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Abstract. In this work, we study computational approaches to detect
online dialogic instructions, which are widely used to help students un-
derstand learning materials, and build e↵ective study habits. This task
is rather challenging due to the widely-varying quality and pedagogi-
cal styles of dialogic instructions. To address these challenges, we utilize
pre-trained language models, and propose a multi-task paradigm which
enhances the ability to distinguish instances of di↵erent classes by en-
larging the margin between categories via contrastive loss. Furthermore,
we design a strategy to fully exploit the misclassified examples during
the training stage. Extensive experiments on a real-world online educa-
tional data set demonstrate that our approach achieves superior perfor-
mance than other baselines. To encourage reproducible results, we make
our code online available at https://github.com/AIED2021/multitask-
dialogic-instruction.

Keywords: Dialogic instruction · Multi-task learning · Pre-trained lan-
guage model · Hard example mining.

1 Introduction

Teaching online classes is a very challenging task for the well-trained o✏ine
classroom instructors. When sitting in front of a camera or a laptop, traditional
classroom instructors are lack of e↵ective pedagogical instructions to ensure the
overall quality of their online classes. In this paper, we develop a set of dialogic
instructions for online classes aiming to encourage talks and discourses between
teachers and students, not just teacher-presentation [9, 14, 10, 6]. Furthermore,
we study computational approaches to automatically detect these dialogic in-
structions from online class videos, which may provide timely feedback to teach-
ers and help them improve their online teaching skills.
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However, automatic dialogic instruction detection poses numerous challenges
in real-life teaching scenarios. First, online teaching is not a standardized pro-
cedure. Even for the same learning content, di↵erent instructors may teach it in
various ways according to their own pedagogical styles. Furthermore, the qual-
ity of dialogic instructions varies a lot from junior to senior instructors. The
di↵erence between e↵ective and incompetent dialogic instructions is very subtle.
The second challenge is that the model has to be robust enough to errors from
automatic speech recognition (ASR) transcriptions. The publicly available ASR
service may yield very high transcription errors and inferior performance in the
noisy and dynamic classroom environments [3].

To address the above challenges, in this study, we propose an end-to-end
multi-task framework for automatic dialogic instruction detection from online
videos. Specifically, we (1) propose a contrastive loss based multi-task framework
to distinguish instances by enlarging the distances between instances of di↵erent
categories [12, 18]; (2) utilize the pre-trained neural language model to robustly
handle errors from ASR transcriptions without manual annotation e↵orts [5, 15];
and (3) propose a strategy to select and exploit hard instances in the training
process to achieve higher performance [21, 18].

2 The Dialogic Instruction Detection Framework

In this work, we aim to capture the following eight types of well-studied di-
alogic instructions that (1) motivate students and make them feel easy about
the class: greeting [7, 16] and commending [10, 6], (2) help students understand
learning materials and retain them: guidance [25], example-giving [19], repeating
[2], and reviewing [1], and (3) build e↵ective learning habits: note-taking [9, 14]
and summarization [17].

Our multi-task dialogic instruction detection framework has three key com-
ponents: (1) a pre-trained language model, which serves as the base model in the
classification task; (2) a multi-task learning module, which distinguishes e↵ective
instructions from similar but ine↵ective ones by pushing instances from di↵erent
categories apart; and (3) a hard example mining strategy, which establishes a
hard example set to select instances when constructing input pairs.

Pre-trained Language Model: To extract contextual information, in this
study we utilize the Transformer-based pre-trained language models as our base
model in our detection framework. To perform the instruction detection task
on a sentence, similar to [5, 15], we first add a special token [CLS] in front
of the sentence. After that, embeddings of each token in the sentence are fed
into multiple Transformer encoders sequentially. Finally the hidden state of the
special token [CLS] from the last layer of Transformer encoders is obtained as
the representation of the sentence.

Multi-task Learning Module: The multi-task learning framework consists
of two sub-tasks: (1) a multi-class classification task to decide which category
a dialogic instruction belongs to, where the cross-entropy loss is used; and (2)
an additional task with an objective to enlarge the distances between pairs of
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instructions from di↵erent categories by using contrastive loss. The total loss is
a combination of the two parts above defined as follows:
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where xi denotes the raw feature of the ith instance and yci represents the indi-
cator variable that is equal to 1 if and only if the ith instance belongs to category
c. ŷi is the predicted label and b is the batch size. F⇥(·) denotes the pre-trained
language model, which extracts representation of an input instance. � and M are
hyper-parameters. xc̃

j denotes an arbitrary instance (indexed by j) that comes
from a di↵erent category of xi.

Hard Example Mining Strategy: Many instances that can be classified
correctly by the model contribute little to the contrastive loss [18, 21]. That
is to say, a randomly selected instance x

c̃
j probably has been far away from

an instance xi after epochs of training. Therefore, instead of generating pairs by
random sampling, we focus on hard examples, i.e., instances that are misclassified
into a wrong category. Hence, the hard example set H is discovered by: H =
{xj | argmax yj 6= argmax ŷj , j = 1, · · · , b}. Pairs of training inputs are selected
by first randomly choosing an instance xi from the entire training set X, and
then randomly choosing an x

c̃
j from the hard example set H.

3 Experiments

We collected online-class video recordings from a third-party educational plat-
form. Similar to [23, 11], audio tracks are extracted from video recordings and
then cut into utterances by a self-trained VAD model [20]. After that, utterances
are transcribed into text using a self-trained ASR model [26] with a character
error rate (CER) of 11.36% in classroom scenarios. The training set contains
16174 instances and 4088 instances in the validation set. Performance on each
category (except others) is separately evaluated on a binary test set containing
2000 positive instances that belong to this category, and 2000 negative ones from
the other categories (other seven categories of instructions, or others).

We select a series of widely-used baselines, including BiLSTM [8], TextRCNN
[13], and pre-trained language models: BERT [5], ELECTRA [4], NEZHA [22],
RoBERTa [15], and XLNet [24]. Moreover, we compare di↵erent strategies of
negative example selection in our multi-task framework: (1) random selection
from all the instances of other categories, i.e., M-RoBERTa-All ; and (2) hard
example mining, i.e., M-RoBERTa-Hard.

3.1 Results Discussion

From Table 1, we can find that pre-trained language models such as ELECTRA,
NEZHA, and RoBERTa achieve higher performance than classic approaches,
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Table 1. Performance of di↵erent pre-trained language models.

Instruction Model Accuracy F1 Instruction Model Accuracy F1

macro-average

BiLSTM 0.781 0.783

micro-average

BiLSTM 0.781 0.791
TextRCNN 0.785 0.788 TextRCNN 0.785 0.789
BERT 0.781 0.787 BERT 0.781 0.778
ELECTRA 0.791 0.790 ELECTRA 0.791 0.794
NEZHA 0.797 0.803 NEZHA 0.797 0.797
XLNet 0.770 0.775 XLNet 0.770 0.764
RoBERTa 0.799 0.812 RoBERTa 0.799 0.795

Table 2. Performance of the proposed method and its variants.
Instruction Model Accuracy F1 Instruction Model Accuracy F1

commending
RoBERTa 0.828 0.831

guidance
RoBERTa 0.809 0.829

M-RoBERTa-All 0.831 0.844 M-RoBERTa-All 0.847 0.850
M-RoBERTa-Hard 0.842 0.855 M-RoBERTa-Hard 0.868 0.872

summarization
RoBERTa 0.803 0.829

greeting
RoBERTa 0.788 0.803

M-RoBERTa-All 0.862 0.875 M-RoBERTa-All 0.791 0.810
M-RoBERTa-Hard 0.876 0.886 M-RoBERTa-Hard 0.802 0.830

note-taking
RoBERTa 0.814 0.830

repeating
RoBERTa 0.690 0.725

M-RoBERTa-All 0.735 0.771 M-RoBERTa-All 0.749 0.774
M-RoBERTa-Hard 0.886 0.889 M-RoBERTa-Hard 0.750 0.776

reviewing
RoBERTa 0.796 0.787

example-giving
RoBERTa 0.868 0.859

M-RoBERTa-All 0.824 0.811 M-RoBERTa-All 0.861 0.854
M-RoBERTa-Hard 0.822 0.811 M-RoBERTa-Hard 0.929 0.893

macro-average
RoBERTa 0.799 0.812

micro-average
RoBERTa 0.799 0.795

M-RoBERTa-All 0.812 0.824 M-RoBERTa-All 0.812 0.804
M-RoBERTa-Hard 0.847 0.852 M-RoBERTa-Hard 0.847 0.823

i.e., BiLSTM and TextRCNN, which indicates their stronger capacity to model
dialogic instructions by utilizing contextual information. ELECTRA, RoBERTa,
and NEZHA have a higher overall performance than BERT, which is reasonable
since they are pre-trained with improved training objectives and larger corpus.

We demonstrate the e↵ectiveness of our multi-task framework by comparing
with RoBERTa model trained with a single task i.e., instruction classification.
Table 2 shows that: (1) by adding a contrastive loss to enlarge the margin be-
tween di↵erent categories, M-RoBERTa-All outperforms the original RoBERTa
model in 6 out of 8 types of dialogic instructions and the overall performance;
and (2) by fully utilizing instances misclassified by the model,M-RoBERTa-Hard

outperformsM-RoBERTa-All and achieves the best prediction performance com-
pared with other methods in terms of accuracy, macro- and micro-F1 scores.

4 Conclusion

In this work, we present a multi-task dialogic instruction detection framework
using pre-trained language models. Furthermore, we design a strategy to select
hard instances and exploit them when training. Experiments conducted on a real-
world data set show that our framework outperforms both classic methods and
pre-trained language models fine-tuned solely with the classification objective.
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