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Abstract

Where there are a limited number of patients, such as in a rare disease, clinical trials in these small populations

present several challenges, including statistical issues. This led to an EU FP7 call for proposals in 2013. One of the three

projects funded was the Innovative Methodology for Small Populations Research (InSPiRe) project. This paper

summarizes the main results of the project, which was completed in 2017.

The InSPiRe project has led to development of novel statistical methodology for clinical trials in small populations in

four areas. We have explored new decision-making methods for small population clinical trials using a Bayesian

decision-theoretic framework to compare costs with potential benefits, developed approaches for targeted treatment

trials, enabling simultaneous identification of subgroups and confirmation of treatment effect for these patients,

worked on early phase clinical trial design and on extrapolation from adult to pediatric studies, developing methods

to enable use of pharmacokinetics and pharmacodynamics data, and also developed improved robust meta-analysis

methods for a small number of trials to support the planning, analysis and interpretation of a trial as well as enabling

extrapolation between patient groups. In addition to scientific publications, we have contributed to regulatory

guidance and produced free software in order to facilitate implementation of the novel methods.
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Background
A disease is defined as rare by the European Union if

the prevalence is no more than 5 per 10,000 [1], and

by the United States if it affects fewer than 200,000

people in the US [2], equivalent to 62 per 100,000 in 2015

[3]. European regulatory guidance [1] states that “patients

with [rare] conditions deserve the same quality, safety and

efficacy in medicinal products as other patients; orphan

medicinal products should therefore be submitted to the

normal evaluation process”. This is in agreement with

United States guidance [4] that “The Orphan Drug Act

[. . . ] does not create a statutory standard for the approval

of orphan drugs that is different from the standard for
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drugs for common conditions. Approval of all drugs –

for both rare and common conditions – must be based

on demonstration of substantial evidence of effectiveness

in treating or preventing the condition and evidence of

safety for that use”. Rigorous clinical trial evaluation of

treatments is thus as necessary in rare diseases as in

more common ones. The European Medicines Agency

acknowledges that this represents a challenge, however,

indicating that “it may be that in conditions with small and

very small populations, less conventional and/or less com-

monly seenmethodological approachesmay be acceptable

if they help to improve the interpretability of the study

results”. This suggests that there is a need for development

of novel methodology for the design and conduct of clin-

ical trials and analysis of the trial outcomes in research

in small patient populations. It was this need that led

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13023-018-0919-y&domain=pdf
http://orcid.org/0000-0001-7781-1512
mailto: n.stallard@warwick.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Friede et al. Orphanet Journal of Rare Diseases          (2018) 13:186 Page 2 of 9

to a call for proposals under the European Union’s Sev-

enth Framework Programme for Research, Technological

development and Demonstration (EU FP7) in 2013 for

projects that would “develop new or improved statisti-

cal design methodologies for clinical trials aiming at the

efficient assessment of [. . . ] a treatment for small popula-

tion groups in particular for rare diseases or personalized

[. . . ] medicine” [5]. Three projects were funded under this

call; the Innovative Methodology for Small Populations

Research (InSPiRe) project (www.warwick.ac.uk/inspire),

the Integrated Design and Analysis of Small Populations

Group Trials (IDeAl) project (www.ideal.rwth-aachen.de)

and the Advances in Small Trials Design for Reg-

ulatory Innovation and Excellence (Asterix) project

(www.asterix-fp7.eu) [6].

The aim of this paper is to summarize the main

results of the InSPiRe project. This project, completed

in 2017, brought together a team of experts from

eight institutions, including academia, industry and reg-

ulatory authorities, in five European countries, with

additional guidance from an Advisory Board includ-

ing methodological and clinical experts and patient

representatives.

Faced with the challenge of the design, conduct and

analysis of clinical trials in small population groups, we

have focused on a number of areas where we felt that

methodological development was both needed and fea-

sible. In particular, we have developed novel statistical

methodology in the two broad areas of efficient study

design and improved analysis and evidence synthesis.

Efficient study design is particularly important for clini-

cal trials in small populations as it enables the maximum

information to be obtained from the sometimes necessar-

ily limited small sample size, whilst improved analysis and

evidence synthesis ensures that as much relevant informa-

tion as possible is obtained and used in the analysis and

interpretation of the results. This can include use of infor-

mation on endpoints other than the primary endpoint in

the trial as well as information from sources external to

the trial, including data from other trials, observational

studies and disease registries [7]. The latter can include

extrapolation methods, for example, between studies in

adults and children. This is an area that can be controver-

sial, but is one where we believe further methodological

and applied work is clearly justified.

In the InSPiRe project we have developed new methods

in four specific areas (see Table 1), two relating to efficient

design and two to improved analysis and evidence synthe-

sis; the determination of optimal designs for confirmatory

studies using decision-theoretic and value-of-information

(VOI) approaches, the design of confirmatory studies

with stratified populations for personalized medicines,

the incorporation of pharmacokinetics (PK) and pharma-

codynamics (PD) data in early-phase dose-finding studies,

Table 1 Main project topics and outputs

Efficient study design

Optimal designs for
confirmatory studies
using decision-theoretic
and value-of-information
(VOI) approaches

Design of confirmatory studies with
stratified populations for personalized
medicines

Key publications: [12–15] Key publications: [17, 20–23]

Improved analysis and evidence synthesis

Incorporation of
pharmacokinetics (PK) and
pharmacodynamics (PD) data
in early-phase dose-finding studies

Meta-analysis methods for small trials
or small numbers of trials

Key publications: [25, 27–30] Key publications: [33, 34, 36–38, 40, 41]

Open-source R software:
dfpk [26], dfped [29]

Open-source R software:
bayesmeta [35], nmaINLA [42]

and meta-analysis methods for small trials or small num-

bers of trials. The work in these four areas is described

below.

Decision-theoretic and value-of-information
designs for clinical trials in small populations
Most methodology for clinical trial design makes no refer-

ence to the size of the population in which the research is

conducted. Whilst this may be reasonable in a large popu-

lation, in rare diseases or other small populations it could

lead to designs that are inappropriate.

In order to establish the context for future research

work, we completed an analysis of trials in rare dis-

eases recorded in the ClinicalTrials.gov database as well

as exploring novel methods. This showed that the sample

sizes in phase 2 trials in rare diseases were similar for dif-

ferent prevalence but that phase 3 trials in rare diseases

with lowest prevalence were statistically significant lower

than those in less rare diseases and were more similar to

those in phase 2 as shown in Fig. 1 [8].

We have considered determination of appropriate

decision-making methods for small population clinical

trials. In particular we have explored the use of a Bayesian

decision-theoretic framework [9] to compare the costs of

clinical trial evaluation with the potential benefits to cur-

rent and future patients, assessing how the cost-benefit

balance differs between large and small patient popula-

tions when in the latter patients recruited to a clinical trial

could be a substantially proportion of the population. As

recruitment to one clinical trial may also affect the num-

ber of patients that can be recruited to other trials when

the population under investigation is small [10], we have

also considered the design of a series of trials in a small

population group.

We completed a systematic literature review on the use

of decision-theoretic approaches in clinical trial designs,

with a view to providing an overview of the current trends.
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Fig. 1 Jittered boxplot of phase 2 and phase 3 trials with either actual (brown triangle) or anticipated (blue dot) sample size by prevalence class.

Each symbol represents one observation and the mean sample size is indicated by the red diamond. Number of trials contributing to the plot is

given at the top row, median sample size in the second row, first quartile in the third row and the third quartile in the last row of the bottom of each

boxplot. Figure reproduced from [8] under CC BY 4.0 License [49]

This systematic review identified 67 articles proposing

decision-theoretic design methods relevant to small clin-

ical trials. The review discusses these in detail, classifying

them according to the type of study design and gain

function proposed [11].

Building on this existing work, we have developed

methodology for the use of a VOI method for a

confirmatory phase III trial, particularly in the small

population setting [12]. This has two important con-

sequences in terms of optimal design; it challenges

the usual method of sample size determination based

on frequentist error rates and shows that in a small

population setting a smaller trial than usual may be

optimal.

In detail, we determined the optimal sample size and

significance level for a frequentist hypothesis test at the

end of a trial, and investigated how these change with

the population size. We showed how decision-theoretic

VOI analysis suggests a more flexible approach with both

type I error rate and power (or equivalently trial sample

size) depending on the size of the future population for

whom the treatment under investigation is intended. Tak-

ing a more general viewpoint, we have shown that for a

wide range of distributions, including those for continu-

ous, binary or count responses, and gain function forms,

the optimal trial sample size is proportional to the square

root of the population size, with the constant of propor-

tionality depending on the gain function form and prior

distribution of the parameters of the distribution of the

data [13].

We have compared this method with alternative sam-

ple size approaches in three case studies; Lyell’s disease,

adult-onset Still’s disease and cystic fibrosis [14]. In each

case we outline in detail the reasonable choice of param-

eters for the different approaches and calculate sample

sizes accordingly. This work illustrates the influence of the

input parameters in the different approaches and we rec-

ommend investigating different sample size approaches

before deciding finally on the sample size.

We have also developed decision-theoretic methods for

the simultaneous design of a series of trials in a small fixed

population. Use of the methodology has been illustrated

through retrospective application in an example in small

orthopaedic surgery trials [15].

Further work to extend the models developed is ongo-

ing. In particular, we are exploring the optimal design

of multistage trials, settings in which the disease preva-

lence is considered unknown, with information obtained

from the rate of recruitment to the trial itself, and designs

that are optimal for more different stakeholders such as

regulatory authorities and industrial sponsors.

Research in confirmatory trials for small
populations and personalizedmedicines
The development of targeted therapies that act on certain

molecular mechanisms of diseases requires specific trial
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design and analytical methods. Their objective is the pre-

diction of patients’ outcomes based on genetic features

or other biomarkers, to identify and confirm subgroups

of patients for which the therapy’s benefit risk balance is

positive.

We performed a literature search to summarize the cur-

rently available methodology for the identification and

confirmation of targeted subgroups in clinical trials [16].

In total 86 scientific articles proposing relevant meth-

ods were identified that were classified as confirmatory,

exploratory or applicable in a confirmatory as well as

exploratory settings. The review identified a wide range

of trial designs, including fixed sample, group sequential,

and several types of adaptive designs.

In our work we have considered designs where sub-

groups are defined based on a continuous biomarker and

several thresholds are considered to define the subgroup.

We derived confirmatory testing procedures that con-

trol false positive rates if several thresholds are under con-

sideration [17] and show that the type I error rate of earlier

proposed testing procedures based on group sequential

rejection boundaries may be inflated if the biomarker has

a prognostic effect (e.g., if it is correlated with the prog-

nosis of patients in the absence of a treatment effect).

Consequently, we propose improved hypotheses testing

approaches based on regression models and combination

tests that robustly control the familywise error rate. We

also investigated adaptive enrichment designs. In these

two-stage designs, in the first stage patients are recruited

from the full population. Following an interim analy-

sis, based on the interim data, the design of the second

stage may be modified. For example, recruitment may be

limited to patients in a subgroup of biomarker positive

patients and/or the sample sizes in the subgroups may be

adapted [18].

We provided a comprehensive description of the sta-

tistical methodologies for confirmative adaptive designs

with multiple objectives and their application in adap-

tive two-stage enrichment designs [19, 20]. For the special

case of adaptive designs with a survival endpoint, hypoth-

esis tests were developed that allow for early rejection

of the null hypothesis at an interim analysis. This work

generalizes earlier adaptive procedures that control the

familywise type I error rate in the strong sense but have

limitations in that they either cannot use information

from surrogate endpoints for adaptive decision making or

do not allow early rejections at an interim analysis.

To guide the design of clinical trials for the develop-

ment of targeted therapies, working together with the

IDeAl project, we developed a decision-theoretic frame-

work to optimize single stage and adaptive two-stage

designs [21–23]. To address the incentives of different

stakeholders, we proposed utility functions representing

the benefit of a particular clinical trial from a sponsor’s

and society’s perspective. Here we assume that the util-

ity of the sponsor is the net present value of a trial, while

for society it is the expected health benefit adjusted for

the trial cost. In the planning phase, expected utilities for

different trial designs and different utility functions are

computed based on Bayesian prior distributions for the

effect sizes in the subgroup and the full population. Then

optimal trial designs are identified that maximize these

expected utilities by optimizing the sample size, the mul-

tiple testing procedure and the type of the design. The

considered types of trials include classical designs, where

no biomarker information is used and only the full popu-

lation is tested, enrichment designs, where only biomarker

positive patients are included, stratified designs, where

patients from the full population are included and the

treatment effect is tested in the subgroup and the full pop-

ulation, and partial enrichment designs, where the preva-

lence of the subgroup in the trial is a design parameter that

can be chosen to maximize the expected utility.

We found that the optimal trial designs depend on the

prevalence of the subgroup, the strength of the prior evi-

dence that the treatment effect varies across subgroups,

and on the cost of biomarker development and determi-

nation. Furthermore, we observe that optimal designs for

the sponsor and the societal view differ. Trials optimized

under the sponsor view tend to have smaller sample sizes

and are conducted in the full population even in settings

where there is substantial prior evidence that the treat-

ment is effective in the subpopulation only. This is due to

the fact that the variability of treatment effect estimates

means a treatment might appear effective in a subpopu-

lation (and bring a gain for the sponsor) even if it is not

effective and has no benefit for patients.

We also extended the work to consider adaptive two-

stage enrichment designs. We showed that adaptive

enrichment designs can lead to a higher expected util-

ity than single stage designs, especially in settings where

there is high uncertainty if the treatment is effective only

in a subgroup. Figure 2 illustrates the results of optimiz-

ing interim adaptation rules to maximize the expected

utilities by extensive simulations and a dynamic program-

ming algorithm. As for single stage designs, we observe

differences in the optimized designs if trials are optimized

under the sponsor or the societal perspective. An impor-

tant advantage of adaptive designs compared to single

stage designs is their increased robustness with regard to

a misspecification of the planning assumptions.

Extrapolation and use of available information in
early-phase studies
Early phase dose-finding studies aim to obtain reliable

information on an appropriate dose for use in further clin-

ical trials. The designs used have generally relied primarily

on observed toxicity data [24]. We have proposed novel
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Fig. 2 Optimal adaption rules of adaptive enrichment designs, optimized for a sponsor (left graph) and a societal perspective (right graph).

Depending on the observed standardized treatment effects in the biomarker positive (plotted on the x-axes) and negative (plotted on the y-axes)

population, the graph indicates the optimal second stage design option: futility stop (white area), enrichment design, recruiting biomarker positive

patients only (red area), or partially enriched design (grey area). In addition, the second stage sample sizes are optimized (not shown in the graph).

The optimisation is based on an a priori distribution on the effect sizes corresponding to the assumption that the treatment effect is either

independent of the biomarker or that it is larger (or only present) in biomarker positive patients. See Ondra et al. [23] for details. Figure reproduced

from [23] under CC BY-NC License [50]

methods for (i) incorporating of the PK/PD information in

the dose-allocation process, (ii) planning and conducting

clinical trial for reducing neonatal seizures for which no

other method was available, (iii) proposing extrapolation

methods for bridging studies from adults to children and

(iv) incorporating subjective information, such as physi-

cians’ elicitation weighted by their degree of expertise,

into the study design.

We proposed and compared methods to incorporate

PK measures in the dose allocation process during phase

I clinical trials. PK observations were incorporated in a

number of different ways; as a covariate, as a dependent

variable or in a hierarchical modelling approach. We con-

ducted a large simulation study which showed that adding

PK measurements as a covariate alone does not improve

the efficiency of dose-finding trials either in terms of

reducing the number of observed toxicities or improv-

ing the probability of correct dose selection. However,

incorporating PK measures through a hierarchical model

leads to better estimation of the dose-toxicity curve whilst

maintaining the performance in terms of dose selection

compared to dose-finding designs that do not incorpo-

rate PK information [25]. We developed an R package,

dfpk, to provide a tool for physicians and statisticians

involved in such clinical trials implementing the new

method [26].

We developed and applied a novel dose-finding

approach in the LEVNEONAT (NCT 02229123) trial that

aims to find the optimal dose of Levetiracetam for reduc-

ing neonatal seizures with a maximum sample size of 50.

In the trial, 3 primary outcomes were considered: efficacy

and two types of toxicity that occur at the same time but

can be measured earlier or later in time. The primary

outcomes were modelled using a Bayesian approach with

a logistic model for efficacy and a weighted likelihood

with pseudo-outcomes for the two toxicities taking into

account the correlation between the outcomes. This trial

has received ethical committee approval and recruitment

started in October 2017.

We have also focused on the development of possible

extrapolation methods using information from studies in

adults in the design of clinical trials in pediatrics. A unified

approach for extrapolation and bridging adult information

in early phase dose-finding studies was proposed. Using

this approach we have investigated the choice of the dose

range and calibration of prior density parameters of the

dose-finding models for clinical trials involving children.

The method uses adult observations, such as PK data,

toxicity and efficacy. A large simulation study has shown

that our method is robust and gives good performance in

terms of dose selection [27, 28]. An R package, dfped,

was developed to enable implementation of the new

method [29].

In addition to developing methods to incorporate addi-

tional objective information in early phase trial design,

we have also explored the possibility of incorporating

subjective information such as expert opinion in a trial

analysis. In particular, we have developed a method

that reflects, when eliciting experts’ opinions, how these

depend on differences in experience, training and medical

practice. The novel method proposed has been illustrated

through a clinical trial comparing two treatments for idio-

pathic nephrotic syndrome, a rare disease in children

(NCT 01092962). For each expert, a marginal prior was

fitted from their elicitation of the distribution of treat-

ment success. An overall prior was then constructed as a
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mixture of the individual physicians’ priors using charac-

teristics of the experts to weight their contribution in the

mixture. A simulation study was used to evaluate several

versions of the methodology [30].

Meta-analysis and evidence synthesis methods in
small population clinical trials
In order to survey the methodological challenges faced

and the current practices applied in rare diseases, we per-

formed systematic reviews of the literature in two exem-

plary rare indications, namely pediatric multiple sclerosis

and Creutzfeldt-Jakob disease, focusing on design aspects,

patient characteristics and statistical methodology. Our

review yielded a total of 19 publications. While the quality

of evidence appeared to be variable between the different

fields, with mostly observational evidence in one and

several randomized studies in the other, the design and

analysis in most cases were based on standard techniques,

suggesting that the use of more sophisticated statisti-

cal methods may contribute to some progress in these

fields [31].

Meta-analysis methods are most commonly based on a

normal model including variance components to account

for estimation uncertainty as well as for potential het-

erogeneity between estimates [32]. We investigated this

normal-normal hierarchical model (NNHM) with a focus

on its performance and its limitations in the special case

of only a few available estimates, and considering both

classical and Bayesian approaches.

It is known that classical frequentist approaches to

meta-analysis within the framework of the NNHM tend

to run into problems when only few studies are available.

We investigated the use of adjustments that had been

proposed to ameliorate the poor behavior and found

that a previously suggested modification of the common

Hartung-Knapp-Sidik-Jonkmanmethod performed better

than other approaches especially in the common case of

imbalanced study sizes [33].

A Bayesian approach offers another way to perform

random-effect meta-analyses within the NNHM frame-

work. One of the advantages is that the solution remains

coherent also for small numbers of studies; on the other

hand, careful prior specification is required, and the

approach is usually computationally more demanding.We

developed a general semi-analytical approach to solve

the meta-analysis problem (and, in fact, a more general

class of problems involving mixture distributions) via the

DIRECT approach [34]. We have implemented this in

the bayesmeta R package, to provide an efficient and

user-friendly interface to Bayesian random-effects meta-

analysis [35, 36]. The developed software allowed us to

perform large-scale simulations to compare the different

approaches in the special case of few studies; for an

example of such a scenario, see Fig. 3. Here we could

Fig. 3Meta-analyses of few studies are particularly challenging. Here, effect estimates from two studies in pediatric transplantation [51] are shown

along with 5 different combined estimates based on several common approaches: two Bayesian analyses with different prior specifications, a

normal approximation that is usually appropriate for large sample sizes, and two small-sample adjustments based on a Student-t distribution. We

systematically investigated the long-run properties of popular meta-analysis procedures with a focus on few small studies [37, 38]. Figure

reproduced from [38] under CC BY-NC-ND License [52]
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show that Bayesian methods perform well with respect to

confidence/credible interval coverage and length [37, 38].

The Bayesian model also allows implementation of a

number of more advanced analysis strategies. We con-

ducted further simulations to study different (arm-based

and contrast-based) model variations in the special sce-

nario of a single trial with available external evidence

(Unkel, S., et al.: A Bayesian hierarchical framework for

evidence synthesis for a single randomized controlled trial

and observational data in small populations. In prepa-

ration.) motivated by an ongoing trial in Alport disease

[39]. A series of studies may also be used to inform the

analysis when the focus is not on an overall synthesis,

but rather on a particular study that is to be viewed in

the light of previously accumulated evidence. In this sce-

nario, we investigated the use of shrinkage estimates to

support data from a single trial in the light of external

information [40].

Although a Bayesian approach holds promise for net-

work meta-analysis, its considerable complexity hampers

its general and easy application. We investigated the use

of integrated nested Laplace approximations (INLA) to

simplify and speed up computations, including continu-

ous (normal) as well as count data (binomial) endpoints

[41]. The implementation is available in the nmaINLA

R package [42].

Conclusions
Along with the Asterix and IDeAl projects, the InSPiRe

project has provided substantial insights and further

information to assist in clinical trial design for small

patient populations, and to better inform regulators and

decision-makers. Starting with a jointly-organised work-

shop, the three projects worked closely together both to

pool expertise and to avoid overlapping research work.

This paper has summarized the methodological work

conducted as part of the InSPiRe project and refer-

enced the main scientific publications where more details

can be found. A summary of the project outputs in

each of the methodological areas covered is given in

Table 1. More details are available in the full project

report [43].

In spite of the achievements of the InSPiRe, Asterix

and IDeAl projects, the methodological work that can

be completed in such relatively short-term projects is

inevitably limited, with the move to widespread imple-

mentation of new methods in clinical trial practice

extending well beyond the period of the projects them-

selves. This remains an area of ongoing work. The high

level of regulation in clinical trials for evaluation of

novel healthcare interventions, particularly novel medic-

inal products, means that application of our research

results following the publication of innovative methodol-

ogy often can occur only following dissemination to and

engagement with regulatory authorities. A major regula-

tory development of relevance to clinical trials in small

populations during the time of the InSPiRe project has

been the production of the draft EMA PDCO Reflec-

tion paper on extrapolation of efficacy and safety in

pediatric medicine development [44]. Following the pub-

lication of the EMA Concept paper, a workshop of an

EMA Extrapolation expert group was held in September

2015, leading to the production of the draft Reflection

paper in March 2016 [45] and a public workshop held

by EMA in May 2016. InSPiRe team members have been

fully involved in these meetings and in development of

these drafts along with colleagues from the Asterix and

IDeAl projects. The level of interest in and commitment

to the InSPiRe, Asterix and IDeAl projects by the EMA

is also demonstrated by their hosting of a joint meet-

ing of the three projects in March 2017. Along with the

coordinators of the Asterix and IDeAl projects, members

of the InSPiRe team also joined the Steering Commit-

tee of the Small-populations Clinical Trial Task Force

of the International Rare Diseases Research Consortium

(IRDiRC). The task force produced a report of their rec-

ommendations at a workshop held at EMA in March

2016 [46]. Together with colleagues from the Asterix and

IDeaAl projects, members of the InSPiRe team have also

contributed to ongoing regulatory discussions on data

sharing [47].

Besides issues of regulatory harmonization, another

hurdle to the widespread implementation of novel statisti-

cal methods is the availability of software. To address this

issue, we have produced open access statistical software

to run on the freely available software environment R [48]

to implement the new approaches that we have developed

in meta-analysis and network meta-analysis (packages

bayesmeta and nmaINLA) and in dose-finding (package

dfpk and dfped). These software packages are avail-

able for download from the Comprehensive R Archive

Network (https://cran.r-project.org).
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