
Citation: Kulkarni, M.B.; Ayachit,

N.H.; Aminabhavi, T.M. Recent

Advances in Microfluidics-Based

Electrochemical Sensors for

Foodborne Pathogen Detection.

Biosensors 2023, 13, 246. https://

doi.org/10.3390/bios13020246

Received: 17 January 2023

Revised: 3 February 2023

Accepted: 6 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Recent Advances in Microfluidics-Based Electrochemical
Sensors for Foodborne Pathogen Detection
Madhusudan B. Kulkarni 1,2 , Narasimha H. Ayachit 3 and Tejraj M. Aminabhavi 3,*

1 Renalyx Healthcare Systems (P) Limited, Bengaluru 560004, Karnataka, India
2 School of Electronics and Communication Engineering, KLE Technological University,

Hubballi 580031, Karnataka, India
3 School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
* Correspondence: aminabhavit@gmail.com

Abstract: Using pathogen-infected food that can be unhygienic can result in severe diseases and an
increase in mortality rate among humans. This may arise as a serious emergency problem if not
appropriately restricted at this point of time. Thus, food science researchers are concerned with
precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated
assessment time and the need for skilled personnel are some of the shortcomings of the existing con-
ventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective
detection technology for pathogens is indispensable. In recent times, there has been a significant
scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have
been extensively used for sustainable food safety exploration because of their progressively high
selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal en-
richment tactics, measurable devices, and portable tools, which can be used as an allusion to food
safety investigation. Additionally, a device for this purpose must incorporate simplistic working
conditions, automation, and miniaturization. In order to meet the critical needs of food safety for
on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated
with microfluidic technology and electrochemical biosensors. This review critically discusses the
recent literature, classification, difficulties, applications, and future directions of microfluidics-based
electrochemical sensors for screening and detecting foodborne pathogens.
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1. Introduction

In recent times, microfluidics technology has gained substantial attention among
researchers and scientists, especially in electrochemistry and biochemistry studies, for
imitating the traditional benchmark laboratory instruments on a miniaturized chip-based
system [1–3]. Microfluidics is applied almost in all fields, such as biomedical, electrochemi-
cal, pharmaceutical, clinical, and biochemical domains. It offers advantages like minimum
sample volume, fast response, precision, multiplex operation, and rapid assessment [4–6].
These properties convey significant resources to electrochemical and biochemical facets.
Research in microfluidics has made noteworthy advancements over the recent decades
and has grown in popularity because of the vital characteristic benefits such as portability,
versatile design, minimal reagents, the potential for simultaneous process, and easy con-
nection to a smartphone for data access and storage on the cloud. Microfluidics is an open
platform for the automation, integration, and miniaturization of devices highly suitable for
electrochemical, biomedical, and biochemical applications. Further, the microfluidic tech-
nique plays a vital role as the on-chip methdo of detection of viruses, pathogens, diseases,
and bacteria in nephrology, neurology, cardiology, ophthalmology, and oncology [7–13].

Microfluidics is an interdisciplinary field with a broad overview of sample extrac-
tion, collection, separation, preparation, manipulation, coordination, and detection at a
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microscale environment [14–16]. The flow mechanism is generally led by surface tension,
capillary, Van der Waals forces, and electrostatic processes. It is the backbone of the biolog-
ical microelectromechanical system (BioMEMS), the micro total analysis system (µTAS),
and lab-on-a-chip (LoC) domains, as most of the electrochemical assessments include
fluid devolution and reaction for real-time sensing applications. Microfluidic technology’s
electrochemical and biochemical reactions are typically faster due to few reagents and
minimum volume [17–19]. Figure 1 shows the fundamentals of microfluidic devices.
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Microfluidic devices are developed to manipulate and regulate the fluid manage-
ment within the microcapillary, reducing the overall volume of reagents and apparent for
efficiency and effectiveness of mass and thermal aspects because of their better surface-
to-volume ratio. Erickson et al. [20] described a study on an integrated microsystem that
was used for cytometry and cell management. Manz et al. [21] made a review of µTAS
that extended over the expansion history and concept of miniaturization and fabrication
of microfluidic systems, typically for sample extraction. Kulkarni et al. [22] discussed
nanomaterials’ synthesis on a miniaturized microreactor and compared conventional ap-
proaches. Fair et al. [23] demonstrated the operation of blood cells in a micro/nano-
environment and introduced high throughput for separating blood cells with plasma.
Kulkarni et al. [24] reported a continuous-flow-based µ-PCR system with an integrated
approach used for biomedical applications such as cell culture [25], nucleic acid [26],
albumin-to-creatinine [27], and saliva [28].

Microfluidics combines science involving fluidic activities on a miniature platform and
technology involving the design, calibration, optimization, execution, and fabrication of
such microdevices for abundant point-of-care applications. Figure 2 shows the classification
of various point-of-care-testing (POCT) microdevices. Further, considering numerous
additional advantages of microscale technology over benchtop laboratory instruments due
to their high flexibility and capability to produce new building blocks, it is indispensable
to establish and conceptualize POCT devices that can be suitable for medical diagnosis.
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POCT is a primary diagnostic assay that lets unskilled persons or non-physicians to provide
medical tests with affordable, rapid, and limited resources near patients [29–31].
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Nanomaterials are presently experiencing rapid development because of their dis-
tinctive optical, thermal, electrical, physical, and mechanical qualities that have potential
applications in biosensors, electrochemical sensors, catalysis, magnetic data storage, struc-
tural components, nano-electronics, and biomaterials. Usually, nanomaterials are made
up of tiny particles smaller than 100 nm [32]. The term nanotechnology refers to materials
that are several hundred nanometers or sub-nanometer in size. Virtually, it is impossible
to execute any application without nanomaterials in science and technology. It is antic-
ipated that the effective utilization of nanomaterials will improve the functionality of
biomolecular electrical devices with high sensitivities and detection limitations. Further, it
is being investigated how nanoparticles, nanowires, nanotubes, nanorods, graphene, and
MXenes can be used in biosensor diagnostic applications [33–35]. Smart biosensors that
can detect minute concentrations of the desired analyte are getting developed as a result of
advancements in the characteristics of nanomaterials and their dimensions at the nanoscale
level. Typically, nanomaterials are utilized as a transducing material, which is crucial for
developing biosensors [36].

In recent years, biosensors have opened new horizons by emphasizing biological,
biomedical, and electrochemical domains to assist healthcare, food safety, agriculture, and
environmental monitoring [37–39]. Biosensors are acquiring the attention of researchers,
academicians, and industrialists due to their excellent capability to recognize an electro-
chemical occurrence on a transducing module using a signal relative to a concentrated
solution to compute a chemical process. Trends in microfluidic technology have enabled the
design of miniaturized biosensors to regulate, coordinate, and alter micro/nano-volumes
of sample fluid through capillary microchannel dimensions ranging from 1 to 100 µm.
Biosensors can have different sizes, structures, and bioelectrodes that can sense and assess
viruses, diseases, and pathogens. There are different biosensors based on their applications,
such as electrochemical, biological, and biomedical sensors [40]. Among these, electrochem-
ical sensors are widely used for various food safety, pharmaceutical, environmental, and
agricultural applications [41–43].

One of the common sensing methods is the electrochemical nanobiosensor, which
converts biological events into electrical impulses [44,45]. Here, an electrode is a funda-
mental component used as a stable foundation for immobilizing biomolecules and the
transportation of electrons [46]. Electrochemical sensors are microdevices that provide data
about the conformation of a system in real time by pairing a chemically discriminating
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layer to a transducer [47]. In this manner, the chemical energy of the selective interface
between the chemical species and the sensor is transduced into an analytically advanta-
geous signal for further analysis. Electrochemical sensors are the biggest and oldest group
of chemical sensors because the techniques and equipment needed are so straightforward.
As these sensors are simple to automate and integrate into smaller spaces without sacri-
ficing analytical capabilities, they are very popular in recent times. Different families of
electrochemical sensors can be identified depending on the electrical magnitude employed
to transmit the recognition event [48]. In order to achieve excellent performance in terms
of analytical sensitivity, nanomaterials with a wide surface area and synergic effects are
made possible by boosting loading capacity and the mass transport of reactants. In recent
times, electrochemically driven biosensing approaches have been familiarized for easy and
portable analytical devices for on-site detection [49]. Further, this trend can realistically
replace the conventional lab-based tools produced by the prominent in vitro diagnosis
companies that allege susceptible measurement of automation and analytes [40,50–52].

Pathogens are contagious mediators, including microorganisms that can cause dis-
eases, such as protozoans, fungi, prions, viruses, and bacteria in the human body [43,53,54].
Foodborne pathogens can enter the body via several ways of infection [55]. Here, the
primary causes of food safety issues are foodborne diseases transported by ingesting food
contaminated with germs [56]. Pathogenic bacteria that produce foodborne infections are
Salmonella spp., Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Shiga-toxin-producing
Escherichia coli, Listeria monocytogenes (Lm), Campylobacter spp., Enterobacter sakazakii, and
Clostridium botulinum [57–60]. The primary indicators of foodborne pathogens in humans
are food poisoning, dysentery, diarrhea, and even death. Bacterial infections cause a stag-
geringly high number of deaths each year; 13 million deaths worldwide are expected by
the year 2050. Over 91% of foodborne outbreaks, especially in the USA, are caused by the
most commonly reported foodborne pathogenic bacteria [61]. Consequently, it is important
to recognize and detect foodborne pathogenic bacteria. Further, traditional culturing tech-
niques, nucleic-acid-based techniques, and immunological analyses such as PCR-ELISA
are the main approaches for identifying foodborne pathogenic bacteria [62]. However,
these methods lack the necessary advantages for point-of-care applications since they are
time-consuming, expensive, require a specific bulky device, and are unstable [31,63,64].

Foodborne pathogens are routinely detected using time-consuming, tedious methods
such as nonselective and selective enrichment culture, plate separation, pure stages, bio-
chemical reaction, and serological identification. The conventional methods are unable to
encounter the necessity of food safety supervision and rapid diagnosis in detecting food
pathogens. In recent times, detection techniques were established with the development of
food technology, such as detecting certain bacteria with an automatic identification system
and POC technology. However, these methods still have a few limitations such as require-
ment of purifying cultures and enriching foodborne bacteria. Furthermore, there may be
more than one microorganism and pathogen in food, hence, it is desirable that one platform
detects multiple target microorganisms and pathogens simultaneously. This is possible with
microfluidics-based electrochemical biosensors for rapid detection of foodborne diseases.

The present article critically discusses the principle, classification, and recent advances
of microfluidics-based electrochemical sensors for sustainable food safety and foodborne
pathogens and compares them with the state of the art. Furthermore, challenges and
limitations involved in microfluidic electrochemical biosensors for commercialization as a
product are considered. Finally, the future directions of microfluidics-based electrochemical
sensors used to identify foodborne pathogens are discussed.

2. Recognition of Elements of Biosensors and Electrochemical Biosensors

A biosensor can be commonly described as a diagnostic microdevice that translates
a biological reaction into an assessable and transmutable signal [65]. Figure 3 shows a
simple working mechanism of a biosensor. Generally, biosensors are small microdevices
with an electrode modified with a bioreceptor element consisting of an electronic reader
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responsible for recording, collaborating, and sensing of physiological constraints of bio-
chemical components [66]. Furthermore, they can be employed to find viruses in food,
water, the environment, and farming. The working principle of biosensors involves various
parameters: (i) analyte, (ii) bioreceptor element, (iii) transducer, (iv) electrical signal, and
(v) display. Herein, the synthesized nanomaterial is coated after the analyte to modify the
sensing electrode to boost the sensing parameters on the biosensor. The electrode will be
introduced into a buffer electrolyte, and its components, such as glucose, ammonia, alcohol,
and lactose, will be recognized. When analyte and bioreceptor components interact, a
signal is produced. The transducer converts this signal into an amplified electrical signal,
indicating the existence of a biochemical objective. Here, the optical or electrical signals
produced by the transducers, which can be connected to the cloud for simple data access,
are proportional to the analyte–bioreceptor interactions. Finally, the results can be in the
form of graphical, tabular, or mathematical studies.
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Biosensors can be categorized into many kinds based on their analytes or components
to be sensed as bioreceptor elements and transducing components. Figure 4 demonstrates
different biosensors categorized based on the bioreceptor element and transducing com-
ponent. Parametric sensors, such as a microphone and strain gauge, are active sensors
that require an external power source. In contrast to the photodiode and piezoelectric
sensors, passive sensors do not need any external power. Utilizing the specific type of signal
detection, these biosensors are categorized into (i) physical, (ii) thermal, (iii) biological, and
(iv) chemical. These are widely employed in electrochemical, biochemical, and BioMEMS
domains [67–69]. Based on bioreceptor elements, biosensors can be either catalytic or
noncatalytic. Here, the chemical reaction can happen between the solution and bioreceptor
in a catalytic biosensor. For example, whole cells, tissues, enzymes, the immune system,
and bacteria fall under this category. In a noncatalytic biosensor, the solution is irrevocably
combined with the bioreceptor with no new chemical reaction. For example, nucleic acid,
aptamer, cell receptors, and antibodies fall under this group [70,71].
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ing component.

Further, based on the transducer, they can be categorized as (i) optical, (ii) piezoelectric,
(iii) thermoelectric, and (iv) electrochemical. An optical biosensor, in this context, is a tiny
analytical tool made up of an optical transducer and a bioreceptor component. The optical
biosensor provides a signal that is proportional to the concentration of the additional inves-
tigational reagents. Usually, optical biosensors are further classified as surface plasmon
resonance, photonic crystal, and optical fiber. The piezoelectric biosensor is an analyti-
cal device that works on the source of affinity interaction recording. The thermoelectric
biosensor works on sensitive technology that reads the bioreceptor’s temperature change.
Finally, an electrochemical biosensor works on the principle that electrodes interpret a
chemical reaction into an electrical signal. Electrochemical biosensors are widely used to
sense several bioanalytes in the human body, such as blood ketones, cholesterol, glucose,
uric acid, cells, tissues, urea, lactate, nucleic acid, and hemoglobin [34,72,73].

At the moment, electrochemical sensing technology has a wide range of applications
because of their unique benefits like low detection limit, sensitivity, and simple process.
Compared with existing conventional analytical techniques, microfluidic technology has
advantages in real time that can make mutual interactions with pathogens and analyze
the variations that occur at every instant of the process. Additionally, it is fast, as the
process takes only 5–10 min, and a big number of reactions can be determined in a short
time. It detects specific and nonspecific particles in the reagents. Finally, it is simple, as
big particles do not require to be labeled. The evolving electrochemical technique has
been developed and used for food safety; the analysis can be done in a much shorter
time, with high selectivity and sensitivity that can be comparable to that of the traditional
approaches, which makes the idea of rapid detection of foodborne pathogens possible in a
real-time scenario.

Further, it finds applications in detecting foodborne pathogens and environmental
monitoring. Electrochemical sensors are mainly classified into three types: (i) potentiomet-
ric, (ii) impedimetric, (iii) amperometric, and (iv) conductometric. Typically, electrochemical
sensors work on a three-electrode system: working electrode (WE), reference electrode
(RE), and counter electrode (CE). The instrument used for analyzing the biomolecule is
known as a potentiostat [74]. Here, the purpose of the reference electrode is to serve as a
standard for establishing and controlling the voltage of the working electrode without an
admitting current. The reference electrode needs to have a steady electrochemical potential
at low current densities. Furthermore, because the reference electrode only passes a very
small amount of current, the IR drop between the working and reference electrodes (iRU) is
consistently rather low. With the three-electrode system, the reference potential is consider-
ably more stable, and the IR drop across the analyte is compensated. This improves control
over the working electrode’s voltage. The most popular laboratory reference electrodes
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are the Ag/AgCl electrode and the saturated calomel electrode. In the three-electrode
design, the counter electrode’s only purpose is to pass all the current necessary to balance
the current observed at the working electrode. The counter electrode repeatedly swings to
extraordinarily high potentials in order to perform this function [75–77].

Potentiometric biosensors are used to measure the potential of WE at a constant level
concerning the RE. Here, the charge accumulates on the WE because of the interaction
between biomolecules and bioreceptor qualified to the RE under zero current. These sensors
can detect the current generated by oxidation or reduction using electrochemistry in the
electroactive reactant at the WE when a continual voltage is functional to the working
electrode relative to the reference electrode [78,79]. Impedimetric biosensors are used to
quantify the degree to which an electrochemical reaction affects the impedance between
two electrodes [80]. Utilizing these biosensors to track the metabolic activity of living
biomolecules is a common process. When a minimum sinusoidal pulse is carried, these
sensors can sense electrical impedance generated by electrode contact. Using an impedance
analyzer, the in/out-of-phase current response to low-amplitude AC voltage given to the
sensor electrode is measured as a function of frequency [81,82]. Amperometrics are used
to determine the current with a controlled voltage deviation fed as an input to sense the
biomolecules. The primary benefit of these biosensors is the high sensitivity, selectivity, and
concurrent identification of several biomolecules [83,84]. Figure 5 illustrates a schematic
for electrochemical biosensors as a (A) benchtop instrument and (B) handheld device.
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The first-generation glucose oxidase (GOx) biosensor was presented in 1962, and this
marked the beginning of the entire field of biosensors [85]. Despite numerous advance-
ments in the generations of biosensors since the 1960s, the GOx sensor is still the most
popular among other biosensors. As demonstrated earlier [86], electrochemical biosensors
do not suffer from high sensor arrangement complications and price. This is because of
their adjacent association with affordable microelectronic circuit production advancements
and their simple communication with regular automatic digital read-out and manipula-
tion using a smartphone. The inherent benefits of electrochemical biosensors are their
heftiness, ease-to-use, portability, exceptional limits of detection, the minuscule volume of
analytes, and the capability to be used in chaotic biological fluids with optically fluorescing
and absorbing mixtures. However, few characteristics could have curbed the advent of
further revolutionizing the applications constructed on biosensing parameters using an
electrochemical concept. The lack of surface topologies that enable sufficient sensitivity
and distinctive association of the reaction with the intended biological occurrence has
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been a problem for electrochemical biosensors. Significant clusters of biosensors, like
aptamers, DNA sensors, and antibodies may respond differently depending on the pH
and ionic strength of bioanalytes. These problems may be resolved by integrating the next
generation of extremely specialized, selective, responsive, and consistent biological and
electrochemical sensor arrays that combine solid-state and surface mechanics knowledge
with incorporated circuits, bioengineering, and data processing. Thus, it is timely to recapit-
ulate new advancements in this varied field and confer its future direction for developing
microfluidics-based electrochemical sensors. Table 1 summarizes different techniques of
electrochemical biosensors.

Table 1. Summary of different techniques of electrochemical biosensors.

Transducer Technique Merits Demerits Ref

Electrochemical

Potentiometric

• Possibility of constant study
on diverse biomolecule

• Real-time detection

• Time-consuming
• Profound to the surrounding

atmosphere
• Interference induces by

nonspecific binding

[87,88]

Impedimetric

• Instantaneous detection
• Simplicity
• User friendly

• Requires bulky device
• Need theoretical simulation for

facts study
• Low sensitivity

[89–91]

Conductometric

• Suitable for colored analytes
• No need for an indicator
• Accurate

• Nonspecificity
• High interference
• Increased levels of salt may lead

to errors

Amperometric

• Simple
• Affordable
• Miniaturize
• Easy to operate

• Require redox element to boost
the production of current

• Time-consuming
[92,93]

3. Electrochemical Sensors for the Detection of Foodborne Pathogens Using
Microfluidic Technology

Microfluidics-based electrochemical sensors are advanced transduction systems for
sensing and assessing foodborne pathogens. Usually, microfluidic electrochemical biosen-
sors measure an electrochemical reaction [94]. These enable the conception of small system
designs with straightforward instrumentation by directly transforming the inward electri-
cal signal into an electric field [95]. Further, these exhibit generic benefits over analytical
workstations: (i) comparable influential sensitivity, (ii) operating potential in murky me-
dia, and (iii) potential for miniaturization, which enables analysis of even minuscule
volumes. Microfluidics-based electrochemical biosensors are frequently used for identify-
ing pathogenic bacteria in food science. Electrochemical biosensors are an excellent option
that can be focused on detecting multiple foodborne pathogenic bacteria such as Escherichia
coli (E. coli), Lm, Salmonella, S. aureus, and other bacteria [96,97]. It is known that only
some microfluidics-based electrochemical sensors could sense pathogenic bacteria with
a limit of 1 CFU/mL [88]. Here, the sensing electrodes of the electrochemical biosensor
are fabricated and modified using unique nanomaterials for better results because of their
favorable properties. Figure 6 shows the overview of microfluidics-based electrochemical
biosensors for the detection of foodborne pathogens.



Biosensors 2023, 13, 246 9 of 22

Biosensors 2023, 13, x FOR PEER REVIEW 10 of 24 
 

better results because of their favorable properties. Figure 6 shows the overview of 

microfluidics-based electrochemical biosensors for the detection of foodborne pathogens. 

 

Figure 6. Overview of microfluidics-based electrochemical biosensors for detection of foodborne 

pathogens. 

As a significant participant in the celiac ecology of mammals, Escherichia coli 

subsidizes the production of vitamin K2 in human beings. However, several harmful 

strains can lead to the development of specific pathotypes in the urinary tract, and the 

gastrointestinal tract can bring about local illnesses. There are three common clinical 

conditions: sepsis, diarrhea, and meningitis. In addition, gastrointestinal diseases 

constitute a key contributor to morbidity and newborn and early child mortality in South 

Africa, UK, Asia, and USA. Thus, it is imperative to screen E. coli, particularly in food 

science. 

The genus Salmonella is also an essential participant among the domestic 

Enterobacteriaceae, which includes Salmonella bongori and Salmonella enterica. In 

general, infections caused by 2500 Salmonella serovars are predominantly linked with 

tainted food items, normally vegetables, pork, eggs, fresh fruits, pork, and poultry. Table 

2 illustrates the electrochemical biosensors for detection of Escherichia coli (E. coli), 

Salmonella, Staphylococcus aureus (S. aureus), Listeria monocytogenes (Lm), and other bacteria. 

Table 2. Summary of electrochemical biosensors for various foodborne pathogens. 

Detection 

Technique 
Revised Electrode 

Linear Range 

(CFU/mL) 

Bioreceptor 

Element 

Detection 

Limit  
Analyte Ref. 

EIS ITO/MWCNT/PEI 1–104  Antibody 1 CFU/ml E. coli O157:H7 [93] 

EIS & SPR Au IDE µelectrodes 103–106  Antibody 103 CFU/ml E. coli K12 [98] 

Amperometric PB-altered SPIMs 10–106 Enzyme 102 CFU/ml E. coli O157:H7 [99] 

EIS IDE µelectrode 10–105 
Antibody and 

Aptamer 
12 CFU/ml E. coli O157:H7 [100] 

EIS 3D-IDEA 10–105 Aptamer 
2.8 × 102 

CFU/ml 
E. coli O157:H7 [101] 

Amperometric Au chip 10–3.97 × 107 Antibody 50 CFU/ml E. coli [102] 

EIS MNPs-Ag/SPIDE 1–106 Melittin 1 CFU/ml E. coli [103] 

EIS Bridged rebar graphene 10–106 Aptamer 10 CFU/ml 
E. coli 

O78:K80:H11 
[104] 

EIS NPG/GCE 6.5 × 102–6.5 × 108 Aptamer 1 CFU/ml S. typhi [105] 

Potentiometric ssDNA/MWCNT/ITO 67–6.7 × 105 Aptamer 10 CFU/ml S. typhi [106] 

DPV Electrodes array 10–102 Antibody 7.7 CFU/ml S. typhi [107] 
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borne pathogens.

As a significant participant in the celiac ecology of mammals, Escherichia coli subsidizes
the production of vitamin K2 in human beings. However, several harmful strains can lead
to the development of specific pathotypes in the urinary tract, and the gastrointestinal
tract can bring about local illnesses. There are three common clinical conditions: sepsis,
diarrhea, and meningitis. In addition, gastrointestinal diseases constitute a key contributor
to morbidity and newborn and early child mortality in South Africa, UK, Asia, and USA.
Thus, it is imperative to screen E. coli, particularly in food science.

The genus Salmonella is also an essential participant among the domestic Enterobacte-
riaceae, which includes Salmonella bongori and Salmonella enterica. In general, infections
caused by 2500 Salmonella serovars are predominantly linked with tainted food items,
normally vegetables, pork, eggs, fresh fruits, pork, and poultry. Table 2 illustrates the
electrochemical biosensors for detection of Escherichia coli (E. coli), Salmonella, Staphylococcus
aureus (S. aureus), Listeria monocytogenes (Lm), and other bacteria.

Table 2. Summary of electrochemical biosensors for various foodborne pathogens.

Detection
Technique Revised Electrode Linear Range

(CFU/mL)
Bioreceptor

Element
Detection

Limit Analyte Ref.

EIS ITO/MWCNT/PEI 1–104 Antibody 1 CFU/mL E. coli O157:H7 [93]

EIS & SPR Au IDE µelectrodes 103–106 Antibody 103 CFU/mL E. coli K12 [98]

Amperometric PB-altered SPIMs 10–106 Enzyme 102 CFU/mL E. coli O157:H7 [99]

EIS IDE µelectrode 10–105 Antibody and
Aptamer 12 CFU/mL E. coli O157:H7 [100]

EIS 3D-IDEA 10–105 Aptamer 2.8 × 102

CFU/mL
E. coli O157:H7 [101]

Amperometric Au chip 10–3.97 × 107 Antibody 50 CFU/mL E. coli [102]

EIS MNPs-Ag/SPIDE 1–106 Melittin 1 CFU/mL E. coli [103]

EIS Bridged rebar graphene 10–106 Aptamer 10 CFU/mL E. coli
O78:K80:H11 [104]

EIS NPG/GCE 6.5 × 102–6.5 × 108 Aptamer 1 CFU/mL S. typhi [105]

Potentiometric ssDNA/MWCNT/ITO 67–6.7 × 105 Aptamer 10 CFU/mL S. typhi [106]

DPV Electrodes array 10–102 Antibody 7.7 CFU/mL S. typhi [107]
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Table 2. Cont.

Detection
Technique Revised Electrode Linear Range

(CFU/mL)
Bioreceptor

Element
Detection

Limit Analyte Ref.

Chronoam-
perometry

Antibody/protein A/
Au electrode 10–106 Antibody 10 CFU/mL S. typhi [108]

DPV Antibody/magnetic beads Antibody 10–107 3 CFU/mL S. typhi [109]

EIS Mannose/Au electrode Mannose 50–103 50 CFU/mL Salmonella
ATC14028 [110]

EIS SAM/Au-SPEs Antibody 103–107 - S. typhi [111]

EIS Nisin/Au electrode Nisin 15–1.5 × 104 15 CFU/mL S. typhi [112]

EIS Antibody/laser-induced
graphene electrode Antibody 25–105 13 CFU/mL S. enterica [113]

DPV SWCNT conjugate/CPE 10–107 Antibody 13 CFU/mL S. aureus [114]

EIS TSP/Au electrode - Nucleic acid 57 fM mecA gene [115]

DPV
Antibody-ALP/anti-

PBP2a MNPs/Au
electrode

103–105 Antibody 845 CFU/mL MRSA [116]

EIS Antibody/AuNPs/GCE 10–107 Antibody 3.3 CFU/mL S. aureus [117]

EIS AgNPs/3D-
ZnO/electrode - Vancomycin 330 CFU/mL S. aureus [118]

SWV A mercury drop electrode
in the air 4 × 107–2 × 104 Antibody 2 × 104

CFU/mL
MRSA [119]

DPV Triple-helix molecular
switch/Au electrode 30–3 × 108 Aptamer 8 CFU/mL S. aureus [120]

DPV Phage/PEI/c-
MWCNTs/electrode - Phage 3 CFU/mL S. aureus [121]

EIS IDE array based electrode 1.6 × 102–1.6 × 105 Antibody 1.6 × 102

CFU/mL
Lm [122]

DPV ssDNA/RGO/AuNPs/CILE 10–13–10–6 M ssDNA 3.17 × 10–14

M
Lm [123]

EIS
MNP(MAb)-Lm-AuNPs

(urease-
PAb)/SPIE

1.9 × 103–1.9 × 106 Polyclonal
antibody

1.6 × 103

CFU/mL
Lm [124]

Amperometric AAO/Au electrode 100–1250 Aptamer 102 CFU/mL Lm [125]

LSV Ag+/ALP-secondary
antibody/SPCE - Antibody 1.5 ng/mL Lm p60

proteins [126]

ECL Cellulose paper electrode - DNA 10 copies/µL Lm [127]

EIS IDE Au 2.2 × 103–102 Antibody 5.5 CFU/mL Lm [128]

Amperometric
H2O2/HRP-

antibody/MWCNT
fibers electrode

102–105 Antibody 1.07 × 102

CFU/mL
Lm [129]

Amperometric Pt electrode 102–108

Ferric
ammonium
citrate and

esculin

- Lm [130]

SWV Peptide
magnetic/AuNPs/SPCE - Peptide 9 CFU/mL Lm [131]
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Table 2. Cont.

Detection
Technique Revised Electrode Linear Range

(CFU/mL)
Bioreceptor

Element
Detection

Limit Analyte Ref.

DPV

cDNA/AuNPs-
DNA/RCA/

aptamer/Antibody/Au
electrode

2.2–2.2 × 108 Antibody and
aptamer 2 CFU/mL Vp [132]

ECL-ASV Ru-AgNPs@GO-dual
antibody/GCE 102–107 Antibody 33 CFU/mL Vp [133]

EIS
Cells/antibody/protein A/

APTS-CeO2 NWs/
electrode

102–107
Protein

A-arbitrated
antibody

102 CFU/mL
Vibrio cholerae

O1 [134]

EIS Aptamer/AuNPs/GCE 10–106 Aptamer 1 CFU/mL Vp [135]

Amperometric

H2O2/DNAzymehemin/
G-quadruplex

complementary
sequences/

SPCE

2.4 × 107–3.84 × 104 Aptamer 5.01 × 102

CFU/mL
Melissococcus

Plutonius [136]

DPV cDNA/ssDNA probe/
polylactide/AuNPs/SPCE

2.0 × 10–8–2.0 ×
10–13 M

ssDNA 2.16 pM Vp [137]

Amperometric HRP-antibody/Au
SPEs/GCE 105–109 Antibody 6.6 × 104

CFU/mL
Melissococcus

Plutonius [138]

DPV
ALP-

antibody2/antibody2/Au
electrode

- Antibody 102 CFU/mL
Cholera toxin

subunit B [139]

EIS = electrochemical impedance spectroscopy; CV = cyclic voltammetry; DPV = differential pulse voltammetry;
SWV = square wave voltammetry; LSV = linear sweep voltammetry; LAPS = light addressable potentiometric
sensor; ECL = electrochemiluminescence; SPR = electrochemical surface plasmon resonance; DNA = deoxyri-
bonucleic acid; Listeria monocytogenes (Lm); Escherichia coli (E. coli), Salmonella, Staphylococcus aureus (S. aureus);
Salmonella typhi (S. typhi).

Mishra et al. [90] reported a novel paper-based aptamer that works on an electro-
chemical sensing platform employed for detecting Listeria monocytogenes (Lm). Listeria is
a renowned causal pathogen for foodborne diseases. The aptasensor has several useful
features: it is simple, reliable, disposable, and cost-effective (Figure 7A). The use of an ap-
tamer adds more beneficial features in the biosensor field. Furthermore, the detection and
quantification limits of the aptasensor were found to be 10 and 4.5 CFU/mL, respectively,
within a range of linearity of approx. 101–108 CFU/mL.

Buja et al. [140] demonstrated the detection of ampelovirus and nepovirus on a
microfluidics-based chip. It includes a multichamber design for determining quadru-
plicate and instantaneous identification of these targets. It can detect the Grapevine fanleaf
virus (GFLV) and GLRaV-3 at dilution factors more than 15 times greater than those of
ELISA, offering higher sensibility in the identification of these viruses (Figure 7B). Further-
more, this microfluidic platform is simple, fast, miniaturized, and affordable, showing its
potential application for large-scale screening assays.

Antonacci et al. [141] discussed an algal cytosensor based on electrochemical compu-
tation of bacteria in garbage water, the green photosynthetic alga Chlamydomonas reihardtii
restrained on carbon black (CB) nanomodified screen-printed microelectrodes. Due to their
capacity to detect the oxygen produced by the algae and the current, the CB nanoparticles
are used as nanomodifiers, which increases as the number of bacteria exposed to the algae
increases (Figure 7C). The sensor was evaluated for detecting E. coli in real garbage water
samples and reference solutions, with a linear response range of 100 to 2000 CFU/100 mL.
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Figure 7. (A) Schematic of the screen-printed paper-based aptasensor for the detection of Listeria mono-
cytogenes [90]. (B) Schematic representation of the LOC device optimized for the detection of GLRaV-3
and GFLV [140]. (C) Scheme of the proposed algal/CB-SPE cytosensor [141]. (D) Microfabrication
procedure for platinum interdigitated electrodes on SiO2 wafers [142].

Sidhu et al. [142] illustrated a platinum IDE microelectrode-based aptamer for iden-
tifying Listeria spp. in hydroponic lettuce growth media. The sensor is a component of a
particle or sediment hydroponic lettuce system trap for real-time irrigation water analysis
(Figure 7D). The electrochemical behavior was characterized in great detail in Listeria spp.
DNA presence/absence was followed by calibration in several solutions. The aptasensor
showed a 90% recovery rate and could only be used a few times after a quick cleaning.

Although a few conventional approaches for identification of foodborne pathogens
are sensitive, most of them are time-consuming, which limits their practical application.
Therefore, developing new methods to detect foodborne pathogens is essential, as shown
in Figure 7A–D. Microfluidics-based electrochemical biosensing has been sensibly applied
for quick determination of pathogens via investigation and development. Electrochemical
biosensors based on aptamers or nucleic acid have a low detection limit and high sensitivity;
nevertheless, their accuracy and stability should be improved.

4. Critical Challenges and Discussions

According to the International Union of Pure and Applied Chemistry (IUPAC) descrip-
tion provided in 1992, a biosensor uses specific biochemical reactions mediated by isolated
enzymes, tissues, cells, immunosystems, and organelles to sense chemical compounds
generally by thermal, electrical, or optical signals [143]. In the last few decades, enthusias-
tic research has been conducted to synthesize novel nanostructured materials like CNTs,
fullerene, graphene, MXene, and other metal oxides, which can be used for sensing various
biomolecules [144,145]. These materials greatly influence the selectivity, sensitivity, stabil-
ity, and reduction of overpotential. Usually, these nanomaterials are drop-cast and gently
coated on the microfluidic electrochemical biosensor’s working electrode. Although there
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has been a substantial enhancement in the progress of microfluidic electrochemical sensors
for detecting foodborne pathogens, a few limitations encumber these applications from
being used further [146,147]. Furthermore, the major challenge in the miniaturization of
biosensors involves an adequate trade-off between sensor dimensions–signal transduction
efficiency and reaction-transport kinetics.

Several requirements must be met in order to build an effective microfluidic electro-
chemical biosensor for the nonspecialist market:

(i) The biocatalyst must exhibit low variance between assays under typical storage
conditions and must be highly selective for the goal of the analysis [148,149].

(ii) The reaction must be unaffected by pH, stirring, and temperature. As a result, samples
can be analyzed with nominal pretreatment. Co-immobilizing the composition with
the enzyme is preferred [150].

(iii) Over the absorption range of concern, the reaction should be exact, precise, repeatable,
and linear without dilution or concentration. Additionally, it must be devoid of noise
caused by electrical or other transducers [151–153].

(iv) The probe must be small, biocompatible, and free of toxic or allergenic effects if the
biosensor is to be utilized for invasive screening in clinical sites. The biosensor should
not be susceptible to proteolysis or deactivation either [154,155].

(v) Real-time analysis from the biosensor is preferred for the quick determination of
analytes from living samples [156].

(vi) The entire biosensor should be affordable, compact, portable, and used by operators
with some ability [157].

Extremely responsive sensing of foodborne pathogens is still an objective chased by
many researchers. A minimum volume of samples from the human body, including the
skin, intestines, and other organs, can be extracted and detected utilizing highly sensitive
biosensors. The real sample could be further diluted before being tested. Furthermore,
biosensors with a low detection limit are beneficial for quickly concealing alleged patients.
Researchers in the relevant field should propose how to equalize the accuracy and sen-
sitivity of the biosensor because high sensitivity can result in low accuracy. In addition,
nonspecific biosensor adsorption in the food composite matrix may result in subpar de-
tection outcomes. Thus, it is unavoidable to continue on monotonous pretreatment of the
real biomolecule. Presently, very few biosensors have accomplished commercial success
as a product, except electrochemical glucose biosensors and pregnancy tests. Here, the
development of microfluidic electrochemical biosensors for foodborne pathogen detection
incorporated into low-cost, portable, high-precision, and easy-to-use devices remains a
challenge [158–160]. Although the sensor’s performance has not yet exceeded the highest
sensitivity for foodborne pathogens achieved using multifaceted, expensive, and labor-
intensive approaches such as PCR and mass spectrometry, it has high selectivity and quick
detection and is economical, which offers significant benefits over prominent detection
technologies [94,161].

Here, the utilization of nucleic acids and aptamers as biorecognition elements that
keep their long-lasting action is a crucial problem for researchers. The viability of detecting
constituents in biosensor applications has been inadequately explored. According to the
physical characteristics of the nanomaterial type, the fabrication method and toxicity of
functional nanomaterials differ based on the application. As a result, the critical issue
raised after the investigation by scientists includes enhancing the stability of biorecognition
elements and functional nanomaterials to develop good service life of microfluidics-based
biosensors [162–164].

Furthermore, in order to attain a sound understanding of microfluidics-based electro-
chemical biosensors, a SWOT analysis was plotted as shown in Figure 8. Herein, tactical
preparation and premeditated management technique are used to help researchers and
scientists to recognize strengths, weaknesses, opportunities, and threats of project planning
in any domain of study. Additionally, it can be observed that each discipline has its own
room for improvement, which can be achieved with experience and technological progress.
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We fully believe that these flaws may be overlooked, given the advantages of the integration
of this domain of research. Moreover, we believe that the association of microfluidics-based
electrochemical sensors with modern engineering in the near future will open up the path
for accomplishing intelligent microfluidic electrochemical devices for POCT applications in
the field of food science.
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5. Conclusions and Future Directions

Foodborne pathogenic microorganisms are still relevant and continue to manifest their
toxicity. Timely anticipation, precise detection, and profound and fast response in monitor-
ing and sensing pathogens are very important. A microfluidic electrochemical biosensor is
a viable and essential analytical microdevice for virus and pathogen investigation. Ideally,
an electrochemical biosensor needs the following attributes: (i) The port of the biosensor
is ideally designed to have the benefits of vast surface area, ease of use, high specificity,
and low cost; (ii) the whole device can be commercialized, automated, integrated, and
miniaturized. Even today, only a few biosensors have fulfilled these conditions, and most
electrochemical biosensors still have difficulties in commercializing.

Selectivity is one of the significant parameters in deciding the usefulness of microfluidics-
based electrochemical biosensors. At present, affordable bioreceptor components acquired
from organic constituents like microorganisms and plants are striking potential candi-
dates. However, existing edge design approaches have limitations to the repeatability and
stability of analytical outcomes. Herein, incorporating 3D printing, inkjet printing, and
screen-printing technology for electrode development will gradually enhance the biosen-
sor’s accuracy, stability, and reproducibility. Furthermore, integrating artificial intelligence,
the cyber-physical system, and machine learning will significantly augment the data access
and storage unit. Notably, high compassion has always been the most excellent conspicu-
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ous property of microfluidic electrochemical detection over other analytical approaches.
Furthermore, amalgamated with novel nanomaterials, micro-machining technology could
considerably enhance the device’s sensitivity.

It is well-known that only some microfluidic electrochemical sensors have been real-
ized, transformed, and commercialized from hypothetical ideas into realistic applications.
Miniaturized POCT is a need of the hour for the detection of pathogens and bacteria. Future
directions could be a combination of microfluidics, electrochemical sensors, and advanced
technology tendencies like artificial intelligence (AI), deep learning, machine learning, and
internet-of-things (IoT), and well as solving the misperception of practical applications.
Figure 9 illustrates the future directions of microfluidic electrochemical sensors within
sustainable food safety applications. Finally, the hope from researchers and scientists in the
future is to offer a traverse to link the cleft between microfluidics-based electrochemical
sensors and food science.
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