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Abstract: Nitrogen-containing heterocycles are ubiquitous in natural products and drugs. Various
organic small molecules with nitrogen-containing heterocycles, such as nitrogen-containing boron
compounds, cyanine, pyridine derivatives, indole derivatives, quinoline derivatives, maleimide
derivatives, etc., have unique biological features, which could be applied in various biological fields,
including biological imaging. Fluorescence cell imaging is a significant and effective imaging modality
in biological imaging. This review focuses on the synthesis and applications in direct fluorescence cell
imaging of N-heterocyclic organic small molecules in the last five years, to provide useful information
and enlightenment for researchers in this field.
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1. Introduction

Nitrogen-containing heterocycles are cyclic molecules with one or more nitrogen
atoms in the cyclic scaffold, which are important and unique classes among heterocycles [1].
Nitrogen-based heterocyclic structures are ubiquitous in biologically active natural prod-
ucts, pharmaceutical drugs, and agrochemicals [2–4]. According to the statistics, more
than 59% of the FDA-approved small-molecule drugs bear at least one nitrogen hetero-
cycle [5]. Moreover, nitrogen-containing heterocycles possess various physiological and
pharmacological properties [6,7].

Magnetic resonance imaging (MRI), positron emission tomography (PET), ultrasound
imaging (US), and radionuclides have been studied and applied for biological diagnoses [8].
These imaging techniques have great significance in the bioimaging field; however, they
still have some shortcomings, such as: poor accuracy, low spatiotemporal resolution, and
high radiation risk [9,10]. Fluorescence imaging (FI), as an attractive imaging technique,
has many advantages, including high selectivity, high sensitivity, low cost, in situ real-
time detections, non-invasive, and non-radiative characteristics [11,12]. It is a simple but
effective imaging approach that can be applied to the in-depth study of the physiological
and pathological processes at molecular, cellular, and tissue levels in multiple dimensions
and in real time [13]. Several N-heterocyclic fluorophores such as indocyanine green and
methylene blue have been approved by the FDA for clinical use and have been utilized for
fluorescence-guided tumor resection during clinical surgery [14].

Organic small molecular dyes have many advantages, such as easy modification
and functionalization, easy metabolism, low toxicity, good biocompatibility, and tailored
optical properties [15]. The previous reviews mainly focused on the drug treatment of
N-heterocyclic organic small molecules, and the reviews on imaging are few. Therefore,
the fluorescence characteristics of N-heterocyclic organic small molecules have received
our interest.

In this review, we mainly introduce recent advances since 2018 in direct fluores-
cence cell imaging of nitrogen-containing heterocyclic organic small molecules, including
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nitrogen-containing boron compounds, cyanine, pyridine derivatives, indole derivatives,
quinoline derivatives, maleimide derivatives, and others (Figure 1). This review is divided
into seven sections according to the different scaffolds of nitrogen-containing heterocycles,
selected representative examples are described schematically, and finally, the challenge of
direct fluorescence cell imaging of N-heterocyclic small molecules is discussed.
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cell imaging.

2. Nitrogen-Containing Boron Compounds
2.1. Boron Dipyrromethene (BODIPY) Derivates

The 4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene dyes, usually abbreviated as BODIPYs,
are one of the most significant fluorescent dyes [16]. The first BODIPY dye was synthesized
by chemists Treibs and Kreuzer in 1968 [17]. Since BODIPYs offer unique properties,
including high photostability, high fluorescence quantum yields, easy modification, and
other advantages, the BODIPY derivates have attracted the attention of chemical and
biological researchers in recent years [18]. Here, several representative BODIPY derivates
applied for direct live-cell fluorescence imaging were introduced.

In 2019, Hao’s group developed a novel BODIPY with near-infrared (NIR) absorption
and bright fluorescence [19]. Various BODIPYs were synthesized through a metal- and
additive-free direct C−H α-arylation of easily accessible BODIPYs with aryl diazonium
salts in the presence of visible light (Scheme 1). Representative diindole-annulated BODIPY
1 shows a maximum absorption peak and a maximum emission peak at the NIR region,
respectively. The CCK-8 assay indicated that BODIPY 1 has good biocompatibility with
cells. Fluorescence images stained with BODIPY 1 revealed bright red fluorescence in the
cytoplasm of HeLa cells (Figure 2). The BODIPY core was expanded with nearly planar
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annulate indoles, thus resulting in a well-extended π-conjugation and a red shift of the
absorption and emission.
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In 2020, Tang et al. synthesized a new quinoline-fused BODIPY 2 [20]. This quinoline-
fused BODIPY 2 was obtained in moderate yield by oxidation of precursory BODIPY with
FeCl3 (Scheme 2). Due to the fusion of the quinoline group, the expansion of electron
distribution, the reduction of molecular symmetry, and the change of the charge transfer
direction, 2 emitted strong NIR fluorescence. With the advantages of a good imaging
effect, high photostability, and low cytotoxicity, BODIPY 2 could be applied for biological
imaging. Fluorescence images of stained HeLa cells and human dental pulp cells showed
that BODIPY 2 generally aggregated in the cytoplasm (red region), not in the nucleus (black
region) (Figure 3).
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Figure 3. Confocal fluorescence images of HeLa cells and human dental pulp cells stained with
BODIPY 2. (a,b) Bright field image, (c,d) fluorescence images under a red channel (650 nm).
Adapted from [20].

A year later, Jiang and co-workers reported two novel fluorescent BODIPY dyes, 3 and
4, for mitochondrial imaging (Scheme 3a) [21]. Lipophilic BODIPY 3 was afforded through
a Knoevenagel condensation of 4-dimethylaminobenzaldehyde with the corresponding
BODIPY. Water-soluble BODIPY 4 was afforded through methylation of 3 with methyl
iodide (Scheme 3b). MTT experiments showed that the 3 and 4 have good biocompatibility.
Confocal images indicated that 4 could target the mitochondrial region in HeLa cells
specifically by introducing the cationic moiety, the TPP+ moiety, whereas weak fluorescence
of 3 in HeLa cells was observed, which suggested that 3 was not suitable for targeting the
mitochondrial region, due to its aggregation in the aqueous media (Figure 4). Both dyes
inherited the good optical properties of the BODIPY core, including high photostability
and fluorescence quantum yield.
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2.2. Other Nitrogen-Containing Boron Compounds

The N, N-chelate boron compounds contain BOIMPY, (aza)BODIPY, BOPHY, diaza-
borepin, BOPYIN, etc., according to the different numbers of membered rings [22]. Mean-
while, there are some other nitrogen-containing boron compounds that could be applied
for cell imaging besides BODIPY.

In 2019, Zhang et al. reported various BOPYIN derivatives, 5a–e, that have been
synthesized via a one-pot method [22]. Various 3,3-dimethyl-2-[2-(2-pyr-rolyl)ethenyl]
indoles were formed by different 2,3,3-trimethylindole hydrochlorides with pyrrole-2-
carboxaldehyde. The N, N-ligand compounds then reacted with BF3·OEt2 to form the
BOPYIN derivatives 5a–e (Scheme 4). These BOPYIN derivatives were applied as bio-
compatible fluorophores in cell bioimaging. HeLa cells were stained with BOPYINsxxx
5a–e, and these dyes rapidly passed through cell membranes, located in the cytoplasm
predominantly afterwards, and showed bright green fluorescence. Confocal fluorescence
images suggested that these BOPYIN were located in the perinuclear region, probably due
to endocytic vesicles (Figure 5).
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In 2020, Curiel et al. reported a novel four-coordinate N, N-difluoroboryl complex
6 (Scheme 5) [23]. The compound 6 was synthesized through a substitution reaction, a
Buchwald−Hartwig reaction, an intramolecular cyclization, and a B-N bond coupling, re-
spectively. This N, N-difluoroboryl complex 6 has a large Stokes shift due to its unique struc-
tural features, including desymmetrization, rigidification of the ligand, and π-expansion
of the conjugated system, which could be applied as a fluorescent probe for cancer cells’
imaging (Figure 6).
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In 2020, Chen’s group reported various novel N, N-difluoroboryl complexes with a
tetrahydro-quinoxaline moiety donor, 7 [24]. For the synthesis of N, N-difluoroboryl com-
plexes 7 (Scheme 6), a condensation of 1,4-diethyl-7-hydroxy-1,2,3,4-tetrahydroquinoxaline-
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6-carbaldehyde with various substituted anilines was carried out to afford the intermediates.
The intermediates were subsequently treated with BF3·Et2O to obtain the corresponding
products. MTT assays indicated that compound 7a was less toxic. The HeLa cells were
stained with 7a with commercial Hoechst 33342 as a nuclear stain and bright red fluores-
cence could be observed from the cytoplasm (Figure 7). A 3-day-old zebrafish was fed
with 7a, and remarkable red fluorescence could be observed (Figure 7). The tetrahydro-
quinoxaline donor was introduced into these D–A-type fluorescent dyes, which enhanced
the intramolecular change transfer (ICT) effect, thus resulting in red shifts of the emissions
and large Stokes shifts. Meanwhile, a reasonable fluorescence quantum yield was retained
due to the rigidity of the tetrahydro-quinoxaline moiety as the electron donor.
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Figure 7. Confocal fluorescence images of HeLa cells and a zebrafish stained with 7a and Hoechst
33342. (a) Bright field image, (b) fluorescence image, (c) merged images. Top: High content screening
images of HeLa cells stained with 7a and Hoechst 33342. Red channel: 7a (490–515 nm); blue channel:
Hoechst 33342 (350 nm). Bottom: High content screening images of zebrafish stained with 7a. Red
channel (490–515 nm). Adapted from [24].

3. Cyanine

Cyanine is a conjugated system between two nitrogen atoms; in each resonance struc-
ture, exactly one nitrogen atom is oxidized to an iminium. Cyanine is one of the most
significant fluorescent dyes due to its unique optical properties, including a high mo-
lar extinction coefficient, high fluorescence quantum yield, narrow absorption/emission
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band, and readily tunable fluorescence profile from the UV-vis to near-infrared
(NIR) range [25,26].

In 2018, Jose et al. synthesized a novel dye, 8 [27], which is a combination of heptame-
thine cyanine dye IR-786 [28] and an FDA-approved drug, Amoxapine [29]. IR-786 iodide
4 was generated through a methylation, a cyclization, and a dehydrative condensation,
respectively [30]. Fluorescent dye 8 was synthesized through an amination reaction of
IR-786 iodide with Amoxapine (Scheme 7). Dye 8 could selectively stain the mitochondria,
whereas IR-786 iodide does not show specificity for any organelles (Figure 8a). Colocal-
ization experiments using different commercial mitochondrial stains incubated with dye
8 further confirmed its mitochondrial selectivity (Figure 8b). The lipophilic nature of the
dye 8 could assist with penetrating the cell membrane and the delocalized positive charge
helped the dye 8 to target the negatively charged mitochondria.
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In 2019, Bräse’s group reported three novel polyfluorinated cyanine dyes, 9a–c, and
discussed their photophysical properties [31]. These cyanine probes were synthesized
through a cyclization, a Heck reaction, a methylation, and a dehydrative condensation,
respectively (Scheme 8). All these dyes could penetrate the cell membrane and selectively
accumulate in the mitochondria (Figure 9), due to the lipophilicity of cyanine dyes and the
positive charge of these dyes [32]. Moreover, the addition of fluorous side chains resulted
in red shifts of the absorption and emission of these cyanine dyes.
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Figure 9. Confocal fluorescence images of various cell lines (HeLa, HepG2, and HUVEC cells) stained
with cyanine dye 9b, the mitochondria indicator MitoTracker Green, and the nucleus indicator
Hoechst 33,342. Adapted from [31].

In 2022, Ge’s group reported two hemi-cyanine probes, 10a and 10b, and a neutral
probe 10c based on a quinoxaline skeleton [33]. The three probes were generated through a
Knoevenagel condensation of 1,3-dimethylquinoxalinium iodide or 3-methylquinoxalinium
with different aldehydes (Scheme 9). Fluorescence imaging indicated that all these dyes
could target the mitochondria of HeLa cells. Probes 10a and 10b stained the nucleic
acid in the mitochondria with excellent selectivity, while dye 10c neutrally stained the
mitochondrial region (Figure 10). This research suggested that bioactive quinoxaline
derivatives could be effectively applied in the field of fluorescence images.

Additionally, in 2022, Gallavardin and co-workers replaced the classical electron-
donating group indole with indazole in merocyanines to study the substitution effect [34].
The indazole and indole merocyanines 12 and 13 were generally synthesized through a
key-step Knoevenagel condensation of ethyl-3,3-dimethyl-3H-indolium iodide 11 with
various corresponding aldehydes (Scheme 10). These merocyanines were used to treat
tumoral PC12 cells. Confocal fluorescence images indicated that indazole-based merocya-
nines 12a–c selectively stained the mitochondria. Indole derivatives 13a,b did not stain
the same cell compartment: 13a did not target the mitochondria and stained in the lipo-
some, whereas 13b selectively stained in the mitochondria, similar to indazole compounds
(Figure 11). Indazole merocyanines 12 have an electron-donating indazole ring and a
charged electron-accepting indolinium moiety to target the mitochondria, while the ab-
sorption and emission spectra of indole merocyanines 13 are slightly red-shifted because
indoles are more electron-rich.
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Figure 10. Confocal fluorescence images of HeLa cells stained with probes 10a–c. (a) Bright field
images, (b) rows 1 and 2: probe 10a–b fluorescence under a red channel, row 3: probe 10c fluores-
cence under a green channel, (c) rows 1 and 2: MitoTracker Green FM fluorescence under a green
channel, row 3: MitoTracker Red CMXRos fluorescence under a red channel. (d) Merged images.
Adapted from [33].
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orescence, (B,E,H) mitochondria marker MitoTracker™ Green fluorescence, (K,N) MitoTracker™ 
Red fluorescence, (C,F,I) merged images of 12a–c with MitoTracker™ Green, and (L,O) merged im-
ages of 13a or 13b with MitoTracker™ Red. Adapted from [34]. 
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trogen. The first pyridine was reported through heating animal bones by Scottish chemist 
Thomas Anderson in 1849 [35]. Due to the mitochondrial-targeting ability of the pyri-
dinium group and other biological features of pyridine derivatives, pyridine derivatives 
have been generally utilized as fluorescent dyes in cellular imaging [36–39]. Herein, we 
mainly introduce the direct fluorescence cell imaging of pyridine derivatives. 

In 2018, Zhang and Wang reported three isomers of triphenylamine-based terpyri-
dine derivatives, 14a–c [40]. These terpyridine derivatives were synthesized through an 
aldol reaction and a subsequent cyclization (Scheme 11). The terpyridine derivatives 14a–
c could stain similarly in cytosolic space of the HepG2 cells instead of the nuclear region. 
The bright field images revealed good cell morphologies, which showed the low toxicity 
of 14a–c (Figure 12). The D–A structure was constructed to build the optically active 
probes. The triphenylamine unit owned the forceful electron donor and highly efficient p-
electron bridge, while the terpyridine unit was applied as the electron acceptor. Moreover, 
the methyl group attached to the triphenylamine unit was applied to improve the elec-
tron-donating ability and the lipophilicity. 

Figure 11. Confocal fluorescence images of PC12 cells stained with merocyanines 12a–c, 13a, 13b,
MitoTracker™ Red, and MitoTracker™ Green. (A,D,G,J,M) Merocyanines 12a–c, 13a, and 13b
fluorescence, (B,E,H) mitochondria marker MitoTracker™ Green fluorescence, (K,N) MitoTracker™
Red fluorescence, (C,F,I) merged images of 12a–c with MitoTracker™ Green, and (L,O) merged
images of 13a or 13b with MitoTracker™ Red. Adapted from [34].

4. Pyridine Derivatives

Pyridine is an aromatic heterocycle composed of a six-membered ring with one nitro-
gen. The first pyridine was reported through heating animal bones by Scottish chemist
Thomas Anderson in 1849 [35]. Due to the mitochondrial-targeting ability of the pyri-
dinium group and other biological features of pyridine derivatives, pyridine derivatives
have been generally utilized as fluorescent dyes in cellular imaging [36–39]. Herein, we
mainly introduce the direct fluorescence cell imaging of pyridine derivatives.

In 2018, Zhang and Wang reported three isomers of triphenylamine-based terpyridine
derivatives, 14a–c [40]. These terpyridine derivatives were synthesized through an aldol
reaction and a subsequent cyclization (Scheme 11). The terpyridine derivatives 14a–c could
stain similarly in cytosolic space of the HepG2 cells instead of the nuclear region. The
bright field images revealed good cell morphologies, which showed the low toxicity of
14a–c (Figure 12). The D–A structure was constructed to build the optically active probes.
The triphenylamine unit owned the forceful electron donor and highly efficient p-electron
bridge, while the terpyridine unit was applied as the electron acceptor. Moreover, the
methyl group attached to the triphenylamine unit was applied to improve the electron-
donating ability and the lipophilicity.
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In 2020, Huang et al. developed a novel approach to obtain C-4 arylated pyridine 
derivatives through a C−C coupling reaction of 2,4-dichloropyridines with boronic esters 
catalyzed by Palladium (Scheme 12a) [41]. Here, 15a and 15b were chosen as representa-
tive compounds to identify their good applicability in cell imaging (Scheme 12b). Blue 
fluorescence (Figure 13A) and green fluorescence (Figure 13B) could be observed by ex-
citing at 405 and 488 nm, respectively, while bright cyan fluorescence was shown in 
merged images (Figure 13D). Inspection of the photophysical properties showed that the 
stronger the electron-absorbing ability of C-2 or C-4 substitution, the greater the red-
shifted emission of the pyridine derivatives, indicating the formation of a D−π-A system. 
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In 2020, Huang et al. developed a novel approach to obtain C-4 arylated pyridine
derivatives through a C−C coupling reaction of 2,4-dichloropyridines with boronic esters
catalyzed by Palladium (Scheme 12a) [41]. Here, 15a and 15b were chosen as representative
compounds to identify their good applicability in cell imaging (Scheme 12b). Blue fluo-
rescence (Figure 13A) and green fluorescence (Figure 13B) could be observed by exciting
at 405 and 488 nm, respectively, while bright cyan fluorescence was shown in merged
images (Figure 13D). Inspection of the photophysical properties showed that the stronger
the electron-absorbing ability of C-2 or C-4 substitution, the greater the red-shifted emission
of the pyridine derivatives, indicating the formation of a D−π-A system.
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fluorescence (405 nm), (B) FITC channel fluorescence (488 nm), (C) bright field image, and (D) 
merged images. Adapted from [41]. 

In 2021, Zhou’s group synthesized various water-soluble benzoxazole-pyridinium 
salt derivatives [42]. These probes were generally synthesized through a bromination, a 
Wittig reaction, a methylation, and an ion-exchanging reaction, respectively (Scheme 13). 
Cell imaging revealed that 3-pyridinium salt 16 crossed the nuclear membrane and selec-
tively stained the nucleus, whereas 4-pyridinium salt derivatives 17a–d stained in the nu-
clear membrane, which clearly showed the morphology of the nucleus (Figure 14). The 
plausible reason for the different staining ability may be that the nature of the pyridinium 
salt isomer influences the particle shape and size in aggregates in the cells. 
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Figure 13. Confocal fluorescence images of HeLa cells stained with 15a and 15b. (A) DAPI channel
fluorescence (405 nm), (B) FITC channel fluorescence (488 nm), (C) bright field image, and (D) merged
images. Adapted from [41].

In 2021, Zhou’s group synthesized various water-soluble benzoxazole-pyridinium salt
derivatives [42]. These probes were generally synthesized through a bromination, a Wittig
reaction, a methylation, and an ion-exchanging reaction, respectively (Scheme 13). Cell
imaging revealed that 3-pyridinium salt 16 crossed the nuclear membrane and selectively
stained the nucleus, whereas 4-pyridinium salt derivatives 17a–d stained in the nuclear
membrane, which clearly showed the morphology of the nucleus (Figure 14). The plausible
reason for the different staining ability may be that the nature of the pyridinium salt isomer
influences the particle shape and size in aggregates in the cells.
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pyrrole ring. The first indole was generated through Fischer indole synthesis, reported in 
1883 [43]. Indole derivatives have been included in the synthesis of essential FDA-ap-
proved drugs [5]. To our knowledge, the scientific researchers generally focused on indole 
derivatives applied as pharmaceutical drugs [44,45]. However, only a few indole 
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5. Indole Derivatives

Indole is an aromatic heterocyclic organic compound made of benzene and a fused
pyrrole ring. The first indole was generated through Fischer indole synthesis, reported
in 1883 [43]. Indole derivatives have been included in the synthesis of essential FDA-
approved drugs [5]. To our knowledge, the scientific researchers generally focused on
indole derivatives applied as pharmaceutical drugs [44,45]. However, only a few indole
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derivatives applied in cell imaging systems were reported. In this section, indole derivatives
for direct cell imagining were investigated.

F16 is an indole-containing, mitochondria-targeted, broad-spectrum anticancer drug.
In 2018, Liu et al. reported two isomers of F16 (o-F16 18b and m-F16 18c) with different
fluorescence [46]. The F16s 18a–c were synthesized through a Wittig-like reaction and a
methylation of gramine with the corresponding pyridine carboxaldehyde, respectively
(Scheme 14). Fluorescent images pointed out that the two isomers could selectively accu-
mulate in the live SGC-7901 cells (Figure 15).
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din-1-ium iodide with the corresponding indole-3-carboxaldehydes (Scheme 15). Among 
them, compound 19a showed good anti-tumor activity in various cancer cell lines. Mean-
while, 19a could also be applied as a fluorescence probe for cancer cell imaging (Figure 
16). The cell experiments revealed that the mitochondrial selectivity of F16s is driven by 
the negative transmembrane potential, such as other DLCs. 
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In 2019, Cheng et al. synthesized a series of representative F16 derivatives, 19, which
could selectively accumulate in the mitochondria [47]. These F16 derivatives 19 with differ-
ent isomers were prepared through a Knoevenagel condensation of 1,4-dimethylpyridin-1-
ium iodide with the corresponding indole-3-carboxaldehydes (Scheme 15). Among them,
compound 19a showed good anti-tumor activity in various cancer cell lines. Meanwhile,
19a could also be applied as a fluorescence probe for cancer cell imaging (Figure 16). The
cell experiments revealed that the mitochondrial selectivity of F16s is driven by the negative
transmembrane potential, such as other DLCs.
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In 2022, Beşer et al. investigated the fluorescent probe properties of a Caulerpin de-
rivative, 20b, as a member of the indole family [48]. For the synthesis of this bis indole 
compound 20b (Scheme 16), the corresponding indole 20a was synthesized by Fisher in-
dolization reaction of cyclooctanone with phenylhydrazine. Afterwards, the 
DDQ/H2O/THF system selectively oxidized benzylic CH3 groups at the 3-position of the 
indole 20a to corresponding ketone. Indolization of this ketone by another Fisher indoliza-
tion reaction and a subsequent methylation furnished the bis indole 20b in a high yield. 
Cytotoxic activity tests indicated the low toxicity of 20b on various cancer and healthy cell 
lines. Confocal fluorescence imaging showed that the probe 20b selectively stained the 
cytoplasm of MCF-7 cells (Figure 17). This research suggested that this molecule can be 
applied as a fluorescence probe for biological cell imaging. 
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In 2022, Beşer et al. investigated the fluorescent probe properties of a Caulerpin
derivative, 20b, as a member of the indole family [48]. For the synthesis of this bis
indole compound 20b (Scheme 16), the corresponding indole 20a was synthesized by
Fisher indolization reaction of cyclooctanone with phenylhydrazine. Afterwards, the
DDQ/H2O/THF system selectively oxidized benzylic CH3 groups at the 3-position of the
indole 20a to corresponding ketone. Indolization of this ketone by another Fisher indoliza-
tion reaction and a subsequent methylation furnished the bis indole 20b in a high yield.
Cytotoxic activity tests indicated the low toxicity of 20b on various cancer and healthy cell
lines. Confocal fluorescence imaging showed that the probe 20b selectively stained the
cytoplasm of MCF-7 cells (Figure 17). This research suggested that this molecule can be
applied as a fluorescence probe for biological cell imaging.
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Quinoline is an aromatic heterocycle made of benzene and a fused pyridine ring. The 

first quinoline was obtained through coal tar extraction in 1834 by chemist Friedlieb Fer-
dinand Runge [49]. Quinoline derivatives have been widely used in various fields, includ-
ing pharmaceutical, biological, and industrial chemical fields [50]. In the biological field, 
the quinoline derivatives have been demonstrated as star molecular probes, because of 
their excellent biological activities [51,52]. Herein, we focus on the synthesis and applica-
tions in direct cell imaging of quinoline derivatives. 

In 2019, Chen and co-workers synthesized various novel 7-aminoquinolines 21 that 
exhibit high selectivity towards the Golgi apparatus [53]. These 7-aminoquinoline deriv-
atives were synthesized through a selective condensation of m-phenylenebenzene with 
various 1,3-diaketones (Scheme 17). Confocal images revealed that the compound 21a 
chosen as a representative was located in the Golgi apparatus of various cell lines (HeLa, 
U2OS, and 4T1 cells), specifically (Figure 18). The strong electron-withdrawing trifluoro-
methyl group potentially enhances the intramolecular change transfer (ICT) state of the 7-
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6. Quinoline Derivatives

Quinoline is an aromatic heterocycle made of benzene and a fused pyridine ring. The
first quinoline was obtained through coal tar extraction in 1834 by chemist Friedlieb Ferdi-
nand Runge [49]. Quinoline derivatives have been widely used in various fields, including
pharmaceutical, biological, and industrial chemical fields [50]. In the biological field, the
quinoline derivatives have been demonstrated as star molecular probes, because of their
excellent biological activities [51,52]. Herein, we focus on the synthesis and applications in
direct cell imaging of quinoline derivatives.

In 2019, Chen and co-workers synthesized various novel 7-aminoquinolines 21 that ex-
hibit high selectivity towards the Golgi apparatus [53]. These 7-aminoquinoline derivatives
were synthesized through a selective condensation of m-phenylenebenzene with various
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1,3-diaketones (Scheme 17). Confocal images revealed that the compound 21a chosen as a
representative was located in the Golgi apparatus of various cell lines (HeLa, U2OS, and
4T1 cells), specifically (Figure 18). The strong electron-withdrawing trifluoromethyl group
potentially enhances the intramolecular change transfer (ICT) state of the 7-aminoquolines
between the strong electron-donating amine group and the trifluoromethyl group, thus
resulting in red shifts of the absorption and emission of the compounds.
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(b,e,h) BODIPY TR Ceramide fluorescence (633 nm), and (c,f,i) merged images. Scale bar: 10 µm.
Adapted from [53].

In 2020, Tian et al. synthesized various water-soluble quinolineindole-based deriva-
tives 22a–c [54]. These probes were generally synthesized through a Knoevenagel conden-
sation of 4-methylquinolinium salt derivatives with 1H-indole-3-carbaldehyde (Scheme 18).
Confocal images suggested that 22c as a representative could target the nucleus and mito-
chondria in live and fixed cells (Figure 19A,C). Colocalization experiments using different
commercial nuclear stains incubated with 22c further confirmed the nuclear and mitochon-
drial selectivity of 22c (Figure 19B,D–F). I− or SO3

− replaced by NO3
− on 22c enhanced

the water solubility and biocompatibility compared to 22a,b.
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Figure 19. Colocalization experiments of HepG2 cells stained with 22a–c. (A) 22c fluorescence
(485 nm), (B) 22c fluorescence and MitoTracker® (633 nm), (C) fixed HepG2 cells stained with 22c,
(D) fixed HepG2 cells stained with 22c and MitoTracker®, and (E,F) live and fixed HepG2 cells
incubated with 22c and SYTO63® (657 nm). Scale bar = 8 µm. Adapted from [54].
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In 2022, Ge’s group synthesized various functional dyes 23a−d with a chromeno[b]quinoline
skeleton through a cyclization of coumarin derivatives with aromatic amines in the presence
of the catalyst anhydrous AlCl3 (Scheme 19) [55]. Moreover, the optical performance,
toxicity, cell imaging, and calculations of these dyes were comprehensively evaluated.
Among these functional dyes, probes 23a−c, which possess a diethylamine group as a
chromophore, exhibited ideal fluorescence performance, and could be applied as fluorescent
markers to lipid droplets in HeLa cells (Figure 20). Compared with probes 23a−c, the
structure of probe 23d may lack the diethylamino group to reduce its lipophilicity, thus
resulting in the inability to penetrate the organelle membrane.
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Figure 20. Confocal fluorescence images of HeLa cells with probes 23a–c and LDs Tracker Nile
Red. (a) Bright field image, (b) probes 23a–c fluorescence under a green channel (row 1: 23a, row 2:
23b, row 3: 23c), (c) LDs Tracker Nile Red fluorescence under a red channel, and (d) merged image.
Adapted from [55].
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7. Maleimide Derivatives

Maleimides are generally synthesized by dehydration of maleic anhydride with
amines [56]. Maleimide derivatives have exhibited various biological properties which can
be applied in medicinal and natural product chemical fields [57,58]. In the bioimaging field,
due to the fluorescence properties of the maleimide group, maleimide derivatives have
been employed as fluorescence probes for biological cell imaging [59,60]. Here, the direct
cellular fluorescence imaging of maleimide derivatives is discussed.

In 2021, Patel et al. synthesized a series of maleimide derivatives with bright flu-
orescence [61]. These compounds were obtained through the tandem intra- and inter-
molecular cyclization of o-alkynylanilines with maleimides (Scheme 20). Confocal images
revealed bright fluorescence of HeLa cells stained with the representative compounds 24a–d
(Figure 21).
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Recently, Amarante and co-workers reported a transition metal-free approach to obtain
maleimide derivative 25 through a novel rearrangement from thiazolidine-2,4-diones in one
step [62]. N-butylmaleimide 26 was obtained through a substitution reaction of compound
25 and 1-bromobutane (Scheme 21). Compounds 25 and 26, which emitted green and red
fluorescence, were chosen as respective compounds to study. Confocal images indicated
that compound 25 could stain the cytoplasm in live and fixed cells. A mild staining in
the cell nucleus could be observed (Figure 22A−C). Compound 26 stained the perinuclear
region preferentially, perhaps due to its accumulation in the mitochondria (Figure 22D−F).
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8. Others 
There have been some other nitrogen-containing heterocycles with bioimaging func-

tions reported in recent years. These N-heterocycles containing different amounts of ni-
trogen have various biological features. However, in recent years, they have not been sys-
tematically studied. In this section, we summarize the direct cell imaging of these nitro-
gen-containing heterocycles based on the amount of nitrogen for reference. 

In 2018, Yu’s group reported various novel purine-based AIEgens 27a–e, which were 
generated via the Suzuki coupling reaction (Scheme 22) [63]. The compounds have the 
advantages of high selectivity, low background, and good biocompatibility. Cell imaging 
experiments showed that these probes could selectively stain lipid droplets and have good 
photostability, similar to the commercial dyes (Figure 23). A D–p-A structure was con-
structed to build the tunable emission AIE fluorophores. Purine was chosen as the core 
structure, indole was chosen as the electron donor, and the electron acceptor was changed 
to regulate the emission. Meanwhile, an n-propyl group was introduced to improve the 
lipophilicity. 
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8. Others

There have been some other nitrogen-containing heterocycles with bioimaging func-
tions reported in recent years. These N-heterocycles containing different amounts of
nitrogen have various biological features. However, in recent years, they have not been
systematically studied. In this section, we summarize the direct cell imaging of these
nitrogen-containing heterocycles based on the amount of nitrogen for reference.

In 2018, Yu’s group reported various novel purine-based AIEgens 27a–e, which were
generated via the Suzuki coupling reaction (Scheme 22) [63]. The compounds have the
advantages of high selectivity, low background, and good biocompatibility. Cell imaging
experiments showed that these probes could selectively stain lipid droplets and have
good photostability, similar to the commercial dyes (Figure 23). A D–p-A structure was
constructed to build the tunable emission AIE fluorophores. Purine was chosen as the core
structure, indole was chosen as the electron donor, and the electron acceptor was changed
to regulate the emission. Meanwhile, an n-propyl group was introduced to improve
the lipophilicity.

In 2019, based on Namba’s group’s work [64], Suzenet et al. reported substituted
triazapentalenes 28 which exhibited good fluorescent properties [65]. These novel tri-
azapentalene compounds were synthesized through a one-step cyclization and a Suzuki
cross-coupling reaction (Scheme 23). These fluorescent probes have the advantages of
high quantum yields, good photostability, and large Stokes shifts, which is suitable for
optical imaging applications. Photobleaching experiments suggested that representative
compound 28a shows good photostability (Figure 24). The fused diazine on the triazapen-
talene ring induced strong red shifts of the emission and increased quantum yields due to
a plausible ICT process.
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Tracker Green DND-26 (bottom) after exposure to the green light (λex = 414 nm), continuously,
during: (a) 0 s, (b) 30 s, and (c) 100 s. Adapted from [65].

Imidazoles are ubiquitous N-containing heterocyclic molecules in natural products
and drugs [66,67]. In 2020, Banerji and co-workers synthesized substituted imidazoles 29
through an oxidative cyclization with the diketone or α-hydroxy ketone, aromatic aldehyde,
and amine source catalyzed by iodine (Scheme 24) [68]. This methodology has advantages
of being peroxide-, transition metal-, and organic solvent-free. It could be employed at the
gram-scale level. Due to the excellent fluorescence properties of these molecules, two of
the derivatized imidazoles, 29a and 29b, were modified with lysosome-directing groups.
These two molecules showed bright blue fluorescence of lysosomes in human and murine
cells, which could be applied as lysosome-targeted probes (Figure 25).

In 2020, Yagishita et al. synthesized various novel quaternized imidazo[1,2-a]pyridine
dyes 32a–d, excited with blue light [69]. For the synthesis of these compounds (Scheme 25),
2-iodinated imidazo[1,2-a]pyridine 30 was synthesized through a copper-catalyzed ox-
idative coupling of 2-aminopyridine with phenyl acetylene in the presence of I2 [70].
Afterwards, compound 31 was generated through a Sonogashira coupling reaction of
compound 30 with 1-ethynyl-4-methoxybenzene. The alkylation of 31 with different alkyl
iodides yielded various corresponding products, 32a–d. The HeLa cells were stained
with the compound 35a, and colocalization experiments using a commercial mitochon-
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drial marker, further confirming that representative salt 32a could target the mitochondria
(Figure 26). The D−π-A structure plays a key role for the two- and three-photon fluo-
rescence imaging. The p-methoxyphenyl ring was chosen as the electron donor and the
cationic imidazo[1,2-a]pyridine was chosen as the electron acceptor.
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33a and 33b were obtained through a condensation, a one-step cyclization, and a William-
son reaction, respectively (Scheme 26). Fluorescence images indicated the low toxicity of 
representative compound 33a in the dark and showed bright fluorescence in the intracel-
lular medium of MCF-7 cells (Figure 27). Compared with the imidazopyridine 33a, the 
third nitrogen atom in the imidazopyrimidine 33b is important for the solubility in the 
cell culture medium as well as the cell penetration process. 
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In 2021, Ornelas and co-workers reported the imidazo[1,2-a]pyrimidine compounds
which could be applied for fluorescence imaging and PDT [71]. The alkoxylated alco-
hols 33a and 33b were obtained through a condensation, a one-step cyclization, and a
Williamson reaction, respectively (Scheme 26). Fluorescence images indicated the low
toxicity of representative compound 33a in the dark and showed bright fluorescence in the
intracellular medium of MCF-7 cells (Figure 27). Compared with the imidazopyridine 33a,
the third nitrogen atom in the imidazopyrimidine 33b is important for the solubility in the
cell culture medium as well as the cell penetration process.

Additionally, in 2021, Klymchenko et al. reported a series of fluorescent probes 34
based on Nile Red for specific targeting of different organelle, including the endoplas-
mic reticulum, Golgi apparatus, lysosomes, lipid droplets, mitochondria, and plasma
membranes [72]. These organelle markers were generally synthesized through a one-step
amidation reaction (Scheme 27). These probes were incubated with live KB cells with differ-
ent commercial markers and could show significant colocalization with the corresponding
markers (Figure 28).
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Recently, Lavis et al. reported a series of novel mitochondrial stains 35a–f based
on 2,7-diaminobenzopyrylium (DAB) dyes excited with violet light [73]. To obtain the
corresponding probes (Scheme 28), different known 2,7-diaminobenzopyrylium (DAB)
dyes were treated with Et3OBF4 to generate 2-ethoxychromenylium intermediates, and
the intermediates were reacted with diethylamine afterwards. These probes could stain
in mitochondria because of their positively charged scaffolds, while the julolidine-based
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derivatives 35c–e showed brighter fluorescence due to increased lipophilicity of the compact
cationic structure. DAB 35e and diDAB 35f showed excellent mitochondrial-targeting
ability (Figure 29a). After media exchange washes, the DAB 31e signal rapidly decreased,
whereas the diDAB 35f was retained (Figure 29b).
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Figure 29. (a) Confocal fluorescence images of U2OS cells stained with DAB dyes 35a–e and Mi-
toTracker Deep Red. (b) Confocal fluorescence images of live U2OS cells stained with DAB 35e,
diDAB 35f, and MitoView 405 after 0, 1, or 2 dye-free media exchange washes. Scale bar: 10 µm.
Adapted from [73].
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9. Conclusions

The small molecules applied for direct fluorescence cell imaging are summarized in
Table 1 according to different scaffolds of nitrogen-containing heterocycles for clarity.

Table 1. Summary of the N-heterocyclic small molecules.

Scaffolds Compounds

Boron dipyrromethene
(BODIPY) derivates
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In summary, nitrogen-containing heterocycles play an important role in chemical and
biological fields, which has attracted scientific researchers to develop new approaches for
their synthesis. In this review, the synthesis and application in direct fluorescence cell
imaging of N-heterocyclic organic small molecules were described. In organic synthesis,
many classical reactions to obtain N-heterocycles were applied, and meanwhile, various
novel approaches were developed. In biological imaging, fluorescence imaging for direct
staining of the live cells, cytoplasm, or various organelles was described.

Looking forward, there remain some challenges to the direct fluorescence cell imaging
of nitrogen-containing heterocycles, including: (1) How to develop more efficient and green
approaches to synthesize desired nitrogen-containing heterocycles in organic synthesis.
(2) It is still a challenge to develop N-heterocyclic dyes with high photostability, high-
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fluorescence quantum yields, good water-solubility, and good biocompatibility through
molecular structural modification. (3) The live-cell fluorescence imaging of N-heterocyclic
organic small molecules in the NIR region is rarely developed. Regarding these challenges,
we hope that the summarization of live-cell fluorescence imaging of N-heterocyclic organic
small molecules in this review will provide useful guidance and enlightenment for further
development of fluorescence cell imaging.
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