product adoption, not the influence. Banerjee
et al. [2] further extend the LT model to handle a more complicated case, in which
each node is allowed to switch back and forth between active and inactive regard-
ing each cascade. This model is shown to be a rapidly mixing Markov chain and
the corresponding steady state distribution is used to estimate highly likely cascade
adopted in the network. Furthermore, consider that users now are engaged in many
different social networks, information can be diffused across multiple networks si-
multaneously, [42, 52] adapt the LT model to deal with IM problem under multiple
networks.

1.4.2 Cascading Model
Inspired by the work on interacting particle systems [19, 38] and probability theo-
ry, dynamic cascade models are considered for the diffusion process. In the context
of marketing, Goldenberg et al. [21, 22] firstly studied the cascade models. In the
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cascade models, the dynamics is captured in a step-by-step fashion,: at time t, when
a node v first becomes active, it has a single chance of influencing each previously
inactive neighbour u at time t + 1. And it successfully turns u to be activated with
a probability pv,u. In addition, if multiple neighbours of u become active at time t,
their attempts to activate u are sequenced in an arbitrary order. If one of them say w
succeeds in time t, then u becomes active in time t+1; however, whether w succeeds
or not, it cannot make any more attempts in the following time steps. Similar to the
threshold models, the process terminates until there are no more activations.

1.4.2.1 Independent Cascading Model

To better describe the cascading models, one thing we need to specify is that the
probability for a newly activated node v to successfully make an attempt to activate
its currently inactive neighbours u. The simplest case is Independent Cascading (IC)
model, in which the probability is a constant pu(v), independent of the history of the
diffusion process thus far. In addition to that, to better defined the model, we also
need to introduce the order-independence here. Let S denote the set of nodes that
have already attempted and failed to activate u, and the probability for v to success-
fully active u is denoted by pu(v|S). Let v1,v2, ...vk, and v′1,v

′
2, ...v

′
k be two different

permutations of S, and Ti = {v1,v2, ...vi}, T ′i = {v′1,v′2, ...v′i}. The order-independence
indicates that the order of attempts made by each node in S does not affect the prob-
ability for u to be active in the end, which is

Π
k
i=1(1− pu(vi|S∪Ti)) = Π

k
i=1(1− pu(v′i|S∪T ′i ))

where S∩T = ∅.

1.4.2.2 Decreasing Cascading Model

Compared with the IC model, the Decreasing Cascading (DC) model [28] is more
general and practical. (We adopt all the definitions in the IC model here) The DC
model naturally incorporates a restriction that the function pu(v|S) is non-decreasing
in S, which indicates that pu(v|S) ≤ pu(v|T ), where S ⊂ T . This better reflects the
information saturation problem in the real-world: the probability of a successful ac-
tivation of a node u decreases if more people have already made the attempts. The
DC model contains the IC model as a special case.

1.4.2.3 Independent Cascading Model with Negative Opinion

In [9], Chen proposed the Independent Cascading Model with Negative Opinion (IC-
N) which incorporates the negative opinions into the propagation process. The IC-N
model associates a new parameter q called the quality factor which models the natu-
ral behavior of users adopting negative opinions due to defects of the product/service.
In this model, each activated can be either positive or negative, and with probability
q, each newly active node become positive and with probability 1− q, it becomes
negative. In addition, when a node u is negatively activated, it becomes negative with
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probability 1 and remain negative in the following rounds. This reflects the negativity
bias and dominance phenomenon in social psychology [50].

Generalized Threshold and Cascade Models
We have thus far introduced two families of widely studied propagation models,
before heading to the next kind of diffusion model, we want to introduce a more
general and broader framework that generalize the classic LT model and IC model
in this subsection. In particular, under such setting, Kempe et al. [27] prove that
the general cascade model and general threshold model are equivalent. And because
of this equivalence, we can unify these two different views of diffusion in social
networks.

� Generalized threshold model. In the general threshold model, each node
v has a threshold θv, and associates with a function fv that maps the set of
its neighbours N(v) to the range [0,1] and subject to the condition fv(∅) =
0. This function could be an arbitrary monotone function. The dynamic of
diffusion process follows the LT model. But a node v becomes active at time
t if and only if fv(Na(v))≥ θv, where Na(v) is the subset of active neighbours
of v at time t−1. It is easy to see that the generalized threshold model contain
the LT model as a special case, in which the threshold function is subject to
fv =

∑
u∈Na(v) wu,v, and

∑
u∈N(v) wu,v ≤ 1.

� Generalized cascade model. Compared with the specific cascade models,
we generalize the cascade model by allowing the probability that u success-
fully activates its neighbour v to depend on the other active neighbours of v
that have tried. Thus, we change the activation probability Pu,v to an incre-
mental function pv(u,S) ∈ [0,1], where u and S are two disjoint subsets of
N(v). In each discrete time stamp, when a newly activated node u attempts
to activate a currently inactive node v, it succeeds with probability pv(u,S),
where S denotes the set of nodes that have already made their attempts. The
IC model can be viewed as a special case of the generalized cascade model, in
which pv(u,S) is set to a constant pu,v. Furthermore, the order-independence
which has been introduced in the IC model is also adopted here.

Next, we show that if the threshold function thetav is chosen independently and uni-
formly at random, then those two generalized models are equivalent as shown by the
following conversion.

Let fv be a threshold function of general threshold model, and S be the set of
nodes that have already tried to activate v. Then in order to define an equivalent
cascade model, we need to know the probability of additional node u can activate v if
all the nodes in S have failed. Once the node in S failed, node v’s threshold θv should
be in the range ( fv(S),1]. Therefore, with the constraint that it should be uniformly
distributed, the probability that a neighbour u /∈ S successfully activate v is

pv(u,S) =
fv(S∪{u})− fv(S)

1− fv(S)
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where nodes in S failed to activate v. It is easy to see that the generalized cascade
model can be converted to the generalized threshold model with this function.

On the other side, let v be a node in the cascade model, with its neighbour set
denoted by S = {u1,u2, ...uk}. All the nodes in S have tried to activate v in an order
T and let us assume T = {u1,u2, ...uk}, and Si = {u1,u2, ...ui}, then the probabili-
ty that v hasn’t been influenced is

∏k
i=1(1− pv(ui,Si−1)). According to the order-

independence, this value is not affected by the order of ui, but only depends on the
set S only, thus we can obtain that

fv(S) = 1−
k∏

i=1

(1− pv(ui,Si−1))

In this way, the threshold model can be shown be to equivalent to cascade model.

1.4.3 Epidemic Model

The epidemic has had a major impact on the life and politics of the country. Model-
ing the infectious diseases became a matter of general interest in the 19th century. An
epidemic model describes the transmission of contagious disease through individu-
als. In the recent century, it has been widely used to model computer virus infections
and information propagations such as news and rumors.

1.4.3.1 SIR Model

The SIR (Susceptible-Infectious-Recovered) model first proposed by Kermack and
McKendrick [29]. In this model, it considers a fixed population which divided into
three distinct classes: Susceptible (S),Infectious (I), and Recovered (R). The individ-
ual goes through consecutive states:

S→ I→ R

And the dynamics of the model cascades in such a way: given a fixed population at
a particular time t, there exists three groups of people, S(t) represents the number
of people who are susceptible to the contagion, I(t) represents the number of people
who have been infected and are capable of infecting those who are susceptible; R(t)
is the number of people who have been infected and recovered, which means they
are immune to be infected again in the future. Using the contact rate β from S to I,
and 1/γ the average infectious period, Kermack and McKendrick [30] derived the
following equations:
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dS
dt

=−βSI

dI
dt

= βSI− γI

dR
dt

= γI

And the critical parameter R0 = βS0/γ is called the basic reproduction number.
We can see that R = 1 is the critical value;R < 1 implies no epidemic and R > 1 that
an epidemic is possible.

In this model, several assumptions are made in the formulation of the equations.
First of all, each individual is considered as having the same probability of con-
tracting the disease with a rate of β , which is also the infection rate of the disease.
Therefore, an infected individual can transmit the disease with βN other susceptible
people per unit time, and the fraction of contacts by an infected with a susceptible
is S/N. In addition, given the rate of new infections as βN(S/N)I = βSI [7], the
number of newly infected people per unit time is βN(S/N). Secondly, consider the
population leaving the susceptible group is equal to the number of newly infected
people, we can get the second and third equations above. Specifically, a number e-
quals to the fraction of infective people who are leaving the this class per unit time to
enter the removed group. These processes which occur simultaneously are known as
the Law of Mass Action [12], which is a widely accepted idea that the rate of contact
between two groups in a population is proportional to the size of each of the groups
concerned.

1.4.3.2 SIS Model

The SIS model consider a fixed population with only two compartments Susceptible
S(t) and infected I(t), thus the flow of this model may be considered as follows:

S→ I→ R

The SIS an be easily derived from the SIR model by simply considering that the
individuals recover with no immunity to the disease, that is, individuals are immedi-
ately susceptible once they have recovered.

Thus Removing the equation representing the recovered population from the SIR
model and adding those removed from the infected population into the susceptible
population, we can get the following differential equations:

dS
dt

=−βSI + γI

dI
dt

= βSI− γI



Recent Advances in Information Diffusion and Influence Maximization of Complex Social
Networks � 15

1.4.3.3 SIRS Model

The SIRS model is an extension of the SIR model. An individual can go through
consecutive states:

S→ I→ R

The difference between this model and the SIR model is that, it allows the indi-
vidual of recovered group to leave and rejoin the susceptible group. Thus, we can get
the following equations:

dS
dt

=−βSI + f R

dI
dt

= βSI− γI

dR
dt

= γI− f R

where f is the average loss of immunity rate of recovered individuals.

1.4.4 Competitive Influence Diffusion Models
All of the above models have primarily focused on diffusion of single cascade, but
when multiple innovations are competing within a social network, things become
different yet interesting. Carnes et al. in [8] consider the problem faced by a company
that would like to spread out its new product into market while a competing product
is already being introduced. There are two assumptions: first, the consumers use
only one of the two products and influence their friends in their decision of which
product to use; second, the follower has a fixed budget available that can be used to
target a subset of consumers. In [8], they propose two models for describing how two
technologies simultaneously diffuse over a given network.

1.4.4.1 Distance-based Model

The first model, a distance-based model, is related to competitive facility location
[20] on a network. In this model, the location of a node in the network is important,
as well as the connectivity of a node. The central idea is that a consumer will be more
likely to mimic the behavior of an early adopter if their distance in the social network
is relatively small. It is pointed out in [8] that the expected number of nodes which
adopt A will be denoted by

ρ(IA|IB) = E[
∑
u∈V

νu(IA,du(I,Ea))

νu(IA,du(I,Ea))+νu(IB,du(I,Ea))
]

where the expectation is over the set of active edges. IA and IB are the initial sets of
adopters of A and B respectively, and I is their union set. du(I,Ea) denotes the shortest
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distance from u to I along the edges in Ea. After fixing IB and trying to determine IA
so as to maximize the expected number of nodes that adopt technology A would be:

max{ρ(IA|IB) : IA ⊆ (V − IB), |IA|= k}

The following theorem gives an approximation bound for this equation.

Theorem 1.6
For any given IB with |V− IB| ≥ k, the Hill Climbing Algorithm gives a (1−1/e−ε)-
approximation algorithm for the above result.

1.4.4.2 Wave Propagation Model

The second model, wave propagation model, regards the propagation as happening
in discrete steps. In step d, all nodes that are at distance at most d− 1 from some
node in the initial sets have adopted technology A or B, and all nodes for which the
closest initial node is farther than d−1 do not have a technology yet. Similar to the
distance-base model, it gives out the solution:

max{π(IA|IB) : IA ⊆ (V − IB), |IA|= k}

where

π(IA|IB) = E[
∑
v∈V

P(v|IA, IB,Ea)]

And the authors provide another theorem that gives the same approximation ratio as
above:

Theorem 1.7
For any given IB with |V− IB| ≥ k, the Hill Climbing Algorithm gives a (1−1/e−ε)-
approximation algorithm for the above result.

Consequently by computational experiments, the authors point out although it
is NP-hard to select the most influential subset to target, it is possible to give an
efficient algorithm that is within 63% of optimal. Lastly, using the distance-based
model with edge probabilities equal to 1, these problems can also be seen in the
context of competitive facility location [1, 14] on a network.

1.4.4.3 Weight-proportional Threshold Model

Consider the real world scenarios where different kinds of innovations or products are
competing with each other, competitive threshold models are suggested by Borodin
et al. in [6]. Under the competitive setting, the goal is to maximize the spread of one
cascade in the presence of one or more competitors.
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In order to describe the process, we use the following notation for the next two
models.

Definition 1.4 In discrete time stamp t, let Φt denote the set of active nodes, in
particular, let Φt

A and Φt
B be the sets of A-active and B-active nodes in time stamp t

respectively.

Given two different seeds SA and SB at the beginning, in each time stamp, ev-
ery inactive node v changes its status according to the incoming influence from its
currently active neighbours as follows: v becomes active when

∑
u∈Φt wu,v ≥ θv is

satisfied; in addition, v becomes a A-active node with probability

Pr[v ∈Φ
t
A|v ∈Φ

t \Φ
t−1] =

∑
u∈Φt

A
wu,v∑

u∈Φt wu,v

It adopts cascade B, otherwise.

The problem maximizing the spread of cascade A can be easily reduced to origi-
nal influence maximization problem by setting SB =∅. Thereby, this problem is also
NP-hard, as proved in [27].

Intuitively, by adding one more node to the initial set SA, the spread of cascade
A could be expended. However, the influence function σ(·) is neither monotone nor
submodular under the Weight-proportional Threshold (WT) model, as shown by a
count example in [6].

1.4.4.4 Separated Threshold Model

In previous model, a node v changes its status from inactive to active whenever the
influence from all of its currently active neighbours exceeds its threshold θv. Howev-
er, nodes may not have the same threshold towards each competitor, and the influence
strength between each pairs of nodes could be different regarding each cascade. For-
mally, each node v has two thresholds θ A

v ,θ
B
v , and each edge (u,v) is associated with

two weights wA
u,v,w

B
u,v corresponding to cascades A and B, respectively. And both

of weights satisfy the constraints as the LT model. In time stamp t, every inactive
node v will be A-active when

∑
u∈Na(v)∩Φ

t−1
A

wA
u,v ≥ θ A

v , and will be B-active when∑
u∈Na(v)∩Φ

t−1
B

wB
u,v ≥ θ B

v . If both thresholds are exceeded during the same stamp t,
then v adopts a cascade uniformly at random.

However, unlike previous model, the probability that cascade A will be adopted
by a node cannot be increased by adding additional B-activated node. Therefore, un-
der the Separated Threshold (SepT) model, the influence function σ(·) is monotone,
but not submodular, as proved in [6] by a counting example.
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Summary
In this section ,we provide an overview of diffusion models that have been exten-
sively used in studying social influence: threshold models [26, 27, 28, 43, 48, 6],
cascading models [21, 22, 9, 8] and epidemic models [29, 36]. Table 1.1 summarizes
the the activation condition, model properties and applications of each model. And
with this framework in place, we move on to the next section which focuses on the
algorithmic results of the influence maximization problem.

1.5 Influence Maximization and Approximation
Algorithms

1.5.1 Influence Maximization
A social network is the graph of relationships and interactions within a group of in-
dividuals that plays a fundamental role as a medium for the spread of information,
ideas, and influence among its members. Influence Maximization(IM) is the problem
of choosing the most potential of individuals in a network to spread out information
in order to trigger the widespread adoption of a product. Domingos and Richardson
[17] model the problem as a Markov random field. Kempe et al. [27, 28] assume
a fixed marketing budget sufficient to target k individuals and study the problem of
finding the optimal k individuals in the network to target. This problem has appli-
cations in viral marketing, where a company may wish to spread the rumor of a
new product via the most influential individuals in popular social networks. With
online social networking sites such as Facebook, LinkedIn, Myspace, etc. attracting
hundreds of millions of people, online social networks are also viewed as important
platforms for effective viral marketing practice. This further motivates the research
community to conduct extensive studies on various aspects of the influence maxi-
mization problem.

1.5.2 Approximation Algorithm
We are now in a position to choose a good initial set of nodes to target in the context
of the above models. Based on the basic models we introduced above, in this section,
we introduce the hardness of influence maximization problems on above models,
and prove the influence maximization problem with budget k under both of LT and
IC models is NP-hard.

In addition, the influence function f (·) is submodular and monotone increasing.
Exploiting these properties, Kempe et al. [27] present a simple greedy algorithm that
approximates the problem with the ratio of 1−1/e− ε for any ε > 0. However, the
running time of worst-case of the naive greedy algorithm is O(n2(m+n)), which is
prohibitive for large-scale networks. Thus, considerable work has been done to im-
prove it. In this section, we demonstrate recent algorithmic study such as CELF[34],
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CELF++ [24], Simpath [25] and LDAG [11] algorithms, which can obtain high scal-
ability for influence maximization problems.

1.5.2.1 Greedy Algorithm

Algorithm 1: Greedy Algorithm
Input: G,k, f
Output: Seed set S

1 initialize S←∅ ;
2 while |S| ≤ k do
3 select u← argmaxw∈V\S( f (S∪{w})− f (S)) ;
4 S← S∪{u} ;
5 end
6 return S ;

Following the definition in Section 1.3.1.1, we now provide the definitions and
notations as follows. An influence graph is a weighted graph G = (V,E,w) with a
weight function w, where V is a set of n nodes and E ⊆V ×V is a set of m directed
edges. And the weight function w : V×V → [0,1] holds that w(u,v) = 0 if and only if
(u,v) /∈ E, and

∑
u∈N(v) w(u,v) = 0 where N(v) means that u is the neighbor of v. In

the LT model, when given a seed set S⊆V , influence cascades in graph G in discrete
steps. At time t, each inactive node v becomes active if the weighted number of its
activated in neighbors reaches its threshold, i.e.

∑
u∈Na(v) wu,v ≥ θv, where Na(v)

denotes the set of active neighbors of v. The process stops at a step t when the seed
set becomes empty. Each activated node remains active, and the process terminates
if no more activation is possible.

The influence maximization problem under the linear threshold model is, when
given the influence graph G and an integer k, finding a seed set S of size k such
that its influence spread σL(S) is the maximum where we call σL(S) the influence
spread of seed set S [10]. It is shown in [27] that finding the optimal solution is NP-
hard, but because σL is monotone and submodular, a greedy algorithm has a constant
approximation ratio. A generic greedy algorithm for any set function f is shown as
Algorithm 1.

Algorithm 1 simply executes in k rounds, and in each round a new entry that
gives the largest marginal gain in f will be selected. It is shown in [41] that for any
monotone and submodular set function f with f (∅) = 0, the greedy algorithm has
an approximation ratio f (S)/ f (S∗) ≥ 1− 1/e, where S is the output of the greedy
algorithm and S∗ is the optimal solution. However, the generic greedy algorithm
requires the evaluation of f (S). In the context of influence maximization, the exact
computation of σL(S) was left as an open problem in [27] and was later proved that
the exact computation of σL(S) is #P-hard in [10].
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The running time of worst-case of this naive greedy algorithm is O(n2(m+ n)),
which is prohibitive for large-scale networks. Thus, considerable work has been done
to improve it. We will introduce them in the following several subsections.

1.5.2.2 CELF Selection Algorithm

Relatively little work has been done on improving the quadratic nature of the greedy
algorithm. The most notable work is [34], where submodularity is exploited to de-
velop an efficient algorithm called Cost-Effective Lazy Forward (CELF) selection
algorithm, based on a lazy-forward optimization in selecting seeds. The idea is that
marginal gain of a node in the current iteration cannot be better than its marginal gain
in the previous iterations. CELF maintains a table < u,∆u(S) > sorted on ∆u(S) in
decreasing order, where S is the current seed set and ∆u(S) is the marginal gain of
u w.r.t S. The ∆u(S) here corresponds to σL(S) in the previous sub section. σL(S) is
re-evaluated only for the top node at each step and the table is resorted when only
it is necessary. If a node remains at the top, it will be picked as the next seed. In
real implementation, a heap Q is employed to represent the priority of each node and
maintain the sorted table information.

In [34], the authors empirically shows that CELF dramatically improves the effi-
ciency of the greedy algorithm. Algorithm 2 shows the skeleton of CELF algorithm.
In the algorithm, σm(S) denotes the expected influence spread of seed set S under the
propagation model m (like IC or LT). This m could be omitted if there is no confu-
sion in the context. As clearly explained in [23], the optimization works as follows.
Maintain a heap Q with nodes corresponding to users in the network G.

The node of Q corresponding to user u stores a tuple of the form <
u.mg,u.round > where u.mg = σm(S∪ {u})−σm(S) represents the marginal gain
of u w.r.t. the current seed set S while u.round is the iteration number when u.mg
was last updated. In the first iteration, marginal gains of each node is computed and
added to Q in decreasing order of marginal gains (The first for loop). Later, in each
iteration, look at the top node u in Q and see if its marginal gain was last computed
in the current iteration (using the round attribute). If yes, then, due to submodularity,
u must be the node that provides maximum marginal gain in the current iteration,
hence, it is picked as the next seed. Otherwise, recompute the marginal gain of u,
update its round flag and reinsert into Q such that the order of marginal gains is
maintained. This process is realized in the while loop in the algorithm.

It is easy to see that this optimization avoids the recomputation of marginal gains
of all the nodes in any iteration, except the first one. Therefore, from the experimental
results, the CELF optimization leads to a 700 times speedup in the greedy algorithm
shown in [34].

1.5.2.3 CELF++ Algorithm

In [24], Goyal et al. introduce CELF++ that further optimized CELF by exploiting
submodularity. Algorithm 3 describes the CELF++ algorithm. The setup is similar
to CELF: σ(S) is used to denote the spread of seed set S. A heap Q with nodes
corresponding to users in the network G.
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Algorithm 2: Greedy Algorithm optimized with CELF
Input: G,k,σm
Output: Seed set S

1 initialize S←∅,Q←∅;
2 for each u ∈V do
3 u.mg = σm({u}) ;
4 u.round = 0 ;
5 Add u to Q in decreasing order of mg.
6 end
7 while |S| ≤ k do
8 u← root element in Q ;
9 if u.round == |S| then

10 S← S∪{u} ;
11 Q← Q−{u} ;
12 end
13 else
14 u.mg = σm(S∪{u})−σm(S) ;
15 u.round = |S| ;
16 Reinsert u into Q and heapify.
17 end
18 end
19 return S ;

The improvement is that instead of tuple of two attributes, they offer
that the node of Q corresponding to user u stores a tuple of the form <
u.mg1,u.prev best,u.mg2,u. f lag >. Here u.mg1 = ∆u(S), the marginal gain of u
w.r.t. the current seed set S; u.prev best is the node that has the maximum marginal
gain among all the users examined in the current iteration, before user u; u.mag2 =
∆u(S∪{prev best}), and u. f lag is the iteration number when u.mg1 was last updat-
ed.

The central idea is that if the node picked in the last iteration is still at the
root of the heap, they don’t need to recompute the marginal gains. This does save
a lot of computations. It is important to note that in addition to computing ∆u(S),
it is not necessary to compute ∆u(S∪ {prev best}) from scratch. In other words,
the algorithm can be implemented in an efficient manner such that both ∆u(S) and
∆u(S∪{prev best}) are evaluated simultaneously in a single iteration of Monte Car-
lo simulation. In that sense, the extra overhead is relatively insignificant compared to
the huge run time gains they can achieve, as shown in the experimental results [24],
leading to an improvement of CELF by 17-61%.

Algorithm 3 uses the variable S to denote the current seed set, last seed to track
the id of last seed user picked by the algorithm, and cur best to track the user having
the maximum marginal gain w.r.t. S over all users examined in the current iteration.
The algorithm starts by building the heap Q initially. Then, it continues to select
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Algorithm 3: Greedy algorithm optimized with CELF++
Input: G,k,σm
Output: Seed set S

1 initialize S←∅,Q←∅, last seed← NULL,cur best← NULL ;
2 for each u ∈V do
3 u.mg1← σ({u}) ;
4 u.prev best← cur best ;
5 u.mg2← ∆u{cur best} ;
6 u. f lag← 0 ;
7 Q← Q∪{u} ;
8 Update cur best based on u.mg1 ;
9 end

10 while |S| ≤ k do
11 u← root element in Q ;
12 if u. f lag == |S| then
13 S← S∪{u} ;
14 Q← Q−{u} ;
15 last seed← u ;
16 cur best← NULL ;
17 Continue ;
18 end
19 else if u.prev best == last seed and u. f lag == |S|−1 then
20 u.mg1← u.mg2 ;
21 end
22 else
23 u.mg1← ∆u(S) ;
24 u.prev best← cur best ;
25 u.mg2← ∆u(S∪{cur best}) ;
26 end
27 u. f lag = |S| ;
28 Update cur best ;
29 Heapify Q ;
30 end
31 return S ;
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seeds until the budget k is reached. The optimization of CELF++ comes from where
they update u.mg1 without recomputing the marginal gain. Clearly, this can be done
since u.mg2 has already been computed efficiently w.r.t. the last seed node picked.
If none of the above cases applies, they recompute the marginal gain of u. From
the experiments carried out in [24] one can note that although CELF++ maintains a
larger data structure to store the look-ahead marginal gains of each node, the increase
of the memory consumption is insignificant while the optimization on performance
w.r.t. time is increased from CELF by 17-61%.

1.5.2.4 SPM and SP1M

The Shortest-Path Model (SPM) and SP1 Model (SP1M) were developed by Kimura
et al. in [31]. These two models are special cases of the IC (independent cascade)
model. In SPM, each node v has the chance to become active only at step t = d(A,v).
In other words, each node is activated only through the shortest paths from an initial
active set. Namely, SPM is a special type of the ICM where only the most efficient
information spread can occur. And SP1M, which slightly generalize SPM, instead
considers the top-2 shortest paths from u to v.

The idea is that the majority of the influence flows through shortest paths. For
these models, the influence σ(A) of each target set A can be exactly and efficiently
computed, and the provable performance guarantee for the natural greedy algorithm
can be obtained. In [31], the approximation ratio is guaranteed as σ(Bk) ≥ (1−
1/e)σ(A∗k ).

The experimental results show that SP1M outer-performs SPM. However, a criti-
cal issue with this approach is that it ignores the influence probabilities among users.
Only considering the shortest paths are not enough.

1.5.2.5 Maximum Influence Paths

From the above contribution in SPM and SP1M, Chen et al. [10] extended this idea
by considering Maximum Influence Paths (MIP) instead of shortest paths. A max-
imum influence path between a pair of nodes (u,v) is the path with the maximum
propagation probability from u to v. The main idea of this heuristic scheme is to use
local arborescence structures of each node to approximate the influence propagation.

The maximum influence paths between every pair of nodes in the network can
be computed by the Dijkstra shortest-path algorithm. Then we ignore the MIPs with
probability smaller than a influence threshold θ , this can help us effectively restrict
influence to a local region. Next, we union the MIPs beginning or ending at each node
into a arborescence structures, which represent the local influence regions of each
node. When considering the influence propagation through these local arborescences,
the diffusion model refers to the Maximum Influence Arborescence (MIA) model
[10].

It is shown in [10] that the influence spread in the MIA model is submodular (i.e.
having a diminishing marginal return property), and thus the simple greedy algorithm
that selects one node in each round with the maximum marginal influence spread can
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guarantee an influence spread within (1− 1/e) of the optimal solution in the MIA
model, while any higher ratio approximation is NP-hard.

The complete greedy algorithm for the basic MIA model is presented in Al-
gorithm 4. Before the process was introduced, the authors in [10] defined sever-
al methods. The maximum influence in-arborescence of a node v ∈ V is defined
as MIIA(v,θ) = ∪u∈V,pp(MIPG(u,v))≥θ MIPG(u,v). And the maximum influence out-
arborescence MIOA(v,θ) = ∪u∈V,pp(MIPG(v,u))≥θ MIPG(v,u). Further, let the activa-
tion probability of any node u in MIIA(v,θ), denoted as ap(u,S,MIIA(v,θ)), be the
probability that u is activated when the seed set is S and influence is propagated in
MIIA(v,θ). Due to the limit of pages, we would not discuss these methods, while
one can easily find the definitions and details in [10].

The whole MIA algorithm works as follows. First, it evaluates the incremental
influence spread IncIn f (u) for any node u when the current seed set is empty. The
evaluation is described using the linear coefficients α(v,u). Second, the algorithm
updates the incremental influences whenever a new seed is selected. Suppose u is se-
lected as the new seed in an iteration, the influence of u in the MIA model only reach-
es nodes in MIOA(u,θ). Thus the incremental influence spread IncIn f (w) for some
w needs to be updated if and only if w is in MIIA(v,θ) for some v ∈ MIOA(u,θ).
This means that the update process is relatively local to u. The update is done by first
subtracting α(v,w) · (1−ap(w,S,MIIA(v,θ))) before adding u into the seed set, and
then adding u into the seed set outside the loop. Recompute the ap(w,S,MIIA(v,θ))
and α(v,w) under the new seed set, and add α(v,w) · (1−ap(w,S,MIIA(v,θ))) into
IncIn f (w).

The authors later proposed an extension model prefix excluding MIA (PMIA).
Intuitively, in the PMIA model, the seeds have an order. For any given seed s, its
maximum influence paths to other nodes should avoid all seeds in the prefix before
s. The major technical difference is the definition of the maximum influence in(out)-
arborescence for the PMIA model, especially if one would like to design an efficient
greedy algorithm in the framework of Algorithm 4. From experiments all four real
networks with different scales, the authors argue that their algorithms are scalable
and the running time is efficient. However, these heuristics would not perform well
on high influence graphs, as pointed by [23], that is, when the influence probabilities
through links are large.

Wang et al. [54] proposed an alternative approach. The focus on their study was
on IC model. They argue that most of the diffusion happens only in small communi-
ties, even though the overall networks are huge. Taking this as an intuition, they first
split the network in communities, and then using a greedy dynamic programming
algorithm to select seed nodes. To compute the marginal gain of a prospective seed
node, they restrict the influence spread to the community to which the node belongs.

1.5.2.6 SIMPATH

SIMPATH, proposed by Goyal et al. in [25], is an efficient and effective algorithm
for influence maximization problem under the linear threshold model. According to
the experiments in [25], SIMPATH consistently outperforms the state of the art w.r.t.
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Algorithm 4: Greedy algorithm optimized with MIA
Input: G,k,θ
Output: Seed set S

1 initialize S←∅, IncIn f (v)← 0for each node v ∈V ;
2 for each node v ∈V do
3 compute MIIA(v,θ) and MIOA(v,θ) ;
4 set ap(u,S,MIIA(v,θ)) = 0,∀u ∈MIIA(v,θ) ;
5 compute α(v,u),∀u ∈MIIA(v,θ) ;
6 for each node u ∈MIIA(v,θ) do
7 IncIn f (u)+ = α(v,u) · (1−ap(u,S,MIIA(v,θ))) ;
8 end
9 end

10 while |S| ≤ k do
11 pick u = argmaxv∈V\S{IncIn f (v)} ;
12 /* update incremental influence spreads */ ;
13 for v ∈MIOA(u,θ)\S do
14 /* subtract previous incremental influence */ ;
15 for w ∈MIIA(v,θ)\S do
16 IncIn f (w)−= α(v,w) · (1−ap(w,S,MIIA(v,θ))) ;
17 end
18 end
19 S = S∪{u} ;
20 for v ∈MIOA(u,θ) do
21 compute ap(w,S,MIIA(v,θ)),∀w ∈MIIA(v,θ) ;
22 compute α(v,w),∀w ∈MIIA(v,θ) ;
23 for w ∈MIIA(v,θ)\S do
24 IncIn f (w)+ = α(v,w) · (1−ap(w,S,MIIA(v,θ))) ;
25 end
26 end
27 end
28 return S ;
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running time, memory consumption and the quality of the seed set chosen, measured
in terms of expected influence spread achieved.

Algorithm 5: SIMPATH
Input: G = (V,E,b),k,δ , l
Output: Seed set S

1 Find the vertex cover C of input graph G. ;
2 for each u ∈C do
3 U ← (V −C)∩Nin(u) ;
4 Compute σ(u) and σV−v(u),∀v ∈U in a single call to the

SIMPAT H−SPREAD(u,δ ,U) ;
5 Add u to CELF queue. ;
6 end
7 for each v ∈V −C do
8 Compute σ(v) ;
9 Add v to CELF queue ;

10 end
11 S←∅, spd← 0 ;
12 while |S| ≤ k do
13 U ←top-l nodes in CELF queue Compute σV−x(S), ∀x ∈U , in a single

call to the SIMPAT H−SPREAD(u,δ ,U) ;
14 for each x ∈U do
15 if x is previously examined in the current iteration then
16 S← S+ x ;
17 Update spd ;
18 Remove x from CELF queue, break out of the loop;
19 end
20 Call BACKT RACK(x,δ ,V −S,∅) to compute σV−S(x). ;
21 Compute σ(S+ x). ;
22 Compute marginal gain of u as σ(S+ x)− spd. ;
23 Re-insert u in CELF queue such that its order is maintained. ;
24 end
25 end
26 return S ;

SIMPATH builds on the CELF optimization that iteratively selects seeds in a
lazy forward manner. However, instead of using expensive MC simulations to es-
timate the spread, it is shown in [25] that under the LT model, the spread can be
computed by enumerating the simple paths starting from the seed nodes. It is known
that the problem of enumerating simple paths is #P-hard [53]. However, the major-
ity of the influence flows within a small neighborhood, since probabilities of paths
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diminish rapidly as they get longer. Thus, the spread can be computed accurately by
enumerating paths within a small neighborhood. In addition to the Simpath-Spread
algorithm used by SIMPATH, two other optimizations to reduce the number of spread
estimation calls in SIMPATH. The first one, Vertex Cover Optimization, addresses a
key weakness of the simple greedy algorithm: The spread of a node can be comput-
ed directly using the spread of its out-neighbors. Thus, in the first iteration, a vertex
cover of the graph is constructed and the spread only for these nodes using the spread
estimation procedure is obtained. The spread of the rest of the nodes is derived from
this. This significantly reduces the running time of the first iteration. Second, they
observe that as the size of the seed set grows in subsequent iterations, the spread
estimation process slows down considerably. They provide the optimization called
Look Ahead Optimization which addresses this issue and keeps the running time of
subsequent iterations small. These three inventions are quite helpful for speeding up
the SIMPATH algorithm, one can find details about these in [25], and we will not
discuss about them but rather present the complete algorithm in Algorithm 5.

The whole algorithm is presented in Algorithm 5. First, the algorithm find a ver-
tex cover C, then for every node u ∈C, its spread is computed on required subgraphs
needed for the optimization. This is done in a single call to SIMPAT H− SPREAD.
Next, for the nodes that are not in the vertex cover, the spread is computed. The
CELF queue is built accordingly, sorted in the decreasing order of marginal gains.
Next, by using Look Ahead Optimization, the algorithm selects the seed set in a lazy
forward fashion. The spread of the seed set S is maintained using the variable spd.
At a time, they take a batch of top-l nodes, call it U , from the CELF queue. In a
single call to SIMPAT H− SPREAD, the spread of S is computed on required sub-
graphs needed for the optimization. For a node x ∈U , if it is processed before in the
same iteration, then it is added in the seed set as it implies that x has the maximum
marginal gain w.r.t. S. Recall that the CELF queue is maintained in decreasing order
of the marginal gains and thus, no other node can have a larger marginal gain [23].
Ifx is not seen before, its marginal gain needs to be recomputed, then CELF queue is
updated accordingly.

1.5.2.7 VirAds

In recent studies, researchers have discovered that the propagation in a social net-
work often fades quickly within only few hops from the sources, counteracting the
assumption on the self-perpetuating of influence considered in some literature. Dinh
et al. [13] investigated the cost-effective massive, and fast propagation (CFM) prob-
lem and proposed an algorithm, VirAds, to minimize the seeding cost and to tackle
the problem on large-scale networks.

This scalable algorithm is shown as Algorithm 6, where rv is the round in which
v is activated, n(e)v represents the number of new active edges after adding v into the
seeding and n(a)v refers to the number of extra active neighbors v needs in order to
activate v. Besides, r(i)v is the number of activated neighbors of v up to round i where
i = 1...d. Generally, VirAds algorithm favors the vertex which can activate the most
number of edges. This could distinguish between good and bad seeds. In early stages,
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Algorithm 6: VirAds - Viral Advertising in OSNs
Input: G = (V,E),0≤ ρ ≤ 1,d ∈ N+

Output: A small d-seeding
1 ne

v← d(v),na
v ← ρ ·d(v),rv← d +1,v ∈V ;

2 ri
v = 0, i = 0..d,P←∅ ;

3 while there exist inactive vertices do
4 while u 6= argmaxv/∈P{ne

v +na
v} do

5 u← argmaxv/∈P{ne
v +na

v} ;
6 Recompute ne

v as the number of new active edges after adding u. ;
7 end
8 P← P∪{u} ;
9 Initialize a queue: Q←{(u,rv)} ;

10 ru← 0 ;
11 for each x ∈ N(u) do
12 n(a)x ← max{n(a)x } ;
13 end
14 while Q 6= ∅ do
15 (t, r̃t)← Q.pop() ;
16 for each w ∈ N(t) do
17 for each i = rt → min{r̃t −1,rw−2} do
18 r(i)w = r(i)w +1 ;

19 if (r(i)w ≥ ρ ·dw)∧ (rw ≥ d)∧ (i+1 < d) then
20 for each x ∈ N(w) do
21 n(a)x ← max{n(a)x −1,0} ;
22 end
23 rw = i+1 ;
24 if w /∈ Q then
25 Q.push((w,rw)) ;
26 end
27 end
28 end
29 end
30 end
31 end
32 return P ;
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the algorithm behaves similar to the degree-based heuristics that favors vertices with
high degree. However, after a certain number of vertices have been selected, VirAds
will make the selection based on the information within d-hop neighbor around the
considered vertices, which is different from degree-based heuristic that considers
only one-hop neighborhoodship.

Given those measures, VirAds selects in each step the vertex u with the high-
est e f f ectiveness which is defined as n(e)u + n(a)u . After that, the algorithm needs to
update the measures for all the remaining vertices.

It is introduced in [13] that the cost-effective, massive and fast propagation prob-
lem (CFM) can be easily shown to be NP-hard by a reduction from the set cover
problem. It is also proved that there is unlikely an approximation algorithm with
factor less than O(logn). However, if we assume the network is power-law, their
algorithm is an approximation algorithm for this problem with a constant factor.

1.6 Conclusion
Social networks are graphs of individuals and their relationships [5], such as friend-
ships, collaborations, or advice seeking relationships. With the increasing popularity
of social networks services, more and more people communicate with each other
through such networks. This survey mainly conveys a framework for studying the
information diffusion problems and their approximations as well as optimizations.
It provides with the readers a number of interesting models, and wise algorithms on
social networks. However, these techniques and models only form the foundation
and the basis for further research, there are many open questions that need to be
uncovered.

As we have went through, novel and interesting questions thrown out by the ini-
tial work from Domingos and Richardson [17, 47], inspires Kempe et al. [28, 27],
Mossel and Roch [39] and many others to develop a solid theoretical foundation of
literature resources on the influence maximization problem. The main challenge now
is to find solutions that are applicable in real viral marketing environment. Work-
ing towards various models and algorithms, with the comprehensive experiments,
researchers are trying to find a way that could really gives the satisfying result with-
out requiring too much data load or making unrealistic independence assumptions.
In order to achieve this goal and to determine the real applicability of the existing
approaches, more wise designs, and empirical studies are needed, and the test of the
approximation techniques are also required.

The more recent work of Leskovec et al. [55] gives us insight in modeling the
diffusion through implicit networks, in which the underlying network structure is
unknown, all the predicting of activation and influence spread is focusing on a global
view. Furthermore, in [40], Myers et al. propose a new model which take into ac-
count the external influence from outside of the network. Inspired by those works,
for future works, it would be interesting to relax the assumption of uniform influence
inside of the network to seek better strategy to maximize the influence. Furthermore,
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in contrast to the influence maximization problem, for misinformation or computer
viruses spreading in the networks, how to efficiently prevent the audience from get-
ting infected is also very attractive to us. Formulating and solving those problems
with more practical model and efficient algorithms is a fascinating challenge with
great potential.
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